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Abstract— In this paper, live and bounded free-choice Petri
nets with stochastic firing times are considered. Several classical
routing policies, namely the race policy, Bernoulli routings, and
periodic routings, are compared in terms of the throughputs
of the transitions. First, under general i.i.d. assumptions on
the firing times, the existence of the throughput for the three
policies is established. We also show that the ratio between the
throughputs of two transitions depend only on the asymptotic
frequencies of the routings, and not on the routing policy. On
the other hand, the total throughput depends on the policy, and
is higher for the race policy than for Bernoulli routings. Second,
we show how to compute the throughput for exponentially
distributed free-choice nets under the three policies. This is done
by using Markov processes over appropriate state spaces. We
use this to compare the performance of periodic and Bernoulli
routings. Finally, we derive optimal policies under several
information structures, namely, the optimal pre-allocation, the
optimal allocation, and the optimal non-anticipative policy.

I. I NTRODUCTION

In this paper, we consider a live and bounded free-choice
net with stochastic firing times and we analyze classical
policies of conflict resolution in terms of the throughput
of the transitions (number of firings per second). The first
policy is the famousrace policy, see for instance [1]. The
other policies are Bernoulli routings, periodic routings, and
throughput-optimal routings.

This problem has already been considered for timed deter-
ministic fluid Petri nets. Two different models of fluid Petri
nets have been studied, in [7] and [11]. In both cases, it has
been proved that the throughput is simply the solution of a
linear program ([8], [11]). The discrete case is more involved.
The deterministic discretefree-choice case has been studied
in [4] and has a high combinatorial complexity. On the other
hand, the existence of the throughput forstochasticfree-
choice nets with general i.i.d. firing times and Bernoulli
routings is established in [9] but no means of computation
is provided.

Here, we first show the existence of the throughput for
the race policy and the periodic routings for general i.i.d.
timings. Then we compare the throughput obtained under
the different policies, for a fixed asymptotic frequency of the
routings. Letλk, k ∈ {race,Ber, per}, be the vector of the
throughputs at the different transitions. We prove that there
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exists a vectorv only depending on the asymptotic routing
frequencies and such thatλk = αkv, for αk ∈ R+.

In the second part of the paper, we show how to compute
explicitly the throughput for exponentially distributed free-
choice nets with Bernoulli routings, periodic routings and for
the race policy. The race policy case is standard: the marking
evolves as a continuous-time jump Markov process. As for
Bernoulli and periodic routings, we construct a Markov
process which is not evolving on the marking reachability
graph but on an extended state space which takes into
account the possible routings. We show how to choose the
parameters of the Bernoulli routing in order to maximize the
throughput. We use these computations to compare Bernoulli
routings with periodic routings. Numerical evidence suggests
that balanced periodic routings provide better throughputs
than Bernoulli routings, much like in open systems [2] or
closed deterministic ones [6].

In the final part of the paper, we consider optimal policies.
Observe that the race policy can be seen as a greedy policy
which is locally optimal. Using Markov Decision Processes,
we provide a computation of the throughputs for optimal
routing policies under several information structures:
• Pre-allocation: the routing of a token is decided imme-

diately upon entering the routing place, knowing the
global marking.

• Allocation: the routing of a token can be decided at any
instant, and knowing the global marking.

• Non-anticipative policy: the routing can be decided at
any instant, knowing the global marking and the next
transition available.

We compare the throughput that one can achieve using
these different information structures, showing that the last
one provides a better throughput than the second, which is
also better than the first one.

We exhibit a free-choice net with one conflict place for
which the optimal non-anticipative policy is to perform a
race in some marking and a constant allocation in some other
marking.

Due to lack of space, most proofs are not reported in
this paper. They are given in the long version of the paper,
available as a technical report [5].

II. STOCHASTIC FREE-CHOICE NETS

In this section, we recall the basic definitions of stochastic
free-choice nets. We setN∗ = N \ {0} and 1X is the
characteristic function of the setX.

