
Stability and performance bounds in cyclic
networks using network calculus

Anne Bouillard1?

Nokia Bell Labs France, 91620 Nozay, France
anne.bouillard@nokia-bell-labs.com

[0000−0002−3345−4653]

Abstract. With the development of real-time systems and of new wire-
less communication technologies having strong requirements on latencies
and reliability, there is a need to compute deterministic performance
bounds in networks. This paper focuses on the performance guarantees
and stability conditions of networks with cyclic dependencies in the net-
work calculus framework.
Two kinds of techniques exist: backlog-based techniques compute backlog
bounds for each server, and obtain good stability bounds to the detri-
ment of the performance bounds; flow-based techniques compute perfor-
mance bounds for each flow and obtain better performance bounds for
low bandwidth usage, but poor stability conditions.
In this article, we propose a unified framework that combines the two
techniques and improve at the same time stability conditions and perfor-
mance bounds in the classical linear model. To do this, we first propose an
algorithm that computes tight backlog bounds in trees for a set of flows
at a server, and then develop a linear program based on this algorithm
that computes performance bounds for cyclic networks. An implementa-
tion of these algorithms is provided in the Python package NCBounds and
is used for numerical experiments showing the efficiency of the approach.

Keywords: Network calculus · cyclic networks · linear programming.

1 Introduction

New wireless communication technologies (5G) aim at providing deterministic
services, with strong requirements on buffer occupancy, latency and reliabil-
ity. For example, Time-Sensitive Networks (TSN) is part of the 802.1 working
group [27], whose potential application to industrial and automotive networks.
Critical embedded systems also become more and more complex and it becomes
a necessity to compute accurate worst-case performance guarantees.

Network Calculus is a (min,plus)-based theory that computes global perfor-
mance bounds from a local description of the network. These performances are
the maximum backlog at a server of end-to-end delay of a flow. Examples of ap-
plications are switched network [16], Video-on-Demand [20]... It has been very

? Anne Bouillard is part of the LINCS (www.lincs.fr).

2 A. Bouillard

useful for analysis large embedded networks such as AFDX (Avionics Full Du-
plex) [13], and more recently, it has been used to model the behavior of TSN [21].

In most applications, such as AFDX, only feed-forward topologies are used.
One reason is the difficulty of deriving good deterministic performance bounds in
networks with cyclic dependencies. However, allowing cycles in networks would
result in a better bandwidth usage and more flexible communications [1]. As a
consequence, there is a strong need to design efficient methods for computing
precise deterministic performance bounds in cyclic networks, which is the aim
of this paper.

State of the art. Recent works have focused on computing tight performance
bounds in feed-forward networks. It is proved in [10] that the problem is NP-hard
for general feed-forward topologies. Bondorf et al. propose in [5, 6] an approxima-
tion scheme based on finding a good decomposition of the problem and compute
performance bounds on this decomposition, while in [17], Geyer and Bondorf use
Recurrent Neural Networks to find this decomposition in tree networks.

A lot of efforts has been put on the analysis of sub-classes of networks,
namely sink-trees and tandems. Schmitt et al. introduce in [24] the concept of
Pay multiplexing only once (PMOO) showing at the same time the difficulties in
computing tight performance bounds in tandem networks, and exhibiting tight
bounds in sink-trees. In [10, 12], it is proved that computing tight performance
bounds in tandem networks can be done in polynomial time.

The stability of a network is still an open problem in network calculus. The
most classical method for computing performance guarantees in cyclic networks
is to use the fix-point or time-stopping method first presented by Cruz in [15].
A sufficient condition for stability is obtained as the existence of a fix point in
an equation derived from the network description. This technique has recently
been applied by Amari and Mifdaoui in [2] to ring networks, using the multidi-
mensional convolution for PMOO in tandem networks first developed in [9].

Another classical result is the stability of the ring for any bandwidth us-
age under 100%, which is proved by Tassiulas and Georgiadis in [26] for work-
conserving links and generalized in [18]. The stability condition in [2] is only
50% of the bandwidth usage in the uniform ring, performance in [2] are better
in small bandwidth usages.

Other research directions focus on the FIFO policy. Rizzo and Le Boudec find
sufficient condition for the stability in FIFO networks in [23]; Andrews shows
in [3, 4] that the FIFO policy can be unstable at arbitrary small utilization rates.

Finally, some techniques have also been introduced to stabilize networks:
Starobinski et al. propose in [25, 22] the turn-prohibition method that breaks
the cyclic dependencies by forbidding some paths of length 2. This ensures both
stability and connectivity. Another solution is to add regulators, named shapers,
after each server. In [19], Le Boudec shows that introducing shapers allows the
control of the worst-case performances.

Contributions. In this paper, we study the problem of stability in networks
with cyclic dependencies in the network calculus formalism, unifying the ap-
proaches of the time-stopping method and of the backlog-based method of [26,

Stability and performance bounds in cyclic networks using network calculus 3

18]. As in most of the above references, we restrict ourselves to the linear model:
when arrival curves are token-bucket and the service curves rate-latency. This
approach includes several steps:

1. generalizing the recent algorithm of [12] that computes exact worst-case de-
lays in a tandem network. It now enables to compute the worst-case backlog
of a server for any subset of flows crossing that server in tree networks. As a
matter of fact, the algorithm in [12] can be deduced from this new algorithm,
while the reverse is not true;

2. improving the time-stopping technique. Performance bounds are computed
as the solution of a linear program, allowing more expressiveness that the fix-
point method. This improvement combines with backlogged-based method,
and in particular, the stability of the ring is proven without the additional
technical assumption used in [18];

3. providing the Python package NCBounds [11] that contains this algorithm,
some variants and state-of-the-art techniques.

