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Éric Badouel, Anne Bouillard, Philippe Darondeau, Jan Komenda

Abstract— Decidability of existence, rationality of delay con-
trollers and robust delay controllers are investigated for systems
with time weights in the tropical and interval semirings.
Depending on the (max,+) or (min,+)-rationality of the series
specifying the controlled system and the control objective, cases
are identified where the controller series defined by residuation
is rational, and when it is positive (i.e., when delay control is
feasible). When the control objective is specified by a tolerance,
i.e. by two bounding rational series, a nice case is identified in
which the controller series is of the same rational type as the
system specification series.

I. INTRODUCTION

Timed discrete-event systems are discrete-event systems
whose behavior depends on timing constraints and not
only on logical constraints such as the ordering of events.
Such systems are often modeled by weighted automata
[6], also called automata with multiplicities, where weights
(multiplicities) may range over an arbitrary semiring. E.g.,
the (max,+)-automata proposed in [7] are weighted in
Rmax = (R ∪ {−∞},max,+) (the tropical semiring),
while the (min,+)-automata are weighted in Rmin = (R ∪
{∞},min,+). The latter are also called price automata,
because the multiplicity of a transition often represents a
cost. These automata and their behaviors (series) have also
been studied in [9]. D. Krob has shown in [13] that equality
of two (max,+) or (min,+)-rational series is undecidable in
general. However, some of the inequalities and equalities for
sequential (deterministic) series are decidable [14]. Recent
results in [11] show that sequentiality is decidable for poly-
nomially ambiguous (min,+) automata.

In order to increase the expressive power, one may
consider automata with weights taken from semirings of
intervals, therefore called interval automata. Such automata
were first introduced in [5] where they were defined as Büchi
automata over an alphabet of pairs made of an event and a
real time interval.

Our scope is not limited to deterministic (max,+) or inter-
val automata, because their expressive power is too limited.
However, nondeterministic weighted automata suffer from
several drawbacks: there is no (finite state) determinization
procedure, no general (state) minimization algorithm, and
their behaviors (rational formal power series) can in general
not be checked for equality by effective procedures.
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In this paper, we aim at extending to abstract systems and
specifications both given by pairs of lower and upper bound
series the supervisory control approach proposed in [12] for
(max,+) automata. In [12], the behavior of the closed-loop
system is represented by the Hadamard product of the system
and controller series, and the controller series is formally
computed using residuation theory [4]. Namely, when the
controller can delay the controllable transitions but it cannot
prevent the firing of transitions, the residuation S1/S2 of the
(specification) series S1 by the (system) series S2 amounts
to the Hadamard product of S1 with the series −S2 with all
coefficients multiplied by −1. Residuated series may have
both positive and negative coefficients, hence they do not
always define feasible delay controllers.

A major problem with the above recalled approach using
Hadamard inversion is that the residuated series needs not
be rational. Changing all coefficients to their opposite sends
a (max,+)-rational series to a (min,+)-rational series and
vice versa, but the multiplication of coefficients by −1 is
neither a (max,+)-rational nor a (min,+)-rational operation.
It was indeed shown by Lombardy and Mairesse [16] that
the opposite of a (max,+)-rational series is (max,+)-rational
iff it is unambiguous, i.e. there is at most one successful
path in the (max,+) automaton labeled by w for every word
w. It seems reasonable to assume that specification series are
unambiguous, but it would be very restrictive to require also
non-ambiguity from the system series. In this paper we show
that if the specification series is (min,+)-rational and the
system series is (max,+)-rational, then the controller series
defined by residuation is (min,+)-rational (and similarly for
the opposite polarities), hence in particular one can decide
whether this series is non-negative.

We shall try to extend residuation further to interval
valued formal power series and to intervals of formal power
series. Interval valued series can serve to model behaviors of
systems whose transitions have uncertain costs or durations.
Intervals of series may serve to the same effect, but with
some added flexibility since the two bounding series of an
interval are structurally independent. For series of intervals,
we show that the controller series has generally not the same
type or polarity as the system series, unless assuming that
both the system and the controller series are sequential, an
assumption which is even stronger than unambiguity. The
situation turns out to be more favorable with intervals of
series, i.e. when the expected behavior of the closed-loop
system is specified by a tolerance made of a lower bound
series and an upper bound series, and the behavior of the
uncontrolled system is described similarly. We are interested
in robust control, i.e. in finding bounds on controller (cost
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or) delay series such that the specified tolerance is met by
the closed loop system for all possible behaviors of the
uncontrolled system within its defining bounds. We identify a
situation in which the controller series interval is guaranteed
to be rational and of the same type as the specification series
interval.

