
Packetization and Packet Curves in Network
Calculus

Anne Bouillard∗
Department of Informatics

Anne.Bouillard@ens.fr

Nadir Farhi
Université Paris-Est, IFSTTAR

nadir.farhi@ifsttar.fr

Bruno Gaujal
INRIA/LIG MESCAL
bruno.gaujal@imag.fr

Abstract—Arrival and service curves are core functions in the
Network Calculus framework [2], [3]. Based on those curves,
we present in this talk a new formalism for data packetization
in Network Calculus, the packet curves. Indeed, a more pre-
cise knowledge of the packet characteristics can be efficiently
exploited to get tighter performance bounds, for example for
aggregation of flows, packet-based service policies and shared
buffers. Finally, we will give a model for a wormhole switch and
show how our results can be used to get efficient delay bounds.
Details and proofs can be found in [1].

a) Packet operator and packet curves: For a server S,
A is the arrival flow - A(t) is the cumulative amount of data
that arrived until time t - and B is the departure process -
B(t) is the cumulative amount of data that left until time t.
Suppose that A is made of packets of variable size. One may
consider P the packet flow associated to this flow, such that
∀t ≥ 0, P (t) is the number of entire packets that arrive until
time t. The transformation of an arrival flow into a packet
flow is made using the packet operator, which is a function
P : R → N such that for an amount x of arrival data, P(x)
is the number of entire packets in x: P = P ◦A(t).

The operator P may not be perfectly known, but some
information about it may be available, more precise than
only the minimum and maximum packet length respectively
denoted by `min and `max. For example, a flow with packets
of size 1 and 2, where in three successive packets, there are
at least one packet of size 1 and at least one packet on size
2. In order to take into account this information, we introduce
the packet curve of a packet operator:

A curve π (resp. Π) is a minimum (resp. maximum) packet
curve for P if ∀0 ≤ x ≤ y,

P(y)−P(x) ≥ π(y− x) (resp. P(y)−P(x) ≤ Π(y− x)).

With the example described above, one can take π : x 7→
(3/5(x − 2/3))+ and Π : x 7→ 3/4x + 3/2, where (x)+ =
max(0, x). Stair-case functions can be more precise, but affine
functions and rate-latency functions are easier to handle from
an computational viewpoint. Note that if π is defined as π :
x 7→ µ(x − ν)+, then ν ≥ lmax and µ ≥ 1/`max and if Π is
defined as Π : x 7→ V + Ux, then V ≤ 1/`min and V ≥ 1.

∗ This author has carried out the work presented in this paper at LINCS
(www.lincs.fr).

This work has been funded by the French National Research Agency ANR
(PEGASE SEGI 009 02).

b) Properties of the packet curves: We assume here that
A (resp. Ai, i ∈ {1, 2}) is upper-constrained by the arrival
curve α (resp. αi) and has packet operator P (resp. Pi) with
packet curves π and Π (resp. πi and Πi) and that β is a (strict)
service curve of the server. We also assume a FIFO service
per flow. Then, the following properties hold.

(i) Π and π are maximal and minimal packet curves for B.
(ii) Π ◦ α is an arrival curve for the packet flow P .

(iii) π ◦ β is a minimum (strict) service curve for P .
(iv) If β′ be a minimum simple (resp. strict) service curve

for a packet flow P = P ◦ A, then, (Π)−1 ◦ bβc (resp.
(Π)−1 ◦ dβe) is a minimum simple (resp. strict) service
curve for (P)−1 ◦ P ◦A.

(v) π1 ∗ π2 is a minimum packet curve for the (blind)
aggregation of A1 and A2.

c) Modeling some network elements: Some network el-
ement can be more precisely studied using packet curves. We
describe here three examples in this paragraph.
Superposition of periodic flows. When the aggregation of
several flow is FIFO, better packet curves than π1 ∗ π2 can
be found. A special case is the superposition of periodic flow.
Consider N flows, where flow n, 1 ≤ n ≤ N , is composed of
packets of size Sn arriving with period Tn. Set ρn = Sn/Tn.
Then πN and ΠN are respective minimum and maximum
packet curves for the superposition of those flows:

π(x) =

(
N∑

n=1

x

Tn
∑

i ρi
−

N∑
n=1

∑
i Tiρi

Tn
∑

i ρi

)
+

Π(x) =

N∑
n=1

x

Tn
∑

i ρi
+

N∑
n=1

∑
i Tiρi

Tn
∑

i ρi
.

