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Abstract—Network Calculus theory aims at evaluating worst-  its extensions have advantages like modularity and sdiyabi
case performances in communication networks. It provides that will allow valuable analyzes of complex networks [10].
methods to analyze models where the traffic and the services From the beginning [11], [12], [13], Network Calculus

are constrained by some minimum and/or maximum envelopes thods h | t hasi th of
(service/arrival curves). While new applications come forward, a Methods have always put an emphasis on the ugenof, +)

challenging and inescapable issue remains open: achieviight ©Of (max, +) tropical algebras, known for their applications
analyzes of networks with aggregate multiplexing. to different discrete event systems [14]. A general scheme
The theory offers efficient methods to bound maximum end- consists in combining constraint curves thanks to algebrai
Lo'e“g delaysl,)or 'Og_?' b§|1d<f|og]§. HO‘;‘P’]EVGV aStShOWVt‘ recently,l th®s operations like(min, +) convolution or(max, +) deconvolu-
ounds can be arbitrarily far from the exact worst-case values, . : : !
even in seemingly simple feed-forward networks (two flows and tion. Using a few lemmas, one can e_lther propagate contrain
two servers), under blind multiplexing (i.e. no information about  through the network and then retrieve performance bounds
the scheduling policies, except FIFO per flow). For now, only a from all those computations, or express the network behavio
network with three flows and three servers, as well as a tandem with a set of (min, +) functional equations which must be
network called sink tree, have been analyzed tightly. _ solved to get the bounds. In this framework, the analysis of
We describe the first algorithm which computes the maximum a single flow crossing a sequence of servers is tight. The
end-to-end delay for a given flow, as well as the maximum backlog . .
at a server, for any feed-forward network under blind multiplex- (min, +) convolution elegantly captures ttigay Burst Only
ing, with concave arrival curves and convex service curves. Its Once (PBOO)henomenon in tandems of servers (burstiness
computational complexity may look expensive (possibly super- is amortized all along the servers). However if the network
exponential), but we show that the problem is intrinsically presents some aggregate multiplexing of several flows, pro-
difficult (NP-hard). Fortunately we show that in some cases, like viding a tight analysis becomes much more difficult.

tandem networks with cross-traffic interfering along intervals of The NC del I lassified di to th
servers, the complexity becomes polynomial. We also compare e models areé usually classiied according to the

ourselves to the previous approaches and discuss the problemstopology of the network, the scheduling policies and theetyp
left open. of service guaranteed at each server. For general topslogie

where the flows may interfere with cyclic dependencies, the
[. INTRODUCTION complexity of computing worst-case performances is still
open. Even the simpler question of decidistability, i.e.
Network Calculus (NC) is a theory of deterministic queuwhether global backlog or end-to-end delays remain bounded
ing systems encountered in communications networks. Withunset for many policies. Related results can be founden th
methods to compute deterministic bounds on delays, basklodversarial Queuinditerature where the Permanent Session
and other Quality-of-Service (QoS) parameters, it aims Etodel matches Network Calculus models [15]. A well-known
analyzing critical behaviors and usually focuses on woaste necessary condition for stability is an utilization factorl at
performances, either local performances. (maximum buffer each server. This condition is also sufficient for feed-famyv
size at a node) or end-to-end performancies. (haximum networks [13], or unidirectional rings [16]. But, this catidn
end-to-end delay). The informations about the system dgenot sufficient for FIFO scheduling since there exists aiplst
stored in functions, such aarival curvesshaping the traffic networks at arbitrarily low utilization factors [17]. Foegeral
or service curvegquantifying the service guaranteed at th&IFO networks, the best sufficient conditions and assatiate
network nodes. Relevant applications range from Interngbunds on delays are provided by [18] but they are usually not
QoS [1] to the analysis of System-on-Chip [2], industridight. More thrilling, for simple feed-forward networkské
Ethernets [3], critical embedded networks [4]. At the préseFIFO tandems, a recent paper [19] improving delay bounds
time, the theory has developed and yield accomplishedteesiias shown that those bounds were not tight yet.
which are mainly recorded in two reference books [5], [6IsIt  In this paper, we investigate the complexity of computing
an alternative to other approaches for worst-case perfocenaexact worst-case performances (end-to-end delays andl loca
analysis like holistic methods [7], trajectory methods 8] backlogs) forfeed-forward networkanderblind multiplexing
model checking [9]. It is believed that Network Calculus ande. no information about the policy except FIFO per flow (also



called FIFO per micro-flow [20]). This assumption is lighteof data and the constraints that these movements satisfy.
than FIFO scheduling for the aggregated flows. A first study @he real movements of data are modeled dymulative
tandem networks put forward a new phenomenon caflag functions a cumulative functionf(¢) counts the total amount
Multiplexing Once (PMOO)competition between flows for of data that has achieved some condition up to time.g.
the resources is amortized all along the servers) [21]. Withthe total amount of data which has gone through a given
new method taking into account PMOO, experiments showpthce in the network). We consider ffuid model where
a significant improvement to the end-to-end delay bounds witcumulative functions will belong toF = {f : Ry —
regard to previous NC approaches. It could be formulat&l, | f non-decreasing, left-continuoug(0) = 0}. Con-
as a new(min, +) multi-dimensional convolution [22], thus straint functions either shape the traffiarifval curveg or
preserving the NC spirit while being a good candidate fdnttigguarantee some service locally or globalkeivice curves
analysis of blind multiplexing. However a recent breaktlyglo Constraint functions usually allow theco value. In this paper
paper [23] showed that those bounds could be arbitrarily fase will assume that they all belong t6 for commodity, but
from the exact worst-case values, even in seemingly simglecareful look will show that all our solutions can be adjdste
feed-forward networks (two flows and two servers). This papwith no extra cost to deal with someoo values.
suggested a new approach using linear programming, but foBeyond usual operations like the minimum or the addition
now, only a network with three flows and three servers, & functions, Network Calculus makes use of several classic
well as a sink-tree tandems, could be analyzed tightly. (min, +) operations [14] such as: lgt g € F, Vt € R,

