
Tight performance bounds in the worst-case
analysis of feed-forward networks
Anne Bouillard

ENS Cachan (Brittany) / IRISA
Campus de Ker Lann, 35 170 Bruz

Email: Anne.Bouillard@bretagne.ens-cachan.fr

Laurent Jouhet Éric Thierry
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Abstract—Network Calculus theory aims at evaluating worst-
case performances in communication networks. It provides
methods to analyze models where the traffic and the services
are constrained by some minimum and/or maximum envelopes
(service/arrival curves). While new applications come forward, a
challenging and inescapable issue remains open: achievingtight
analyzes of networks with aggregate multiplexing.

The theory offers efficient methods to bound maximum end-
to-end delays or local backlogs. However as shown recently, those
bounds can be arbitrarily far from the exact worst-case values,
even in seemingly simple feed-forward networks (two flows and
two servers), under blind multiplexing (i.e. no information about
the scheduling policies, except FIFO per flow). For now, only a
network with three flows and three servers, as well as a tandem
network called sink tree, have been analyzed tightly.

We describe the first algorithm which computes the maximum
end-to-end delay for a given flow, as well as the maximum backlog
at a server, for any feed-forward network under blind multiplex-
ing, with concave arrival curves and convex service curves. Its
computational complexity may look expensive (possibly super-
exponential), but we show that the problem is intrinsically
difficult (NP-hard). Fortunately we show that in some cases, like
tandem networks with cross-traffic interfering along intervals of
servers, the complexity becomes polynomial. We also compare
ourselves to the previous approaches and discuss the problems
left open.

I. I NTRODUCTION

Network Calculus (NC) is a theory of deterministic queu-
ing systems encountered in communications networks. With
methods to compute deterministic bounds on delays, backlogs
and other Quality-of-Service (QoS) parameters, it aims at
analyzing critical behaviors and usually focuses on worst-case
performances, either local performances (i.e. maximum buffer
size at a node) or end-to-end performances (i.e. maximum
end-to-end delay). The informations about the system are
stored in functions, such asarrival curvesshaping the traffic
or service curvesquantifying the service guaranteed at the
network nodes. Relevant applications range from Internet
QoS [1] to the analysis of System-on-Chip [2], industrial
Ethernets [3], critical embedded networks [4]. At the present
time, the theory has developed and yield accomplished results
which are mainly recorded in two reference books [5], [6]. Itis
an alternative to other approaches for worst-case performance
analysis like holistic methods [7], trajectory methods [8]or
model checking [9]. It is believed that Network Calculus and

its extensions have advantages like modularity and scalability
that will allow valuable analyzes of complex networks [10].

From the beginning [11], [12], [13], Network Calculus
methods have always put an emphasis on the use of(min,+)
or (max,+) tropical algebras, known for their applications
to different discrete event systems [14]. A general scheme
consists in combining constraint curves thanks to algebraic
operations like(min,+) convolution or(max,+) deconvolu-
tion. Using a few lemmas, one can either propagate constraints
through the network and then retrieve performance bounds
from all those computations, or express the network behavior
with a set of (min,+) functional equations which must be
solved to get the bounds. In this framework, the analysis of
a single flow crossing a sequence of servers is tight. The
(min,+) convolution elegantly captures thePay Burst Only
Once (PBOO)phenomenon in tandems of servers (burstiness
is amortized all along the servers). However if the network
presents some aggregate multiplexing of several flows, pro-
viding a tight analysis becomes much more difficult.

The NC models are usually classified according to the
topology of the network, the scheduling policies and the type
of service guaranteed at each server. For general topologies
where the flows may interfere with cyclic dependencies, the
complexity of computing worst-case performances is still
open. Even the simpler question of decidingstability, i.e.
whether global backlog or end-to-end delays remain bounded,
is unset for many policies. Related results can be found in the
Adversarial Queuingliterature where the Permanent Session
Model matches Network Calculus models [15]. A well-known
necessary condition for stability is an utilization factor< 1 at
each server. This condition is also sufficient for feed-forward
networks [13], or unidirectional rings [16]. But, this condition
is not sufficient for FIFO scheduling since there exists unstable
networks at arbitrarily low utilization factors [17]. For general
FIFO networks, the best sufficient conditions and associated
bounds on delays are provided by [18] but they are usually not
tight. More thrilling, for simple feed-forward networks like
FIFO tandems, a recent paper [19] improving delay bounds
has shown that those bounds were not tight yet.

In this paper, we investigate the complexity of computing
exact worst-case performances (end-to-end delays and local
backlogs) forfeed-forward networksunderblind multiplexing,
i.e. no information about the policy except FIFO per flow (also



called FIFO per micro-flow [20]). This assumption is lighter
than FIFO scheduling for the aggregated flows. A first study of
tandem networks put forward a new phenomenon calledPay
Multiplexing Once (PMOO)(competition between flows for
the resources is amortized all along the servers) [21]. Witha
new method taking into account PMOO, experiments showed
a significant improvement to the end-to-end delay bounds with
regard to previous NC approaches. It could be formulated
as a new(min,+) multi-dimensional convolution [22], thus
preserving the NC spirit while being a good candidate for tight
analysis of blind multiplexing. However a recent breakthrough
paper [23] showed that those bounds could be arbitrarily far
from the exact worst-case values, even in seemingly simple
feed-forward networks (two flows and two servers). This paper
suggested a new approach using linear programming, but for
now, only a network with three flows and three servers, as
well as a sink-tree tandems, could be analyzed tightly.

