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Abstract. Time-sensitive networks require timely and accurate moni-
toring of the status of the network. To achieve this, many devices send
packets periodically, which are then aggregated and forwarded to the
controller. Bounding the aggregate burstiness of the traffic is then cru-
cial for effective resource management. In this paper, we are interested in
bounding this aggregate burstiness for independent and periodic flows. A
deterministic bound is tight only when flows are perfectly synchronized,
which is highly unlikely in practice and would be overly pessimistic.
We compute the probability that the aggregate burstiness exceeds some
value. When all flows have the same period and packet size, we obtain a
closed-form bound using the Dvoretzky–Kiefer–Wolfowitz inequality. In
the heterogeneous case, we group flows and combine the bounds obtained
for each group using the convolution bound. Our bounds are numerically
close to simulations and thus fairly tight. The resulting aggregate bursti-
ness estimated for a non-zero violation probability is considerably smaller
than the deterministic one: it grows in

√
n logn, instead of n, where n is

the number of flows.

1 Introduction

The development of industrial automation requires timely and accurate moni-
toring of the status of the network. In time-sensitive networks, a common as-
sumption for critical types of traffic is that devices send packets periodically.
These packets are aggregated and forwarded to the controller. Characterizing
this aggregate traffic is then crucial for effective resource management.

Among the analytic tools providing analysis for real-time systems is deter-
ministic network calculus [1, 13]. From the characterization of the flows, the
description of the switches (offered bandwidth and scheduling policy), it can
derive worst-case performance bounds, such as end-to-end delay or buffer occu-
pancy. These performances can grow linearly with the burstiness of the flows [3].
Hence, accurately bounding the burstiness is key for performance evaluation
and resource management. However, deterministic network calculus takes into
account the worst-case scenario for aggregation of flows, which happens when
flows are perfectly synchronized, and this is very unlikely to happen.



To overcome this issue, probabilistic versions of network calculus (known
as Stochastic Network Calculus) have emerged, and their aim is to compute
performances when a small violation probability is allowed. Using probabilistic
tools such as moment-generating functions [8] or martingales [15], recent works
mainly focus on ergodic systems and on the performances at an arbitrary point
in time. This does not imply that the probability that the delay bound is never
violated during a period of interest is small. Moreover, results are very limited
in terms of topology and service policies, and become inaccurate for multiple
servers [2]. Methods that compute probabilistic bounds on the burstiness have
been discarded as they do not provide as good results for ergodic systems [6].

In this paper, we focus on the burstiness of the aggregation of periodic and
independent flows. In other words, each flow sends packets periodically with a
fixed packet size and period. The first packet is sent at a random time (the
phase) within that period. We assume phases are mutually independent. Our
aim is to find a probabilistic bound on the burstiness of the aggregation of flows,
that is, finding a burst that is valid at all times with large probability. That way,
combining these probabilistic burstiness bounds with results of deterministic
network calculus lead to delay and backlog bounds that are valid with large
probability at all times, hence the name quasi-deterministic. To our knowledge,
this is the first method to obtain quasi-deterministic bounds for independent,
periodic flows.

Our contributions are the following:

1. First, in the homogeneous setting, where all flows have the same period and
packet size, we provide two probabilistic bounds for the aggregate bursti-
ness. Both of them are based on bounding the probability of some event E
relying on the order statistics of the phases. The former (Theorem 1) has a
closed form; it uses the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [14]
to bound the probability of E, and when a small positive violation probabil-
ity is allowed, the burstiness grows in O(

√
n log n), where n is the number of

flows, instead of O(n) for a deterministic bound. The latter (Theorem 2) di-
rectly computes the probability of E, which can be implemented iteratively.

2. Second, we focus on two types of heterogeneity: either flows can be grouped
into several homogeneous sub-sets, and we use a bounding technique based
on convolution (Theorem 3), or flows have the same period but different
packet sizes, and the bounds can be adapted from the homogeneous case
(Theorem 4).

3. Last, we numerically show that our bounds are close to simulations. The
quasi-deterministic aggregate burstiness we obtain with a small, non-zero vi-
olation tolerance is considerably smaller than the deterministic one. For the
heterogeneous case, we show that our convolution bounding technique pro-
vides bounds significantly smaller than those obtained by the union bound.