A Petri net is a 4-tupleN = (P, T ,F ,M0) where
(P, T ,F) is a directed bipartite graph with nodesP ∪ T ,
P ∩ T = ∅, and arcsF ⊂ (P × T ) ∪ (T × P) and where



M0 ∈ NP . The elements ofP are calledplacesand those
of T , transitions, and M0 is called theinitial marking of
N . For a nodex ∈ P ∪ T , we denote by•x the set of
its predecessors and byx• the set of its successors. The
marking evolves according to thefiring rule: a transitiona
is enabledif: ∀p ∈ •a, M(p) ≥ 1. An enabled transition
can fire, and then the marking becomesM ′ with M ′(p) =
M(p)−1•a(p)+1a•(p). This firing is denoted byM

a→ M ′.
A markingM ′ is reachable fromM if there exists a sequence
of transitionsa1, . . . , an such thatM ′ is obtained fromM
by successively firinga1, · · · , an. We writeM

w→ M ′ where
w = a1 · · · an, andw is called anadmissible sequence. We
denote byR(M0) the set of all the reachable markings (from
M0). For an admissible sequenceσ ∈ T ∗, we denote by−→σ
its commutative image(or Parikh vector), that is, the vector of
NT that counts the number of occurrences of each transition
in σ.

A stochastic Petri netis a Petri net where random tim-
ings have been added on the transitions. More precisely, a
stochastic Petri net is a 5-tuple= (P, T ,F ,M0, ϕ), where
(P, T ,F ,M0) is a Petri net, whereϕ = (ϕa)a∈T , and
ϕa = (ϕa(n))n∈N∗ is a sequence of i.i.d. random variables
with finite expectation (E(ϕa(1)) < ∞). Moreover, the
sequencesϕa, a ∈ T , are mutually independent. The firing
rule is defined as follows: if then-th firing of transitiona
starts at timet, then at timet, one token is removed from
each input place ofa, and at timet + ϕa(n), one token is
added in each output place ofa.

A free-choice (Petri) netis a Petri net where:∀(p, a) ∈
P × T , (p, a) ∈ F ⇒ (p• = {a}) or (•a = {p}). That is,
choices and synchronizations in the net are separated. A Petri
net is live if for every reachable markingM ′, and for every
transitiona, there exists a markingM ′′ reachable fromM ′

such thata is enabled inM ′′. A Petri net isboundedif there
existsm ∈ N such that for every reachable markingM ∈
R(M0), for every placep ∈ P, M(p) ≤ m. A connected live
and bounded Petri net is strongly connected. In this article,
we only consider strongly connected live and bounded free-
choice nets.

The cluster [x] of x ∈ P ∪ T is the smallest subset of
P ∪ T such that: (i)x ∈ [x]; (ii) p ∈ P, p ∈ [x] ⇒ p• ∈ [x];
(iii) t ∈ T , t ∈ [x] ⇒ •t ∈ [x]. The set of all the clusters of
a Petri net defines a partition of the nodes. For free-choice
Petri nets, each cluster contains only one place or only one
transition.

Conflict resolution

In order to solve the conflicts in free-choice nets, at the
places having several output transitions (conflict places), one
needs to define a routing policy: when a token arrives in such
a place, the policy defines which output transition will be
fired with that token.

The race policy is defined as follows: when a token
arrives in a conflict placep, every output transition ofp
begins its firing. The first transition that finishes to fire is
effectively fired (it wins the race), and all the other output
transitions ofp abort their firing at that time. Therefore,

the probability that a transitiona ∈ p• wins the race is
P(ϕa(1) = mina′∈p•{ϕa′(1)}), assuming that no ties are
possible. (Otherwise a procedure to break ties needs to be
specified.)

