Throughput in stochastic free-choice nets under various policies

Anne Bouillard*, Bruno Gaujal and Jean Mairesse

Abstract—In this paper, live and bounded free-choice Petri exists a vector only depending on the asymptotic routing
nets with stochastic firing times are considered. Several classical frequencies and such that = o*v, for oy, € R,
routing policies, namely the race policy, Bernoulli routings, and In the second part of the paper, we show how to compute

eriodic routings, are compared in terms of the throughputs . . L
gf the transitic?ns. First, urFl)der general i.i.d. assumptigng on explicitly the throughput for exponentially distributed free-

the firing times, the existence of the throughput for the three ~Choice nets with Bernoulli routings, periodic routings and for
policies is established. We also show that the ratio between the the race policy. The race policy case is standard: the marking

throughputs of two transitions depend only on the asymptotic evolves as a continuous-time jump Markov process. As for
frequencies of the routings, and not on the routing pol_lcy. On  Bernoulli and periodic routings, we construct a Markov
the other hand, the total throughput depends on the policy, and r hich i t Vi th i habilit

is higher for the race policy than for Bernoulli routings. Second, process which IS not evolving on the mar '”9 reacha ”_y
we show how to compute the throughput for exponentially 9raph but on an extended state space which takes into
distributed free-choice nets under the three policies. This is done account the possible routings. We show how to choose the
by using Markov processes over appropriate state spaces. We parameters of the Bernoulli routing in order to maximize the
use this to compare the performance of periodic and Bernoulli throughput. We use these computations to compare Bernoulli

routings. Finally, we derive optimal policies under several . - L . . .
information structures, namely, the optimal pre-allocation, the routings with periodic routings. Numerical evidence suggests

optimal allocation, and the optimal non-anticipative policy. that balanced periodic routings provide better throughputs
than Bernoulli routings, much like in open systems [2] or
|. INTRODUCTION closed deterministic ones [6].

] ) ) _Inthe final part of the paper, we consider optimal policies.

In this paper, we consider a live and bounded free-choiG8pserve that the race policy can be seen as a greedy policy
net with stochastic firing times and we analyze classicg{nich is locally optimal. Using Markov Decision Processes,
policies of conflict resolution in terms of the throughput,, provide a computation of the throughputs for optimal
of the transitions (number of firings per second). The firstyting policies under several information structures:
policy is the famougace policy see for instance [1]. The « Pre-allocation: the routing of a token is decided imme-
other policies are Bernoulli routings, periodic routings, and diately upon entering the routing place, knowing the
throughput-optimal routings. global marking. ’

This problem has already been considered for timed deter-. Allocation: the routing of a token can be decided at any
ministic fluid Petri nets. Two different models of fluid Petri instant, and knowing the global marking.
nets have been studied, in [7] and [11]. In both cases, it has Non-anticipative policy: the routing can be decided at

been proved that the throughput is simply the solution of a any instant, knowing the global marking and the next
linear program ([8], [11]). The discrete case is more involved. i a(/ailable

Th rministic discr -choi h n i . .
e dete stic discretéree-choice case has been studied We compare the throughput that one can achieve using

in [4] and has a high combinatorial complexity. On the Othe{hese different information structures, showing that the last

hand, the existence of the throughput ftochasticfree- . L
choice nets with general i.i.d. firing times and Bernoulli®"® provides a better throughput than the second, which is
also better than the first one.

routings is established in [9] but no means of computation We exhibit a free-choice net with one conflict place for

's provided. which the optimal non-anticipative policy is to perform a
Here, we first show the existence of the throughput for_ . P . P polcy 1S 10 p

. . . .. _race in some marking and a constant allocation in some other

the race policy and the periodic routings for general ""dr'narking

tmings. Then we compare the throughput obtained under Due to lack of space, most proofs are not reported in
the different policies, for a fixed asymptotic frequency of th%h' ; : .
) & is paper. They are given in the long version of the paper,
routings. Let\*, k € {race, Ber,per}, be the vector of the available as a technical report [5]
throughputs at the different transitions. We prove that there P '
[l. STOCHASTIC FREECHOICE NETS
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M, € N”. The elements of? are calledplacesand those the probability that a transitiom € p® wins the race is

of 7, transitions and M, is called theinitial marking of  P(¢4(1) = ming epe{@a(1)}), assuming that no ties are
N. For a nodex € P U7, we denote by*x the set of possible. (Otherwise a procedure to break ties needs to be
its predecessors and by* the set of its successors. Thespecified.)

