
Clones: CLOsed queueing Networks Exact Sampling

Anne Bouillard
ENS Paris

45 rue d’Ulm
75005 Paris, France

anne.bouillard@ens.fr

Ana Bušić
Inria

23 avenue d’Italie
75013 Paris, France

ana.busic@inria.fr

Christelle Rovetta
Inria

23 avenue d’Italie
75013 Paris, France

christelle.rovetta@inria.fr

ABSTRACT
We present Clones, a Matlab toolbox for exact sampling
from the stationary distribution of a closed queueing net-
work with finite capacities. This toolbox is based on re-
cent results using a compact representation of sets of states
that enables exact sampling from the stationary distribu-
tion without considering all initial conditions in the cou-
pling from the past (CFTP) scheme. In this paper, we focus
on the algorithmic and implementation issues and present
two different representations. The implementation of these
representations is done using matrices and their respective
complexities for one-step transition of the CFTP is O(KM2)
and O(KM), where K is the number of queues and M the
total number of customers. Finally, the toolbox enables to
compare the different CFTP algorithms. The toolbox can be
downloaded at http://www.di.ens.fr/~rovetta/Clones.

Keywords
queueing networks, simulation, coupling from the past

1. INTRODUCTION
Closed queueing networks are largely used in various applica-
tion domains due to their modeling simplicity and product-
form stationary distribution in the unlimited capacity case
[5]. This structure is no longer guaranteed when the queues
have a finite capacity, due to the effect of blocking. There
are different types of blocking, see [8] for a detailed dis-
cussion. According to the terminology introduced in that
survey, our blocking model is RS-RD (repetitive service –

random destination). Under this blocking policy, the sta-
tionary distribution has a product form only if the routing is
reversible. When the stationary distribution does not have a
product-form, the exact analysis may not be computation-
ally tractable, and we may turn to approximations [2] or
simulation.

The main difficulty of the Markov chain Monte Carlo ap-
proach is the stopping criterion. Usual tools are the asymp-

VALUETOOLS14 Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the firstpage. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. VALUETOOLS’8, December 9−11,
2014, Bratislava, Slovakia. Copyright 2010 ACM 1-58113-000-0/00/0010
...$15.00.

totic variance in the Central Limit Theorem or mixing times [1,
7], unfortunately there is no generic technique for the non-
reversible Markov chain case.

In the 1990’s, Propp and Wilson introduced a method for
sampling a random variable according to the stationary dis-
tribution of a finite ergodic Markov chain [9]: the coupling
from the past (CFTP) algorithm. The CFTP algorithm au-
tomatically detects and stops when the sample has the cor-
rect distribution. The main drawback of the original CFTP
is that it considers a coupling from all initial conditions. In
the case of closed queueing networks the cardinality of the
state space is exponential in the number of queues, which is
untractable.

When the network has a product-form distribution, Kijima
and Matsui [6] proposed a perfect sampling algorithm with
overall complexity O(K3 ln(KM)). However, their method
strongly relies on the product form representation of the
stationary distribution and it cannot be applied to the gen-
eral case of queues with finite capacity. In a recent paper
by Bouillard and al. [3], a new representation of the sets
of states has been proposed. This representation is used to
derive a bounding chain for the CFTP algorithm for closed
queueing networks, that enables exact sampling from the
stationary distribution without considering all initial condi-
tions in the CFTP. This method is far more general, as it
does not rely on the product-form property.

The complexity of one step-transition of the CFTP algo-
rithm in [3] is O(KM2). In this paper, we derive a new al-
gorithm, based on even more compact representation. The
complexity of one step-transition of this new CFTP algo-
rithm is O(KM). Note that this is the same as the com-
plexity of the computation of the normalizing constant in the
product-form case using Buzen’s algorithm [4]. The overall
complexity of our algorithm depends however also on the
coupling time of the chain, so it becomes of a practical in-
terest when the network does not have a product form. The
main focus of this paper is on algorithmic and implemen-
tation issues. We give a detailed description of the matrix-
based representations used in our Matlab toolbox Clones.