The rest of the paper is organized as follows: We present our model in Section 2,
and then in Section 3 some results from state of the art. Our contributions are de-
tailed in Section 4 for the homogeneous case and Section 5 for the heterogeneous
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case. Finally, we provide some simulation results in Section 6 to demonstrate the
tightness of the bounds.

2 Assumptions and Problem Statement

We use the notation N = {0, 1, . . .} and Nn = {1, . . . , n}.

Assumptions We consider n periodic flows of packets. Each flow f ∈ Nn is
periodic with period τf and phase ϕf ∈ [0, τf ), and sends packets of size ℓf : the
number of bits of flow f arriving in the time interval [0, t) is ℓf⌈[t − ϕf ]+/τf⌉
where we use the notation [x]+ = max(0, x) and ⌈⌉ denotes the ceiling.

For every flow f , we assume that ϕf is random, uniformly distributed in
[0, τf ], and that the different (ϕf )f∈Nn

are independent random variables.

Problem Statement We consider the aggregation of the n flows and let A[s, t)
denote the number of bits observed in time interval [s, t). Our goal is to find a
token-bucket arrival curve constraining this aggregate, that is, a rate r and a
burst b such that ∀s ≤ t, A[s, t) ≤ r(t− s) + b. It follows from the assumptions
that each individual flow f ∈ Nn is constrained by a token-bucket arrival curve
with rate rf = ℓf/τf and burst ℓf . Therefore, the aggregate flow is constrained by
a token-bucket arrival curve with rate rtot =

∑n
f=1 rf and burst ℓtot =

∑n
f=1 ℓf .

However, due to the randomness of the phases, ℓtot might be larger than
what is observed, and we are rather interested in token-bucket arrival curves
with rate rtot and a burst b valid with some probability; specifically, we want to
find a bound on the tail probability of the aggregate burstiness, which is defined
as the smallest value of B such that the aggregate flow is constrained by a token-
bucket arrival curve with rate rtot and burst B, for the entire network lifetime.
The aggregate burstiness is given by

B = sup
t≥0

B̄(t). (1)

where B̄(t) is the token-bucket content at time t for a token-bucket that is
initially empty, and is given by

B̄(t) = sup
s≤t
{A[s, t)− rtot(t− s)}. (2)

Note that B is a function of the random phases of the flows, therefore, is also
random. Assume that P(B > b) = ε; this means that, with probability 1 − ε,
after periodic flows started, the aggregate burstiness is ≤ b. Conversely, with
probability ε, the aggregate burstiness is > b.

Observe that P(B > b) = 0 for all b ≥ ℓtot, as ℓtot is a deterministic bound
on the aggregate burstiness. Then, for some pre-specified value 0 ≤ b < ℓtot,
our problem is equivalent to finding ϵ(b) that bounds the tail probability of the
aggregate burstiness B, i.e.,

P(B > b) ≤ ϵ(b). (3)
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3 Background and Related Works

Bounding the burstiness of flows in Network Calculus is an important problem
since it has a strong influence on the delay and backlog bounds. The deterministic
aggregate burstiness can be improved (compared with summing burstiness of all
flows) when the phases of the flows are known exactly [7].

Regarding the stochastically bounded burstiness [6, 11], three models have
been proposed, depending on how quantifiers are used,

SBB : ∀0 ≤ s ≤ t, P (A[s, t)− r(t− s) > b) ≤ ϵ(b), (4)

S2BB : ∀t ≥ 0, P( sup
0≤s≤t

{A[s, t)− r(t− s)} > b) ≤ ϵ(b), (5)

S3BB : P(sup
t≥0
{ sup
0≤s≤t

{A[s, t)− r(t− s)}} > b) ≤ ϵ(b). (6)

First, notice that S3BB =⇒ S2BB =⇒ SBB. Indeed, SBB is a probability
upper bound that the arrival curve constraint is invalid for a fixed pair of times
s ≤ t. In contrast, S2BB is the probability that token-bucket content at time
t, B̄(t) exceeds b, hence the “∀s” appearing inside the probability. Last, S3BB
represents the violation probability of the aggregate burstiness B of the whole
process. A deterministic arrival curve is a special case of S3BB, with ϵ(b) =
0, which is why, for a non-zero violation probability ϵ(b), b is called a quasi-
deterministic bound on the burstiness.