marking evolves according to tH&ing rule: a transitiona A Bernoulli-routedPetri net is a tupléP, 7, F, M, o, u)
is enabledif: Vp € ®a, M(p) > 1. An enabled transition where (P,7,F,M,y) is a stochastic Petri net and =
can fire, and then the marking becom®es with M'(p) =  (u,)pep is the set of routing functions. For every plage

M (p)—1e4(p)+14e(p). This firing is denoted by = M’.  wu, = (uy(n))nen- is @ sequence of i.i.d. r.v’s (hence the
A marking M’ is reachable from\ if there exists a sequence name Bernoulli routing), and those sequences are mutually
of transitionsas, . ..,a, such thatM’ is obtained fromM  independent and independent of the firing times. The r.v.
by successively firing,, - - - , a,. We write M % M’ where u,(n) tells the transition that will be fired by the-th token
w = ai---a,, andw is called anadmissible sequenc&/e entering placep.
denote byR(M,) the set of all the reachable markings (from A Petri net with periodic routing is a tuple
M,). For an admissible sequeneec 7*, we denote by (P, 7,F, M, ,u) where (P,T,F,M,p) is a stochastic
its commutative imaggor Parikh vector), that is, the vector of Petri net and where: = (u,),ep With u, € (p*)" being
N7 that counts the number of occurrences of each transitian deterministic periodic function. Agaim,(n) tells the
ino. transition that will be fired by the-th token entering place
A stochastic Petri nets a Petri net where random tim- p.
ings have been added on the transitions. More precisely, aA routing is equitableif for every conflict placep, each
stochastic Petri net is a 5-tupte (P, 7,F, My, ), where output transition is choosen with a strictly positive frequency.
(P,T,F,M,) is a Petri net, wherep = (p.)acT, and Under the race policy, the equitable condition becomes: for
va = (pa(n))nen+ is a sequence of i.i.d. random variablesevery placep, for every transitioru € p°®,
with finite expectation E(p,(1)) < o). Moreover, the
sequenceg,, a € 7, are mutually independent. The firing P(pa(1) = min {¢.(1)}) > 0. (1)
rule is defined as follows: if the-th firing of transitiona aept
starts at timet, then at timet, one token is removed from In a general Petri net, where synchronizations and choices
each input place ofi, and at timet 4 ¢, (n), one token is are not separated, the routing policy could lead to a deadlock
added in each output place of (no transition can be fired) while the Petri net without routing
A free-choice (Petri) nets a Petri net whereY(p,a) € is live. On the other hand, in the free-choice case, it is proved
P xT, (pa) € F= (p* = {a}) or (*a = {p}). That is, in [9] that every transition will fire infinitely often in a routed
choices and synchronizations in the net are separated. A Pé&@it if and only if the Petri net is live and the routings are
net islive if for every reachable marking/’, and for every equitable.
transitiona, there exists a marking/” reachable from\/’ In the following, we always assume that equitability is
such that is enabled inM/”. A Petri net isboundedf there  satisfied.
existsm € N such that for every reachable markiddg €
R(My), for every placey € P, M (p) < m. A connected live
and bounded Petri net is strongly connected. In this article, Theorem 1:Let N’* be a live and bounded stochastic
we only consider strongly connected live and bounded fred:ee-choice net with a routing policy € {race, Ber, per}.
choice nets. For every transitionb, there exists a constant! € R
The cluster [z] of z € P U T is the smallest subset of (throughput of transitior) such that a.s. and if,,
PUT such that: (i)x € [z]; (i) p € P,p € [x] = p* € [z]; n PY0
(i) t € T,t € [x] = *t € [z]. The set of all the clusters of lim ——— = lim —°
a Petri net defines a partition of the nodes. For free-choice oo Xyi(n) oo
Petri nets, each cluster contains only one place or only onewhereX [ (n) is the instant of completion of the-th firing
transition. of transitionb under policyk and X[ (¢) is the number of
firings completed at time under policyk.
o ) Proof: (sketch). The result was proved in [9] for the
In order to solve the conflicts in free-choice nets, at th@ernoulli routing. The case of the race policy can be dealt
places havmg severalioutput' transitions (conflict placgs), ORGth by showing that the behavior of the net under the race
needs to define a routing policy: when a token arrives in suglpjicy can be simulated by a suitable Bernoulli-routed net.
a place, the policy defines which output transition will beStarting from\/mace = (A, ), consider the Bernoulli-routed