A Bernoulli-routedPetri net is a tuple(P, T ,F ,M, ϕ, u)
where (P, T ,F ,M, ϕ) is a stochastic Petri net andu =
(up)p∈P is the set of routing functions. For every placep,
up = (up(n))n∈N∗ is a sequence of i.i.d. r.v.’s (hence the
name Bernoulli routing), and those sequences are mutually
independent and independent of the firing times. The r.v.
up(n) tells the transition that will be fired by then-th token
entering placep.

A Petri net with periodic routing is a tuple
(P, T ,F ,M, ϕ, u) where (P, T ,F ,M, ϕ) is a stochastic
Petri net and whereu = (up)p∈P with up ∈ (p•)N∗

being
a deterministic periodic function. Againup(n) tells the
transition that will be fired by then-th token entering place
p.

A routing is equitableif for every conflict placep, each
output transition is choosen with a strictly positive frequency.
Under the race policy, the equitable condition becomes: for
every placep, for every transitiona ∈ p•,

P(ϕa(1) = min
a′∈p•

{ϕa′(1)}) > 0. (1)

In a general Petri net, where synchronizations and choices
are not separated, the routing policy could lead to a deadlock
(no transition can be fired) while the Petri net without routing
is live. On the other hand, in the free-choice case, it is proved
in [9] that every transition will fire infinitely often in a routed
net if and only if the Petri net is live and the routings are
equitable.

In the following, we always assume that equitability is
satisfied.

III. E XISTENCE OF THE THROUGHPUT

Theorem 1:Let N k be a live and bounded stochastic
free-choice net with a routing policyk ∈ {race,Ber, per}.
For every transitionb, there exists a constantλk

b ∈ R+

(throughput of transitionb) such that a.s. and inL1,

lim
n→∞

n

Xk
b (n)

= lim
t→∞

X k
b (t)
t

= λk
b ,

whereXk
b (n) is the instant of completion of then-th firing

of transition b under policyk andX k
b (t) is the number of

firings completed at timet under policyk.
Proof: (sketch). The result was proved in [9] for the

Bernoulli routing. The case of the race policy can be dealt
with by showing that the behavior of the net under the race
policy can be simulated by a suitable Bernoulli-routed net.
Starting fromN race = (N , ϕ), consider the Bernoulli-routed
net(N , ϕ′, u), where the distribution of transitiona becomes

P(ϕ′a ≤ t) = P(ϕa ≤ t|∀b ∈ (•a)•, ϕa ≤ ϕb),

and where the routing functionu is such that

P(up(n) = a) = P(ϕa ≤ ϕb,∀b ∈ (•a)•).



(Here we assume for simplicity thatP(ϕa = ϕb) = 0 for all
a 6= b.) This Bernoulli routing is called the Bernoulli routing
simulating the race policy.

The case of periodic routings can be proved by adapting
the proof of the Bernoulli case.

A. Ratio between the throughputs of the transitions

Although it seems impossible to compute the throughput
of the transitions when the firings have general distributions,
it is rather easy to compute the ratio between the throughputs
of two different transitions for all three routing policies.

Define therouting matrixRk = (Rk
ij)i,j∈T as:

Rk
i,j =

1
|•j|

∑
p∈P:i→p→j

F k(p, j),

where F k(p, j) is the frequency of routing to transitionj
from placep under the routingk. In particular,FBer(p, j) =
P(up(1) = j), F race(p, j) = P(ϕj ≤ ϕa, ∀a ∈ p•), and
F per(p, j) is the proportion of tokens routed toj over one
period of the routing.

¿From the equitable assumption, in all three cases, the
matrix Rk is irreducible, its spectral radius is 1, and it
admits a unique eigenvectorxk = (xk

a)a∈T , xk
a ∈ R+ \ {0},∑

a xk
a = 1, such thatxkRk = xk.

Theorem 2:The model is the same as in Theorem 1. For
all routing policy k belonging to{race,Ber, per}, there
exists a constantck ∈ R+ ∪ {∞} such that for all transition
a, λk

a = ckxk
a.