Our paper describes the first algorithm which computes. convolution:(f * ¢)(t) = info<s<:(f(s) + g(t — s));
the maximum end-to-end delay for a given flow, as well « deconvolution:(f @ g)(t) = sup,~q(f(t+ u) — g(u)).
as the maximum backlog at a server, for any feed-forward An input/output systenis a subsetS of {(Fi", Fout) ¢
network under blind multiplexing, with concave arrival ees F x F | Fi* > Fo“t}, |t models a flow crossing a system
and convex strict service curves. It also provides a ctiticwhere " (resp.F°"!) is the cumulative function at the entry
trajectory of the system, achieving the worst-case valte. (resp. exit) of the system an#‘® > F°u! indicates that the
computational complexity may look expensive (possiblyesup system only transmits data. thajectory of the systemS is an
exponential), but we show that the problem is intrinsicallglement( ", Fout) of S.
difficult (NP-hard). Fortunately we show that in some cases,2) NC arrival curves: Given a data flow, leF' € F be its
like tandem networks.e. the scenarios studied in [23], [21],cumulative function at some pointe. F'(¢) is the number of
the complexity becomes polynomial. Beyond the fact that obits that have reached this point until timewith F(0) = 0. A
solution applies to any feed-forward networks, and altfoudunction« € F is anarrival curvefor F'if V s,t € Ry, s < 't,
we also use linear programming, several features disihguive haveF(t) — F(s) < a(t — s). It means that the number of
our approach from [23]: we tackle both worst-case delays ahis arriving between time andt is at mosta(t—s). A typical
backlogs, we directly compute worst-case performances gxample of arrival curve is the affine function ,(¢) = o+pt,
stead of looking first for an end-to-end service curve, wedvoo, p € R ..
a decomposition/recomposition scheme for convex/concave3) NC service curves:Two types of minimum service
curves which may lead to looser bounds and a more expensiusves are commonly consideresimple service curveand
complexity. strict service curvesGiven a trajectory(F", F°ut) of an

The paper is organized as follows: after a presentation iaput/output system, we need to define the notionbatk-
the network model and the main NC notions in Section Il, wegged periodwhich is an intervall C R, such thatvu € I,
describe and analyze our algorithm in Section Ill where W& (u) — F°“'(u) > 0. Givent € R, the start of the
also set the NP-hardness of the problem. Section IV showacklogged periodf ¢ is start(t) = sup{u < t{F"(u) =
how it applies to tandem networks and compares our solutidi?“!(u)}. Since F** and F°“t are left-continuous, we also
to previous works namely [23], [24], while experiments arbave F"(start(t)) = F°%(start(t)). If F"(t) = Foul(t),
discussed in Section V to assess the gain w.r.t. to older Ni@nstart(t) = t. Note that for anyt € R, |start(t),t[ is a
methods. Further interesting extensions and open prokadeens backlogged period.

presented in Section VI. Let 8 € F, we define:
Our results are relevant to Network Calculus and extensionss Ssimpie(3) = {(F",F°“) € F x F | F" >
like Real-Time Calculus [25] and Sensor Calculus [26] (both ~ F°u! and Fou > Fi" x 3};
use the strict service curves). But we do not address sttichas o Sgict(3) = {(F™, F°%) € F x F | F"» >
extensions like [27], [28]. Feut and for any backlogged peridd, t[, F°“(t)
Due to space constraints, all details and full proofs are F°“!(s) > 3(t — s)}.
postponed to [29]. We say that a systen§ provides a (minimum)imple ser-

vice curve(resp.strict service curve g if S C Sgimpre(5)
(resp. S C Sqrict(B)). A typical example of service curve
A. Network Calculus framework is the rate-latency function: Sr 7 (t) = R(t — T);+ where
1) NC functions and systemsn Network Calculus, one R,T € R, anda,; denotesmax(a,0). For all 5 € F, we
must distinguish two kinds of objects: the real movementsgaveSs;,ict(3) C Ssimpie(3) but the converse is not true.

II. MODEL AND ASSUMPTIONS



In NC models with multiplexing, the aggregation of all the The overall network\ is defined byS, F and the sets
flows entering the system is often considered as a single flgw;, 1 < j < n}, {(a;, 1), 1 < i < p}. The directed
to which the minimum service is appliedd, one works with graph induced by is G(NV) = (S, A), whereS is the set of
the sum of the cumulative functions). This is the case herevertices andj, ;) € A if and only if j andj’ are consecutive

4) Performance characteristics and bound&iven a in- servers for some sequengg The sequenceg; are paths in
put/output system, bounds for the worst-case backlog ath digraph (the converse is not necessarily true). Any path
worst-case delay can be read easily from arrival and servise G(N) = (S, A) will be designated by its ordered sequence
curves. of vertices and often written asveord over the alphabei (we

Given a flow going through a network, modeled by awill often user to designate a path and for instange will
input/output systent, let (F", F°“) be a trajectory ofS. denote the path starting by vertgxollowed by the pathr).