IIl. EXISTENCE OF THE THROUGHPUT

k
:)\b7

Conflict resolution

fired with that token. . net(\, ¢’,u), where the distribution of transitiombecomes
The race policy is defined as follows: when a token )
arrives in a conflict place, every output transition op P(p, <t) =P(pa < tVb € (*a)®, pa < pp),

begins its firing. The first transition that finishes to fire IS1d where the routing function is such that

effectively fired (it wins the race), and all the other output
transitions ofp abort their firing at that time. Therefore, Pluy(n) = a) = Plpa < @b, Vb € (*a)®).



(Here we assume for simplicity th&(y, = ) = 0 for all a €
a # b.) This Bernoulli routing is called the Bernoulli routing
simulating the race policy.
The case of periodic routings can be proved by adapting
the proof of the Bernoulli case. [ | 4 57
d
A. Ratio between the throughputs of the transitions R Cé {\@

Although it seems impossible to compute the throughput
of the transitions when the firings have general distributions,
it is rather easy to compute the ratio between the throughputs 2 3
of two different transitions for all three routing policies.

i i i k _ k .
Define therouting matrix " = (R};); jer as: Fig. 1. Example of a live and bounded free-choice Petri net.

1
Rf': . Fk(pvj)v .
] pep:;p_}j A. Race policy

b o ) e The race policy case is well-known. The marking evolves
where F*(p, j) is the frequency of routing to transitiof  5q 5 continuous-time jump Markov processet M be a

from placep'under the routing. In particular, "% (p, j) = (aachable marking and’; be the set of the transitions
P(up(1) =7 E7(p, j) = P(pj < pa, Va € p*), and  enapled aflf. The first transition fired is € Ty with prob-
Fpef"(p,y) is the proportion of tokens routed toover one ability 11,/(3, ez, ttar)- The firing time is exponentially
period of the routing. o distributed with pélrameteza,eT tar- The stationary dis-
¢From the equitable assumption, in all three cases, th@ytion 7, of this process is characterized by the equation
matrix R* is irreducible, its spectral radius is 1, and ith = 0, whereQ is the infinitesimal generator defined as
admits a unique eigenvectf = (v¢)se7, 75 € R+ \ {0},  follows. Denote byM -a the marking such that/ % M -a.

>, 2F =1, such that” R* = 2", We have

Theorem 2:The model is the same as in Theorem 1. For
all routing policy & belonging to{race, Ber, per}, there VM € R(Mo), Qwnyana = Haif a €Ty,
exists a constant* € R, U {oc} such that for all transition Qi = — Z Qs Mya

a, \b = ckzk,

The proof is an adaptation of the proof of [9, Prop. 5.1
in which Bernoulli-routed nets are considered.

Observe thaf? depends only on the routing frequencies of orace — Z
tokens, and not on the timings of the transitions. Therefore, My ER(Mo)
the ratios are the same for the three policies provided that
F%(p, j) are equal for all three policies.

a€Tny

]The total throughput is then given by the formula:

—(mr )y - @ty iy -

To illustrate the computation of the throughput, we study
an example that will be used throughout the paper.