Our paper describes the first algorithm which computes
the maximum end-to-end delay for a given flow, as well
as the maximum backlog at a server, for any feed-forward
network under blind multiplexing, with concave arrival curves
and convex strict service curves. It also provides a critical
trajectory of the system, achieving the worst-case value. Its
computational complexity may look expensive (possibly super-
exponential), but we show that the problem is intrinsically
difficult (NP-hard). Fortunately we show that in some cases,
like tandem networksi.e. the scenarios studied in [23], [21],
the complexity becomes polynomial. Beyond the fact that our
solution applies to any feed-forward networks, and although
we also use linear programming, several features distinguish
our approach from [23]: we tackle both worst-case delays and
backlogs, we directly compute worst-case performances in-
stead of looking first for an end-to-end service curve, we avoid
a decomposition/recomposition scheme for convex/concave
curves which may lead to looser bounds and a more expensive
complexity.

The paper is organized as follows: after a presentation of
the network model and the main NC notions in Section II, we
describe and analyze our algorithm in Section III where we
also set the NP-hardness of the problem. Section IV shows
how it applies to tandem networks and compares our solution
to previous works namely [23], [24], while experiments are
discussed in Section V to assess the gain w.r.t. to older NC
methods. Further interesting extensions and open problemsare
presented in Section VI.

Our results are relevant to Network Calculus and extensions
like Real-Time Calculus [25] and Sensor Calculus [26] (both
use the strict service curves). But we do not address stochastic
extensions like [27], [28].

Due to space constraints, all details and full proofs are
postponed to [29].

II. M ODEL AND ASSUMPTIONS

A. Network Calculus framework

1) NC functions and systems:In Network Calculus, one
must distinguish two kinds of objects: the real movements

of data and the constraints that these movements satisfy.
The real movements of data are modeled bycumulative
functions: a cumulative functionf(t) counts the total amount
of data that has achieved some condition up to timet (e.g.
the total amount of data which has gone through a given
place in the network). We consider afluid model where
cumulative functions will belong toF = {f : R+ →
R+ | f non-decreasing, left-continuous,f(0) = 0}. Con-
straint functions either shape the traffic (arrival curves) or
guarantee some service locally or globally (service curves).
Constraint functions usually allow the+∞ value. In this paper
we will assume that they all belong toF for commodity, but
a careful look will show that all our solutions can be adjusted
with no extra cost to deal with some+∞ values.

Beyond usual operations like the minimum or the addition
of functions, Network Calculus makes use of several classical
(min,+) operations [14] such as: letf, g ∈ F , ∀t ∈ R+,

• convolution:(f ∗ g)(t) = inf0≤s≤t(f(s) + g(t − s));
• deconvolution:(f ⊘ g)(t) = supu≥0(f(t + u) − g(u)).
An input/output systemis a subsetS of {(F in, F out) ∈

F × F | F in ≥ F out}. It models a flow crossing a system
whereF in (resp.F out) is the cumulative function at the entry
(resp. exit) of the system andF in ≥ F out indicates that the
system only transmits data. Atrajectoryof the systemS is an
element(F in, F out) of S.

2) NC arrival curves:Given a data flow, letF ∈ F be its
cumulative function at some point,i.e. F (t) is the number of
bits that have reached this point until timet, with F (0) = 0. A
functionα ∈ F is anarrival curve for F if ∀ s, t ∈ R+, s ≤ t,
we haveF (t)−F (s) ≤ α(t− s). It means that the number of
bits arriving between times andt is at mostα(t−s). A typical
example of arrival curve is the affine functionασ,ρ(t) = σ+ρt,
σ, ρ ∈ R+.

3) NC service curves:Two types of minimum service
curves are commonly considered:simple service curvesand
strict service curves. Given a trajectory(F in, F out) of an
input/output system, we need to define the notion ofback-
logged periodwhich is an intervalI ⊆ R+ such that∀u ∈ I,
F in(u) − F out(u) > 0. Given t ∈ R+, the start of the
backlogged periodof t is start(t) = sup{u ≤ t|F in(u) =
F out(u)}. SinceF in and F out are left-continuous, we also
haveF in(start(t)) = F out(start(t)). If F in(t) = F out(t),
thenstart(t) = t. Note that for anyt ∈ R+, ]start(t), t[ is a
backlogged period.

Let β ∈ F , we define:
• Ssimple(β) = {(F in, F out) ∈ F × F | F in ≥

F out andF out ≥ F in ∗ β};
• Sstrict(β) = {(F in, F out) ∈ F × F | F in ≥

F out, and for any backlogged period]s, t[, F out(t) −
F out(s) ≥ β(t − s)}.

We say that a systemS provides a (minimum)simple ser-
vice curve(resp. strict service curve) β if S ⊆ Ssimple(β)
(resp.S ⊆ Sstrict(β)). A typical example of service curve
is the rate-latency function: βR,T (t) = R(t − T )+ where
R, T ∈ R+ and a+ denotesmax(a, 0). For all β ∈ F , we
haveSstrict(β) ⊆ Ssimple(β) but the converse is not true.



In NC models with multiplexing, the aggregation of all the
flows entering the system is often considered as a single flow
to which the minimum service is applied (i.e. one works with
the sum of the cumulative functions). This is the case here.

4) Performance characteristics and bounds:Given a in-
put/output system, bounds for the worst-case backlog and
worst-case delay can be read easily from arrival and service
curves.

Given a flow going through a network, modeled by an
input/output systemS, let (F in, F out) be a trajectory ofS.
The backlogof the flow at timet is b(t) = F in(t)−F out(t),
and the delay endured by data entering at timet (assuming
FIFO discipline for the flow) is

d(t) = inf{s ≥ 0 | F in(t) ≤ F out(t + s)}

= sup{s ≥ 0 | F in(t) > F out(t + s)}.