The backlogof the flow at timet is b(t) = F(t) — Fout(t), In addition, we will use the following notations (similar
and the delay endured by data entering at tim@ssuming to [23]): for all i € TF,
FIFO discipline for the flow) is « the cumulative function of flow at the entry of network
. ic m(0).
d(t) = inf{s>0|F"t) < F"(t+s)} Is i

o for all j € 4, the cumulative function of flowi at the

output of serverj is Fi(j).
For the trajectory, theworst-case backlogis Buax = A set of cumulative functiond 7" € F | i € F, j €
sup;sq (F™(t) — Fo“'(t)) and the worst-case delayis s j e i} will be called atrajectory of the network\’ if it
Dinax = supy>qd(t) =sup{t —s [0 < s <t andF"(s) > satisfies the NC constraints of the network:
Fout(t)}. ' (Tl) Vi € TF, v] ci, Fi(preg(j)) > Fz(j)'

. . re j
Thepnext theorem explairjls how to derive performancg?’) vj €S, (Ziaj Fz’(p Q(J))vziaj Fi(])) € Sstrict(5;)-

bounds from constraints and how traffic constraints can BN we work under blind multiplexing, no other relation is

propagated. imposed. The set of all trajectories &f is denotedTraj(/N).

Theorem 1 ([5], [6]): Let S be an input/output system pro- Here are our ObjeCtiVES:_
V|d|ng a Simp'e service Curvﬁ and let (FiTL’FO’U«t) be a 1) Given a ﬂOWZO, we wish to Compute the worst end-to-

= sup{s > 0| F™(t) > F"(t + 5)}.

trajectory such that is an arrival curve fotF". Then, end delay endured by data of this flow, that is
1) Brax < Sl%p{a(t) — B(t) | t = 0} (vertical distance). sup sup {t — s | Fi(oo)(s) > Fi(olaSt(iO))(t)}.
2) Dmax < inf{d > 0 | ¥t > 0, a(t) < B(t + d)} (P9} eTraj(an) 05551

(horizontal distance).

3) a0 4 is an arrival curve foro" 2) Given a servej,, we wish to compute the worst backlog

endured by this server, that is
B. Network mgdel | | sup Sup{z Fi(preq(m)(t) B Z Fi(’”)(t)}.
A network will be modeled, without loss of generality, by @ = £y cryvajar) 20 155
directed graph where the flows must follow the edges and th
servers (switches, transmission links, routers...) greesented
by the vertices.
Servers and flows will be identified by indices. The set
servers isS = {1,...,n} and each servej offers astrict  Ill. ANALYSIS OF GENERAL FEEDFORWARD NETWORKS

service curved; € F which is piecewise affine (with a finite  Thegrem 2:Let A/ be a network with: servers ang flows.
number |(;| of pieces) and convex. Thus it can be writtef jis induced graptg () is feed-forward, then given a flow
;1) = maxy<e<ig;| (rjet = hje) With 750, .0 € Ry (resp. a servey), there exists a finite set of linear programs
The set of flows isF = {1,...,p}. Each flowi corre- | py with respective optimum valuesity, A € A, such that
sponds to a couplé;, pi;) where p; is the (finite) ordered .\ o, is the worst end-to-end delay for flow(resp.
sequence of servers crossed by the flow apds an arrival st backlog at servef). Each linear program ha8(p|II|)
curve for the cumulative function before entering the firgfzriaples and?(p|I1|?) linear constraints wher# is the set
server. We suppose that; is piecewise affine (with a finite ¢ paths ending atnd(i) (resp.j). We have|II| < 2"~! and
number |«;| of pieces) and concave. Thus it can be writteW < [mj2m-T,
@it) = minicecia, (050 + piet) With 050, pi0 € Ry L8U  The description of the different LP instances and the proof
i € F, we denotefirst(i) (resp.last(i)) the index of the first ot the theorem will be illustrated with the small but typical
(resp. last) server encountered by flowwWe will by abuse of example of Fig. 1: the diamond network.

notation writej € i to say that the servef belongs to the )

sequenceu;. Given j € i, we will denote pred;) the index A The LP instances

of the server preceding in the sequence; (by convention,  We present a set of LP instances such that any trajectory
preg(first(i)) = 0). satisfies at least one of them.