Deciding about non-emptiness of the residuated series
interval is crucial for applications. Fortunately, this can be
done since the inequality S ≤ S′ can be decided for S
(max,+)-rational and S′ (min,+)-rational (unlike the opposite
inequality).

II. (MAX,+) AND (MIN,+) ALGEBRAS

In this section, we recall elements of the theory of idempo-
tent semirings, also called dioids (see [1]), a basic structure
used throughout the paper.

A. Definition

A dioid is a set D equipped with two internal operations,
denoted by ⊕ and ⊗, such that the addition ⊕ is commuta-
tive, associative, idempotent, and has a zero element ε, while
the multiplication ⊗ is associative, has a unit element e, has
the absorbing element ε, and distributes over ⊕. The addition
⊕ induces a natural order �, namely a � b ⇔ a ⊕ b = b.
Dioid operations may be extended to dioids of matrices as
follows. Let A,B ∈ Dm,n and C ∈ Dn,`. Then:
• ∀i, j ∈ {1, . . . , n}, (A⊕B)i,j = Ai,j ⊕Bi,j ;
• ∀i, k ∈ {1, . . . , `}, (A⊗ C)i,k =

⊕n
j=1Ai,j ⊗ Cj,k.

In the sequel, we use the extended notations Dm,Q, DP,n

and DP,Q for finite sets P and Q. Let Rmax = R ∪ {−∞}
and Rmin = R∪{+∞}. The basic dioids used in this paper
are (Rmax,max,+) and (Rmin,min,+). The unit element
is 0 for both dioids. The zero element is −∞ for Rmax

and +∞ for Rmin. The order induced by Rmax is the usual
order, whereas the order induced by Rmin is the reverse
of the usual order. The completions of Rmax and Rmin

w.r.t. the induced order relations are noted Rmax and Rmin,
respectively. Thus, Rmax and Rmin have the same carrier set
R = R ∪ {−∞,+∞}, but the supremum of Rmax is +∞
whereas the supremum of Rmin is −∞. In the sequel, Rmax

and Rmin are called the (max,+)-dioid and the (min,+)-dioid,
respectively. Rmax is also a dioid, equipped with the product
operation ⊗max specified in Table I (see Section III-A), and
similarly for Rmin.

In order to represent intervals, we use products of semir-
ings. The two product semirings that we consider are the
following.

Definition 2.1 (adapted from [15]): Let Imax
max denote the

idempotent semiring with carrier set {[x, x] |x, x ∈ Rmax} ∧
x ≤ x} defined with:

[x1, x1]⊕ [x2, x2] = [max(x1, x2),max(x1, x2)],

[x1, x1]⊗ [x2, x2] = [x1 + x2, x1 + x2],

ε = [−∞,−∞] (zero interval) and e = [0, 0] (unit interval).
This dioid is usually employed for time event graphs when

the timings of each transition lays in a interval. The ⊕
operator is a synchronization operation.

Definition 2.2: Let Imin
max denote the idempotent semiring

with carrier set {[x, x] |x, x ∈ R}} defined with:

[x1, x1]⊕ [x2, x2] = [max(x1, x2),min(x1, x2)],

[x1, x1]⊗ [x2, x2] = [x1 + x2, x1 + x2],

zero and unit are resp. ε = [−∞,+∞] and e = [0, 0].
The ⊕ operator can be seen as an intersection operation.
In Definition 2.2, as opposed to Definition 2.1, we do not

exclude imaginary intervals [x, x] where the lower bound x is
greater than the upper bound x. For instance, [1, 3]⊕ [2, 4] =
[2, 3] is a well formed interval but [1, 3] ⊕ [4, 5] = [4, 3]
is an imaginary interval. Indeed, well formed intervals are
naturally preserved by addition in Imax

max but they are not
preserved by addition in Imin

max. Algebraically, Imin
max is just

the direct product of the (idempotent) semirings Rmax and
Rmin but Imax

max is not the direct product of Rmax with itself.
Now we recall the notions of D-series and D-automaton

over an arbitrary dioid D and the equivalence between the
properties of recognizability by D-automata and rationality
for D-series. We also recall the construction of D(Σ) , the
dioid of all D-series over an alphabet Σ.