The rest of the paper is organized as follows: in Section 2, we recall the
network calculus basics. Then in Section 3, we give our algorithm that computes
exact worst-case backlog in tree networks. Next in Section 4, we present a linear
program to compute sufficient conditions for the stability of networks and prove
the stability of some networks. Finally, we compare them through numerical
experiments in Section 5.

2 Network calculus framework

In this section, we present the necessary material needed for the rest of the
paper. A more complete presentation of the network calculus framework can be
found in the reference books [8, 14, 18]. We use the notation Nn for {1, . . . , n}.

2.1 Data flows and server

Data processes and arrival curves. Flows of data are represented by cu-
mulative processes. More precisely, if A represents a flow at a certain point in
the network, A(t) is the amount of data of that flow that crosses that point in
the time interval [0, t), with the convention A(0) = 0. The processes are non-
decreasing and left-continuous. We denote by F the set of such functions.

A flow A is constrained by the arrival curve α, or is α-constrained, if

∀s, t ∈ R+ with s ≤ t, A(t)−A(s) ≤ α(t− s).

In the following we will consider leaky-bucket functions: γb,r : 0 7→ 0; t 7→ b+ rt,
if t > 0. The burst b can be interpreted as the maximal amount of data that can
arrive simultaneously and the arrival rate r as a maximal long-term arrival rate
of data.

4 A. Bouillard

SA D

(a) Server model

time

d
a
ta A

D

t

b
(
t
)

d(u)

u

(b) Processes

t

d
a
ta

α

βdmax

b m
a
x

`max

(c) Performances

Fig. 1: Server model and worst-case performances.

Servers and service curves. An n-server S ⊆ Fn×Fn (illustrated for n = 1
in Figure 1a) is a relation between n arrival processes (Ai)

n
i=1 and n departure

processes (Di)
n
i=1 such that Ai ≥ Di for all i ∈ Nn. The latter inequality models

the causality of the system (no data is created inside the system).
The role of a service curve is to constrain the relation between the inputs

of a server and its outputs. Several types of service curves have been defined
in the literature (see [18]), and we here only focus on the strict service curve.
Intuitively, a strict service curve gives the minimum amount of service provided
to the arrival processes provided the system is not empty. More formally, an
interval I is a backlogged period for (A,D) ∈ F × F if ∀u ∈ I, A(u) > D(u).

We say that β ∈ F is a strict service curve for 1-server S if

∀(A,D) ∈ S, A ≥ D and ∀ bckl. per. (s, t], D(t)−D(s) ≥ β(t− s). (1)

In the following we will use the rate-latency service curves: βR,T : t 7→ R(t−
T)+, where T is the latency until the server has to become active and R is its
minimal service rate after this latency.

A n-server S offers a strict service curve β if, seen as a 1-server, S offers β
to
∑m
i=1Ai and

∑m
i=1Di for all ((Ai), (Di)) ∈ S. We call the flow with arrival

process
∑m
i=1Ai the aggregate flow of flows 1, . . . , n. We assume no knowledge

about the service policy in this system (except that it is FIFO per flow).

2.2 Performance guarantees in a server

Backlog and delay. Let S be a 1-server and (A,D) ∈ S. The backlog of
that server at time t is b(t) = A(t) − D(t). The worst-case backlog is then
bmax = supt≥0 b(t).

We denote bmax(α, β) the maximum backlog that can be obtained for an α-
constrained flow crossing a server with strict service curve β. For example, we
have bmax(γb,r, βR,T) = b+ rT if r ≤ R.

The delay of data exiting at time t is d(t) = sup{d ≥ 0 | A(t − d) −D(t)}.
The worst-case delay is then dmax = supt≥0 d(t).

We denote dmax(α, β) the maximum delay that can be obtained for an α-
constrained flow crossing a server with strict service curve β. For example, we
have dmax(γb,r, βR,T) = T + T

R if r < R.
Backlog and delay are illustrated on Figures 1b and 1c.

Stability and performance bounds in cyclic networks using network calculus 5

Stability Our main interest is the network stability.

Definition 1 (Server stability). Consider a server offering a strict service
curve β and crossed by an α-constrained flow. This server is said stable if its
backlogged periods are bounded.

If the service curve is rate-latency βR,T and the arrival curve leaky-bucket
γb,r, then a server is stable if and only if R > r, as the length of a backlogged
period is sup{t > 0|α(t) > β(t)} and is `max(γb,r, βR,T) := b+RT

R−r in that case.
This definition involves r and R only. The stability is insensitive to b and T ,

that only influence the server’s performance. This also explains why we restrict in
this paper to these types of curves: if a more general arrival (resp. service) curve
can be and upper bounded by some token-bucket (resp. rate-latency) functions
with the same rate, then the stability sufficient conditions that we compute in
this paper are not impacted by the approximation by token bucket and rate
latency functions.

2.3 Network model

Consider a network composed of n servers numbered from 1 to n and crossed by
m flows named f1, . . . , fm, such that

– each server j guarantees a strict service curve βj ;
– each flow fi is αi-constrained and circulates along an acyclic path πi =
〈πi(1), . . . , πi(`i)〉 of length `i.

We call the model linear when arrival curves are leaky-bucket and the service
curve rate-latency.

For a server j, we define Fl(j) = {i | ∃`, πi(`) = j} the set of indices of the
flows crossing server j.

We denote by N this network. The induced graph GN = (Nn,A) is the
directed graph whose vertices are the servers and the set of arcs is

A = {(πi(k), πi(k + 1)) | i ∈ Nm, k ∈ N`i−1}.