=R
eThose are supremum over infinite sets, nevertheless they can

be computed as shown next. Note that those supremum are not
d}ecessarily reached for a fixed trajectory or fixed instants



The set of all total orders ovét’ which satisfy (P1) and (P2)
is denotedTot(II"). Here is one way to enumerate all the
elements ofTot(II'): generate the set of temporal constraints
imposed by predicate (P1), it corresponds to a tree-likégbar
order, then generate all its linear extensions [30], geaera
for each linear extension all the possible combinations of
comparisons=, < or < and for each one check whether it
satisfies (P2).
Now we come back to our network. For each fljwe have
associated the set of pathls = {r,j=x | j € ¢, jm € II} and
1) Variables: Given the flow of interest (resp. a servef) we know thatll = {J, ., Il;. Let (73,...,7,) € Tot(Il;) x
for which one wants to compute the maximum end-to-end- x Tot(II,), we say that the total orders;,...,7,) are
delay (resp. the maximum backlog) over all trajectorieshef t mutually compatiblef for all 1 < i;,i, < p and 7,7’ €
network, letll be the set of all paths endinga@td(i) (respj). I, NI, we haveZ; (r,n’') = T, (7, 7). This condition
Here are the variables that will appear in each LP instanceensures that there exists a solutign).ci € R to the set
« t, for all 7 € I, as well as a spare variablg. Interpre- of constraints7; U ... U 7,. Moreover one can easily check
tation: ¢, is the instant at which the worst-case occurdhat this solution WI|| always satisfy the predicates (Phjl a
(output of data having endured the worst delay or insta
of worst backlog). Thewjr € 11, t;, = start;(t,), the Each combination7y, ..., 7,) € Tot(Ily) x - - - x Tot(Tl,)
start of the backlogged period of at the serve_rj of mutually compatible total orders will lead to a set of LP
. F(J)( t)foralli eF, jei,me HJ (', g’ | i’ instances. The main issue leading to such a case study js that
IT}. Interpretation: the value of the cumulative func- unlike (P1), the predicate (P2) cannot be captured by aesingl
tion FZ_(J) at timet.,. set of linear constraints.
. Fi(O) (tr) forall i € F, 7 € TI, = Ujezn(]) Interpreta- Note that to avoid the analysis of redondant cases, one

o . 0) . may only consider set of constrainf such that their set
tion: the value of the cumulative functiaf ™ at timet~. o so1utionsSol(7;) is maximal for the inclusione(g. among

Fig. 1. Diamond network: two flows and four servers.

a) Diamond example: two eligible sets7' = {t;; = t;3 < t, = t3} and
o The temporal variables ang, t4, tog, ts4, t124, t134. T2 = {t12 = t13 < t5 < t3}, only 7?2 needs to be considered).
o For flow 1 and server 1, the variables aFél)(tm), Diamond exampleiThe setIl is {(),4, 24, 34,124, 134}
F{Y (tan), F{O (t13a), PV (t4). andlIl; = II, = IL.
« For flow 1, the input variables atB” (t124), F{” (t24),  To satisfy predicate (P1), one has the relations:

F{ (tisa), B\ (ts0), F{O(ta), F{ (ty).

2) Temporal constraintsa set of temporal constraintg”
over some subsét’ C ITis a set of equalities or inequalities of  Now ¢,,, and ¢,3, need to be ordered. There are four
the formér, = try, try < b, OF b, < lx, Wheremy,m € I, maximal total orders that also satisfy predicate (P2):
and such that its set of solutioBsl(7) C RH is non-empty. 71 _ < < tan < ta <

To ensure the coherence of the values with their inter-  ° T2 _ gm - ?4 i :;“4 - ?4 - i‘* - ?’%
pretation as starts of backlogged periods, we introduce two® - T Uisa = Usa ™ H2d = = v = 00

. = {t124 = t134 < tog <tsqg <ty <1y},

redicates over the, variables:
P o T4 ={t1o4=t134 <tzg <tog <ty <tp}

(P1) Vjr €11, tjr < tr. _ _
: 3) Trajectory constraints:Let (7y,...,7,) € Tot(Il;) x

P2) Vjmy, jmo €11, tjn, < timy = tin, <try < timy < tm,. .
(Th()a' iecliicjatfa (P1) cjorlnes i‘rozm th; liact thlat foi aztn traz' ctor . > TotIl,) be some mutually compatible total orders,
P y rag! Here is the set of equalities and inequalities describirg th

and any instant, at serverj, we havestart(t) < t. It is )
. , . states of the system for our selected events:
also clear that for any instantst’, an orderingstart(t) <

tiga <tog <ty <ty andtizg <tgg <ty <.

start(t') < ¢ can not occur, leading to predicate (P2). « Temporal constraints7 =7; U...U7,.

We say that a set of temporal constraifitoverIl’ satisfies ~ * Strict serwce constralntsfor aII J € S andjr € II,
the predicates (P1) and (P2) if any solutionZowith real add {}_,-; F(ty) — ZZBJF N(te) > Bj(te — tjn)}
values satisfies both (P1) and (P2). (that |s|ﬂj\ Ilnear inequalities sincg; is the maximum

We say that a set of temporal constraifitds atotal order of affine functions). Moreover for aljm, jmz € II such
over some subsefi’ C II if it has the form{t,, < t, <o that T(]ﬁ,ﬁTz) is = and T(m,ﬁz) € {=<,<} add

- dN_1txy} Wherem, m, ..., Ty is @ permutation of all {25 F FO (tr,) — Ding FD(tr)) > B(tny — b))}
the elements ofl’ and for alll <k < N—1, < € {=,<,<}. . Starts of backlogged perlodﬁor all j €8, jm €Il and