The first model SBB is the weakest, but also the easiest to handle: bounding
the arrivals during a given interval of time can be done for many stochastic
models. It was also used for the study of aggregated independent flows with
periodic patterns [4, 6, 8, 10, 12, 16]. All the approaches can be summarized as
follows: a) defining an event Es of interest related to some time interval [s, t)
and aggregation of the flows; b) combining the events (Es)s≤t together to obtain
a violation probability of the burstiness or of the backlog bound at time t.

The second model S2BB seems at first more adapted to network calculus
analysis, as performance bounds can be directly derived from the formulation.
However, the probability bound of S2BB is usually deduced from SBB, which
leads to pessimistic bounds for a single server. Nevertheless, this framework may
become necessary for more complex cases [5].

In time-sensitive networks, we are interested in the probability that a delay or
backlog bound is not violated during some interval (e.g., the network’s lifetime),
not just one arbitrary point in time, so the two models SBB and S2BB are not
adapted, as they do not provide the violation probability of a delay bound during
a whole period of interest. In contrast, when using S3BB, we can guarantee,
with some probability, that delay and backlog bounds derived by deterministic
network calculus are never violated during the network’s lifetime, which is why
we choose this formulation in our model.

As pointed out in [6, Section 4.4], when arrival processes are stationary and
ergodic, S3BB is always trivial and the bounding function ϵ(b) in (6) is either
zero or one. This is perhaps why the literature was discouraged from studying
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S3BB characterizations. However, it has been overlooked that there is interest
in some non-ergodic arrival processes, as in our case. Indeed, with our model,
phases ϕf are drawn randomly but remain the same during the entire period of
interest; thus, our arrival processes are not ergodic.

4 Homogeneous Case

In this section, we consider the case where flows have the same packet size and
same period.

More precisely, we assume

(H) There exist τ, ℓ > 0 such that ∀f ∈ Nn, ℓf = ℓ, τf = τ and (ϕf )f∈Nn
is

a family of independent and identically distributed (iid) uniform random
variables (rv) on [0, τ).

We present two bounds for the aggregate burstiness; the former gives a closed
form, unlike the latter, which might be slightly more accurate when the number
of flows is small.

Let us first prove a useful result to see that if the time origin is shifted to
the arrival of one packet of flow i, the phases of the n − 1 other flows remain
uniformly distributed on [0, 1) and mutually independent. For this, we define the
function h as ∀x, y ∈ [0, 1),

h(x, y) = (x− y)1x≥y + (1 + x− y)1x<y. (7)

Intuitively, if x = ϕj , and y = ϕi, h(x, y) is the arrival time of the first packet of
flow j if the time origin corresponds to the arrival of a packet of flow i.

Lemma 1. Let U1, . . . , Un be a sequence of n iid uniform rv on [0, 1). Let i ∈ Nn

and define Wj for j ∈ Nn \ {i} by Wj = h(Uj , Ui). Then, (Wj)j ̸=i is a family of
n− 1 iid uniform rv on [0, 1).

Proof. Let us first do a preliminary computation for all ui ∈ [0, 1] and all
bounded measurable function gj :

E[gj(h(Uj , ui))] =

∫ 1

uj=0

gj(h(uj , ui))duj =

∫ 1

uj=ui

gj(uj − ui)duj +
∫ ui

uj=0

gj(1 + uj − ui)duj

=

∫ 1−ui

uj=0

gj(wj)dwj +

∫ 1

uj=1−ui

gj(wj)dwj =

∫ 1

wj=0

gj(wj)dwj .

Then, consider a collection of bounded measurable functions (gj)j ̸=i: we can com-

pute E[
∏

j ̸=i gj(Wj)] = E[
∏

j ̸=i gj(h(Uj , Ui))] =
∫ 1

ui=0
E[
∏

j ̸=i gj(h(Uj , ui))]dui =∫ 1

0

∏
j ̸=iE[gj(h(Uj , ui))]dui =

∫ 1

0

∏
j ̸=iE[gj(Vj)]dui =

∏
j ̸=iE[gj(Vj)] = E[

∏
j ̸=i gj(Vj)],

where (Vj)j ̸=j is a collection of n− 1 iid uniformly rv on [0, 1). ⊓⊔
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The bounds we are to present are based on the order statistics: consider n−1
rv U1, . . . , Un−1 and its order statistics is U(1) ≤ · · · ≤ U(n−1), defined by sorting
U1, . . . , Un−1 in non-decreasing order. It is well-known [9, Equation 1.145] that
if (Ui) is an iid family of uniform rv on [0,1], the density function of the joint
distribution of U(1), . . . , U(n−1) is

fU(1),...,U(n−1)
(y1, . . . , yn−1) = (n− 1)!10≤y1≤y2≤...≤yn−1≤1. (8)