B. Comparison between the policies Example 1:Consider the Petri net in Figure 1. The places
As mentionned before, the ratio between the throughpuf§® nNamed by lettersi(to ¢) and the transitions by numbers
of the transitions are the same in all three cases. Therefofé, 0 5)- The parameters of the exponentially distributed tim-

to compare the throughputs, one just has to compare the tof3@s of the transitions are respectively = 2, s = 2, 3 =
throughputsC* := Ser AL,k € {race, Ber, per}. 3, 1y = 5, andus = 1. The state space is the set of reachable

Proposition 1: Let N7%¢ = (P,T,F,M,y) be a live Markings:R = {{a,d},{a, e}, {b,d}, {b, e}, {c,d}, {c,e}}.
and bounded stochastic free-choice net with the race polid’® marking is a continuous-time Markov process with
and let\N'B¢" = (P, T, F, M, p,u) be the Bernoulli-routed Nfinitesimal generator:

net with the same firing times and routing frequencies as -2 0 2 0 0 0
Nrace_ Thenycrace Z C«Ber_ 1 _3 0 2 0 0

The comparison with periodic routings is more difficult. 2 0 -5 0 3 0
This will be illustrated in the next section which focuses on Q= 0o 2 1 —-6 0 3
computational issues. 0o 5 0 0 -5 0

o 0 0 O 1 -1

IV. COMPUTING THROUGHPUTS . C . .
The stationary distributiont™*<¢ is obtained by solv-

This section is devoted to the computation of the throughng the equationz™**¢@Q = 0. We obtain 77%¢¢ =
put in live and bounded free-choice Petri nets. We now cor{85, 90, 40, 30, 42, 90) /337.
sider that every transition has a firing time exponentially =~ The throughput iC™*¢ = " —7;.Q;; = 1120/377 ~
distributed with parametet, € (0, o). 2.97.



B. Bernoulli routings In both cases, we computed the total throughpLitg«e
For a free-choice Petri net with Bernoulli routings, the2nd C”*". To get back to the throughput of one transition,

marking is not a Markov process anymore. One possibilit}/® &/S0 need to compute the left-eigenvector associated to
is to add immediate firing transitions to model the routingh® €igenvalue 1 of the matrik. We have

which would yield a semi-Markov process for the marking 0 pl—p 0 0
(see [1]). Another possibility, used here, is to model the evo- 1 0 0 0 0
lution of the net by a Markov process over an extended state R= 0 0 0 1 0 ,
space. This approach has the advantage that computations 2/3 0 0 0 1/3
can be carried out symbolically which is very helpful for 0 0 0 1 0

optimization purposes. .
The main trick in the construction is the choice of the statend then, withp = 2/5, \¥ = £(10,4,2,3,1), wherek €
space. When a token enters a conflict place, the timing df3er, race}.
the transition to be fired, depends on the routing. If we took |, 1o above example, the maximum 6%<" is strictly
R (M) for the state space, then this would lead to difficultie§esS thanC"aee. This is n(;t always the case and it is easy to

due to that dependence. In order to separate t.he timings Qi models in which a far better throughput can be reached
the routing, we consider a new state space: when a tok th Bernoulli routings than with the race policy.

enters a choice place, the transition it can fire is already
defined. ForM € R(M,), let 7(M) be the set of all the C. Periodic routings
maximal sets of transitions that can be fired simultaneously we assume that place; has a periodic routing policy

(in the non-timed Petri net) undev/. Then, the extended ith periodd;. The behavior of the net can be modeled by
state space i§ = {(M,T) | M € R(Mo), T € T(M)},i.e. 3 continuous-time Markov process with a state spAce

every state corresponds to a pair formed by a marking aq@j(MO) x {0, ,dy —1} x -+ x {0,--- ,dg — 1} where
a set of enabled transitions. s=P|.
The infinitesimal generato) of the chain is defined as Being in a state(M,r1,...,r,) means than the current

follows. Let (M,,T1) € &, anda € T. Transitiona is  marking isM and that the next transition to be chosen by a
fired with rate Ha and the new set of enabled trans|t|0n&Oken in p|acq)1,/ is given by the:z-th element in the periodic

is 7o = (T1 \ {a}) UT" whereT” is a maximal set of sequence attached toThe infinitesimal generator is defined
newly enabled transitions, chosen randomly according to thcordingly.