As we will focus on the performances in server n, we can assume without
loss of generality that the network is connected and has a unique final strictly
connected component.

Tree networks If the induced graph GN has out-degree 1 for each vertex except
node n is 1 and out-degree 0 for vertex n, then N is called a tree. In that case, we
denote by j• the unique successor of server j and assume that j < j•, with the
convention n• = n+ 1. The set of predecessors of a vertex is •j = {k | k• = j}.
There exists at most one path between two vertices j and k, denoted j k,
and if there exists such a path, •jk is the predecessor of k on this path. Figure 2
illustrates the notations of the network model.

Finally we can extend the notion of stability to networks.

6 A. Bouillard

β1 β2 β3 β4
f1, α1

f2, α2f3, α3

Fig. 2: Example of a tree-networks with 3 flows and 4 servers. To illustrate the
notations, we have π(1) = 〈1, 2, 4〉, Fl(4) = {1, 2}, 4• = {2, 3}, 4•1 = 2, and
1 4 = 〈1, 2, 4〉.

Definition 2 (Local stability). A network N is locally stable if all its servers
are stable using the initial arrival curves:

∀j ∈ Nn, `max(
∑

i∈Fl(j)

αi, βj) <∞.

Definition 3 (Global stability). A network is globally stable if the backlogged
periods of each server are uniformly bounded.

It is well-known that if a network is globally stable, then it is locally stable.
The converse is true for feed-forward networks, but not in general.

3 Worst-case backlog in trees

In this section, we focus on tree networks and give an algorithm to compute
exact worst-case backlog in the linear model. Then we compare with the existing
approaches.

3.1 Algorithm

The algorithm presented in this paragraph is a generalization of the one given
in [12] with the following differences:

1. our algorithm computes a worst-case backlog at a server;
2. it can be applied to compute the worst-case backlog at a server for any set

of flows crossing this server;
3. it is valid for any tree topology.

The two algorithms and their proof are based on the same ideas, and due to the
space limitation, we do not present the complete proof here.

Theorem 1. Consider a stable tree network with n servers offering a rate-
latency strict service curves βRj ,Tj , and m flows with leaky-bucket arrival curves
γbi,ri . Let I be a subset of flows crossing server n. Then there exists (ρj)j∈Nn

and (ϕi)i∈Nn
such that the worst-case backlog at server n for flows in I is

B =

n∑
j=1

ρjTj +

m∑
i=1

ϕibi, (2)

where the coefficients ρj and ϕi depend only on ri and Rj and are computed by
Algorithm 1. This algorithm runs in time O(n2 +m).

Stability and performance bounds in cyclic networks using network calculus 7

If there is only one flow for each possible source/destination pair, then m ≤ n2/2
and the algorithm runs is O(n2).

We call I ⊆ Nm the set of flows of interest, and use the following additional
notations:

– rkj =
∑
i∈Fl(j)\I,πi(`i)=k

ri is the arrival rate at server j for all flows ending
at server k and crossing server j that are not of interest;

– r∗j =
∑
i∈I∩Fl(j) ri is the arrival rate of the flows of interest that cross server j.

Algorithm 1: Worst-case backlog algorithm

1 begin
2 ξnn ← r∗n/Rn − rnn;
3 Q = queue(•n);
4 while Q 6= ∅ do
5 j = Q[0];
6 k ← n;

7 while ξkj•>(r∗j +
∑
`∈k• nξ

`
j•r

`
j)/(Rj −

∑
`∈j k r

`
j) do

8 ξkj ← ξkj• ;

9 k ← •jk;

10 for ` from j to k do ξ`j←(r∗j +
∑
`′∈k• n ξ

`′
j•r

`′
j)/(Rj −

∑
`∈j k r

`′
j);

11 Q← enqueue(dequeue(Q, j), •j);

12 for j from 1 to n do ρj ← r∗j +
∑
`∈j n ξ

`
jr
`
j ;

13 for i from 1 to m do
14 if i ∈ I then ϕi ← 1 ;

15 else ϕi ← ξ
πi(`i)

πi(1)
;

Proof (Sketch). The proof is in two steps. First we show that there is a worst-case
trajectory (i.e. a set of arrival and departure processes satisfying all arrival and
service curve constraints and reaching the worst-case backlog at a time denoted
tn+1 = tn•) satisfying the following properties:

(P1) The service policy is SDF (shortest-to-destination-first): priority is given to
flows that stop at the server with the smallest number.

(P2) For each server j, there is a unique backlogged period (tj , tj•], where the
service offered is as small as possible. After and before this backlogged period,
the server transmits data instantaneously.

(P3) The arrival cumulative process of flow fi entering the system at server j (i.e.
πi(1) = j) is maximal from tj , the start of the backlogged period of server
j (it is αi(t− tj) for all t > tj and 0 otherwise. Intuitively, the backlog does
not increase if the cross-traffic is delayed).

(P4) Data from the flows of interest in I have the lowest priority and are instan-
taneously served by server j at time tj• (if they cross server j) and are all
in server n at time tn+1.

8 A. Bouillard

The second step is to find a worst-case trajectory. The first step allows us to
reduce the space of the trajectories, and in fact only the dates (tj)j∈Nn

remain
to optimize. This is done by a backward induction on the servers. The choice of
date tj is equivalent to choosing which flows (hence the quantity of data) will
be transmitted instantaneously by server j to its successor, so that the backlog
in the final server is maximized. ut

The worst-case delay of a flow (main results of [12]) can be deduced from the
worst-case backlog when I is reduced to this flow.