The next proposition connects the order statistics of the phases with the
aggregate burstiness, and is key for Theorems 1 and 2.

Proposition 1. Assume model (H). For all 0 ≤ b < nℓ,

P(B > b) ≤ nP(E), (9)

with

E
def
=

n−1⋃
k=⌊b/ℓ⌋

{
U(k) <

(k + 1)− b/ℓ
n

}
, (10)

where U(1), . . . , U(n−1) is the order statistic of n− 1 iid uniform rv on [0, 1].

Proof. Note that the normalized process Ã[s, t) = 1
ℓA[τs, τt) follows model (H)

with τ = ℓ = 1, and
P(B > b) = P(B̃ > b/ℓ).

We then assume in this proof (and that of Theorem 1) that τ = ℓ = 1, and
the final result is obtained by replacing b by b/ℓ. One can also remark that the
bound is independent of τ .

Let Tj , j ≥ 1 be the arrival time of the j-th packet in the aggregate. With
probability 1, Tj is strictly increasing as we assume all phases are different. First,

for all i ≤ j, for all (ti, tj) ∈ (Ti−1, Ti]× (Tj , Tj+1]
def
= Ci,j , A[ti, tj) = j − i+ 1,

and Hi,j
def
= supti,tj∈Ci,j

A[ti, tj)− n(ti − tj) = j − i+ 1− n(Tj − Ti). Then, we
can rewrite the aggregate burstiness as

B = sup
1≤i≤j

sup
ti,tj∈Ci,j

A[ti, tj)− n(ti − tj) = sup
1≤i≤j

Hi,j . (11)

As our model is the aggregation of n flows of period 1, Tj+n = Tj + 1 for j ≥ 1,
and Hi,j+n = j + n − i + 1 − n(Tj − 1 − Ti) = Hi,j for all j ≥ i. Similarly,
Hi+n,j = Hi,j for all j ≥ i+ n. Combine this with (11) and obtain

B = max
j≥1

max
i∈Nj

Hi,j = max
i∈Nn

max
i≤j≤n−1

Hi,j︸ ︷︷ ︸
Bi

. (12)

We now prove that ∀i ∈ Nn, P (Bi > b) = P(E).
Observe that for all j ≥ i, we have the equality of events {Hi,j > b} = {Tj −

Ti < (j−i+1−b)/n}, so for all i ∈ Nn, {Bi > b} =
⋃i+n−1

j=i {Tj − Ti < (j − i+ 1− b)/n}.
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We can also notice that the sequence (Tj − Ti)n+i−1
j=i+1 is the ordered sequence

of phases starting from time origin Ti. Conditionally to Ti = ϕf , or equivalently
ϕ(i) = f , (Tj − Ti)n+i−1

j=i+1 is the order statistics of (ϕj − ϕf )j ̸=f , which is, from
Lemma 1, iid and uniformly distributed on [0, 1). If follows that

P(Bi > b | ϕ(i) = f) = P(∪n−1
j=1 {U(i) <

k − b
n
}) = P(∪n−1

j=⌊b⌋{U(i) <
k − b
n
}) = P(E),

since U(i) ≥ 0. Then, using the law of total probabilities, P(Bi > b) =
∑n

f=1P(Bi >
b | ϕ(i) = f)P(ϕ(i) = f) = P(E).

Lastly, we conclude by using the union bound: P(B > b) = P(∪ni=1Bi > b) ≤∑n
i=1P(Bi > b) = nP(E). ⊓⊔

We now present the first bound on the tail probability of the aggregate bursti-
ness B.