The paper is organized as follows. In Section 2 we describe
the model and give a short overview of results in [3]. We
then introduce a new gap-free diagram representation and a
new CFTP algorithm with one step-transition complexity of
O(KM). In Section 3 we present our Matlab toolbox Clones

and discuss its functionalities and implementation issues.
Section 4 is devoted to numerical results. Final remarks
and conclusions are contained in Section 5.

2. BACKGROUND
2.1 Model
Consider a closed network of K ./M/1/C queues with M
customers in total. Each queue k ∈ {1, . . . ,K} =: Q has a
finite capacity Ck ≤M and a service rate νk.

After a customer has been served in queue i, it is directed to
queue j with probability pi,j , independently of the current
state and past evolution of the network. If queue j is full,
then the customer remains in queue i and has to be served
again. Its new destination will be chosen independently from
j. We assume that the routing matrix P = (pi,j)i,j∈Q is
stochastic and irreducible (that is, the network of queues is
strongly connected). We set R = {(i, j) | pi,j > 0}.

The state space is denoted by S: it is the set of elements
x = (x1, x2, . . . , xK) ∈ N

K such that
∑K

k=1 xk = M and

∀k ∈ Q, 0 ≤ xk ≤ Ck. We know that |S| ≤
(

K+M−1
K−1

)

, which
grows exponentially with K.

For (i, j) ∈ R, ti,j : S → S is the function that describes
the routing of a customers from queue i to queue j:

ti,j(x) = x+ (ej − ei)1xi>0 and xj<Cj

where ei is the vector that has all its coefficients equal to
0 except the i-th, equal to 1 and 1A is the characteristic
function of A. This network can be described by an ergodic
Markov chain: at each step, a pair (i, j) is randomly chosen,
with probability

νipi,j∑
k∈K νk

. Our objective is to sample the

stationary distribution with perfect sampling techniques (as
in [9]). Algorithm 1 (PSS) is the direct application of the
perfect sampling algorithm to this model. It produces a
sample of the stationary distribution in finite expected time.

Algorithm 1: Perfect sampling using sets of state (PSS)

Data: (U−n = (i−n, j−n))n∈N an i.i.d sequence of r.v
Result: x ∈ S

1 begin
2 n← 1;
3 t← tU−1

;
4 while |t(S))| 6= 1 do
5 n← 2n;
6 t← tU−1

◦ · · · ◦ tU−n
;

7 return x, the unique element of {t(S)}.

This algorithm has a complexity at least linear in |S|, which
grows exponentially with K. In [3] a new and compact rep-
resentation of the state space has been proposed, for which
set of states have a strucured representation, polynomial in
K and M . The main idea is to represent states as paths in
a directed graph called diagram.

2.2 Diagram
LetD = (N,A) be a directed graph where N = {0, . . . ,K}×
{0, . . . ,M} and g : S → P(N2) denote the function which

associates a set of arcs to each state:

g(x) =
K
⋃

i=1

{

(

(i− 1,

i−1
∑

k=1

xk), (i,
i

∑

k=1

xk)
)

}

.

These arcs form a path from node (0, 0) to (K,M). The
directed graph D = (N,A) is called diagram if there exists
S ⊆ S such that A = g(S) :=

⋃

s∈S

g(s).

The complete diagram is D = (N,A) where A = g(S), the
image of the state space. An example of such a diagram is

depicted in Figure 1. Note that |A| ≤ |A| ≤ K(M+2)(M+1)
2

.

0, 0 1, 0 2, 0 4, 03, 0

1, 1 2, 1

1, 2

3, 1 4, 1

2, 2 3, 2 4, 2

1, 3 2, 3 3, 3 4, 3 5, 4

0 0

0

1

2

Figure 1: Complete diagram with K = 5, M = 3 and
C = (2, 1, 3, 1, 2). The set of bold (and red) arcs is the
image of state x = (0, 0, 2, 0, 1).