Corollary 1. Suppose that flow 1 crosses server n. Then the worst-case delay
of flow 1 starting at server j and ending at server n is

∆ =
B − b1
r1

+
ξnj b1

r1
,

where B and ξnj are the worst-case backlog and coefficient obtained from Algo-
rithm 1 when I = {1}.

Interpretation of ξ. The parameter ξ`j can be interpreted as the contribution of
data crossing server j and exiting at server ` contribute to increase the backlog
of the flows of interest at server n. For example, consider server n, and suppose
that for the flows not of interest, the backlog transmitted from server n − 1 to
server n and from flows entering at server n at time tn−1 is b. Denote by rnn
the arrival rate of these flows. These data have the highest priority. All data

from these flows are served after a time t = tn − tn−1 = Tn +
b+rnnTn

Rn−rnn
(we have

b + rnnt = Rn(t − T)+). During this time, data created by the flows of interest,
at rate r∗n, can be divided in two parts: r∗nTn induced by server n’s latency

and r∗n
b+rnnTn

Rn−rnn
induced by the interference of the other flows, which explains the

equality ξnn =
r∗n

Rn−rnn
. The interpretation is similar for the other servers. The

complexity of the formula and the comparison of line 7 corresponds to searching
the downstream bottleneck.

3.2 Backlog and arrival curves for aggregation of flows

In this paragraph, we show how to use our algorithm to compute arrival curves for
the aggregation of flows, and how this can be used to improve the performances
bounds computed: Theorem 2 is the base for our backlogged based approach and
Theorem 3 improves the performance bounds by combining flows and backlog.

Theorem 2. With the same notations and assumptions as in Theorem 1, the
arrival curve of the departure functions from server n for flows in I is γB,

∑
i∈I ri

.

This theorem is a generalization to networks and for several flows of the
classical result that characterizes the arrival curve of a departure process (see
[8, Theorem 5.3] for example).

Consider a tree network as above and the following assumptions:

Stability and performance bounds in cyclic networks using network calculus 9

– I = {f1, . . . , fk} is a set of flows all entering the network at server j, that
have respective arrival curves γbi,ri . Data of each flow fi can arrive at rate
at least ri independently of the other flows;

– the arrival process of the aggregation of the flows in I is constrained by the
arrival curve γb,r, with r =

∑
i∈I ri;

– B is a performance of the tree network (backlog at its root or delay of a
flow), and (ϕi)i∈I are the computed with Algorithm 1.

In the rest of the paper, the assumption that each flow fi can arrive at rate ri
independently of the other flows is satisfied, because the servers can serve data
instantaneously and any service policy is possible.

Theorem 3. With the notations and assumptions above,

B ≤ sup{
k∑
i=1

ϕixi + C | xi ≤ bi and
∑
i∈I

xi ≤ b},

where C is a constant including the contribution of all flows not in I and of all
latencies.

Proof. From property (P3), the arrival processes Ai of fi ∈ I are maximal from
time tj , the start of backlogged period of server j. Then data from flow fi can
arrive at rate ri at least. As this is also the maximal long-term arrival rate, there
exists xi ≤ bi such that Ai(t)−Ai(tj) ≤ xi+ ri(t− tj), and that lim suptAi(t)−
Ai(tj)− ri(t− tj) ≥ xi. We then have the inequality B ≤

∑k
i=1 ϕixi + C.

But we also have∑
i∈I

Ai(t)−Ai(tj) ≤ b+
∑
i∈I

ri(t− tj),

so
∑
i∈I xi ≤ b. As a consequence, the performance of the system can be bounded

by B ≤ sup{
∑k
i=1 ϕixi + C | xi ≤ bi and

∑
i∈I xi ≤ b}. ut

3.3 Examples and comparison with the state of the art

We compare our performance bounds with the state of the art for two models
that have been widely studied in the literature: the sink-tree from [24, 7] and the
tandem networks (PMOO technique from [9, 2]).

Sink-trees are tree topologies where the destination of every flow is the root
(node n). In this special case, each iteration of the external loop (lines 5-11) can
be performed in constant time (there is only one test to perform). Moreover,
the number of flows is at most the number of servers. As a consequence, our
algorithm can be performed in O(n).

To compute the maximum backlog at the root, every flow is a flow of interest,
so ϕi = 1 for each flow i and ρj = r∗j =

∑
i∈Fl(j) ri. It is easy to check that the

formula is the same as in [7, Theorem 14].

10 A. Bouillard

βR,T β2R,T
f1

f2 βR,T βR,T
f5
f3

f4

Fig. 3: Left: sink-tree, Right: tandem.

ξ22 ξ21 ξ11 Algo 1 [9, Cor. 25] [7, Th. 18, 15] [24, Sec. V]

f1
r

2R−r
r
R

2r
2R−r T + b

R
+ b+rT

2R−r 2T + 2b+rT
R

2T + 2b+rT
R

T + b
R

+ b+rT
2R−r

f2
r

2R−r
r

2R−r
r2

(R−r)(2R−r)
2b+(2R+r)T

2R−r ∞ 2b+(2R+r)T
2R−r ∞

f3
r

R−r
r

R−r
r

R−r
2(TR+b)
R−r

2(TR+b)
R−r ∞ ∞

f4
r

R−r
r

R−r (r
R−r)2 R(TR+b)

(R−r)2 + b
R−r ∞ ∞ ∞

Table 1: Comparison of delay bounds.