Note that for allw, 7/ € I, by considering the transitive i > j, add{F " F9 (40}
closure, 7 implies a comparison betweenand «’ which is o Flow constraints:for aII i €T, jeiandjr € 1I, add
either =,<,>,< or >. This comparison is denotef(r, 7’). {F; 0)( tin) > F(J)( tix), F(O)( tr) > Fl( )( tx)}

7



o Non-decreasing functionsfor all i € F, 7 € i and B. From network trajectories to LP solutions

1, M2 € HEJ)- if 7(m,ms) is =, then add{Fi(j)(tm) = Let A be a LP instance with optimal valust,, we call
F,;(])_(tm)} and if 7(m,m) € {<,<}, then add a solutionof \ an assignation of the variables satisfying the
{F,Lv(j)(tm) < Ffj )(tm)}. linear constraints, and it isptimal if it achievesopt, (there

o Arrival constraints:for all 1 < ¢ < p, for all 7,7 € may be no optimal solution i\ = +oo or when there are
I1; such that7 (m,m2) € {=,<, <}, add {Fi(o)(t,m) — some strict inequalities in the constraints).
Fr) < @ity —tx,)} (thatis|a;| linear inequaliies ~ Lemma 1:Let A" be a feed-forward network and a flow
sinceq; is the minimum of affine functions). of interestiy (resp. a serverj,). Let A be the set of LP

Diamond example:For 71 = {t124 < tog < ti34 < instances constructed in Section IlI-A. Given a trajectory

t34 < t4 < tp}, flow constraints, non-decreasing constraintéFfj)} € Traj(N') where some data in flovg is enduring an
and starts of backlogged periods for flow 1, are depicted €nd-to-end delayl (resp. the backlog at, becomes)), then
Fig. 2. there exists a LP instancec A admitting a solution such that
ty—u = d (resp.y o, FLP U (1)~ 0, V7 (tg) = b).

0 0+, 0 0 0 0 -
il s Bl s Bt s Bl = )= i) Sketch of the proof:Consider{ ")} € Traj(\'), let t,

Fll(yuz;) < Fll'(vt24) < Ff(‘t‘lzm) < Fll‘(vtin) v v be the instant at which the data enduring the ddl&saves the
N ‘ networks (resp. at which the backlogts The interpretation
Fi(tad) < Fi(ta) of all the variables has been given in Section IlI-Al. Oné jus

N . has to find out their values from the trajectory. By comparing
F1 (t4) < F1(tw) . _ .
those values, one can pick a total ordgrfitting the time
Fig. 2. Constraints for flow 1 an@™ (except service/arrival constraints). vValues and then retrieve an LP instanice A adjusted to the
whole trajectory. As the trajectory satisfies (T1),(T2B)Tit is
For Server 1, strict service constraints are: easy to check that the linear constraints\cdre also satisfied.
o (F{"(t20) + F3"(t20)) = (F{" (t124) + Fy" (h120)) >
B1(tos — t124);
o (FV(tsa) + 3" (t30)) = (F{"(t130) + F3" (t134))
B1(tza — t134). F O)F(l, ()
For Flow 1, arrival constraints are: .
. Fl(o) (toa) — Fl(o) (ti24) < ai(taa — t124),
. Fl(o) (t134) — Fl(o) (t124) < ai1(ti3a — t124),
. Fl(o) (tiga) — Fl(o) (t2a) < (134 — t2a), €tC.
4) Objective:
Worst end-to-end delay for flows: maximize (tg — ), C : :
wherety — v is the delay endured by data that entered the t123 u to3 t3 ty
network at timeu and left at timety. Consequently one has
to add several constraints linked #cand possibly to consider Fig. 3. Reading on a trajectory for a 1-flow 3-servers scenario.
several cases depending on the choic&;pfin Tot(II,,):
« Arrival time: {ﬂ((JO) (u) > Fi(j“t(‘“))(t@)}. _ ) _
« Insertion: one must position: within the total orderz;,. - Fom LP solutions to network trajectories
For eachr < II;,, we generate one LP instance by adding Lemma 2:Let A/ be a feed-forward network and a flow
the constraints: of interestiy (resp. a serverj,). Let A be the set of LP
. Position and monotonyadd {t, < u, F.”(t,) < instances constructed in Section IlIl-A. Consider an instan
Fi(oo) (u)}, and lett,, be the successor af. in 7;, (if A€ .A and or(lje) of its splutlon (if any). Then there exists
any), add{u < t.., F‘UO) () < Fi(oO)(tW’)}' a trajectory{F,”’} € Traj(N) where the worst end-to-end

« Arrival curve constraintsfor all =" € II,,, if 7 (7', 7) € delgy_d for_ flow o (resp. worst_ backlog (E%E(?ngerh)
satisfiesd = t,.sp9 — v (resp.b = ... F; (tg) —

==, <, <y, a.dd F(O) - F(O) tﬂ-/ < i — tﬂ_/ y i =N 7
(=, <), 2dd () — ) < ony(u = te)), RS 0 :
otherwise add F; * (t/) — F} 7 (u) < iy (tar — u)}. i3jg Ui

Diamond exampleSome possible particular positions of _Sketc_:h (::‘_ft_he pr:‘;gf;)G"’e” T SOIUUOE’ ;he first step
u aretios < u < tog, tog < u < i34, €IC. consists in shifting thef;”’(¢,) values such that every cu-