Theorem 1 (Homogeneous case, DKW bound). Assume model (H) with
n > 1. For all b < nℓ, a bound on the tail probability of the aggregate burstiness
B is given by

P (B > b) ≤ n exp

(
−2(n− 1)

(
⌊b/ℓ⌋
n− 1

− 1

n

)2
)

def
= εdkw(n, ℓ, b). (13)

Proof. Let us assume that τ = ℓ = 1 in the proof, as in the proof of Proposi-

tion 1. Observe that when ⌊b⌋ < 1− 1
n +

√
(n−1) log 2

2 , we have εdkw(n, 1, b) ≥ n
2 ,

hence (13) holds. Therefore we now proceed to prove (13) when ⌊b⌋ ≥ 1 − 1
n +√

(n−1) log 2
2 .

Step 1: Consider n− 1 iid, rv U1, . . . , Un−1 and its order statistics is U(1) ≤
· · · ≤ U(n−1), defined by sorting U1, . . . , Un−1 in non-decreasing order. For ε > 0,
define E′(ε) by

E′(ε)
def
=

n−1⋃
k=1

{
U(k) <

k

n− 1
− ε
}
. (14)

We now show that if ε ≥
√

log 2
2(n−1) ,

P (E′(ε)) ≤ e−2(n−1)ε2 . (15)

Let Fn−1 be the (random) empirical cumulative distribution function of U1, . . . , Un−1,
defined ∀x ∈ [0, 1] by

Fn−1(x) =
1

n− 1

n−1∑
i=1

1U(i)≤x. (16)

The Dvoretzky–Kiefer–Wolfowitz inequality [14] states that if ε ≥
√

log 2
2(n−1) , then

P( sup
x∈[0, 1]

(Fn−1(x)− x) > ε) ≤ e−2(n−1)ε2 . (17)
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We can apply this to find the bound of interest. First, we prove that

sup
x∈[0, 1]

(Fn−1(x)− x) > ε⇔ ∃k ∈ Nn−1, U(k) <
k

n− 1
− ε. (18)

Proof of ⇐: First, observe that Fn−1(U(k)) = k/(n− 1), so if k
n−1 −U(k) > ε

for some k, then Fn−1

(
U(k)

)
− U(k) > ε, and the left-hand side holds.

Proof of⇒: Set U(0) = 0 and U(n) = 1. Observe that for all k ∈ {0, . . . , n−1},
and all U(k) ≤ x < U(k+1), Fn−1 (x) = Fn−1

(
U(k)

)
= k

n−1 . Hence, Fn−1(x)−x =
k

n−1−x is decreasing on each segment [U(k), U(k+1)). Then, the supremum in the
left-hand side of (18) is obtained for some x = U(k), i.e., supx∈[0, 1](Fn−1(x) −
x) = supk∈{0,...,n−1}(Fn−1(U(k)) − U(k)) = supk∈{0,...,n−1}(

k
n−1 − U(k)), which

implies the right-hand side (Fn−1(0)− 0 = 0 < ε).
This proves (18), and Step 1 is concluded by combining it with (17).
Step 2: We now proceed to show that if

ε =
⌊b⌋
n− 1

− 1

n
, (19)

then, E ⊆ E′(ε), where event E is defined in Proposition 1.

It is enough to show that for all k ∈ {⌊b⌋, . . . , n − 1}, k+1−b
n ≤ k−⌊b⌋

n−1 + 1
n ,

which can be deduced from the following implications:

k + 1− b
n

≤ k − ⌊b⌋
n− 1

+
1

n
⇔ k − b

n
≤ k − ⌊b⌋

n− 1
⇐ k − ⌊b⌋

n
≤ k − ⌊b⌋

n− 1
⇔ 1

n
≤ 1

n− 1
.

Step 3: By Step 2, we have P(E) ≤ P(E′(ε)). Also, observe that ⌊ bl ⌋ ≥

1 − 1
n +

√
(n−1) log 2

2 implies ε ≥
√

log 2
2(n−1) . Thus, combine it with Step 1 to

obtain

P(E) ≤ P(E′(ε)) ≤ exp
(
− 2(n− 1)

( ⌊b⌋
n− 1

− 1

n

)2)
. (20)

Combine (20) with Proposition 1 to conclude the theorem. ⊓⊔

Note that the bound of Theorem 1 is only less than one and is non-trivial

when ⌊ bl ⌋ ≥ 1− 1
n +

√
(n−1) log 2

2 .