Table 1 shows the values of ξji for the two examples of Figures 3 and flows
f1, . . . , f4, where all flows are constrained by the arrival curve γb,r, and the
comparison of the worst-case delay obtained in this case against other techniques.
We write “∞” when no specific mean is provided to compute de performance.

We see that our algorithm is strictly more general than the study of some
specific topologies in several ways: of course we can handle tree topologies that
strictly contains tandem and sink-tree networks. But, it can also compute per-
formances for flows of interest that do not cross all the servers, which only [7]
does for sink-trees.

The PMOO bound gives the tight performance in the tandem network, but
not in the sink-tree. The tandem here is quite specific, as all the coefficients
ξji are the same. Our guess is that the PMOO formula is an upper bound of

the bounds found by our algorithm, obtained by replacing ξji by maxi,j ξi,j . So
equality occurs when all the coefficients are the same.

4 Computing performances in cyclic networks

In this section, we generalize the fix-point method, also known as time-stopping,
that is used to compute the worst-case performance bounds in networks with
cyclic dependencies. The principle of this method is to split the paths of the flows
into sub-paths in order to obtain an acyclic network, for which it is possible to
compute performance bounds, in particular output arrival curves at the end of
each sub-path. Then to retrieve performance guarantees of the original network,
a fix-point on the arrival curves is computed: an output arrival curve at the end
of a sub-path is the arrival curve at the start of the next sub-path. Details on
this approach can be found in [18, 8].

In this section we generalize this approach to take advantage of the results
derived in Section 3.2. In Section 4.1, we present a linear program computing
worst-case performance bounds and in Section 4.2, we show the stability of the
ring and slightly more general networks.

Stability and performance bounds in cyclic networks using network calculus 11

1

2

3

4
f1

f2
f3

f4

Fig. 4: Ring network with n = 4.

1 2 3 4(f3, 1)(f3, 2)
(f2, 2) (f2, 1)

f1

(f4, 1)(f4, 2)

Fig. 5: Uniform tandem network with n = 4.

4.1 Decomposition in trees and linear program

We apply the time-stopping method when decomposing the network into trees.
The graph of the network GN can be transformed into a forest by removing a
set of arcs Ar. In the network, each flow fi that traverse removed arcs is split
into several flows (fi, 1), (fi, 2), . . . , (fi,mi) of respective paths in (Ni,A − Ar),
πi,1 = 〈πi(1), . . . , πi(k1)〉, πi,2 = 〈πi(k1 + 1), . . . , πi(k2)〉,..., πi,mi

= 〈πi(kmi
+

1), . . . , πi(`i)〉, where (πi(kj + 1), πi(kj)) ∈ Ar. Figure 4 represents a ring of
length 4. One can choose Ar = (4, 1), and flows f2, f3, f4 can be decomposed
into (fi, 1) and (fi, 2), i ∈ {2, 3, 4}, as depicted in Figure 5.

Consider NFF, the feed-forward network obtained after this transformation
and let us focus on two kinds of arrival curves:

– the arrival curve of each flow (fi, k), denoted αi,k;
– the arrival curve of the aggregation of flows crossing each removed arc of Ar,

and denoted λa, and that we call arrival curve of arc a.

If all these arrival curves are known and finite, then the performance bounds can
be computed for every flow.

In the original network N , all these arrival curves are a priori not known,
except αi,1 = αi, but we can write equations where these arrival curves are the
unknowns. More precisely, suppose that the network is stable and denote αi,k
the best arrival curve (that is, the minimum arrival curves among all the possible
arrival curves) of flow k at server pi,k(1) and λa the best arrival curve of arc a.
From Theorems 2 and 3, there exist functions Fi,k and Fa such that

αi,k ≤ Fi,k((αs)s∈S , (λa)a∈Ar) and λa ≤ Fi,k((αs)s∈S , (λa)a∈Ar),

with S = {(i, k), i ∈ Nm, 1 < k ≤ mi}.
Using vector notation, with (α,λ) = ((αs)s∈S , (λa)a∈Ar) and F = (Fs)s∈S∪Ar ,

one can write, (α,λ) ≤ F(α,λ) and the following theorem holds.

12 A. Bouillard

Theorem 4. Set C = {(α,λ) | (α,λ) ≤ F(α,λ)} and (α̃, λ̃) = sup{(α,λ) |
(α,λ) ∈ C}. If (α̃, λ̃) is finite, then N is globally stable and for all s, α̃s is an
arrival curve for flow s and for all a ∈ Ar, λ̃a for arc a.

The proof of this theorem is nearly the same as that of [8, Theorem 12.1].
In the linear model, the arrival rate of each arrival curve remains the same as

the original flow, and we only have to compute the burst bs of each flow s, and
Ba is the backlog at each arc in Ar. A sufficient condition for the stability can be
expressed as a linear problem. Consider L the following set of linear constraints:

L =

bs ≤

∑
s′∈S ϕ

s
s′x

s
s′ + Cs, ∀s ∈ S

Ba ≤
∑
s′∈S ϕ

a
s′x

a
s′ + Ca, ∀a ∈ Ar

0 ≤ xss′ ≤ bs′ , ∀s′ ∈ S, s ∈ S ∪ Ar∑
s′∈a x

s
s′ ≤ Ba, ∀a ∈ Ar, s ∈ S ∪ Ar

 ,

where we write (i, k) ∈ a if flows (fi, k − 1) and (fi, k) have been split by arc
a and where ϕss′ are the coefficient obtained by Algorithm 1 with flow(s) of
interests s ∈ S ∪ Ar and Cs the contribution of the latencies.

Theorem 5. If L is bounded, then the system is stable.