Given a dioid D and a finite alphabet Σ, a D-series over
Σ is a function S : Σ∗ → D where Σ∗ is the set of
all finite words on Σ. We denote by D(Σ) the set of all
D-series over Σ. The support of the series S is the set
supp(S) of all words w such that S(w) 6= ε. By convention,
we write series as formal sums S =

⊕
w∈Σ∗ S(w)w or

S =
⊕

w∈supp(S) S(w)w. Let Q be a finite set of states. A
finite D-automaton over Σ and Q is a triple A = (α, µ, β)
where α ∈ D1,Q, β ∈ DQ,1 and µ is a morphism of monoids
from Σ∗ to DQ,Q. The series recognized by A is defined
as

⊕
w∈Σ∗(α ⊗ µ(w) ⊗ β)w. A famous Schützenberger’s

theorem [18] states that the series which are recognized by
finite D-automata coincide with the rational D-series, i.e.
D-series generated from finite D-series using the rational
operations of sum, Cauchy product and iterated Cauchy
product. Recall that the Cauchy product of two series S, T ∈
D(Σ) is defined as S⊗T =

⊕
w∈Σ∗(⊕uv=wS(u)⊗T (v))w.

We denote by DRat(Σ) the set of the rational D-series over
Σ. A rational D-series S is unambiguous if it is recognized
by a finite D-automaton (α, µ, β) with set of states Q such
that, for any word w = σ1 . . . σn ∈ supp(S), there exists a
unique sequence of states q0, q1, . . . , qnqn+1 such that α(q0),
µ(σi)(qi, qi+1) and β(qn) differ from ε for all 0 ≤ i ≤ n−1.
A rational D-series is sequential if it is recognized by a D-
automaton (α, µ, β) such that the underlying automaton on
Σ∗ has a single initial state q0 (α(q) = ε for all q 6= q0)
and it has a deterministic transition relation (for all σ and
q, µ(σ)(q, q′) 6= ε for at most one state q′). The following
result due to Lombardy and Mairesse shows the interest of
unambiguous series in the context of tropical semirings.

Theorem 2.3 ([16]): A rational (max,+) series is a rational
(min,+) series if and only if it is unambiguous.

The sequential D-series, i.e. the series recognized by D-
automata with underlying deterministic automata, are of
course unambiguous. The set D(Σ) of all D-series over Σ
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may be endowed with two operations so as to form a dioid.
One way to obtain this is to use point-wise addition and the
Cauchy product. The other way is to use point-wise addition
and the Hadamard product. Therefore, for S, T ∈ D(Σ), we
let:
• S ⊕ T =

⊕
w∈Σ∗(S(w)⊕ T (w))w;

• S � T =
⊕

w∈Σ∗(S(w) ⊗ T (w))w (Hadamard
product).

Since the above operations preserve the rationality of series,
both (D(Σ),⊕,�) and (DRat(Σ),⊕,�) are dioids. Note
that (D(Σ),⊕,�) is complete if D is complete, but this is
not the case for (DRat(Σ),⊕,�).

III. RESIDUATION OF (MAX,+) AND (MIN,+) SERIES AND
RATIONAL SERIES

In this section, we recall the definition of residuation
in dioids and in particular in dioids of D-series over Σ.
Then, we focus on the residuation of (max,+) series. After
reviewing the results obtained in [12], we examine to what
extent they can be applied in the context of supervisory
control and underline some drawbacks. We then turn to
consider hybrid residuation operations of (max,+) series
by (min,+) series and conversely. We observe that such
operations preserve rationality, and that an easy decision of
the control problem ensues when the specification series and
the system series have different polarities. For the sake of
simplicity, we assume that all transitions of the system are
uncontrollable in the sense of this term defined by Ramadge
and Wonham [17], i.e. that the transitions of the plant may
be delayed but cannot be disabled otherwise.

A. Residuation of (max,+) series

In any dioid D, the (right) residue of an element b by
an element a, denoted b/a, is the greatest solution of the
inequality a⊗ x � b (where � is the order relation induced
by the addition operation), if such a greatest solution exists.
The existence of residues is guaranteed for all b and a in any
complete dioid D, i.e. a dioid in which arbitrary subsets have
least upper bounds. Table I shows the residuation map b/a
for the complete (max,+) dioid Rmax. Note that � coincides
in Rmax with the usual order relation ≤ whereas it coincides
in Rmin with the reverse order relation ≥.

⊗max −∞ a +∞
−∞ −∞ −∞ −∞
b −∞ a+ b +∞

+∞ −∞ +∞ +∞

/max −∞ a +∞
−∞ +∞ −∞ −∞
b +∞ b− a −∞

+∞ +∞ +∞ +∞

TABLE I
(MAX,+) PRODUCT AND THE CORRESPONDING RESIDUATION.