The proof is an adaptation of the proof of [9, Prop. 5.1]
in which Bernoulli-routed nets are considered.

Observe thatR depends only on the routing frequencies of
tokens, and not on the timings of the transitions. Therefore,
the ratios are the same for the three policies provided that
F k(p, j) are equal for all three policies.

B. Comparison between the policies

As mentionned before, the ratio between the throughputs
of the transitions are the same in all three cases. Therefore,
to compare the throughputs, one just has to compare the total
throughputsCk :=

∑
a∈T λk

a, k ∈ {race,Ber, per}.
Proposition 1: Let N race = (P, T ,F ,M, ϕ) be a live

and bounded stochastic free-choice net with the race policy
and letNBer = (P, T ,F ,M, ϕ, u) be the Bernoulli-routed
net with the same firing times and routing frequencies as
N race. Then,Crace ≥ CBer.

The comparison with periodic routings is more difficult.
This will be illustrated in the next section which focuses on
computational issues.

IV. COMPUTING THROUGHPUTS

This section is devoted to the computation of the through-
put in live and bounded free-choice Petri nets. We now con-
sider that every transitiona has a firing time exponentially
distributed with parameterµa ∈ (0,∞).
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Fig. 1. Example of a live and bounded free-choice Petri net.

A. Race policy

The race policy case is well-known. The marking evolves
as a continuous-time jump Markov process. Let M be a
reachable marking andTM be the set of the transitions
enabled atM . The first transition fired isa ∈ TM with prob-
ability µa/(

∑
a′∈TM

µa′). The firing time is exponentially
distributed with parameter

∑
a′∈TM

µa′ . The stationary dis-
tribution πr of this process is characterized by the equation
πrQ = 0, whereQ is the infinitesimal generator defined as
follows. Denote byM ·a the marking such thatM

a→ M ·a.
We have

∀M1 ∈ R(M0), QM1,M1·a = µa if a ∈ TM1

QM1,M1 = −
∑

a∈TM1

QM1,M1·a

The total throughput is then given by the formula:

Crace =
∑

M1∈R(M0)

−(πr)M1 ·QM1,M1 .

To illustrate the computation of the throughput, we study
an example that will be used throughout the paper.

Example 1:Consider the Petri net in Figure 1. The places
are named by letters (a to e) and the transitions by numbers
(1 to 5). The parameters of the exponentially distributed tim-
ings of the transitions are respectivelyµ1 = 2, µ2 = 2, µ3 =
3, µ4 = 5, andµ5 = 1. The state space is the set of reachable
markings:R = {{a, d}, {a, e}, {b, d}, {b, e}, {c, d}, {c, e}}.
The marking is a continuous-time Markov process with
infinitesimal generator:

Q =


−2 0 2 0 0 0
1 −3 0 2 0 0
2 0 −5 0 3 0
0 2 1 −6 0 3
0 5 0 0 −5 0
0 0 0 0 1 −1

 .

The stationary distributionπrace is obtained by solv-
ing the equationπraceQ = 0. We obtain πrace =
(85, 90, 40, 30, 42, 90)/337.

The throughput isCrace =
∑

i−πi.Qii = 1120/377 ≈
2.97.



B. Bernoulli routings

For a free-choice Petri net with Bernoulli routings, the
marking is not a Markov process anymore. One possibility
is to add immediate firing transitions to model the routing
which would yield a semi-Markov process for the marking
(see [1]). Another possibility, used here, is to model the evo-
lution of the net by a Markov process over an extended state
space. This approach has the advantage that computations
can be carried out symbolically which is very helpful for
optimization purposes.

The main trick in the construction is the choice of the state
space. When a token enters a conflict place, the timing of
the transition to be fired, depends on the routing. If we took
R(M0) for the state space, then this would lead to difficulties
due to that dependence. In order to separate the timings from
the routing, we consider a new state space: when a token
enters a choice place, the transition it can fire is already
defined. ForM ∈ R(M0), let T (M) be the set of all the
maximal sets of transitions that can be fired simultaneously
(in the non-timed Petri net) underM . Then, the extended
state space isE = {(M,T ) | M ∈ R(M0), T ∈ T (M)}, i.e.
every state corresponds to a pair formed by a marking and
a set of enabled transitions.