This is a rephrasing of Theorem 4, using the linear constraints given in Theo-
rem 3: constraints {bs ≤

∑
s′∈S ϕ

s
s′x

s
s′ + Cs, 0 ≤ xss′ ≤ bs′ ,∀s′ ∈ S,

∑
s′∈a x

s
s′ ≤

Ba,∀a ∈ Ar} represent the constraints for computing the backlog of flow s, as
in Theorem 3 applied to flow s, and similarly {Ba ≤

∑
s′∈S ϕ

a
s′x

a
s′ + Ca, 0 ≤

xas′ ≤ bs′ ,∀s′ ∈ S,
∑
s′∈a′ x

a
s′ ≤ Ba′ ,∀a′ ∈ Ar} are the constraints coming from

Theorem 3 applied to computing the worst-case backlog at arc a.
A linear program to compute a performance bound of the system (worst-case

delay or worst-case backlog) is then

Maximize :
∑
s′∈S ϕsys + C

Constraints :
∑
s∈a ys ≤ Ba, ∀a ∈ Ar,

0 ≤ ys ≤ bs, ∀s′ ∈ S,
L.

The linear program has O(c2) variables and constraints, with c = |S|+ |Ar|, and
c constraints require using the quadratic Algorithm 1, which can be costly. The
next paragraph shows two ways to relax the problem to respectively O(|S|) and
O(|Ar|) variables and constraints.

Flow-based and backlog-based linear programs. The linear program we
just wrote combines two techniques usually used separately for cyclic networks:
the first one uses the time-stopping technique to compute the characteristics of
each flow at servers it crosses, and we call them flow-based. The second one
computes worst-case backlog in each server, similar to [26, 18], and we call them
backlog-based.

The set L can be simplified into LF and LB to derive respectively flow-
based and backlog-based bounds: it suffices to respectively keep the flow related

Stability and performance bounds in cyclic networks using network calculus 13

constraints (first and third lines of L) for LF and the arc related constraints
(second and fourth lines of L) for LB . Of course, larger performance bounds
will be obtained, but we will see in Section 5 that these linear programs already
improve the flow-based or backlog-based bounds.

As ϕss′ are non-negative, variables xss′ become useless, and we finally obtain:

LF =

{
bs ≤

∑
s′∈S ϕ

s
s′x

s
s′ + Cs,∀s ∈ S

0 ≤ xss′ ≤ bs′∀s′ ∈ S, s ∈ S ∪ Ar
}

=
{
bs ≤

∑
s′∈S ϕ

s
s′b

s
s′ + Cs,∀s ∈ S

}
,

and

LB =

{
Ba ≤

∑
s′∈S ϕ

a
s′x

a
s′ + Ca,∀a ∈ Ar∑

s′∈a x
s
s′ ≤ Ba∀a ∈ Ar, s ∈ S ∪ Ar

}
=
{
Ba ≤

∑
a′∈Ar (maxs′∈a′ ϕ

a
s′)Ba′ + Ca,∀a ∈ Ar

}
.

4.2 Stability of the ring

Consider a ring with n servers. Its induced graph is G with A = {(i, i + 1), i ≤
n− 1} ∪ {(n, 1)}. The transformation into a tree is a tandem network obtained
by removing arc (n, 1). Flows are decomposed in either one flow if πi(1) < πi(`i)
or two flows otherwise: flow (fi, 1) has path 〈πi(1), . . . , n〉 and flow (fi, 2) has
path 〈1, . . . , πi(`i)〉.

Theorem 6. The ring is stable under local stability condition.

Proof. The ring is stable if the set LB is bounded, that is, if ϕ
(n,1)
s < 1 for all

s ∈ S = {(i, 2) | ∀i such that πi(1) > πi(`i)}.
To compute Ba, the flows of interest are flows (i, 1), so ϕa(i,2) = ξ

πi(`i)
1 .

Observe from Algorithm 1 how ξ`j are computed: because of the local stability,

Rn > rnn + r∗n, so ξnn < 1. Now assume that ξkj• < 1 (lines 7-9). Either ξkj = ξkj• <

1, or ξ`j = (r∗j +
∑
`′∈k• n ξ

`′

j•r
`′

j)/(Rj−
∑
`∈j k r

`′

j) ≤ (r∗j +
∑
`′∈k• n r

`′

j)/(Rj−∑
`∈j k r

`′

j) < 1, from the local stability condition. As a consequence, for all j

and `, ξ`j < 1 and maxs∈S ϕ
(n,1)
s < 1, which ends the proof. ut

This result has already been proved under stronger assumptions: in [26],
servers are constant-rate servers and in [18], servers have a maximal service
rate. Our method is not specific to the ring topology, so we can hope to improve
the stability conditions for more general topologies.

Stability of hierarchical cycles. A straightforward generalization is when the
network only has disjoint cycles: each non trivial strongly connected component
of the network is a ring. In this case, the stability can be established by induction:
perform a topological ordering of the cycles, and compute performances at the
outputs of each cycle in this topological order.

14 A. Bouillard

Unfortunately, our linear program is not enough to prove the stability of
other classes of networks, and we will see in the next section that the stability
condition established for a network composed of two rings is stronger than the
local stability.

5 Numerical Evaluation

In this section, we compare our approach with the state of the art on several ex-
amples. The first one is the ring already defined. Indeed, the ring is the topology
which has been studied in [2] and [26]. To demonstrate the generality of our algo-
rithm, we also take the example of a network composed of two rings, but we can
only compare this example with the most naive methods of [15, 18]. The different
approaches have been implemented in the Python Package NCBounds [11]. Note
that the implementation of the package aims at clarity rather than efficiency.

The following approaches are compared.