In a complete dioid D, the operation of residuation in
D extends pointwise to (D(Σ),⊕,�), the dioid of D-
series with the Hadamard product. Namely, for any series
S1, S2 and for any word w ∈ Σ∗, (S1◦/S2)(w) = S1(w)/
S2(w). Based on this fact, it was proposed in [12] to use

(max,+) residuation for computing delay controllers. Given a
specification series S1 and a system series S2, the residuated
(max,+) series gives for each word w ∈ Σ∗ in supp(S2) the
maximum delay (S1◦/S2)(w) that can be added to the worst-
case duration S2(w) of the sequence of actions w in the plant
without exceeding the specified upper bound S1(w). This
proposal has the outcome that the behavior of the closed loop
system may be defined as the product of two (max,+) series,
namely S2⊗(S1◦/S2), but there are some drawbacks. First, it
is not clear that one can decide whether the controller series
S1◦/S2 is non-negative. Second, it is not always possible to
represent S1◦/S2 with a (max,+)-automaton, as the following
example shows, hence the controller obtained by residuation
may have no finite representation.

b|1
a|1

b|0
a|1

b|1
a|0

(a) (b)

Fig. 1. Two automata that recognize (a) the length of a word and (b) the
maximum number of occcurences of a letter in a word.

Example 1: Take Σ = {a, b}. Consider the
two automata shown on the left resp. right in
Figure 1. The automaton (a) recognizes the (max,+)
series S1 =

⊕
w∈Σ∗ |w|w. The automaton (b)

recognizes the series S2 =
⊕

w∈Σ∗ max(|w|a, |w|b)w.
Clearly, for any word w, S1(w)/max S2(w) =
|w| − max(|w|a, |w|b) = min(|w|a, |wb|). Therefore,
S1◦/maxS2 =

⊕
w∈Σ∗ min(|w|a, |wb|)w. This series can

be recognized by the automaton (b) seen as a (min,+)
automaton. Now, it has been shown in [10] that the (min,+)
series recognized by the automaton (b) is ambiguous.
Therefore S1◦/S2 is an ambiguous (min,+) rational series
and in view of Theorem 2.3, this series cannot be a (max,+)
rational series.

B. Residuation of a (max,+) series by a (min,+) series

Example 1 has shown a case where residuating rational
(max,+) series does not produce rational (max,+) series but
rational (min,+) series. In that example, S1 was clearly
unambiguous, hence in fact it was also a rational (min,+)
series. Generalizing over this example, we are going to study
the residuation of (min,+) rational series by (max,+) rational
series and symmetrically. We will show that when S1 and S2

are rational series with different polarities, then S1◦/S2 is a
rational series with the same polarity as S1. Now, there is a
price to pay: if S1◦/S2 is interpreted as a controller enforcing
the specification S1 on the system S2, then it is generally
not possible to represent the closed loop system as a rational
power series since S2 (the system) and S1◦/S2 (the controller)
live in different algebras.
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In order to achieve the above goal, we need a hybrid
product of elements from the (max,+) and (min,+) semirings,
and a corresponding residuation. As Rmax and Rmin have the
same carrier set R ∪ {−∞,+∞}, the operations b ⊗max a
and b/max a already defined for the (max,+) semiring (see
Table I) may as well be seen as operations with profile
Rmax ×Rmin → Rmax. It is worth noting that the operation
/max : Rmax × Rmin → Rmax restricts on the incomplete
dioids Rmax and Rmin and co-restricts on the incomplete
dioid Rmax (because it never produces the result +∞).
Dual operations ⊗min and /min can be defined similarly by
exchanging +∞ and −∞ in Table I.

We are now ready to extend the operations ⊗max and /max

to (max,+) and (min,+) series. As our product of series is the
Hadamard product S�maxT =

⊕
w∈Σ∗(S(w)⊗maxT (w))w,

the corresponding residuation operation ◦/max on series is
given by pointwise extension of the operation /max, thus
S◦/maxT =

⊕
w∈Σ∗(S(w)/maxT (w))w. A symmetric oper-

ation ◦/min can be defined similarly. The following theorem
shows that both residuation operations / preserve rationality,
i.e. a finite automaton recognizing S/T may be constructed
from finite automata recognizing S and T .

Theorem 3.1: Let S ∈ RminRat(Σ) and T ∈
RmaxRat(Σ). Then
• S◦/max T ∈ RminRat(Σ);
• T ◦/min S ∈ RmaxRat(Σ).

Proof: Due to lack of space, we give here only the
intuition of the proof. A complete proof can be found in [2].
To show the (min,+) of (max,+) rationality, we construct
the automaton recognizing the residuated series. The first
step is to compute the product automaton of S and T , seen
as untimed automata. Then, for each transition of this new
automaton, consider the weights of the two transition of S
and T used to build it. The weight of this transition is the
residuation of these weights.