In some cases. one can reduce the number of positidﬂglaﬁ"e function will start from O at some non-negative

to consider foru. It is explained in the particular case o]dn(sot;amt. Th%f;s{g';)each flow; one will compute the functions

Theorem 4. E7 . F; by induction, by moving forward along the
Worst backlog at  server jo: maximize path ;. The first functionFi(O) is the linear interpolation of

S isie Fi(pre‘% o)) (44) =2 i FY) (). 1t does not introduce the valuest”) (¢,.) which are known. Then each step consists

new cases or new linear constraints. in constructing F\7 () from FP®%U) ¢ ) by identifying

V
|

%
Q




backlog. A similar result should hold for the worst-caseagiel
using the same example, but this should be a little more
g 1] 11 1] tricky, as the arrival of the bit of data that reached (or atmo

i reached) the worst-case delay may not happen at time 1. But
we conjecture that this problem is also NP-hard.

g q] [_] [_] I:i] The NP-hardness has been proved only for the worst-case
J

IV. THE TANDEM SCENARIO. A POLYNOMIAL ALGORITHM

We study here a special class of feed-forward networks:
the tandem networksi.e. networks A such that the induced
digraphG(N) is a directed path with no shortcut. It implies
intervals where some data from flow is backlogged at that any flow follows a sequence of consecutive servers in the
server j, performing linear interpolations on these intervalRath- Such scenarios have been highlighte®y, (23], [31).
and elsewhere settin@.(j)(t ) = F_(preq(j))(7f ). It uses a For this class of networks, the worst-case computatiorsboil
lemma stating that the linear interpolation over a set oﬁ'poidOWn to solving a single LP instance with a polynomial

preserves arrival/service constraints if the constraines are number of variables and constraints, and thus with a poly-
concave/convex nomial complexity. Moreover, we show for each flow how

to reconstruct a minimum end-to-end service curve which is

We need another lemma to end the proof of Theoremoft'mal N Some sense.
since LP solvers work with non-strict inequations. The proq\ The algorithm for the tandem scenario
works by exhibiting simple solutions to the LP instanceglik
all null F7(¢,.) values).

Lemma 3:Let A be the set of LP instances constructed
Section IlI-A, A € A and A obtained by replacing: signs by
<in A Thenoptx = opty.

Note that the LP solvers will output &oo result if it is

actually the worst-case. As mentionned in the introdugtio . ; :
. L - andem networks induces a single order onsthel variables

the classical criterion characterizing bounded worse qaex- . ) :
& with 7;_y = j---n and 1, = (. So, computing a

formances for feed-forward networks remains an asymptoﬁln hximum backlog boils down to a single LP instance and

utilization factor< 1 at each server preceding the server und%rnly the insertion ofu generates severah) orders for the

maximum delay.

Set f1 = first(1) — 1 ande; = end(1).
] ) We now show that it is useless to consider several LP
Theorem 3:Computing the worst-case backlog in a feedpstances to compute the worst-case delay, and the only

forwegrs ?‘T]t‘"’ofr'f[r:s NP—h?r(\j/;/ duce th bl tconstraints where: must appear areF|” (u) > F™ ()
O O a: Proo VI8 TECUCE The PTOvIEn &@and £ (u) — F”(t., ) < ai(u — t., ). The objective

three-gover (X3C) to our problem. An instance of X3C.'S @nd the other constraints remain unchanged. Remark that the
collectionC = {c1,...,c34} Of 3¢ elements and a collection

U = {us,...,u.} of s sets of 3 elements af.. The problem maximization of the objective function will lead to the etjtya

(0) _ (0 _ _
is to decide whether there exists a coverSdby ¢ elements of 1 () = F1 7 (tx), ) = an(u =tz ).

C. We will reduce this problem to deciding whether a given We proceed by contradiction. Consider a worst-case tra-
backlog can be reached in a server of a network. Jectory for a tandem network. It is obtained by solving our

The network we use is as shown in Figure 4. The upp

Fig. 4. Transformation of an instance of X3C into a network.

Theorem 4:Let N be a tandem network with servers and
P flows. Then, given a flow (resp. a servey), there exists
one LP instance witld(pn) variables and)(pn?) constraints
such that the optimum is the worst end-to-end delay for flow
(resp. the worst backlog at server.

Sketch of the proofA direct application of Theorem 2 to

observation, as proveelg.in [6].

D. Computational hardness

fgerw LP instances. If that worst-case trajectory is not otedi
stage consists df Serverss, ..., Ss,, all with service curve y the alternative single linear program, which means that

0 0

1 : t — t. The middle stage consists efserverss;, ..., S, FlEO; () = F(tr),) < aafu — tx;, ), ONe can replace
all with service curves, : ¢ — 2.1¢if ¢ < 1;¢ — oo otherwise. Fije, ) DY @1jit,, - Then the trajectory remains valid
Finally, the lower stage has only one sen&f, with service for the system: flow constraints, monotony, arrival andcstri
curve 35 : t — Rt with R > 3s. There are3s flows, each of service constraints are still satisfied. As far as the stairts
them crossing three servers from top to bottom. A flél,; backlog period are concerned, the additional data thateatri
crosses server§;, S;, S” if and only if ¢; € u;. Each of in a server are transmitted at the beginning of the backldgge
those interfering flows has an arrival curse ¢ — min(¢,1). period of the next server (ensuring that the input cumuativ

We show that the backlog ifi” can be at least(s—q)+0.9s function in that next server is not less than the originauinp
if and only if there exists an X3C cover for the correspondingumulative function and then ensuring that the backlogged
instance of the problem. period will not end before the backlogged period of the

m original cumulative functions. SincEl(O)(u) < ai(u—tr,)



and the cumulative functioﬁf“) is non-decreasing,, must compute tight end-to-end delay bounds for some tandem
increase, hence one can obtain a longer delay than in tretworks, with detailed computations for a network withetinr
original trajectory. servers and three flows and for sink-tree networks. A method
B for general tandem networks is suggested in the correspgndi

technical report [24] but some details are not fully settlddre

we point out two major differences between our approaches.