The infinitesimal generatorQ of the chain is defined as
follows. Let (M1, T1) ∈ E , and a ∈ T1. Transition a is
fired with rateµa and the new set of enabled transitions
is T2 = (T1 \ {a}) ∪ T ′ where T ′ is a maximal set of
newly enabled transitions, chosen randomly according to the
Bernoulli routings.

Example 2:Consider again the Petri net of Figure 1. A
token arriving in placeb fires transition2 with probability p
and transition3 with probabilityq = 1−p. The state space is
{(ad, 1), (ae, 1, 5), (bd, 2), (bd, 3), (be, 2, 5), (be, 3, 5), (cd, 4),
(ce, 5)}, and the infinitesimal generator is :

Q =



−2 0 2p 2q 0 0 0 0
1 −3 0 0 2p 2q 0 0
2 0 −2 0 0 0 0 0
0 0 0 −3 0 0 3 0
0 2 1 0 −3 0 0 0
0 0 0 1 0 −4 0 3
0 5 0 0 0 0 −5 0
0 0 0 0 0 0 1 −1


.

By solving πBerQ = 0, we get πBer formally, each
coordinate being a rational fraction ofp. The total throughput
is :

CBer =
60(4p2 − 17p + 18)
138p2 − 403p + 414

.

The maximum of CBer is reached forp = (846 −
30
√

615)/751 ≈ 0.14. The corresponding value of the
throughput is approximatively 2.61.

To have the same routing probabilities as in the race policy
case, one must takep = 2/5. The stationary probability
is thenπBer = (190, 270, 100, 141, 72, 108, 222, 81)/1184,
and the throughput isCBer = 1480/573 ≈ 2.58.

In both cases, we computed the total throughputsCrace

and CBer. To get back to the throughput of one transition,
we also need to compute the left-eigenvector associated to
the eigenvalue 1 of the matrixR. We have

R =


0 p 1− p 0 0
1 0 0 0 0
0 0 0 1 0

2/3 0 0 0 1/3
0 0 0 1 0

 ,

and then, withp = 2/5, λk = ck

20 (10, 4, 2, 3, 1), wherek ∈
{Ber, race}.

In the above example, the maximum ofCBer is strictly
less thanCrace. This is not always the case and it is easy to
build models in which a far better throughput can be reached
with Bernoulli routings than with the race policy.

C. Periodic routings

We assume that placepi has a periodic routing policy
with perioddi. The behavior of the net can be modeled by
a continuous-time Markov process with a state spaceE =
R(M0) × {0, · · · , d1 − 1} × · · · × {0, · · · , ds − 1} where
s = |P|.

Being in a state(M, r1, . . . , rs) means than the current
marking isM and that the next transition to be chosen by a
token in placepi is given by theri-th element in the periodic
sequence attached toi. The infinitesimal generator is defined
accordingly.

The number of states becomes rapidly large when the
periods of the routing functions increase. Some numerical
computations have been carried out using Maple for the
foregoing example of Figure 1. The results are displayed
in Figure 2.
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Fig. 2. Throughput of several periodic routing functions when the
proportion of tokens sent to transition 2 varies.

Numerical evidence suggests that the best periodic routing
is given bybalanced routing functions. This fact has been
proven for many open systems (see [2]). In the case of closed
systems (as for the free-choice net used here), this is in
general unproved, with a few exceptions, see [6].



Numerical evidence also suggests that the best periodic
routing is better than the best Bernoulli routing, see Figure
3.

The maximal throughput for the periodic routing is
reached when the proportion of tokens sent to transition 2
is 0.5. This is in contrast with the situation of Bernoulli
routings, where we recall that the maximum was attained
for a proportion approximately equal to 0.14.