For the trajectory, theworst-case backlogis Bmax =
supt≥0

(
F in(t) − F out(t)

)
and the worst-case delayis

Dmax = supt≥0 d(t) = sup{t − s | 0 ≤ s ≤ t andF in(s) >
F out(t)}.

For the systemS, the worst-case backlog(resp.delay) is
the supremum over all its trajectories.

The next theorem explains how to derive performance
bounds from constraints and how traffic constraints can be
propagated.

Theorem 1 ([5], [6]): Let S be an input/output system pro-
viding a simple service curveβ and let (F in, F out) be a
trajectory such thatα is an arrival curve forF in. Then,

1) Bmax ≤ sup{α(t) − β(t) | t ≥ 0} (vertical distance).
2) Dmax ≤ inf{d ≥ 0 | ∀t ≥ 0, α(t) ≤ β(t + d)}

(horizontal distance).
3) α ⊘ β is an arrival curve forF out.

B. Network model

A network will be modeled, without loss of generality, by a
directed graph where the flows must follow the edges and the
servers (switches, transmission links, routers...) are represented
by the vertices.

Servers and flows will be identified by indices. The set of
servers isS = {1, . . . , n} and each serverj offers a strict
service curveβj ∈ F which is piecewise affine (with a finite
number |βj | of pieces) and convex. Thus it can be written
βj(t) = max1≤ℓ≤|βj |(rj,ℓt − hj,ℓ) with rj,ℓ, hj,ℓ ∈ R+.

The set of flows isF = {1, . . . , p}. Each flow i corre-
sponds to a couple(αi, µi) where µi is the (finite) ordered
sequence of servers crossed by the flow andαi is an arrival
curve for the cumulative function before entering the first
server. We suppose thatαi is piecewise affine (with a finite
number |αi| of pieces) and concave. Thus it can be written
αi(t) = min1≤ℓ≤|αi|(σi,ℓ + ρi,ℓt) with σi,ℓ, ρi,ℓ ∈ R+. Let
i ∈ F, we denotefirst(i) (resp.last(i)) the index of the first
(resp. last) server encountered by flowi. We will by abuse of
notation writej ∈ i to say that the serverj belongs to the
sequenceµi. Given j ∈ i, we will denote preci(j) the index
of the server precedingj in the sequenceµi (by convention,
preci(first(i)) = 0).

The overall networkN is defined byS, F and the sets
{βj , 1 ≤ j ≤ n}, {(αi, µi), 1 ≤ i ≤ p}. The directed
graph induced byN is G(N ) = (S, A), whereS is the set of
vertices and(j, j′) ∈ A if and only if j andj′ are consecutive
servers for some sequenceµi. The sequencesµi are paths in
the digraph (the converse is not necessarily true). Any path
on G(N ) = (S, A) will be designated by its ordered sequence
of vertices and often written as aword over the alphabetS (we
will often useπ to designate a path and for instancejπ will
denote the path starting by vertexj followed by the pathπ).

In addition, we will use the following notations (similar
to [23]): for all i ∈ F,

• the cumulative function of flowi at the entry of network
is F

(0)
i ;

• for all j ∈ i, the cumulative function of flowi at the
output of serverj is F

(j)
i .

A set of cumulative functions{F (j)
i ∈ F | i ∈ F, j ∈

S, j ∈ i} will be called atrajectory of the networkN if it
satisfies the NC constraints of the network:
(T1) ∀i ∈ F, ∀j ∈ i, F

(preci(j))
i ≥ F

(j)
i ;

(T2) ∀i ∈ F, F
(0)
i is αi-upper constrained;

(T3) ∀j ∈ S, (
∑

i∋j F
(preci(j))
i ,

∑
i∋j F

(j)
i ) ∈ Sstrict(βj).

Since we work under blind multiplexing, no other relation is
imposed. The set of all trajectories ofN is denotedTraj(N ).

Here are our objectives:
1) Given a flowi0, we wish to compute the worst end-to-

end delay endured by data of this flow, that is

sup
{F

(j)
i

}∈Traj(N )

sup
0≤s≤t

{t − s | F
(0)
i0

(s) > F
(last(i0))
i0

(t)}.

2) Given a serverj0, we wish to compute the worst backlog
endured by this server, that is

sup
{F

(j)
i

}∈Traj(N )

sup
t≥0

{
∑

i∋j0

F
(preci(j0))
i (t) −

∑

i∋j0

F
(j0)
i (t)}.

Those are supremum over infinite sets, nevertheless they can
be computed as shown next. Note that those supremum are not
necessarily reached for a fixed trajectory or fixed instantss, t.

III. A NALYSIS OF GENERAL FEED-FORWARD NETWORKS

Theorem 2:LetN be a network withn servers andp flows.
If its induced graphG(N ) is feed-forward, then given a flowi
(resp. a serverj), there exists a finite setΛ of linear programs
(LP) with respective optimum valuesoptλ, λ ∈ Λ, such that
maxλ∈Λ optλ is the worst end-to-end delay for flowi (resp.
worst backlog at serverj). Each linear program hasO(p|Π|)
variables andO(p|Π|2) linear constraints whereΠ is the set
of paths ending atend(i) (resp.j). We have|Π| ≤ 2n−1 and
|Λ| ≤ |Π|!2|Π|−1.

The description of the different LP instances and the proof
of the theorem will be illustrated with the small but typical
example of Fig. 1: the diamond network.

A. The LP instances

We present a set of LP instances such that any trajectory
satisfies at least one of them.
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Fig. 1. Diamond network: two flows and four servers.