The following corollary provides a closed-form formulation for the minimum
value for the aggregate burstiness with a violation probability of at most ε. It is
obtained by setting the right-hand side of (13) in Theorem 1 to ε.

Corollary 1 (Quasi-deterministic burstiness bound). Assume model (H)
with n > 1. Consider some 0 < ε < 1, and define

b(n, ℓ, ε)
def
= ℓ

⌈
1− 1

n
+

√
(n− 1)(log n− log ε)

2

⌉
. (21)

Then, b(n, ℓ, ε) is a quasi-deterministic burstiness bound for the aggregate with
the violation probability of at most ε, i.e., P (B > b (n, ℓ, ε)) ≤ ε.
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Observe that b(n, ℓ, ε) grows in
√
n log n as opposed to the deterministic

bound (ℓtot = nℓ) that grows in linearly (see Fig. 1b).
Proposition 1 introduces the event E such that an upper bound of P(E) is

used to derive an upper bound on the tail probability of the aggregate burstiness.
Theorem 1 is derived from the DKW upper bound of P(E), which is tight when
the number of flows n is large. In Theorem 2, we compute the exact value of
P(E); thus, it provides a slightly better bound when the number of flows is small
but at the expense of not having a closed-form expression.

Theorem 2 (Refinement of Theorem 1 for small groups). Assume model
(H) with n > 1. For all b ≥ 0. Then, a bound on the tail probability of the
aggregate burstiness B is

P (B > b) ≤ n(1− p(n, ℓ, b)) def
= εthm2(n, ℓ, b), (22)

with

p(n, ℓ, b) = (n− 1)!

∫ 1

yn−1=un−1

∫ yn−1

yn−2=un−2

. . .

∫ yi+1

yi=ui

. . .

∫ y2

y1=u1

1 dy1 . . . dyn−1,

(23)

and uk = [(k+1)−b/ℓ]+

n , for all k ∈ Nn−1 and [x]+ = max(0, x).

Note that the computation of the bound of Theorem 2 requires computing
p(n, ℓ, b) in (23), which is a series of polynomial integrations, and finding a gen-
eral closed-form formula might be challenging. However, computing the bound
can be done iteratively as in Algorithm 1: The integrals are computed from
the inner sign to the outer (incorporation factor i from the factorial in the i-th
integral). Polynoms are computed at each step and variable qmj represents the
coefficient of degree j of the m-th integral. Note that we always have qmm = 1, so
the monomial of degree n− 1 cancels in (22).

All computations involve exact representations of the integrals (no numeri-
cal integration) and use exact arithmetic with rational numbers; therefore, the
results are exact with infinite precision.

Algorithm 1: Computation of εthm2 (n, ℓ, b) from Theorem 2

Inputs : number of flows n, a burst b, and a packet size ℓ.
Output : εthm2(n, ℓ, b) such that P(B > b) ≤ εthm2(n, ℓ, b).

1 m← ⌊b/ℓ⌋ − 1;
2 (qm0 , q

m
1 , . . . , q

m
m)← (0, 0, . . . , 0, 1);

3 for m← ⌊b/ℓ⌋ to n− 1 do
4 um ← (m+ 1− b/ℓ)/n;

5 qm0 ← −
∑m−1

j=0

mqm−1
j

j+1 uj+1
m ;

6 for i← 1 to m do qmi ←
mqm−1

i−1

i ;

7 return n
∑n−2

i=0 q
n−1
i
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Proof. Let Ē be the complementary event of E defined in Proposition 1.

Ē =

n−1⋂
k=1

{
U(k) ≥

[k + 1− b/ℓ]+

n

}
. (24)

Let fU(1),...,U(n−1)
be the density function of the joint distribution of U(1), . . . , U(n−1),

given in (8). Then

P
(
Ē
)
=

∫ 1

yn−1=un−1

. . .

∫ 1

yi=ui

. . .

∫ 1

y1=u1

fU(1),...,U(n−1)
(y1, . . . , yn−1) dy1 . . . dyn−1

(25)

=

∫ 1

yn−1=un−1

. . .

∫ 1

yi=ui

. . .

∫ 1

y1=u1

(n− 1)!10≤y1≤y2≤...≤yn−1≤1 dy1 . . . dyn−1

(26)

= (n− 1)!