Note that the rates of the two functions are equal, thus
optimal.
Non-preemptive service curves. Figure 1 gives the general
scheme of computation, using the basic properties of packet
curves. This scheme is more efficient that the computations
that may be done using classical methods and taking into
account the minimum and maximum packet sizes only when
the service policy is based on counting packets. An example of
such policy is the Round-Robin. For this policy, three service
curves can be computed (we consider two flows, and the
residual service curve of the first):



(α2, π2,Π2)
A2A1

(iii)+(v)

(α1, π1,Π1)

β
Fluid service policy

(ii)

B2

β1 = Π−1
1 ◦ β′1 β2 = Π−1

2 ◦ β′2

B1

(iv)+(i)

P1 P2

(Π1 ◦ α1) (Π2 ◦ α2)

β′ = (π1 ∗ π2) ◦ β

β′1 β′2

Packet service policy

Fig. 1. Non-preemptive service calculus scheme.

• Classical method: βc(t) =
(

`min
i

n`max β − `max
)+

,

• Scheme method: βs(t) = (Πi)
−1
(

1
n (πi ∗ π2 ◦ β)− 1

)+
,

• Ad-hoc method: βah(t) = (Id+ π−1
2 ◦Π1 + 1)−1 ◦ (β −

`max)+.
Numerically, with `min = 1, `max = 2, π1 = π2 = π, Π1 =
Π2 = Π defined above, and β(t) = 10t, we have βc(t) =
2.5(t − 0.8)+, βs(t) = 4(t − 0.97)+ and βah(t) = 4.44(t −
0.68)+. The residual service rate using the scheme is much
better, but the ad-hoc method is the best.
Shared queues. Let A1 and A2 be two packetized data flows
arriving at the same server. The server serves the packets one
by one, and each time it finishes the service of one packet, it
picks another packet of either one flow or the other (we still
assume FIFO service per flow). Now, the servers provide a
different service for those flows: packets of flow A1 have a
strict minimum service curve β1 and packets of flow A2 have
a strict minimum service curve β2. When finishing the service
of one packet, if the next one is from a different flow, then the
service is reinitiated (as if the switching time is the beginning
of a backlogged period).

�
�
�
�
�
�
�

�
�
�

���
���
���
���
�
�
�
�

��
��
��

��
��
��

��
��
��
��

A2
B2

A1
β1

β2

B1

Fig. 2. Shared queues: the two servers cannot be active at the same time.

Considering only the periods of time when server 1 is active
(and server 2 idle), β̃1 is a service curve for flow 1 with:

β̃−1
1 (x) =

(
β

(bΠ1(x)c)
1

)−1

(Π−1
1 (bΠ1(x)c)) + β−1

1 (π−1
1 (0+)).

Then an overall service curve for the shared queue is β̃1∗β̃2.
This formula is rather pessimistic, but gives the key idea to

find better service curves, that is, for each flow compressing
time when the server of interest is idle. Improvements are
obtained by bounding the number of idle periods and the
lengths of those idle periods. This is only possible if minimal
and maximal arrival curves are known.

d) Application to performance evaluation in a switch:
The talk will be concluded by the presentation of an appli-
cation of all those network elements to computing delays in
a switch with N input ports and N output ports. Input ports
serve packets with the FIFO policy (infinite service rate), and
output ports use the (packetized) Round-Robin policy (fixed
service rate).

R
R

R
R

FI
FO

FI
FO

B12

B11

B21

B22

A11

A12

A21

A22

Fig. 3. 2 × 2 switch.

The steps are the following.
1) Compute individual service curves for the output ports

(RR).
2) Compute a service curve for the shared queues.
3) Use the service curves obtained to derive arrival curves

for Bi,j .
4) Iterate using the additional knowledge obtained.

REFERENCES

[1] A. Bouillard, N. Farhi, and B. Gaujal. Packetization and Aggregate
Scheduling. Rapport de recherche RR-7685, INRIA, July 2011.

[2] C. S. Chang. Performance Guarantees in Communication Networks.
TNCS, 2000.

[3] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet, volume LNCS 2050. Springer-
Verlag, 2001. revised version 4, May 10, 2004.