Bernoulli routings. The number of states becomes rapidly large when the
Example 2: Consider again the Petri net of Figure 1. aPeriods of the routing functions increase. Some numerical

token arriving in place fires transitior2 with probabilityp ~COmMputations have been carried out using Maple for the
and transitiors with probabilityq = 1—p. The state space is foregoing example of Figure 1. The results are displayed

{(ad, 1), (ae, 1,5), (bd, 2), (bd, 3), (be, 2, 5), (be, 3,5), (cd, 4), N Figure 2.
(ce,5)}, and the infinitesimal generator is :

27 T T T
4 periodic routings ~ +
T S + f :jj + ++++
2 0 2 24 0 0 0 0 BEEIUE RIS i ‘
1 -3 0 0 2 2 0 0 ol HRIENAIE I R RS ]
2 0 -2 0 0o 0 0 o0 IR l$ ;%
0= 0 0 0O -3 O 0 3 0 24 ++*+1+$%fi A
o 0 2 1 0 -3 0 0 0 ;; wal T |
o 0 0 1 0 -4 0 3 g RS
o 5 0 0 0 0 -5 0 22} ' E
o o o0 o o o0 1 -1 ’
21 F 4
By solving 72¢"Q = 0, we getn?°" formally, each
coordinate being a rational fraction pf The total throughput T 1
is : 19 . . . .
CBeT — 60(4p2 — 17p + 18) ° ° propom:rfofmkens sent to I(:al\isitionz o 1

©138p2 —403p + 414
Fig. 2. Throughput of several periodic routing functions when the

The maximum of CB¢" is reached forp = (846 —  proportion of tokens sent to transition 2 varies.
30v/615)/751 =~ 0.14. The corresponding value of the
throughput is approximatively 2.61. Numerical evidence suggests that the best periodic routing

To have the same routing probabilities as in the race polidg given bybalanced routing functionsThis fact has been
case, one must take = 2/5. The stationary probability proven for many open systems (see [2]). In the case of closed
is then7Ber = (190,270,100, 141, 72,108,222,81)/1184, systems (as for the free-choice net used here), this is in
and the throughput i€'P°" = 1480/573 ~ 2.58. general unproved, with a few exceptions, see [6].



Numerical evidence also suggests that the best periodieplaced by a sequence of i.i.d. r.v’s valued 7n (the
routing is better than the best Bernoulli routing, see Figurset of transitions) and of distributiofy,/A).c7, Where
3. A = Y, 1a. Now, time is slotted, and at each time slot,

The maximal throughput for the periodic routing isprecisely one transition has the potential to fire. The firing
reached when the proportion of tokens sent to transition &ill occur, at this same time slot, if: (i) the transition is
is 0.5. This is in contrast with the situation of Bernoullienabled, (ii) the decision maker agrees. The above is a simple
routings, where we recall that the maximum was attaineihstance of the standard “uniformization” trick.
for a proportion approximately equal to 0.14. The immediate reward at each slot is 1 if a transition is

The shape of the curve for the best periodic routing ifired and is 0 otherwise. Maximizing the throughput is now
Figure 3 is characteristic. It seems to be piecewise-affirgfuivalent to maximizing the infinite horizon average reward.
with singularities at rational points with small denominatorsTherefore, it is possible to model the maximizing problem
This is reminiscent of the numerical data obtained in [6] fousing a MDP. The maximal throughput and the optimal
a closed free-choice Petri net with deterministic timings. policy will be given by the Bellman equation associated with
the MDP (see for example [10]). In particular, the maximal
throughput of the Petri net is the average reward per unit of

27 T T T T
e aanced routng + time of the MDP multiplied by the uniformization constant
261 T 1 A. Here, the state space of the MDP is always finite. So
o the Bellman equation can be explicitly solved using policy
=T o iteration.
Fa °, 1 A. Optimal token pre-allocation
£ L.l + | Assume that a token enters a conflict place at timesslot
- The decision maker has to choose, immediately, one of the
22} Lo output transitions. The information available is the marking
of the Petri net at time slot. The token will eventually fire
21y 1 the chosen transition at the first slot aftewhen it becomes
available. In particular, when the decision is taken, it is not
i 0z 0 0s 0s 1 known which one of the output transitions will be available

proportion of tokens sent to transition 2

first. We call this apre-allocationpolicy.
Fig. 3. Comparison of the Bernoulli routing with the best periodic routing Bernoulli routings and periodic routings are special cases
when the proportion of tokens sent to transition 2 varies. of pre-allocations where the knowledge of the global marking
is not used.