Let a =
(

(k − 1,m), (k,m′)
)

∈ A. The value of a is v(a) =
m′ − m and represents the number of customers in queue
k. Graphically, the value of an arc corresponds to its slope.
Note that 0 ≤ v(a) ≤ Ck.

Function g can be used to define the transformation from
a set of states to a diagram and conversely: for a diagram
D = (N,A) and a set S ⊆ S, we have

φ(S) = (N, g(S)) and ψ(D) = g−1(A).

We can now define the transformation Ti,j corresponding
to the service of a customer from queue i to queue j: for
(i, j) ∈ R,

Ti,j(D) = φ ◦ ti,j ◦ ψ(D).

The transformation Ti,j can be performed directly without
having to compute ψ, ti,j and φ. It will be shown in Section 3
that Ti,j(D) can be computed in time polynomial in the
size of D. As its size is in O(KM2), the transformation is
then also polynomial and then more efficient than computing
ti,j for all states. The next theorem states that the perfect
sampling algorithm if valid when using Ti,j instead of ti,j .
This is Algorithm 2 (PSD).

Theorem 1. PSD algortihm terminates in finite expected

time and produces an exact sample from the stationary dis-

tribution.

2.3 Gap-free diagram
In this paragraph, we present a sub-class of diagrams that
can be represented even more compactly. A diagram D =
(N,A) is called gap-free if ∀k ∈ Q, ∀s ≤ Ck, ∀m1 < m2 <

m3 ≤M , ∀m ≤M , ∀s1 < s2 < s3 ≤ Ck,

•
(

(k− 1,m1), (k,m1 + s)
)

,
(

(k− 1,m3), (k,m3 + s)
)

∈ A

⇒
(

(k − 1,m2), (k,m2 + s)
)

∈ A;

•
(

(k − 1,m), (k,m+ s1)
)

,
(

(k − 1,m), (k,m+ s3)
)

∈ A

⇒
(

(k − 1,m), (k,m+ s2)
)

∈ A;

•
(

(k − 1,m− s3), (k,m)
)

,
(

(k − 1,m− s1), (k,m)
)

∈ A

⇒
(

(k − 1,m− s2), (k,m)
)

∈ A.

The second and third implications state that the values of
arcs from (to) a node are contiguous. It can be easily seen
that the complete diagram is gap-free and that gap-free di-
agrams have a more compact representation: it suffices to
know for each value s and each queue k what are the minimal
and maximal arc (from the first implication). Consequently,
it can be represented by less than 2K(M + 1) arcs.

In most cases, ifD is gap-free, Ti,j(D) is also gap-free. But it
is not true in general, as shown on Figure 8. For a diagram
D, we denote Dgf the smallest gap-free diagram (for arc
inclusion) that contains D. This construction is illustrated
on Figure 2. From this transformation, we can define a
new transition function on gap-free diagrams: for (i, j) ∈ R,

T gf
i,j(D) = [Ti,j(D)]gf .

0, 0 1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3 5, 3

0, 0 1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3 5, 3

D Dgf

Figure 2: Transformation of a diagram with a gap
into a gap-free diagram. Left: D has a gap (no arc
((1, 1), (2, 2)); Right: Dgf is constructed by adding this
arc to D.

The perfect sampling algorithm can be adapted to gap-free
diagrams. It suffices to replace every occurrences of T in
Algorithm 2 by T gf . This is PSF algortihm.

Algorithm 2: Perfect sampling using diagrams (PSD)

Data: (U−n = (i−n, j−n))n∈N an i.i.d sequence of r.v
Result: x ∈ S

1 begin
2 n← 1;
3 T ← TU−1

;
4 while |ψ(T (D))| 6= 1 do
5 n← 2n;
6 T ← TU−1

◦ · · · ◦ TU−n
;

7 return x, the unique element of {ψ(T (D))}.

Theorem 2. PSF algortihm terminates in finite expected

time and produces a sample distributed according to the sta-

tionary distribution.

Proof sketch. The algorithm terminates in finite ex-
pected time for the same reason as Algorithm 2: the cou-

pling sequence exhibited in [3] produces gap-free diagrams
only.