∫ 1

yn−1=un−1

. . .

∫ yi+1

yi=ui

. . .

∫ y2

y1=u1

1 dy1 . . . dyn−1 = p(n, ℓ, b). (27)

Combine it with P
(
Ē
)
= 1−P (E) and Proposition 1 to conclude the theorem.

⊓⊔

Note that since Theorem 2 computes the exact probability of event E, we
have εdkw(n, ℓ, b) ≥ εthm2(n, ℓ, b).

5 Heterogeneous Case

In this section, we consider the case where flows have different periods and packet
sizes. We present burstiness bounds in two different settings: First, when flows
can be grouped into homogeneous flows; second, when all packets have the same
period but with different packet sizes.

Let us first focus on the model where flows are grouped according to their
characteristics:

(G) There exists a partition I1, . . . , Ig of Nn such that Ii is a group of ni flows sat-
isfying model (H) with packet size ℓi and period τi. All phases are mutually
independent.

Proposition 2 (Convolution Bound). Let X1, X2, . . . , Xg be g ≥ 1 mutually
independent rv on N. Assume that for all i ∈ Nn, Ψi is wide-sense increasing
and is a lower bound on the CDF of Xi, namely, ∀b ∈ N, P(Xi ≤ b) ≥ Ψi(b).
Define ψi by ψi(0) = Ψi(0) and ψi(b) = Ψi(b)−Ψi(b− 1) for b ∈ N \ {0}.

Then, a lower bound on the CDF of
∑g

i=1Xi is given by: ∀b ∈ N,

P
( g∑

i=1

Xi ≤ b
)
≥ (ψ1 ∗ ψ2 ∗ · · · ∗ ψg−1 ∗Ψg) (b), (28)

where, the symbol ∗ denotes the discrete convolution, defined for arbitrary func-
tions f1, f2 : N→ R by

10



∀b ∈ N, (f1 ∗ f2)(b) =
b∑

j=0

f1(j)f2(b− j). (29)

Proof. We prove it by induction on g.
Base Case g = 1: There is nothing to prove: for all b ∈ N, P(X1 ≤ b) ≥ Ψ1(b).
Induction Case: We now assume that Equation (28) holds for g variables, and
we show that it also holds for g + 1 variables.

We can apply Equation (28) to variables X2, X3, . . . , Xg+1, and let us denote
Y = X2 + · · ·+Xg+1 and Ψ = ψ2 ∗ · · · ∗ψg ∗Ψg+1. We need to show that for all
b ∈ N,

P(X1 + Y ≤ b) ≥ (ψ1 ∗Ψ)(b). (30)

Let F (b) = P(Y ≤ b) and observe that P(Y = 0) = F (0) and P(Y = b) =
F (b)− F (b− 1) for b ∈ N \ {0}. Then, since X1 and Y are independent,

P(X1 + Y ≤ b) =
b∑

j=0

P(X1 + j ≤ b|Y = j)P(Y = j) =

b∑
j=0

P(X1 + j ≤ b)P(Y = j)

(31)

≥
b∑

j=0

Ψ1(b− j)P(Y = j) (32)

≥ Ψ1(b)F (0) +

b∑
j=1

Ψ1(b− j)(F (j)− F (j − 1)). (33)

We now use Abel’s summation by parts in (33) and obtain

P(X1 + Y ≤ b) ≥ Ψ1(b)F (0) +

b∑
j=1

Ψ1(b− j)F (j)−
b∑

j=1

Ψ1(b− j)F (j − 1)

(34)

= Ψ1(b)F (0) +

b∑
j=1

Ψ1(b− j)F (j)−
b−1∑
j=0

Ψ1(b− j − 1)F (j)

(35)

=

b∑
j=0

Ψ1(b− j)F (j)−
b−1∑
j=0

Ψ1(b− j − 1)F (j) (36)

= Ψ1(0)F (b) +

b−1∑
j=0

(Ψ1(b− j)−Ψ1(b− j − 1))F (j) (37)

= ψ1(0)F (b) +

b−1∑
j=0

ψ1(b− j)F (j) =
b∑

j=0

ψ1(b− j)F (j) (38)

≥
b∑

j=0

ψ1(b− j)Ψ(j) = (ψ1 ∗Ψ)(b). (39)