1) Variables: Given the flow of interesti (resp. a serverj)
for which one wants to compute the maximum end-to-end
delay (resp. the maximum backlog) over all trajectories of the
network, letΠ be the set of all paths ending atend(i) (respj).
Here are the variables that will appear in each LP instance:

• tπ for all π ∈ Π, as well as a spare variablet∅. Interpre-
tation: t∅ is the instant at which the worst-case occurs
(output of data having endured the worst delay or instant
of worst backlog). Then∀jπ ∈ Π, tjπ = startj(tπ), the
start of the backlogged period oftπ at the serverj.

• F
(j)
i (tπ) for all i ∈ F, j ∈ i, π ∈ Πj

i = {π′, jπ′ | jπ′ ∈
Π}. Interpretation: the value of the cumulative func-
tion F

(j)
i at time tπ.

• F
(0)
i (tπ) for all i ∈ F, π ∈ Πi =

⋃
j∈i Π

(j)
i . Interpreta-

tion: the value of the cumulative functionF (0)
i at timetπ.

a) Diamond example:

• The temporal variables aret∅, t4, t24, t34, t124, t134.
• For flow 1 and server 1, the variables areF

(1)
1 (t124),

F
(1)
1 (t24), F

(1)
1 (t134), F

(1)
1 (t34).

• For flow 1, the input variables areF (0)
1 (t124), F

(0)
1 (t24),

F
(0)
1 (t134), F

(0)
1 (t34), F

(0)
1 (t4), F

(0)
1 (t∅).

2) Temporal constraints:a set of temporal constraintsT
over some subsetΠ′ ⊆ Π is a set of equalities or inequalities of
the formtπ1

= tπ2
, tπ1

≤ tπ2
or tπ1

< tπ2
whereπ1, π2 ∈ Π′,

and such that its set of solutionsSol(T ) ⊆ R
Π′

+ is non-empty.
To ensure the coherence of thetπ values with their inter-

pretation as starts of backlogged periods, we introduce two
predicates over thetπ variables:

(P1) ∀jπ ∈ Π, tjπ ≤ tπ.
(P2) ∀jπ1, jπ2 ∈ Π, tjπ1

< tjπ2
⇒ tjπ1

≤ tπ1
< tjπ2

≤ tπ2
.

The predicate (P1) comes from the fact that for any trajectory
and any instantt, at serverj, we havestart(t) ≤ t. It is
also clear that for any instantst, t′, an orderingstart(t) <
start(t′) ≤ t can not occur, leading to predicate (P2).

We say that a set of temporal constraintsT overΠ′ satisfies
the predicates (P1) and (P2) if any solution toT with real
values satisfies both (P1) and (P2).

We say that a set of temporal constraintsT is a total order
over some subsetΠ′ ⊆ Π if it has the form{tπ1

⊳1 tπ2
⊳2

· · · ⊳N−1 tπN
} whereπ1, π2, . . . , πN is a permutation of all

the elements ofΠ′ and for all1 ≤ k ≤ N−1, ⊳k ∈ {=, <,≤}.
Note that for all π, π′ ∈ Π′, by considering the transitive
closure,T implies a comparison betweenπ and π′ which is
either =,<,>,≤ or ≥. This comparison is denotedT (π, π′).

The set of all total orders overΠ′ which satisfy (P1) and (P2)
is denotedTot(Π′). Here is one way to enumerate all the
elements ofTot(Π′): generate the set of temporal constraints
imposed by predicate (P1), it corresponds to a tree-like partial
order, then generate all its linear extensions [30], generate
for each linear extension all the possible combinations of
comparisons=, < or ≤ and for each one check whether it
satisfies (P2).

Now we come back to our network. For each flowi, we have
associated the set of pathsΠi = {π, jπ | j ∈ i, jπ ∈ Π} and
we know thatΠ =

⋃
1≤i≤n Πi. Let (T1, . . . , Tp) ∈ Tot(Π1)×

· · · × Tot(Πp), we say that the total orders(T1, . . . , Tp) are
mutually compatibleif for all 1 ≤ i1, i2 ≤ p and π, π′ ∈
Πi1 ∩ Πi2 , we haveTi1(π, π′) = Ti2(π, π′). This condition
ensures that there exists a solution(tπ)π∈Π ∈ R

Π
+ to the set

of constraintsT1 ∪ . . . ∪ Tp. Moreover one can easily check
that this solution will always satisfy the predicates (P1) and
(P2).

Each combination(T1, . . . , Tp) ∈ Tot(Π1)×· · ·×Tot(Πp)
of mutually compatible total orders will lead to a set of LP
instances. The main issue leading to such a case study is that,
unlike (P1), the predicate (P2) cannot be captured by a single
set of linear constraints.

Note that to avoid the analysis of redondant cases, one
may only consider set of constraintsTi such that their set
of solutionsSol(Ti) is maximal for the inclusion (e.g.among
two eligible setsT 1 = {t12 = t13 < t2 = t3} and
T 2 = {t12 = t13 ≤ t2 ≤ t3}, onlyT 2 needs to be considered).

Diamond example:The setΠ is {∅, 4, 24, 34, 124, 134}
andΠ1 = Π2 = Π.

To satisfy predicate (P1), one has the relations:

t124 ≤ t24 ≤ t4 ≤ t∅ and t134 ≤ t34 ≤ t4 ≤ t∅.

Now t124 and t134 need to be ordered. There are four
maximal total orders that also satisfy predicate (P2):

• T 1 = {t124 ≤ t24 < t134 ≤ t34 ≤ t4 ≤ t∅};
• T 2 = {t134 ≤ t34 < t124 ≤ t24 ≤ t4 ≤ t∅};
• T 3 = {t124 = t134 ≤ t24 ≤ t34 ≤ t4 ≤ t∅};
• T 4 = {t124 = t134 ≤ t34 ≤ t24 ≤ t4 ≤ t∅}.

3) Trajectory constraints:Let (T1, . . . , Tp) ∈ Tot(Π1) ×
· · · × Tot(Πp) be some mutually compatible total orders.