Let (Un)
N
n=1 ∈ RN . As TU1

◦ · · · ◦ TUN
(D) ⊆ T gf

U1
◦ · · · ◦

T gf
UN

(D), and as diagrams representing one state are gap-
free, we are ensured that the result of the algorithm is dis-
tributed as the stationary distribution.

3. TOOLBOX IMPLEMENTATION
This section is devoted to the implementation of the tran-
sition function of diagrams. As we will see, it is convenient
to represent diagrams with matrices. Then a natural choice
for implementation is Matlab, as it handles matrix computa-
tions (specially when they are sparse) very well. The toolbox
Clones is a Matlab toolbox that implements perfect sam-
pling algorithms using different state space representations:
state space, diagrams and gap-free diagrams. It is available
at http://www.di.ens.fr/∼rovetta/Clones. At the same
address you will find also a detailed documentation to use
the Toolbox. In this section, we first introduce the matrix
representation of diagrams, then present the transition al-
gorithms and finally describe some additional functionalities
of the toolbox.

3.1 Matrix representations
3.1.1 Representation of diagrams
Let D = (N,A) be a diagram and k ∈ Q. In the toolbox,
diagrams are implemented with incidence matrices. More
precisely, Dk is a Boolean matrix of size (M + 1)× (M + 1)
representing the k-th column of D:

Dk(m,m
′) = 1((k−1,m),(k,m′))∈A.

Because a ∈ A implies that 0 ≤ v(a) = m −m′ ≤ Ck, ma-
trices Dk are Boolean upper-triangular and Dk(m,m

′) = 0 if
m′ −m > Ck. Figure 3 is an example of such a representa-
tion.

Figure 3: Matrix representation D2 of the second
column of D. We refer to k-th column for the arcs
representing a number of customers in queue k.

Let i, j ∈ Q. We will denote by Di,j the matrix of size
(M + 1)× (|i− j|+ 1)(M + 1) that is the concatenation of
matrices Di, . . . , Dj:

Di,j =







Di, Di+1, . . . , Dj if i < j
Dj, . . . , Di−1, Di if i > j
Di if i = j.

A diagram D = (N,A) is represented by the matrix D =
D1,K . Figure 4 shows the matrix representation D of a com-
plete diagram with K = 5, M = 3 and C = (2, 1, 3, 1, 2).
It is composed of 5 Boolean matrices of size 4 × 4. Note

that due to the shape of a diagram, only the first line of
D1 is non-null and only the last column of DK is non-null.
The computation of this matrix is implemented by function
Clones CompleteD(C, M).

Figure 4: Diagram representation of the complete
diagram in Figure 1.

3.1.2 Representation of gap-free diagrams
Gap-free diagrams can be more efficiently implemented. Be-
cause of the implication ∀k ∈ Q, ∀s ≤ Ck, ∀m1 < m2 <
m3 ≤M ,

(

(k−1,m1), (k,m1+s)
)

,
(

(k−1,m3), (k,m3+s)
)

∈

A⇒
(

(k−1,m2), (k,m2+s)
)

∈ A, each column can be rep-
resented by a 2× (Ck + 1) matrix Fk:

• Fk(1, s) = min(m,
(

(k − 1,m), (k,m+ s)
)

∈ A)

• Fk(2, s) = max(m,
(

(k − 1,m), (k,m+ s)
)

∈ A)

• with the convention that Fk(1, s) = Fk(2, s) = −1 if
{m,

(

(k − 1,m), (k,m+ s)
)

∈ A} = ∅.

Figure 5: Gap-free representation of a column.

The gap-free representation of the diagram of Figure 1 is
given in Figure 5.

Using the notations defined for D, a gap-free diagram is rep-
resented by matrix F = F1,K of size 2× (

∑K

k=1 Ck +K). Fig-
ure 6 shows F, the gap-free representation of the complete
diagram of Figure 1. It is a 2× 14-matrix.

Figure 6: Gap-free representation of the complete
diagram in Figure 1.