The shape of the curve for the best periodic routing in
Figure 3 is characteristic. It seems to be piecewise-affine
with singularities at rational points with small denominators.
This is reminiscent of the numerical data obtained in [6] for
a closed free-choice Petri net with deterministic timings.

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 0  0.2  0.4  0.6  0.8  1

th
ro

ug
hp

ut

proportion of tokens sent to transition 2

Bernoulli routing
balanced routing

Fig. 3. Comparison of the Bernoulli routing with the best periodic routing
when the proportion of tokens sent to transition 2 varies.

V. OPTIMAL ROUTING POLICIES

In this section, we consider theoptimal routing policies
in a free-choice net with respect to the throughput. Again,
firing times will be exponential, so that an MDP (Markov
Decision Process) approach will be possible. The optimal
policy under several information structures, are derived and
the corresponding throughputs are computed and compared.
This provides an enlightening illustration of the value of
information.

Consider a stochastic live and bounded free-choice net
with exponential firing times, the firing rate of transitiona
being µa ∈ (0,∞). It is convenient to view the model as
follows. The instants ofpotential firing or availability of a
given transitiona are given by an exogenous Poisson process
of rate µa. At a potential firing instant, a firing may occur
if and only if the transition is enabled. In this last case,
firing or not the transition is the role of adecision maker.
The goal of the decision maker is to maximize the total
throughput. Variations of the model are obtained depending
on the moment when the decisions need to be taken and the
quantity of information available.

To use a MDP approach, it is convenient to work in a
discrete-time setting. To that purpose, the process obtained
by superposition of the Poisson processes of rateµa is

replaced by a sequence of i.i.d. r.v.’s valued inT (the
set of transitions) and of distribution(µa/Λ)a∈T , where
Λ =

∑
a µa. Now, time is slotted, and at each time slot,

precisely one transition has the potential to fire. The firing
will occur, at this same time slot, if: (i) the transition is
enabled, (ii) the decision maker agrees. The above is a simple
instance of the standard “uniformization” trick.

The immediate reward at each slot is 1 if a transition is
fired and is 0 otherwise. Maximizing the throughput is now
equivalent to maximizing the infinite horizon average reward.
Therefore, it is possible to model the maximizing problem
using a MDP. The maximal throughput and the optimal
policy will be given by the Bellman equation associated with
the MDP (see for example [10]). In particular, the maximal
throughput of the Petri net is the average reward per unit of
time of the MDP multiplied by the uniformization constant
Λ. Here, the state space of the MDP is always finite. So
the Bellman equation can be explicitly solved using policy
iteration.

A. Optimal token pre-allocation

Assume that a token enters a conflict place at time slotn.
The decision maker has to choose, immediately, one of the
output transitions. The information available is the marking
of the Petri net at time slotn. The token will eventually fire
the chosen transition at the first slot aftern when it becomes
available. In particular, when the decision is taken, it is not
known which one of the output transitions will be available
first. We call this apre-allocationpolicy.

Bernoulli routings and periodic routings are special cases
of pre-allocations where the knowledge of the global marking
is not used.

The state space of the MDP is formed by the set of all
pairs formed by a reachable marking (M ) and an allocation
of tokens in conflict places (ρ). Let M · t be the marking
obtained fromM by the firing of transitiont. For t ∈ ρ, let
rout(M,ρ,M ·t) be the set of possible allocations for the new
tokens appearing in conflict places when the firingM

t→ M ·t
is performed. Let rout(M,ρ) =

∏
t∈ρ rout(M,ρ,M · t) be

the set of all possible future decisions in state(M,ρ). For
r ∈ rout(M,ρ) and t ∈ ρ, the firing of t will transform the
state(M,ρ) into the state(M · t, ρ · (t, r)) whereρ · (t, r) =
ρ \ {t} ∪ (t•• ∩ r(t)).