It would also be natural to look at T ◦/maxS. When dealing
with non-complete dioids, the same kind of results holds:
if S ∈ RminRat(Σ) and T ∈ RmaxRat(Σ), T ◦/maxS ∈
RmaxRat(Σ). Unfortunately, some difficulties arise for non-
complete dioids, in particular with the support of the residu-
ation. Indeed, in T , there can be a word w with weight +∞,
but not in S, as it is the zero element of the (min,+) algebra.
But +∞◦/max +∞ = +∞ and w is in the support of the
residuation but not in that of S. Moreover, this residuation of
dioids with different sets does not correspond to any natural
product.

Suppose that S is (min,+) rational and T is (max,+)
rational. As before, the (min,+) series S◦/max T defines for
each w the maximal delay that can be added to the actual
duration T (w) needed by the plant without exceeding the
specified upper bound S(w), but now one can decide whether
S◦/max T (w) ≥ 0 for all w in supp(S)∩ supp(T ) in view of
the following proposition, the proof of which is recalled for
the sake of completeness.

Proposition 3.2: Let A = (α, µ, β) be a weighted au-
tomaton. Let Smin and Smax be the respective (min,+) and

(max,+) series recognized by A. It is decidable in time
O(n3), where n is the dimension of µ, whether Smin(w) < 0
(resp. Smax(w) > 0) for some w in supp(Smin) (resp. in
supp(Smax)).

Proof: Smin(w) < 0 for some w in the support of S if
and only if, the trim automaton, a cycle of negative weight
(which can be checked usung Bellman-Ford algorithm) or the
automaton contains some elementary path q0 a1 q1 . . . an qn
such that αq0 +

∑n
i=1 µ(ai)(qi−1,qi) + βqn < 0 (which can

be checked using Floyd-Warshall algorithm).
When S is (min,+) rational and T is (max,+) rational,

Theorem 3.1 and Proposition 3.2 provide an effective pro-
cedure for deciding whether there exists a non-negative
delay-controller series, namely the (min,+) rational series
S◦/max T , and then constructing it. Note that, by a result
of Krob presented in [14], any (min,+) automaton recogniz-
ing S◦/max T can be transformed to an equivalent (min,+)
automaton (α, µ, β) in which all entries of α, µ, and β are
either non-negative or equal to −∞ [14]. A (min,+) rational
series of this type is less unlikely than an arbitrary series
to represent a useful delay controller. However, a (min,+)
automaton which fails to be sequential cannot easily be
used for on-line control, whence the problem to construct
a sequential (max,+) series K as large as possible such that
K(w) ≤ (S◦/max T )(w) for all w. For such (non-optimal)
controller series K, the closed-loop system T�max K could
in fact be represented by a (max,+) rational series, but this
problem is open.

IV. INTERVAL WEIGHTED AUTOMATA

A. Background

Residuation of intervals in a dioid D has been studied in
[15]. In that work, the set I(D) of all intervals [x, x] = {t ∈
D |x � t � x} is shown to be a dioid, with (left and right)
residuation operations. The residuation operations serve to
compute robust compensating controllers for Timed Event
Graphs. Timed behaviors are defined by associating to each
transition a formal power series in one variable γ over Zmax,
such that the coefficient of γk in this series is the date of
the k-th firing of the transition. For specifications, intervals
express tolerances on the desired behavior. For systems,
intervals reflect an imprecise knowledge of the exact timed
behavior, whence the need for robust controllers. Technically
speaking, controllers are computed by residuation in I(D),
where D = Z+

max[[γ]] is the set of so-called causal elements.
Residuation results in intervals [x, x] whose bounds x and
x are realizable series in Z+

max[[γ]], which is much stronger
than rational series. Such bounds define indeed controllers
that can be realized by Timed Event Graphs.

While intervals of (max,+) rational series are the basic
setting used in [15], we will investigate here the alternative
setting of rational series of intervals, first in Imax

max and then
in Imin

max. In both cases, we examine what residuation can
afford, and end up with the conclusion that the results are
not worth the effort. Note that, differently from [15], we
consider formal power series on alphabets Σ with more than
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one symbol, and we do not care for the realizability of series
by Timed Event Graphs but only for their rationality, and
hopefully for non-ambiguity or sequentiality.

B. Residuation of Imax
max -series

In order to make the definition of Imax
max and of residuation

in this dioid precise, let us recall definitions and results
adapted from [15].

Definition 4.1: A (closed) interval in dioid D is a non-
empty set of the form x = [x, x] = {t ∈ D |x � t � x}.

Proposition 4.2: The set of intervals, denoted I(D), en-
dowed with the coordinate-wise operations [x, x] ⊕ [y, y] =
[max(x, y),max(x, y)] and [x, x]⊗ [y, y] = [x+y, x+y], is
a dioid, where the intervals ε = [ε, ε] resp. e = [e, e] are the
zero resp. the neutral element. If D is complete, then I(D)
is complete.