The state space of the MDP is formed by the set of all
pairs formed by a reachable markiny/§ and an allocation

In this section, we consider thaptimal routing policies of tokens in conflict placespj. Let M - ¢ be the marking
in a free-choice net with respect to the throughput. Agaimbtained fromA/ by the firing of transitior. Fort ¢ p, let
firing times will be exponential, so that an MDP (Markovrout(M, p, M -t) be the set of possible allocations for the new
Decision Process) approach will be possible. The optimabkens appearing in conflict places when the firdg- M-t
policy under several information structures, are derived anid performed. Let rot\/, p) = [, ,rout(M, p, M - t) be
the corresponding throughputs are computed and compargee set of all possible future decisions in stafd, p). For
This provides an enlightening illustration of the value ofr € rout(M, p) andt € p, the firing of¢ will transform the
information. state(M, p) into the state(M - ¢, p- (¢t,7)) wherep- (t,7) =

Consider a stochastic live and bounded free-choice ngt\ {¢t} U (¢t*° Nr(t)).
with exponential firing times, the firing rate of transitian Let J = (J(M,p))m,p) b€ the reward vector. Lej be
being i, € (0,00). It is convenient to view the model as the optimal average reward. The Bellman equation is:

V. OPTIMAL ROUTING POLICIES

follows. The instants opotential firing or availability of a

given transitioru are given by an exogenous Poisson procesg(M, p) + g = max (Z &(J(M “top- () +1)
of rate u,. At a potential firing instant, a firing may occur rerout(M,p) \ =7 A

if and only if the transition is enabled. In this last case, A— Ztep Lt

firing or not the transition is the role of decision maker +fJ(M7 P)) .

The goal of the decision maker is to maximize the total
throughput. Variations of the model are obtained dependin ' ; '
on the moment when the decisions need to be taken and Bellman equation, we get the following optimal pre-
quantity of information available. allocation. When a token enters plageallocate it to:

To use a MDP approach, it is convenient to work in a e Transition 2 if the current marking ib, e};
discrete-time setting. To that purpose, the process obtainede Transition 3 if the current marking i, d}.
by superposition of the Poisson processes of pajeis The corresponding throughput is approximately 2.8.

Example 3:Consider the example of Figure 1. Solving



B. Optimal token allocation Example 5:Let us continue with the Petri net of Figure

Each token in a conflict place is allocated to an output- The optimal non-anticipative policy is as follows:
transition, but this allocation can be modified by the decision « Allocate the token to transition 2 in marking, e}.
maker at the beginning of each time slot: (i) knowing the o Play race between transitions 2 and 3{ind}.
current marking, (ii) but not knowing the transition which isThe corresponding throughput is approximat&Igo.
about to become available. We call thigtaken) allocation . . . -
policy. Pre-allocation is of course a special case of allocation The foIIpwmg diagram shows how the d|fferer:t po!|C|es
policy. compare in terms of throughput. An arc means “provides a

The state space of the MDP is simply the set of reachabpeener throughput than”. No arcs means that no comparison
markings. Let7 (M) be the set of all maximal sets of IS possible (several examples of free-choice nets where one

transitions that can fire in marking/. Each element of or the other policy provides a bett_er throughput have been
T (M) contains exactly one transition in each marked cluste?.onsm.mted)'_ The dashed arrow Is a conjecture bgsed on
The new Bellman equation is: numerical evidence. The respective throughputs obtained for

the example of Figure 1 are given in parenthesis.
J(M)+g = max (Z %(J(M )+ 1)
ter

reT (M best
+A = D ter Mt J(M)) ) ?Oetzggg”l
A (2.61)
Example 4:Consider the model of Figure 1. We get the optimal optimal optimal /\
following optimal allocation. At the beginning of a time slot, antl7 alloc. [ |pre-allocation
if there is a token in placé, allocate it to: Bg{i]c?n T | (3.05) (2.80) \ .
« Transition 2 if the current marking &b, e}; (3.2) |\ best
« Transition 3 if the current marking iéb, d}. ré':lcge7 Fr)gtrjlt(i)r?lc
This optimal policy is different from the one in Example 3. (2.97) (2.66§)J
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