Here is the set of equalities and inequalities describing the
states of the system for our selected events:

• Temporal constraints:T = T1 ∪ . . . ∪ Tp.
• Strict service constraints: for all j ∈ S and jπ ∈ Π,

add {
∑

i∋j F
(j)
i (tπ) −

∑
i∋j F

(j)
i (tjπ) ≥ βj(tπ − tjπ)}

(that is |βj | linear inequalities sinceβj is the maximum
of affine functions). Moreover for alljπ1, jπ2 ∈ Π such
that T (jπ1, jπ2) is = and T (π1, π2) ∈ {=,≤, <}, add
{
∑

i∋j F
(j)
i (tπ2

) −
∑

i∋j F
(j)
i (tπ1

) ≥ βj(tπ2
− tπ1

)}.
• Starts of backlogged periods:for all j ∈ S, jπ ∈ Π and

i ∋ j, add{F (preci(j))
i (tjπ) = F

(j)
i (tjπ)}.

• Flow constraints:for all i ∈ F, j ∈ i and jπ ∈ Π, add
{F

(0)
i (tjπ) ≥ F

(j)
i (tjπ), F

(0)
i (tπ) ≥ F

(j)
i (tπ)}.



• Non-decreasing functions:for all i ∈ F, j ∈ i and
π1, π2 ∈ Π

(j)
i , if T (π1, π2) is =, then add{F (j)

i (tπ1
) =

F
(j)
i (tπ2

)} and if T (π1, π2) ∈ {≤, <}, then add
{F

(j)
i (tπ1

) ≤ F
(j)
i (tπ2

)}.
• Arrival constraints: for all 1 ≤ i ≤ p, for all π1, π2 ∈

Πi such thatT (π1, π2) ∈ {=,≤, <}, add{F
(0)
i (tπ2

) −

F
(0)
i (tπ1

) ≤ αi(tπ2
−tπ1

)} (that is|αi| linear inequalities
sinceαi is the minimum of affine functions).
Diamond example:For T 1 = {t124 ≤ t24 < t134 ≤

t34 ≤ t4 ≤ t∅}, flow constraints, non-decreasing constraints
and starts of backlogged periods for flow 1, are depicted on
Fig. 2.

F 0
1 (t124) ≤ F 0

1 (t24) ≤ F 0
1 (t134) ≤ F 0

1 (t34) ≤ F 0
1 (t4) ≤ F 0

1 (t∅)

= ≥ = ≥ ≥ ≥

F 1
1 (t124) ≤ F 1

1 (t24) ≤ F 1
1 (t134) ≤ F 1

1 (t34)

=

F 2
1 (t24) ≤ F 2

1 (t4)

=

F 4
1 (t4) ≤ F 4

1 (t∅)

Fig. 2. Constraints for flow 1 andT 1 (except service/arrival constraints).

For Server 1, strict service constraints are:
• (F

(1)
1 (t24) + F

(1)
2 (t24)) − (F

(1)
1 (t124) + F

(1)
2 (t124)) ≥

β1(t24 − t124);
• (F

(1)
1 (t34) + F

(1)
2 (t34)) − (F

(1)
1 (t134) + F

(1)
2 (t134)) ≥

β1(t34 − t134).
For Flow 1, arrival constraints are:
• F

(0)
1 (t24) − F

(0)
1 (t124) ≤ α1(t24 − t124),

• F
(0)
1 (t134) − F

(0)
1 (t124) ≤ α1(t134 − t124),

• F
(0)
1 (t134) − F

(0)
1 (t24) ≤ α1(t134 − t24), etc.

4) Objective:
Worst end-to-end delay for flowi0: maximize(t∅ − u),

where t∅ − u is the delay endured by data that entered the
network at timeu and left at timet∅. Consequently one has
to add several constraints linked tou and possibly to consider
several cases depending on the choice ofTi0 in Tot(Πi0):

• Arrival time: {F (0)
i0

(u) > F
(last(i0))
i0

(t∅)}.
• Insertion: one must positionu within the total orderTi0 .

For eachπ ∈ Πi0 , we generate one LP instance by adding
the constraints:

• Position and monotony:add {tπ ≤ u, F
(0)
i0

(tπ) ≤

F
(0)
i0

(u)}, and let tπ′ be the successor oftπ in Ti0 (if

any), add{u ≤ tπ′ , F
(0)
i0

(u) ≤ F
(0)
i0

(tπ′)}.
• Arrival curve constraints:for all π′ ∈ Πi0 , if T (π′, π) ∈

{=,≤, <}, add {F
(0)
i0

(u) − F
(0)
i0

(tπ′) ≤ αi0(u − tπ′)},

otherwise add{F (0)
i0

(tπ′) − F
(0)
i0

(u) ≤ αi0(tπ′ − u)}.
Diamond example:Some possible particular positions of

u are t124 ≤ u ≤ t24, t24 ≤ u ≤ t134, etc.
In some cases, one can reduce the number of positions

to consider foru. It is explained in the particular case of
Theorem 4.

Worst backlog at server j0: maximize∑
i∋j0

F
(preci(j0))
i (t∅)−

∑
i∋j0

F
(j0)
i (t∅). It does not introduce

new cases or new linear constraints.

B. From network trajectories to LP solutions

Let λ be a LP instance with optimal valueoptλ, we call
a solution of λ an assignation of the variables satisfying the
linear constraints, and it isoptimal if it achievesoptλ (there
may be no optimal solution ifλ = +∞ or when there are
some strict inequalities in the constraints).