Function Clones CompleteF(C, M) computes the gap-free rep-
resentation of a complete diagram and Clones FtoD(F, C, M)
returns the diagram matrix which corresponds to the gap-
free matrix F.

3.2 Diagram transition algorithms
In this section, we present the main algorithm of the Clones
toolbox: the transition on diagrams. First, we need to find
some classes of paths in the diagram: those that will remain
unchanged by the transition and those that will evolve. In
the whole section we denote by D the diagram matrix repre-
sentation of diagram D = (N,A) and describe the transition
Ti,j(D).

3.2.1 Finding paths in a diagram
To compute Ti,j(D), we need to know what are the paths of
D that will remain unchanged because queue i is empty or
queue j is full, and what are the paths that will be modified.
These paths can be determine only by the knowledge of their
arc value at the i-th and j-th columns. So, we need to define
matrices DVi→j that represents the paths of D from columns i
to j whose arcs at column i have value in V . It is constructed
as follows.

Let V ⊆ {0, 1, . . . , Ci} be a set of values, DVi is the matrix
that represents arcs in the column i with values in V :

D
V
i(m,m

′) = Di(m,m
′)1m′−m∈V .

Paths from column i to column j generated by arcs with
value in V in column i are represented by the matrix DVi→j =
[Y1, Y2, . . . , Y|i−j|+1]. The matrices Yk are computed as:

Case Y1 Yk Y|i−j|+1

i < j DVi diag(1M+1Yk−1)Dk
i > j Dkdiag(Yk+11

t
M+1) DVj

where ∀v ∈ {0, 1}N , diag(v)(m,m′) = v(m)1m=m′ .

Let 1M be the identity matrix of size M . Note that as
diag(v) is a diagonal Boolean matrix, computing diag(1M+1Yk−1)Dk
does not require matrix multiplication. It boils down to
copying the lines of Dk corresponding to non-null elements of
the diagonal of diag(1M+1Yk−1). The most complex opera-
tion is to compute 1M+1Yk−1, which can be done in O(M2).
As |j − i| + 1 ≤ K, the complexity of finding those path is

in O(KM2). Figure 7 depicts D
{2}
3→5 on the diagram.

Figure 7: Diagram D and D
{2}
3→5 in bold (red) paths.

It corresponds to paths from column 3 to column 5
generated by arcs of values 2.

3.2.2 Transition algorithm
We are now ready to present the transition algorithm. Let
D be a diagram and (i, j) ∈ R. We explain how to compute
Ti,j(D). First let us explain the transformation on diagram
D (see Figure 8). We begin by computing three sets of arcs
(not necessarily disjoint), depending on whether they will
be modified by the transition:

• Empty is the set of arcs that belong to paths with arc
value 0 at column i. Those paths correspond to states
where the queue i is empty.

• Full is the set of arcs that belong to paths with arc
value Cj at column j. Those paths correspond to states
where the queue j is full.

• Transit is the set of arcs that belong to paths with
value < Cj at column j and > 0 at column i. Those
paths correspond to states that are modified by ti,j .

Second, arcs in Transit are modified in accordance to ti,j :

• In column i, value of arcs are decreased by one (keeping
the same source).

• In column k ∈ {min(i, j) + 1, . . . ,max(i, j) − 1}, arcs
are shifted up or down depending on the sign of i− j.

• In column j, slopes of arcs are increases by one (keep-
ing the same destination).

If we call Transit′ this new set, Ti,j(D) = (N, Empty∪Full∪
Transit′).

+1 −1
1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3

1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3

1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3

1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3

3 422 3 42 4

0, 0 1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3 5, 3

0, 0 1, 0 2, 0 3, 0 4, 0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3 5, 3

D = (N,A)

T4,2(D)Transit T ransit′

Empty Full

Figure 8: Steps for computing T4,2(D). Diagram D is
obtained from the complete diagram by some tran-
sition; D = T4,5 ◦ T4,5 ◦ T2,1(D).