– SFA: the fix-point approach described in [18, Section 6.3.2] computes a fix-
point in the performances of each flow at each server it crosses;

– PMOO: the fix-point approach described in [2] that is exemplified on the
uniform ring;

– BB: the backlog bound of [18, Theorem 6.4.1];
– LPF: the flow-based linear programming approach using the LF (that can

be compared to SFA and PMOO);
– LPB: the backlog-based linear programming approach using LB (that can

be compared to BB);
– LPF+B: the linear programming approach using all constraints L.

5.1 Uniform ring example

Consider a uniform ring network as described in Figure 4 composed of n servers
and n flows of length n. Each server has a service rate R = 100Mb.s−1 and
latency of 1ms, the maximum burst of each flow is 1Mb. The arrival rate depends
on the utilization rate u ∈ [0, 1] and is r = uR

n .
We first compare the stability region for each method that do not stabilize

the ring, namely SFA, PMOO and LPF. Figure 6a depicts the stability region
when the number of servers varies from 2 to 100. As expected, PMOO provides
better bounds than SFA, and LPF improves the stability region. As conjectured
in [2], the stability region with PMOO converges to a utilization rate of 0.5.
The stability region of LPF seem to converge to 2 −

√
2 ' 0.58, hence already

providing approximately 18% improvement of the stability region over flow-based
methods.

Now we fix the number of servers n = 10, and compare the worst-case back-
logs of flow 1 at server 10 (Figure 6b). We choose backlog over delay because BB
is more suited to this performance, and computing delays would lead to even
worse performances. We observe the same stability bounds as above for the three

Stability and performance bounds in cyclic networks using network calculus 15

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of servers in the ring

U
ti

li
za

ti
o
n

ra
te

LPF

PMOO

SFA

(a) Stability sufficient conditions.

0 0.2 0.4 0.6 0.8 1
100

102

104

Utilization rate

B
a
ck

lo
g

u
p
p

er
b

o
u
n
d LPF+B

LPF

PMOO

LPB

BB

SFA

(b) Backlog bound for 10 servers.

Fig. 6: Comparisons with the uniform ring.

flow-based methods. The stability of the ring is experimentally verified by the
three other methods. The more constraints we add in the linear programming
approach, the tighter the backlog bound, hence LPF+B is a better bounds than
LPF and LPB. Second, LPF also beats PMOO. This could be seen as sur-
prising as PMOO computes tight bounds for uniform tandems. The difference
can be explained by the more general applicability of Algorithm 1 stated in Sec-
tion 3.3: exact worst-case performances can be computed for a flow that do not
cross all servers, hence the network is decomposed into fewer elements, which
induces less pessimism in the performance bounds. LPB also beats BB. This is
quite logical, as the formula uses fewer parameters that the linear program.

5.2 Two-ring example

We now consider a network composed of two rings of length n, as depicted in
Figure 7a with n = 4. Each flow has length n and circulates along one of the
two rings (2n flows), and the description of the servers and flows is the same as
above, except that the central server has service rate 2R. Figure 7b compares
the performances obtained with the three LP methods against SFA, the only
other method that can be applied to non-ring networks. We see that the stability
region and the performances are improved. In this case, we do not obtain the
stability (which is an open issue), but LPF+B strictly improve the stability
region (u ≤ 0.76) of both LPF (u ≤ 0.75) and LPB (u ≤ 0.73), while the two
latter methods do not compare performance-wise.

Backlog vs delay. Finally, Figures 8a and 8b depict the delays of flow 1 in the
same experimental settings as above. From Corollary 1, the delay is obtained
from the backlog by a linear transformation. Consequently, the comparisons
remain similar. Still, one can notice that the backlog-based bound is not very
good at low utilization rate.

16 A. Bouillard

(a) Two-ring network.

0 0.2 0.4 0.6 0.8
100

101

102

103

Utilization rate

B
a
ck

lo
g

b
o
u
n
d

(b
)

LPF+B

LPF

LPB

SFA

(b) Backlog bound for n = 5.

Fig. 7: Comparisons with the two-ring network.

0 0.2 0.4 0.6 0.8 1

100

102

Utilization rate

D
el

ay
b

o
u
n
d

(d
)

LPF+B

LPF

PMOO

LPB

SFA

(a) Uniform ring network with n = 10.

0 0.2 0.4 0.6 0.8

101

102

103

Utilization rate

D
el

ay
b

o
u
n
d

(d
)

LPF+B

LPF

LPB

SFA

(b) Two-ring network with n = 5.

Fig. 8: Delay bounds.

6 Conclusion

In this article, we gave an algorithm to compute tight worst-case performances
in tree-networks and a linear program to compute worst-case performances in
general topologies. This approach outperforms the existing approaches both for
the stability condition and the performances.

One open question is the choice of the decomposition of the network, the
influence of this choice on the stability region and bounds obtained. One way
to choose a good decomposition could be to follow the approach of [17] and use
neural networks.

Finally, we assumed arbitrary multiplexing, and future work includes adapt-
ing the result to specific service policies, such as FIFO, priorities, or generalized
processor sharing.