Let J = (J(M,ρ))(M,ρ) be the reward vector. Letg be
the optimal average reward. The Bellman equation is:

J(M,ρ) + g = max
r∈rout(M,ρ)

( ∑
t∈ρ

µt

Λ
(J(M · t, ρ · (t, r)) + 1)

+
Λ−

∑
t∈ρ µt

Λ
J(M,ρ)

)
.

Example 3:Consider the example of Figure 1. Solving
the Bellman equation, we get the following optimal pre-
allocation. When a token enters placeb, allocate it to:

• Transition 2 if the current marking is{b, e};
• Transition 3 if the current marking is{b, d}.

The corresponding throughput is approximately 2.8.



B. Optimal token allocation

Each token in a conflict place is allocated to an output
transition, but this allocation can be modified by the decision
maker at the beginning of each time slot: (i) knowing the
current marking, (ii) but not knowing the transition which is
about to become available. We call this a(token) allocation
policy. Pre-allocation is of course a special case of allocation
policy.

The state space of the MDP is simply the set of reachable
markings. LetT (M) be the set of all maximal sets of
transitions that can fire in markingM . Each element of
T (M) contains exactly one transition in each marked cluster.
The new Bellman equation is:

J(M) + g = max
r∈T (M)

( ∑
t∈r

µt

Λ
(J(M · t) + 1)

+
Λ−

∑
t∈r µt

Λ
J(M)

)
.

Example 4:Consider the model of Figure 1. We get the
following optimal allocation. At the beginning of a time slot,
if there is a token in placeb, allocate it to:
• Transition 2 if the current marking is{b, e};
• Transition 3 if the current marking is{b, d}.

This optimal policy is different from the one in Example 3.
Assume that the marking is{b, e}. Then the token inb is
allocated to transition 2, but if transition 5 fires first, then the
token inb gets re-allocated to transition 3. The corresponding
throughput is approximately3.05.

C. Optimal non-anticipative policy

At each time slot, if the available transition is enabled,
the decision maker decides either to fire or not to fire the
transition. The available information is the current marking.
This can also be viewed as a model where the decision maker
may reallocate the token at the beginning of each time slot
knowing: (i) the current marking, (ii) the transition which is
about to become available. This is the maximal amount of
information available without look-ahead. So we call this a
non-anticipative routingpolicy.

Clearly token allocation policies form a subset of non-
anticipative policies. But the race policy can also be emulated
by a non-anticipative policy. It is also possible to have a
coexistence of allocations and races, see Example 5.

The state space is still the reachability graph. But the set
of possible decisions in markingM is now E(M), where
E(M) is the set of all subsets ofT containingat leastone
transition in each marked cluster. Observe that the setE(M)
is larger than the setT (M) of possible decisions for token
allocation policies. The new Bellman equation is

J(M) + g = max
r∈E(M)

( ∑
t∈r

µt

Λ
(J(M · t) + 1)

+
Λ−

∑
t∈r µt

Λ
J(M)

)
.

When several transitions of the same cluster belong tor, the
decisionr induces a race between these transitions.

Example 5:Let us continue with the Petri net of Figure
1. The optimal non-anticipative policy is as follows:

• Allocate the token to transition 2 in marking{b, e}.
• Play race between transitions 2 and 3 in{b, d}.

The corresponding throughput is approximately3.20.

The following diagram shows how the different policies
compare in terms of throughput. An arc means “provides a
better throughput than”. No arcs means that no comparison
is possible (several examples of free-choice nets where one
or the other policy provides a better throughput have been
constructed). The dashed arrow is a conjecture based on
numerical evidence. The respective throughputs obtained for
the example of Figure 1 are given in parenthesis.

policy

alloc.
optimal

pre-allocation
optimal

race
(3.2)

(3.05) (2.80)

(2.97)

Bernoulli
best

routing
(2.61)

(2.66)
routing
periodic
best

optimal
non-ant.
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