Lemma 1:Let N be a feed-forward network and a flow
of interest i0 (resp. a serverj0). Let Λ be the set of LP
instances constructed in Section III-A. Given a trajectory
{F

(j)
i } ∈ Traj(N ) where some data in flowi0 is enduring an

end-to-end delayd (resp. the backlog atj0 becomesb), then
there exists a LP instanceλ ∈ Λ admitting a solution such that
t∅−u = d (resp.

∑
i∋j0

F
(preci(j0))
i (t∅)−

∑
i∋j0

F
(j0)
i (t∅) = b).

Sketch of the proof:Consider{F (j)
i } ∈ Traj(N ), let t∅

be the instant at which the data enduring the delayd leaves the
networks (resp. at which the backlog isb). The interpretation
of all the variables has been given in Section III-A1. One just
has to find out their values from the trajectory. By comparing
those values, one can pick a total orderT fitting the time
values and then retrieve an LP instanceλ ∈ Λ adjusted to the
whole trajectory. As the trajectory satisfies (T1),(T2),(T3), it is
easy to check that the linear constraints ofλ are also satisfied.

t∅t3t23

F
(3)
1

F
(1)
1

F
(0)
1

α

F
(2)
1

ut123

Fig. 3. Readingtπ on a trajectory for a 1-flow 3-servers scenario.

C. From LP solutions to network trajectories

Lemma 2:Let N be a feed-forward network and a flow
of interest i0 (resp. a serverj0). Let Λ be the set of LP
instances constructed in Section III-A. Consider an instance
λ ∈ Λ and one of its solution (if any). Then there exists
a trajectory{F (j)

i } ∈ Traj(N ) where the worst end-to-end
delay d for flow i0 (resp. worst backlogb for server j0)
satisfiesd = tresp.∅ − u (resp.b =

∑
i∋j0

F
(preci(j0))
i (t∅) −∑

i∋j0
F

(j0)
i (t∅)).

Sketch of the proof: Given a solution, the first step
consists in shifting theF (j)

i (tπ) values such that every cu-
mulative function will start from 0 at some non-negative
instant. Then for each flowi, one will compute the functions
F

(0)
i , . . . , F

(last(i))
i by induction, by moving forward along the

path µi. The first functionF
(0)
i is the linear interpolation of

the valuesF (0)
i (tπ) which are known. Then each step consists

in constructingF
(j)
i (tπ) from F

(preci(j))
i (tπ) by identifying



Sj
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Fig. 4. Transformation of an instance of X3C into a network.

intervals where some data from flowi is backlogged at
server j, performing linear interpolations on these intervals
and elsewhere settingF (j)

i (tπ) = F
(preci(j))
i (tπ). It uses a

lemma stating that the linear interpolation over a set of point
preserves arrival/service constraints if the constraint curves are
concave/convex.

We need another lemma to end the proof of Theorem 2
since LP solvers work with non-strict inequations. The proof
works by exhibiting simple solutions to the LP instance (like
all null F

(j)
i (tπ) values).

Lemma 3:Let Λ be the set of LP instances constructed in
Section III-A, λ ∈ Λ and λ̂ obtained by replacing< signs by
≤ in λ. Thenopt

λ̂
= optλ.

Note that the LP solvers will output a+∞ result if it is
actually the worst-case. As mentionned in the introduction,
the classical criterion characterizing bounded worst-case per-
formances for feed-forward networks remains an asymptotic
utilization factor< 1 at each server preceding the server under
observation, as provede.g. in [6].

D. Computational hardness

Theorem 3:Computing the worst-case backlog in a feed-
forward network is NP-hard.

Sketch of the proof: We reduce the problem “exact
three-cover” (X3C) to our problem. An instance of X3C is a
collectionC = {c1, . . . , c3q} of 3q elements and a collection
U = {u1, . . . , us} of s sets of 3 elements ofC. The problem
is to decide whether there exists a cover ofS by q elements of
C. We will reduce this problem to deciding whether a given
backlog can be reached in a server of a network.

The network we use is as shown in Figure 4. The upper
stage consists of3q serversS1, . . . , S3q, all with service curve
β1 : t 7→ t. The middle stage consists ofs serversS′

1, . . . , S
′
s,

all with service curveβ2 : t 7→ 2.1t if t < 1; t 7→ ∞ otherwise.
Finally, the lower stage has only one serverS′′, with service
curveβ3 : t 7→ Rt with R > 3s. There are3s flows, each of
them crossing three servers from top to bottom. A flow,Fi,j

crosses serversSj , S′
i, S′′ if and only if cj ∈ ui. Each of

those interfering flows has an arrival curveα : t 7→ min(t, 1).
We show that the backlog inS′′ can be at least3(s−q)+0.9s

if and only if there exists an X3C cover for the corresponding
instance of the problem.

The NP-hardness has been proved only for the worst-case
backlog. A similar result should hold for the worst-case delay,
using the same example, but this should be a little more
tricky, as the arrival of the bit of data that reached (or almost
reached) the worst-case delay may not happen at time 1. But
we conjecture that this problem is also NP-hard.

IV. T HE TANDEM SCENARIO: A POLYNOMIAL ALGORITHM

We study here a special class of feed-forward networks:
the tandem networks, i.e. networksN such that the induced
digraphG(N ) is a directed path with no shortcut. It implies
that any flow follows a sequence of consecutive servers in the
path. Such scenarios have been highlighted in[21], [23], [31].

For this class of networks, the worst-case computation boils
down to solving a single LP instance with a polynomial
number of variables and constraints, and thus with a poly-
nomial complexity. Moreover, we show for each flow how
to reconstruct a minimum end-to-end service curve which is
optimal in some sense.

A. The algorithm for the tandem scenario

Theorem 4:Let N be a tandem network withn servers and
p flows. Then, given a flowi (resp. a serverj), there exists
one LP instance withO(pn) variables andO(pn2) constraints
such that the optimum is the worst end-to-end delay for flowi
(resp. the worst backlog at serverj).