References

1. Amari, A., Mifdaoui, A., Frances, F., Lacan, J., Rambaud, D., Urbain, L.: AeroR-
ing: Avionics Full Duplex Ethernet Ring with High Availability and QoS Manage-

Stability and performance bounds in cyclic networks using network calculus 17

ment. In: ERTS (2016)
2. Amari, A., Mifdaoui, A.: Worst-case timing analysis of ring networks with

cyclic dependencies using network calculus. In: RTCSA. pp. 1–10 (2017).
https://doi.org/10.1109/RTCSA.2017.8046319

3. Andrews, M.: Instability of FIFO in session-oriented networks. In: Proceedings of
SODA’00 (2000)

4. Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily
small network loads. In: Proceedings of SODA’07 (2007)

5. Bondorf, S., Nikolaus, P., Schmitt, J.B.: Quality and cost of deterministic net-
work calculus – design and evaluation of an accurate and fast analysis. In: ACM
SIGMETRICS (2017). https://doi.org/10.1145/3078505.3078594

6. Bondorf, S., Nikolaus, P., Schmitt, J.B.: Quality and cost of deterministic network
calculus – design and evaluation of an accurate and fast analysis. Proceedings of
the ACM on Measurement and Analysis of Computing Systems (POMACS) 1(1),
34 (2017). https://doi.org/10.1145/3084453

7. Bondorf, S., Schmitt, J.B.: Boosting sensor network calculus by thor-
oughly bounding cross-traffic. In: Proceedings of INFOCOM 2015 (2015).
https://doi.org/10.1109/INFOCOM.2015.7218387

8. Bouillard, A., Boyer, M., Corronc, E.L.: Deterministic Network Calculus: From
Theory to Practical Implementation. Wiley-ISTE (2018)

9. Bouillard, A., Gaujal, B., Lagrange, S., Thierry, E.: Optimal routing for end-to-
end guarantees using network calculus. Performance Evaluation 65(11-12), 883–906
(2008). https://doi.org/10.1016/j.peva.2008.04.008

10. Bouillard, A., Jouhet, L., Thierry, E.: Tight Performance Bounds in the
Worst Case Analysis of Feed Forward Networks. In: INFOCOM’10 (2010).
https://doi.org/10.1109/INFCOM.2010.5461912

11. Bouillard, A.: Python package ncbounds (2019),
https://github.com/nokia/NCBounds

12. Bouillard, A., Nowak, T.: Fast symbolic computation of the worst-case de-
lay in tandem networks and applications. Perform. Eval. 91, 270–285 (2015).
https://doi.org/10.1016/j.peva.2015.06.016

13. Boyer, M., Navet, N., Olive, X., Thierry, E.: The PEGASE project: precise and
scalable temporal analysis for aerospace communication systems with network cal-
culus. In: ISOLA’10 (2010). https://doi.org/10.1007/978-3-642-16558-0 13

14. Chang, C.S.: Performance Guarantees in Communication Networks. TNCS,
Springer-Verlag (2000)

15. Cruz, R.: A calculus for network delay, part II: Network analy-
sis. IEEE Transactions on Information Theory 37(1), 132–141 (1991).
https://doi.org/10.1109/18.61110

16. Cruz, R.: Quality of service guarantees in virtual circuit switched networks.
IEEE Journal on selected areas in communication 13, 1048–1056 (1995).
https://doi.org/10.1109/49.400660

17. Geyer, F., Bondorf, S.: DeepTMA: Predicting effective contention models
for network calculus using graph neural networks. In: (INFOCOM) (2019).
https://doi.org/10.1109/INFOCOM.2019.8737496

18. Le Boudec, J.Y., Thiran, P.: Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, vol. LNCS 2050. Springer-Verlag (2001).
https://doi.org/10.1007/3-540-45318-0, revised version 4, May 10, 2004

19. Le Boudec, J.: A theory of traffic regulators for deterministic networks with ap-
plication to interleaved regulators. IEEE/ACM Trans. Netw. 26(6), 2721–2733
(2018). https://doi.org/10.1109/TNET.2018.2875191

18 A. Bouillard

20. McManus, J.M., Ross, K.W.: Video-on-demand over ATM: Constant-rate trans-
mission and transport. IEEE J.Sel. A. Commun. 14(6), 1087–1098 (Sep 1996).
https://doi.org/10.1109/49.508280

21. Mohammadpour, E., Stai, E., Mohiuddin, M., Boudec, J.L.: Latency and backlog
bounds in time-sensitive networking with credit based shapers and asynchronous
traffic shaping. In: 30th International Teletraffic Congress, ITC. pp. 1–6 (2018).
https://doi.org/10.1109/ITC30.2018.10053

22. Pellegrini, F.D., Starobinski, D., Karpovsky, M.G., Levitin, L.B.: Scalable cycle-
breaking algorithms for gigabit ethernet backbones. In: Proceedings IEEE INFO-
COM (2004). https://doi.org/10.1109/INFCOM.2004.1354641

23. Rizzo, G., Boudec, J.Y.L.: Stability and delay bounds in heterogeneous net-
works of aggregate schedulers. In: Proceedings of INFOCOM’2008 (2008).
https://doi.org/10.1109/INFOCOM.2008.208

24. Schmitt, J., Zdarsky, F., Fidler, M.: Delay Bounds under Arbitrary Multiplexing:
When Network Calculus Leaves You in the Lurch ... In: INFOCOM’08 (2008).
https://doi.org/10.1109/INFOCOM.2008.228

25. Starobinski, D., Karpovsky, M.G., Zakrevski, L.: Application of network calculus
to general topologies using turn-prohibition. In: Proceedings IEEE INFOCOM
(2002). https://doi.org/10.1109/INFCOM.2002.1019365

26. Tassiulas, L., Georgiadis, L.: Any work-conserving policy stabilizes the
ring with spatial re-use. IEEE/ACM Trans. Netw. 4(2), 205–208 (1996).
https://doi.org/10.1109/INFCOM.1994.337631

27. Time-sensitive networking task group, http://www.ieee802.org/1/pages/tsn.html