Let A be a network and flow 1 be the flow of interest, we both start by a similar choice of variables and set of

for now we have investigated a way to compute the worgbnstraints. While we directly try to find a solution, they
delay for fixed constraintga;);cr and (3;);es. One may perform algebraic manipulations mixing the constraintértd
want to measure how the global network acts upon flow gome end-to-end simple service curves with free parameters
in particular whether some minimum end-to-end service@urThey choose the best one thanks to linear programming and
can be guaranteed. Giveh € F, we say thatd is anend- then show that it enables to compute worst delays. Theiltresu
to-end (simple) service curver left-over service curvg21], strongly relies on the fact that their arrival/service @sare
[23]) if FZ-O“t > [ F/™. It is called auniversalend-to-end leaky-bucket/rate-latency functions.
service curve if3 is independent ofi; (i.e. 3 remains an end-  The second point concerns the treatment of concave/convex
to-end service curve for any choice @f). Precomputing such arrival/service curves, if one already knows how to deahwit
an universal curve can be useful to quickly compute a boufghky-bucket/rate-latency curves. Unlike the polynonaigjo-
on end-to-end delays for flow 1 for several different cursgs rithm of Theorem 4, the scheme in [23] is to decompose the
(thanks to the horizontal distance of Theorem 1). For tandefirves into maximum (resp. minimum) of rate-latency (resp.
networks, we now prove that one can compute an universg@hky-bucket) service (resp. arrival) curves, then comphe
end-to-end service curve which is optimal in some sense. |eft-over service curves obtained for each combination of

Theorem 5:Let V' be a tandem network with servers and rate-latency/affine service/arrival curves, and finallynpote

p flows. Then one can compute an universal end-to-end servine maximum of all those curves. One should notice that

curve for the flow 1, which is the maximum of all universakuch a process does not guarantee that this maximum of

end-to-end service curves. simple service curves is still a simple service curve or that
Sketch of the proof:The proof consists in two steps: it will provide tight bounds. It only ensures that the horital

o We first show that the functio3 : ¢ — inf{c > distance between the arrival curve of the flow of interest and
0| d(o) > t} (whered(o) is the solution of the linear this maximum curve is an upper bound on delays.
program witha () = o, Vt) is a universal end-to-end Take a system composed of two servers in tandem with
service curve for flow 1. respective service curvg; and 3, crossed by two flows,

o We then show that — d(o), the pseudo-inserse gf, one with arrival curvea and the other, the flow of interest
can be computed as an infimum of a finite number @onsisting of only one infinitesimal bit (that can be modedgd
affine functions by applying the strong dual theorem tthe null arrival curve as our model is fluid). We are interdste
our linear problem where is a non-assigned parameterin the delay needed for that bit to cross the system.

m  With 81(t) = 15(t — 6);, B(t) = 6(t — 8); and

Beware that although this curv@ is maximum among ©(t) = min(0.5¢,6 + 0.05¢) and using the implementation

universal end-to-end service curves for flow 1, nothing ezssu Of Our solution, computations give that the worst-case ydela
that for any arrival curvey; for flow 1, the horizontal distance IS @ = 17.4. If a(t) = 0.5¢, then the worst delay ig, = 17.7
betweena, and 3 will be the exact worst end-to-end delayand if a(f) = 6 + 0.05¢, then the worst delay ig, = 18.4
(except foras (t) = o where it is guaranteed by deﬁnitionapdd < mi_n(dl,dQ). Three critical trajectories are shown on
of 3). This distance is an upper bound, but it could be loosEld > and illustrate the loss when considering odiyandd..
However we conjecture that this distance is always tight.
Indeed, from the LP instance used to compute the maximum dy
delay in Theorem 4 with a general piecewise affine concave [
arrival curveaq, the arrival cumulative function of flow 1 is
exactly oy from timety to time u, so the worst-case delay is
the distance between, and the departure cumulative function. »\

Note that such an optimal end-to-end service curve does

not necessarily exist for other policies. For instance, IiRQ- o G
networks [6], [31], even for a single server, there is not

an infinity of incomparable simple service curves and their _ , o _
. . t . Fig. 5. Decomposing arrival curves does not achieve tighhtisiBold lines
maximum IS not a service curve. are the output processes. Continuous line: the arrivalecisnw; dotted line:

the arrival curve isy;; dashed line: the arrival curve isz.