Sketch of the proof:A direct application of Theorem 2 to
tandem networks induces a single order on then+1 variables
tπj

, with πj−1 = j · · ·n and πn = ∅. So, computing a
maximum backlog boils down to a single LP instance and
only the insertion ofu generates several (n) orders for the
maximum delay.

Setf1 = first(1) − 1 ande1 = end(1).
We now show that it is useless to consider several LP

instances to compute the worst-case delay, and the only
constraints whereu must appear are:F (0)

1 (u) ≥ F
(n)
1 (tπe1

)

and F
(0)
1 (u) − F

(0)
1 (tπf1

) ≤ α1(u − tπf1
). The objective

and the other constraints remain unchanged. Remark that the
maximization of the objective function will lead to the equality
F

(0)
1 (u) − F

(0)
1 (tπf1

) = α1(u − tπf1
).

We proceed by contradiction. Consider a worst-case tra-
jectory for a tandem network. It is obtained by solving our
few LP instances. If that worst-case trajectory is not obtained
by the alternative single linear program, which means that
F

(0)
1 (u) − F

(0)
1 (tπf1

) < α1(u − tπf1
), one can replace

F
(0)
1|[tπf1

,u] by α1|[tπf1
,u]. Then the trajectory remains valid

for the system: flow constraints, monotony, arrival and strict
service constraints are still satisfied. As far as the startsof
backlog period are concerned, the additional data that arrived
in a server are transmitted at the beginning of the backlogged
period of the next server (ensuring that the input cumulative
function in that next server is not less than the original input
cumulative function and then ensuring that the backlogged
period will not end before the backlogged period of the
original cumulative functions. SinceF (0)

1 (u) < α1(u − tπf1
)



and the cumulative functionF (e1)
1 is non-decreasing,tπe1

must
increase, hence one can obtain a longer delay than in the
original trajectory.

B. From delays to end-to-end service curves

Let N be a network and flow 1 be the flow of interest,
for now we have investigated a way to compute the worst
delay for fixed constraints(αi)i∈F and (βj)j∈S. One may
want to measure how the global network acts upon flow 1,
in particular whether some minimum end-to-end service curve
can be guaranteed. Givenβ ∈ F , we say thatβ is an end-
to-end (simple) service curve(or left-over service curve[21],
[23]) if F out

i ≥ β ∗ F in
i . It is called auniversalend-to-end

service curve ifβ is independent ofα1 (i.e. β remains an end-
to-end service curve for any choice ofα1). Precomputing such
an universal curve can be useful to quickly compute a bound
on end-to-end delays for flow 1 for several different curvesα1

(thanks to the horizontal distance of Theorem 1). For tandem
networks, we now prove that one can compute an universal
end-to-end service curve which is optimal in some sense.

Theorem 5:Let N be a tandem network withn servers and
p flows. Then one can compute an universal end-to-end service
curve for the flow 1, which is the maximum of all universal
end-to-end service curves.

Sketch of the proof:The proof consists in two steps:

• We first show that the functionβ : t 7→ inf{σ ≥
0 | d(σ) ≥ t} (whered(σ) is the solution of the linear
program withα1(t) = σ, ∀t) is a universal end-to-end
service curve for flow 1.

• We then show thatσ 7→ d(σ), the pseudo-inserse ofβ,
can be computed as an infimum of a finite number of
affine functions by applying the strong dual theorem to
our linear problem whereσ is a non-assigned parameter.

Beware that although this curveβ is maximum among
universal end-to-end service curves for flow 1, nothing ensures
that for any arrival curveα1 for flow 1, the horizontal distance
betweenα1 and β will be the exact worst end-to-end delay
(except forα1(t) = σ where it is guaranteed by definition
of β). This distance is an upper bound, but it could be loose.
However we conjecture that this distance is always tight.
Indeed, from the LP instance used to compute the maximum
delay in Theorem 4 with a general piecewise affine concave
arrival curveα1, the arrival cumulative function of flow 1 is
exactlyα1 from time t0 to time u, so the worst-case delay is
the distance betweenα1 and the departure cumulative function.

Note that such an optimal end-to-end service curve does
not necessarily exist for other policies. For instance, in FIFO
networks [6], [31], even for a single server, there is not
an infinity of incomparable simple service curves and their
maximum is not a service curve.

C. Related work

The study of tandem networks under blind multiplexing has
already been addressed in [23]. In this article the authors

compute tight end-to-end delay bounds for some tandem
networks, with detailed computations for a network with three
servers and three flows and for sink-tree networks. A method
for general tandem networks is suggested in the corresponding
technical report [24] but some details are not fully settled. Here
we point out two major differences between our approaches.

We both start by a similar choice of variables and set of
constraints. While we directly try to find a solution, they
perform algebraic manipulations mixing the constraints tofind
some end-to-end simple service curves with free parameters.
They choose the best one thanks to linear programming and
then show that it enables to compute worst delays. Their result
strongly relies on the fact that their arrival/service curves are
leaky-bucket/rate-latency functions.

The second point concerns the treatment of concave/convex
arrival/service curves, if one already knows how to deal with
leaky-bucket/rate-latency curves. Unlike the polynomialalgo-
rithm of Theorem 4, the scheme in [23] is to decompose the
curves into maximum (resp. minimum) of rate-latency (resp.
leaky-bucket) service (resp. arrival) curves, then compute the
left-over service curves obtained for each combination of
rate-latency/affine service/arrival curves, and finally compute
the maximum of all those curves. One should notice that
such a process does not guarantee that this maximum of
simple service curves is still a simple service curve or that
it will provide tight bounds. It only ensures that the horizontal
distance between the arrival curve of the flow of interest and
this maximum curve is an upper bound on delays.