Proposition 4.3: For any interval a ∈ I(D), the right
product by a i.e. the operation x → x ⊗ a, has a (right)
adjoint residual operation y → y◦/a, given by b◦/a =
[b◦/a ∧ b◦/a, b◦/a] for any intervals a = [a, a] and b = [b, b].

Take D = Rmax and let D′ = I(D) (thus D′ = Imax
max ).

In view of the above, Imax
max is a complete dioid with

residuation. As residuation in D′ extends to series in the
dioid D′(Σ) equipped with Hadamard product, we get for
free a residuation operation on Imax

max (Σ). Now, if we call
degenerated those intervals x = [x, x] for which x = x, then
the subset of the degenerated intervals induces a restriction of
Imax
max which is isomorphic to Rmax. Thus, Rmax(Σ) embeds

isomorphically into a complete subdioid of Imax
max (Σ). It then

follows from Example 1, after replacing numbers 0 and 1
with corresponding intervals [0, 0] and [1, 1], that residuation
of series in Imax

max (Σ) does not preserve rationality, hence it
does not enable an effective computation of compensating
controllers.

C. Residuation of Imin
max -series

We consider now series of intervals in Imin
max(Σ). As

Imin
max is isomorphic to the direct product of Rmax and

Rmin, residuation in Imin
max operates componentwise, i.e.

[x, x]◦/[y, y] = [x/max y, x/min y]. The induced restriction
of Imin

max(Σ) on intervals of the form [x,−∞] is a complete
subdioid isomorphic to Rmax. It therefore follows from
Example 1, where the numbers 0 and 1 are replaced with the
intervals [0,−∞] and [1,−∞], that residuation in Imin

max(Σ)
does not preserve rationality, hence it does not provide an
effective computation of controllers.

V. ROBUST CONTROL OF PARTIALLY KNOWN SYSTEMS
AGAINST TOLERANCE SPECIFICATIONS

In this section, we consider intervals of formal power
series over R, whose lower and upper bounds S ∈
RmaxRat(Σ) and S ∈ RminRat(Σ) have the same support
and specify a tolerance [S, S] on the desired behavior of
a plant. We assume that the behavior of the uncontrolled
plant is described abstractly, hence imprecisely, by an interval
[T , T ] of formal power series over R, whose lower and upper
bounds T ∈ RminRat(Σ) and T ∈ RmaxRat(Σ) have the

same support as the tolerance [S, S]. This is coherent with the
general assumption that compensating controllers can delay
the plant’s actions but cannot otherwise prevent them from
firing. Although no procedure is known for deciding whether
T (w) ≤ T (w) for all w ∈ Σ∗, we do not consider this as
a problem since the interval [T , T ] is supposed to describe
albeit imprecisely the behavior of a real system which
naturally belongs to this interval. Our goal is to compute the
largest interval [K,K] of compensating (or delay) controller
series K over R such that (T �max K)(w) ≤ S(w) and
(T �min K)(w) ≥ S(w) for all w ∈ supp(S) and for all
formal power series T ∈ [T , T ]. Any such formal power
series K ∈ [K,K] thus provides a robust control enforcing
the specified tolerance [S, S] on the plant.

For T ∈ [T , T ], w ∈ supp(S), (T �max K)(w) ≤ S(w)
iff K(w) ≤ S(w)/maxT (w), and therefore (T�maxK) ≤ S
for all T ∈ [T , T ] iff K ≤ S◦/maxT .

For T ∈ [T , T ], w ∈ supp(S), (T �min K)(w) ≥ S(w)
iff K(w) ≥ S(w)/minT (w), and therefore (T �minK) ≥ S
for all T ∈ [T , T ] iff K ≥ S◦/minT .

For any w ∈ Σ∗, S(w) = −∞ iff T (w) = +∞, and
S(w) = +∞ if T (w) = −∞, as we have assumed that all
series S, S, T and T have the same support.

As a result, the interval of robust delay controller series
[K,K] is given by K = S◦/minT and K = S◦/maxT . Now
S is (max,+) rational and T is (min,+) rational, hence K
is (max,+) rational. Similarly, S is (min,+) rational and T
is (max,+) rational, hence K is (min,+) rational. Altogether,
the controller [K,K] is therefore in the same format as the
original specification [S, S].

If K(w) > K(w) for some w, then the control problem
has no solution, i.e. the interval of possible controller series
K is empty. Seeing that K ∈ RmaxRat(Σ) and K ∈
RminRat(Σ), the series K◦/maxK is (min,+) rational, hence
by Proposition 3.2, one can decide upon this property (the
same technique may be used right at the beginning to check
that [S, S] is a well-formed interval). Note also that the
controller series interval [K,K] may in turn be considered
as a specification to be enforced on a new plant component
T ′ that runs concurrently with T .