The transformation using matrix operations is given in Al-
gorithm 3, where the Boolean operators and and or are
component-wise and where

[←X]m,m′ = Xm,m′+11m′<M , [→X]m,m′ = Xm,m′−11m′>0,
[↑X]

m,m′ = Xm+1,m′1m<M , [↓X]m,m′ = Xm−1,m′1m>0,

[տX] = [←[↑X]], [ցX] = [→[↓X]].

The algorithm is performed on |i−j|+1 matrices. As |i−j|+
1 ≤ K, and all the matrix operations can be done in O(M2),
Algorithm 3 requires O(KM2) elementary operations. It is
implemented by fonction Clones T(D, C, [i, j]) in the toolbox
Clones.

To compute transitions on gap-free diagrams, the steps of
the algorithm are the same. The only difference is that
there is no need to compute all the arcs in Empty, Full and
Transit, but only the extremal ones in each column, which

Algorithm 3: Transition algorithm

Data: D the matrix representation of a diagram D,
(i, j) ∈ R

Result: D′ the matrix representation of Ti,j(D).
1 begin

2 D
Empty
i,j ← D

{0}
i→j;

3 DFulli,j ← D
{Cj}
j→i ;

4 DTransiti,j ← D
{1,...,Ci}
i→j and D

{0,...,Cj−1}
j→i ;

5 if i < j then
6 D′i

Transit ← [←DTransiti];

7 for k from i+1 to j− 1 do D′k
Transit ← [տDTransitk];

8 D′j
Transit ← [↑D

Transit
j];

9 else
10 D′i

Transit ← [↓D
Transit
i];

11 for k from i+1 to j− 1 do D′k
Transit ← [ցDTransitk];

12 D′j
Transit ← [→DTransitj];

13 D′i,j ← D
Empty
i,j or DFullj,i or DTransiti,j ;

14 return D′ = [D1,min(i,j)−1, D
′
i,j, Dmax(i,j)+1,K].

can be computed directly from matrix F. As a consequence,
the transformation can be done in O(KM). This function
is implemented in Clones gfT(D, C, M, [i, j]).

3.3 Additional functionalities of Clones
The conversion of a diagram D into a set of states, ψ(D), is
performed by Clones Psi(D). Function Clones CardPsi(D)
returns the cardinal of ψ(D). Function Clones StateSpace(C, M)
uses Clones Psi(D) to compute the entire state space.

Diagrams can be plotted with Clones plotD(D, C, mode); mode
allows to write parameters or |ψ(D)| in the graphic (Figure
9). It is also possible to have diagram animations.

−2 0 2 4 6 8 10 12

−20

−15

−10

−5

0
K= 10 M=20 C=[5 10 20 10 2 2 10 20 10 5]

|Psi(D)| = 3438720

Figure 9: Plot of a complete diagram.

Object-oriented programming can also be used with Clones.
Three classes have been defined to handle transitions and
perfect sampling using respectively sets of states, diagrams
and gap-free diagrams. Let R be the routing matrix. The
functions for perfect sampling with sets of states, diagram
and gap-free diagrams are respectively Clones PSS(C, M, R, N),
Clones PSD(C, M, R, N) and Clones PSF(C, M, R, N). They pro-
duce N samples.

4. PERFECT SAMPLING WITH Clones
In this section we are interested in the running time of the
perfect sampling algorithms. Experiments have been per-
formed on a desktop machine.

We chose a small number of queues (K = 5) in order to
compare running time of Algorithms PSD and PSF against
PSS (that has an exponential complexity). Each queue has a
capacity M/2 and the routing matrix is fixed and randomly
chosen for the whole experimentation. For each sample, the
same sequence of random variables (Un)n is used for the
three algorithms. Thus they produce the same sample. For
each experiment, we produce 100 samples and are interested
in the mean running time.

Figure 10 compares the running times for the three algo-
rithms with M ∈ {2, 4, . . . , 60}. It can be observed that
the running time of Algorithm 1 grows exponentially fast,
and the two other algorithms (with diagrams and gap-free
diagrams), terminate much faster.