B. From delays to end-to-end service curves

N
ﬂzl

.
do

C. Related work

The study of tandem networks under blind multiplexing has Note that the difference betweeh and min(d;,d>) can
already been addressed in [23]. In this article the authdwe arbitrary large. Here is another example with =



min(ay, az), andf; = ag : t — Rt, B2 1 t — 2R(t —T)4 16

I I I I x
and ay : t — RT, we haved = 3/2T, d; = dy = 2T. 14 TFA  * O
the difference is thef’/2 that grows infinitely large whef® 1oL SII_:é ° L x |
grows. 10 L L * i
V. NUMERICAL RESULTS 8 L x * o 0
We here compare our results with the other existing meth- 6 - * - Lo T
ods. Up to now, two kinds of methods have been used (see 4 < * : o 0 ° ° N *
[23], [24] for detailed explanations): thiotal flow analysis 2L ¥ Ceec*’ .
(TFA), that consists in computing the worst-case delay for oL= ¥ s \ ! ! ! ! ! ! !
each server crossed by the flow of interest and then take the 0 2 4 6 8 10 12 14 16 18 20

sum, and theseparate flow analysi§SFA), that consists in

computing a left-over service curve for every server on the
path of the flow of interest and then compute the convolution
of those service curves and the delay using that convolution

number of servers
Fig. 7. Upper bounds for the delay of the scenario of Fig. 6.

and Theorem 1. To our knowledge, these are the only two sys- 10° ‘ ‘ ]
tematic methods available for general feed-forward neitsior 10t SII_:é f K

The linear program files wused for our ex- :
periments can be found following this link: 103 [ o
http://perso.bretagne.ens-cachan.fr/ T
“bouillar/NCbounds/ . 102 F ° 4

o ]

A. Tandem scenario 0E o o ‘: e e

In order to generate the linear program files associated to e * * i
a tandem network to compute worst-case delay and backlog 100 : : : : : : :
bounds, we wrote a program, that can be downloaded from the 01 02 03 04 05 06 0.7 08 09
web-page mentioned above. This program has been written utilization rate

in Ocamt. It generates a linear program from a small fil&ig. 8. Upper bounds for the delay of the scenario of Fig. 62@rservers
describing the tandem network. The linear program can B&! When the arrival rate varies.
solved using Ipsolvée?, for example.

We first compare our results for a tandem scenario, Wheée
flows intersect two servers (except at the extremities) aed t
flow of interest crosses every server. An example is depicted/Ve illustrate our result on a small example, depicted in
in Fig. 6. Servers have the same characteristics: they havEig. 9. There are four servers (with the same charactesiasc
latency of 0.1s, and a service rate of 10Mbps. Flows haverathe previous example, and four flows, each having the same
maximum burst of 1Mb and a arrival rate of 0.67Mbps. characteristics: a maximum burst of 1Mb, and we make the

arrival rate vary from 0.5Mbps to 4.5Mbps (so the utilizatio
} rate in each server vary from 10% to 90%).

!

Feed-forward scenario

] L

] 4L

b

F Fy
Fig. 6. Tandem scenario with 4 servers. s 1] [T
L] L]

Fig. 7 shows the delay obtained for each of the three
methods (TFA, SFA and the tight LP method). Unsurprisingly,
the three methods give the same result when there is only one [ [1]
server. For a network with 20 servers, the LP method reduces L1 L]
the SFA bound by a factdgt/5, for an utilization rate of 20%.

Fig. 8 depicts the variation between SFA and LP methods
when the utilization rate of the servers varies and when the
number of servers is 20. Only the arrival rate varies, adogrd We compute delay bounds for flof, with four methods:
to the utilization rate. When the utilization factor growset TFA, SFA, by generating 11 linear programs, one for each
gain becomes huge. Moreover, the execution time of ongsibIe order for the times (LP); the fourth method is otsteli
program is less that 0.3 s. for a similar network with 5 y solving a unique linear program, where only the common
SEIVErs. constraints of the 11 programs are taken (ULP). Doing this,

Lhttp://caml.inria.friocaml we do not obtain tight bound, but the results is far betten tha

2http://Ipsolve.sourceforge.net/5.5/ TFA and SFA. Results are depicted in Fig. 10.

Fig. 9. The Square network.
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Fig. 10. Upper bounds on delays for fld# in the Square network (Fig. 9). [14]

[15]
VI. CONCLUSION

We have shown that one can compute the exact worst Iol:lzgl]
backlogs and end-to-end delays in the NC framework for feed-
forward networks under blind multiplexing. The number ant7]
the size of linear programs one has to solve can be small[pg]
extremely large depending on the network. Although we have
shown that the problem is intrinsically difficult, one diten
. . . 19]
is to reduce this number of linear programs as well as thélr
size. Another way to bypass NP-hardness is to look for fast
approximation algorithms or exact algorithms which are fa&°l
on average.

Here are also a few features that can be added to refing
the model: add some other network elements which cs?r%]
not be modelled by strict service curves (like fixed delays),
take into account maximum (resp. minimum) strict service
(resp. arrival) curves as in RTC [32] (preventing instantd?3l
neous propagation (resp. starvation) of data), take intowat
packet lengths, use curves with different shapes like alify
pseudo-periodic curves [33].

Anyway, even without those additional features, the chéﬁs]
lenge of computing exact worst-case performances of genera
networks under blind multiplexing, or even feed-forward-ne[26l
works under other policies like FIFO, remains open.

[24]
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