Take a system composed of two servers in tandem with
respective service curveβ1 and β2, crossed by two flows,
one with arrival curveα and the other, the flow of interest
consisting of only one infinitesimal bit (that can be modeledby
the null arrival curve as our model is fluid). We are interested
in the delay needed for that bit to cross the system.

With β1(t) = 1.5(t − 6)+, β2(t) = 6(t − 8)+ and
α(t) = min(0.5t, 6 + 0.05t) and using the implementation
of our solution, computations give that the worst-case delay
is d = 17.4. If α(t) = 0.5t, then the worst delay isd1 = 17.7
and if α(t) = 6 + 0.05t, then the worst delay isd2 = 18.4
andd < min(d1, d2). Three critical trajectories are shown on
Fig 5 and illustrate the loss when considering onlyd1 andd2.

α2

α1

d2

d

d1

β2

β1

Fig. 5. Decomposing arrival curves does not achieve tight bounds.Bold lines
are the output processes. Continuous line: the arrival curve is α; dotted line:
the arrival curve isα1; dashed line: the arrival curve isα2.

Note that the difference betweend and min(d1, d2) can
be arbitrary large. Here is another example withα =



min(α1, α2), andβ1 = α1 : t 7→ Rt, β2 : t 7→ 2R(t − T )+
and α2 : t 7→ RT , we haved = 3/2T , d1 = d2 = 2T .
the difference is thenT/2 that grows infinitely large whenT
grows.

V. NUMERICAL RESULTS

We here compare our results with the other existing meth-
ods. Up to now, two kinds of methods have been used (see
[23], [24] for detailed explanations): thetotal flow analysis
(TFA), that consists in computing the worst-case delay for
each server crossed by the flow of interest and then take the
sum, and theseparate flow analysis(SFA), that consists in
computing a left-over service curve for every server on the
path of the flow of interest and then compute the convolution
of those service curves and the delay using that convolution
and Theorem 1. To our knowledge, these are the only two sys-
tematic methods available for general feed-forward networks.

The linear program files used for our ex-
periments can be found following this link:
http://perso.bretagne.ens-cachan.fr/

˜bouillar/NCbounds/ .

A. Tandem scenario

In order to generate the linear program files associated to
a tandem network to compute worst-case delay and backlog
bounds, we wrote a program, that can be downloaded from the
web-page mentioned above. This program has been written
in Ocaml1. It generates a linear program from a small file
describing the tandem network. The linear program can be
solved using lpsolve2, for example.

We first compare our results for a tandem scenario, where
flows intersect two servers (except at the extremities) and the
flow of interest crosses every server. An example is depicted
in Fig. 6. Servers have the same characteristics: they have a
latency of 0.1s, and a service rate of 10Mbps. Flows have a
maximum burst of 1Mb and a arrival rate of 0.67Mbps.

Fig. 6. Tandem scenario with 4 servers.

Fig. 7 shows the delay obtained for each of the three
methods (TFA, SFA and the tight LP method). Unsurprisingly,
the three methods give the same result when there is only one
server. For a network with 20 servers, the LP method reduces
the SFA bound by a factor8/5, for an utilization rate of 20%.

Fig. 8 depicts the variation between SFA and LP methods
when the utilization rate of the servers varies and when the
number of servers is 20. Only the arrival rate varies, according
to the utilization rate. When the utilization factor grows, the
gain becomes huge. Moreover, the execution time of our
program is less that 0.3 s. for a similar network with 50
servers.

1http://caml.inria.fr/ocaml
2http://lpsolve.sourceforge.net/5.5/
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Fig. 7. Upper bounds for the delay of the scenario of Fig. 6.
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Fig. 8. Upper bounds for the delay of the scenario of Fig. 6 for20 servers
and when the arrival rate varies.

B. Feed-forward scenario

We illustrate our result on a small example, depicted in
Fig. 9. There are four servers (with the same characteristics as
in the previous example, and four flows, each having the same
characteristics: a maximum burst of 1Mb, and we make the
arrival rate vary from 0.5Mbps to 4.5Mbps (so the utilization
rate in each server vary from 10% to 90%).

F2

F3

F1

F4

Fig. 9. The Square network.

We compute delay bounds for flowF1 with four methods:
TFA, SFA, by generating 11 linear programs, one for each
possible order for the times (LP); the fourth method is obtained
by solving a unique linear program, where only the common
constraints of the 11 programs are taken (ULP). Doing this,
we do not obtain tight bound, but the results is far better than
TFA and SFA. Results are depicted in Fig. 10.
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Fig. 10. Upper bounds on delays for flowF1 in the Square network (Fig. 9).

VI. CONCLUSION

We have shown that one can compute the exact worst local
backlogs and end-to-end delays in the NC framework for feed-
forward networks under blind multiplexing. The number and
the size of linear programs one has to solve can be small or
extremely large depending on the network. Although we have
shown that the problem is intrinsically difficult, one direction
is to reduce this number of linear programs as well as their
size. Another way to bypass NP-hardness is to look for fast
approximation algorithms or exact algorithms which are fast
on average.

Here are also a few features that can be added to refine
the model: add some other network elements which can
not be modelled by strict service curves (like fixed delays),
take into account maximum (resp. minimum) strict service
(resp. arrival) curves as in RTC [32] (preventing instanta-
neous propagation (resp. starvation) of data), take into account
packet lengths, use curves with different shapes like ultimately
pseudo-periodic curves [33].

Anyway, even without those additional features, the chal-
lenge of computing exact worst-case performances of general
networks under blind multiplexing, or even feed-forward net-
works under other policies like FIFO, remains open.
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