0 10 20 30 40 50 60
0

5

10

15

20

25
Running time of perfect sampling algorithms

M

M
ea

n
of

 r
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Perfect sampling with set of states − PSS
Perfect sampling with diagram − PSD
Perfect sampling with gap−free diagram − PSF

Figure 10: Mean running time - 100 simulations

Figure 11 compares the perfect sampling algorithms using
respectively diagrams and gap-free diagrams when the num-
ber of customers is M = {5, 10, . . . , 200}. We can see that
for values fromM = 5 to 60, the algorithm with diagrams is
slightly faster than the one in gap-free diagrams, whereas for
higher values ofM , using gap-free diagrams is much more ef-
ficient than using diagrams. The latter result was obviously
expected, as the algorithmic complexity of one step transi-
tion is in O(KM) for gap-free diagrams instead of O(KM2)
for diagrams. The running time when M ≤ 60 is more sur-
prising. We believe that the main reason is that Matlab is
optimized for matrix operations. Specially, when it comes
to sparse matrices. On the other hand, our implementation
of gap-free diagrams cannot benefit from this optimization,
and there is room for improvement.

5. CONCLUSION
In this paper, we presented the toolbox Clones, that per-
forms efficient coupling from the past of closed queueing net-
works. This toolbox enables the comparison between three
different algorithms (CFTP with sets of states, diagrams
and gap-free diagrams). Experimentally, PSD and PSF al-
gorithms are very efficient compared to PSS algorithm. For
small values of M , the CFTP with diagram implementa-
tion terminates faster than with gap-free diagrams. Future
work will focus on the improvement of the gap-free one-step
transition implementation.

Further investigation also include the study on the coupling

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35
Running time of perfect sampling algorithms

M

M
ea

n
of

 r
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Perfect sampling with diagram − PSD
Perfect sampling with gap−free diagram − PSF

Figure 11: Mean running time - 100 simulations

time of the CFTP algorithms. Indeed, the coupling time of
CFTP with diagrams is larger than that of PSS algorithm.
Experimentally, the difference between the coupling times of
the three implementations is rather small, but obtaining a
theoretical bound would prove the efficiency of our approach.
Last, we will also explore possible extensions to other classes
of closed queueing networks.

6. ACKNOWLEDGMENTS
This research is supported by the French National Research
Agency grant ANR-12-MONU-0019.

7. REFERENCES
[1] S. Asmussen and P. W. Glynn. Stochastic Simulation:

Algorithms and Analysis, volume 57 of Stochastic
Modelling and Applied Probability. Springer-Verlag,
New York, 2007.

[2] S. Balsamo. Queueing networks with blocking:
Analysis, solution algorithms and properties. In D. D.
Kouvatsos, editor, Network Performance Engineering,
volume 5233 of LNCS, pages 233–257. Springer Berlin
Heidelberg, 2011.

[3] A. Bouillard, A. Busic, and C. Rovetta. Perfect
sampling for closed queueing networks. Performance

Evaluation, 79(0):146–159, 2014. Special Issue:
Performance 2014.

[4] J. Buzen. Computational algorithms for closed
queueing networks with exponential servers. Comm.

ACM, 16:527–531, 1973.

[5] W. Gordon and G. Newel. Closed queueing systems
with exponential servers. Oper. Res., 15,2:254–265,
1967.

[6] S. Kijima and T. Matsui. Randomized approximation
scheme and perfect sampler for closed Jackson networks
with multiple servers. Annals of Operations Research,
162(1):35–55, 2008.

[7] D. Levin, Y. Peres, and E. Wilmer. Markov Chains and

Mixing Times. American Mathematical Society, 2009.

[8] R. O. Onvural. Survey of closed queueing networks
with blocking. ACM Comput. Surv., 22(2):83–121, June
1990.

[9] J. G. Propp and D. B. Wilson. Exact sampling with
coupled Markov chains and applications to statistical
mechanics. Random Struct. Algorithms, 9(1-2):223–252,

1996.