Before the above results and constructions may be ap-
plied to practical control problems, one needs to solve the
open problem of finding an unambiguous rational controller
series K in [K,K]. Even better, one should search in this
interval for a sequential controller series K that is moreover
increasing, i.e. such that K(wt) ≥ K(w) for all w ∈ Σ∗

and t ∈ Σ. At present, we do not know whether one can
decide upon the existence of these two types of controller
series. However, the next Proposition 5.1 may help to find an
unambiguous rational controller series K in [K,K] (when
both relations K ≤ Smin and Smax ≤ K are satisfied for
the series Smin and Smax defined in the proposition - note
that if Smin = Smax then the considered series is in fact
non-ambiguous).

Proposition 5.1: Let A = (α, µ, β) be a weighted au-
tomaton, and Smax and Smin be the respective (max,+) and
(min,+) series recognized by this automaton. Then there ex-
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ists a non-ambiguous series S such that ∀w ∈ Supp(Smax),
Smin(w) ≤ S(w) ≤ Smax(w).

Proof: The proof is omitted for the sake of space,
see the research report [2] for the details. The basic idea
is to construct the Schützenberger covering of A and then to
eliminate competitions from this automaton, thus yielding at
the end an unambiguous series recognizer.

VI. EXAMPLE

In a jobshop, manufactured pieces must be transported
from point A to B and some others from point B to A.
Two robots, X and Y , can perform this task on a unique
rail (meaning that the robots cannot perform their tasks
simultaneously. The trip of any robot from A to B (resp.
B to A) is represented by the letter a (resp. b). In order to
comply with the other elements of the manufacture, when
ap and bq trips are planned, with |p − q| ≤ 1, the last
delivery to A (resp. B) must be done between the dates
pka (resp. qkb) and pka (resp. qkb). Robot X (resp Y )
has the following characteristics: it starts from A (resp.
B) and its trip’s duration from A to B and from B to A
are in [xAB , xAB ] and [y

AB
, yAB ], respectively. Given ap

and bq , the role of the planner is to fix the series of tasks
to be performed, by shuffling these two sequences into a
single word w ∈ {a, b}∗, and to fix a start time δ for the
corresponding series of trips of the robots, knowing that
the planner cannot distinguish between the robots and the
execution of the series of tasks cannot be interrupted after it
has been started. Robots at rest in A or B serve to accomplish
fast secondary tasks that may always be postponed and do
not interfere with the main series of tasks considered here.

As regards time, all possible executions of shuffled se-
quences of a and b are described by a (min,+) automaton
T and a (max,+) automaton T with an identical structure,
shown in Figure 2. The constants xAB and the like are
replaced by xAB in T and by xAB in T .

b|xBA

b|yBA

a|xAB

[X : B, Y : B]

b|yBA

[X : B, Y : A]
a|xAB

b|xBA

[X : A, Y : B]

[X : A, Y : A]

a|yAB a|yAB

Fig. 2.

The target behaviour of the robots is described by a
(max,+) automaton S and a (min,+) automaton S with an
identical structure, shown in Figure 3. The constants ka and
the like are replaced by ka in S and with ka in S.

Let K = S◦/minT and K = S◦/maxT . These rational
series are recognized by two (max,+) and (min,+) automata
with a common structure shown of Figure 4 (the constants

a|0
b|kb a|ka

b|0

Fig. 3.

ka, xAB and so on are replaced with ka, xAB in the (max,+)
automaton, and with ka, xAB in the (min,+) automaton).

[A,A]

[A,B]

b| − yBA

[A,B]

[B,B]

[B,B]

a| − xAB

b|kb − xBA

a|ka − xAB

b| − xBA

[A,A]
b| − xBA

a|ka − xAB

[B,A]

a| − xAB

b|kb − xBA

[B,A]

b|kb − yBA

b| − yBA

b|kb − yBAa| − yAB

a|ka − yABa|ka − yAB

a| − yAB

Fig. 4.

In order to enforce the guarantees of timely deliv-
ery, the planner must choose w ∈ {a, b}∗ such that
[max{K(w), 0},K(w)] is non-empty. Any non-negative
value δ in [K(w),K(w)] may then be picked as the starting
time for executing the plan w.

VII. RESIDUATION W.R.T. CAUCHY PRODUCT

In this section, we propose an adaptation of the con-
structions developped in Section III to the case when the
Hadamard product of formal power series is replaced with
the Cauchy product. We propose also an adaptation of the
elements suggested in Section V for reasoning on intervals
of rational series. We finally discuss possible applications to
contracts encountered in theories of software components.

Definition 7.1: Given a dioid D and a finite alphabet Σ,
the Cauchy product of two series S, T ∈ D(Σ) is defined
by: S

⊗
T =

⊕
w∈Σ∗(

⊕
uv=w(S(u)⊗ T (v)))w.

It is well known that the Cauchy product preserves ra-
tionality of (max,+) or (min,+) series. In the sequel, we
let D = Rmax. The Cauchy product of two series is thus
S
⊗

max T =
⊕

w∈Σ∗(
⊕

w=uv(S(u) ⊗max T (v)))w where
⊗max is the pruduct in the (max,+) semiring (see Table I).
Both (D(Σ),⊕,⊗max) and (DRat(Σ),⊕,⊗max) are dioids.
The Cauchy product, as opposed to the Hadamard product,
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is not commutative, hence one must distinguish left residuals
S �max T and right residuals S �max T of formal power
series w.r.t.

⊗
max. The two residual operations (− �max

T ) and (− �max T ) are (left) adjoint to the operations
(−⊗maxT ) and (T⊗max−) respectively, thus: S�maxT =∨
{X |X ⊗max T ≤ S}, S �max T =

∨
{X |T ⊗max X ≤

S}.
Theorem 7.2: Let S ∈ RminRat(Σ) and T ∈

RmaxRat(Σ). Then
• S �max T ∈ RminRat(Σ), and S �max T ∈

RminRat(Σ);
• T �min S ∈ RmaxRat(Σ), and T �min S ∈

RmaxRat(Σ).
Proof: The proof is similar to the case of Hadamard

product and omitted for the sake of space, see the research
report [2] for the details.

Consider a tolerance [S, S], specifying the desired behav-
ior of the sequential composition K

⊗
max T or T

⊗
maxK

of two component systems K and T , where T is given but
K is missing. Suppose it is known that the behavior of
component T lies between two bounds T ∈ RminRat(Σ)
and T ∈ RmaxRat(Σ). Assuming that all the series S,
S, T and T have the same support, we want to compute
from [S, S] and [T , T ] the largest interval [K,K] such that
K

⊗
max T (resp. T

⊗
maxK) lies in [S, S] for all possible

components T .
Consider the sequential composition T

⊗
maxK.

Thus, we require that (T
⊗

maxK)(w) ≤ S(w) and
(T

⊗
minK)(w) ≥ S(w) for all T ∈ [T , T ] and for

all words w ∈ Σ∗. The first requirement holds iff
T (u) ⊗max K(v) ≤ S(uv) for all T ∈ [T , T ] and for
all u, v ∈ Σ∗, iff T (u) ⊗max K(v) ≤ S(uv) for all
u and v, iff K(v) ≤ S(uv)/max T (u) for all u and
v, iff K(v) ≤

∧
u∈Σ∗ S(uv)/max T (u) for all u, iff

K ≤ (S ;max T ). The second requirement holds iff
T (u) ⊗min K(v) ≥ S(uv) for all T ∈ [T , T ] and
for all u, v ∈ Σ∗, iff T (u) ⊗min K(v) ≥ S(uv) for
all u and v, iff K(v) ≥ S(uv)/min T (u) for all u
and v, iff K(v) ≥

∨
u∈Σ∗ S(uv)/min T (u) for all u,

iff K ≥ (S ;min T ). Finally, K = S ;min T and
K = S ;max T . By Theorem 7.2, K is a (max,+) series
and K is a (min,+) series.

Consider now the sequential composition K
⊗

max T . By
similar reasoning, one obtains K = S �min T and K =
S�maxT . So, the interval [S�minT , S�maxT ] characterizes
exactly the set of all components which fulfil the contract
[S, S] / [T , T ], meaning that whenever they are composed
sequentially on the right with a component T satisfying the
assumption [T , T ], the result of the composition satisfies the
guarantee [S, S].

VIII. CONCLUSION

In this paper, we have shown that residuation preserves
rationality of formal power series and intervals thereof
whenever the two operands of the residuation have opposite
polarities (e.g. when one computes the residue S/T of a
(max,+) rational series S by a (min,+) rational series T ).

This approach adds nothing to the theory, but it might help
solving some practical control or design problems, if a few
central but open questions can be solved, such that deciding
whether exists and constructing a sequential series between
a (max,+) and a (min,+) rational series.

Although we have only reasoned here with Hadamard
product and Cauchy product, remarkably enough, all results
and constructions which we have presented extend smoothly
to a variety of other products with less obvious practical
importance (see report [2] for a thorough presentation of
this generalization).
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