11



We can conclude by using the associativity of the discrete convolution: ψ1 ∗Ψ =
ψ1 ∗ · · · ∗ ψg ∗Ψg+1. ⊓⊔

Remarks. 1. Note that (ψ1 ∗Ψ2)(b) =
∑

i+j≤b ψ1(i) + ψ2(j) = (ψ2 ∗Ψ1)(b), so
the convolution bound is independent of the order of X1, . . . , Xg.
2. An alternative to Proposition 2 is to use then union bound rather than the
convolution bound: for all (b1, . . . , bg) ∈ Ng such that

∑g
i=1 bi = b, we have

{
∑g

i=1Xi > b} ⊆
⋃g

i=1 {Xi > bi}, so P(X > b) ≤
∑g

i=1P(Xi > bi) ≤
∑g

i=1(1−
Ψi(bi)). We can choose (bi)

g
i=1 so as to minimize this latter term, and take the

complement to obtain

P(

g∑
i=1

Xi ≤ b) ≥ 1− min
b1+···+bg=b

g∑
i=1

(1−Ψi(bi)). (40)

This bound is also valid when rvs Xi are not independent, but it can be shown
that the convolution bound always dominates the union bound. In our numerical
evaluations, we find that the convolution bound provides significantly better
results than the union bound.

Theorem 3 (Flows with different periods and different packet-sizes).
Assume model (G). Let εi be a wide-sense decreasing function that bounds the
tail probability of aggregate burstiness Bi of each group i ∈ Ng: for all b ∈ N,
P (Bi > b) ≤ εi(b) for all b ∈ N. Define Ψi(b) = 1 − εi(b) for b ∈ N and define
ψi by ψi(0) = Ψi(0) and ψi(b) = εi(b− 1)− εi(b) for b ∈ N \ {0}.

Then, a bound on the tail probability of the aggregate burstiness of all flows
B is given by ∀b ∈ Nℓtot ,

P (B > b) ≤ 1− (ψ1 ∗ ψ2 ∗ · · · ∗ ψg−1 ∗Ψg) (b), (41)

Proof. For all group i ∈ Ng, let A
i[s, t) be the aggregate of flows of group i during

the interval [s, t), ri, its aggregate arrival rate, and Bi its aggregate burstiness.
Observe that for all s ≤ t, A(s, t] =

∑g
i=1A

i[s, t) and rtot =
∑g

i=1 r
i. We then

obtain

B = sup
0≤s≤t

{A(s, t]− rtot(t− s)} = sup
0≤s≤t

{ g∑
i=1

(Ai(s, t]− ri(t− s))
}

(42)

≤
g∑

i=1

sup
0≤s≤t

{Ai(s, t]− ri(t− s)} =
g∑

i=1

Bi ≤
g∑

i=1

⌈Bi⌉. (43)

Hence, it follows that P(B ≤ b) ≥ P(
∑g

i=1⌈Bi⌉ ≤ b), b ∈ N .
We now apply Proposition 2 withXi = ⌈Bi⌉ and Ψi as defined in the theorem:

it suffices to observe that (⌈Bi⌉)i∈Ng
are mutually independent rv on N; as εi is

wide-sense decreasing, Ψi is wide-sense increasing; Hence, by Proposition 2, we
obtain that for all b ∈ N, P(

∑g
i=1⌈Bi⌉ ≤ b) ≥ (ψ1 ∗ψ2 ∗ . . .∗ψg−1 ∗Ψg)(b), which

concludes the proof. ⊓⊔
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We now turn to our second heterogeneous model: when all flows have the
same period but different packet sizes.

(P) There exists τ > 0 such that ∀f ∈ Nn, τf = τ ; ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓn > 0 and
(ϕf )f∈Nn is a family of iid uniform rv on [0, τ).

Theorem 4 (Flows with the same period but different packet sizes).

Assume model (P). For all 0 ≤ b < ℓtot, set η
def
= min

{
k

n−1 −
∑k+1

j=1 ℓj

ℓtot
, k ∈

Nn−1,
∑k+1

j=1 ℓj > b
}
. Then

1. A bound on the tail probability of the aggregate burstiness of all flows B is

P(B > b) ≤ n exp
(
− 2(n− 1)(η +

b

ℓtot
)
2
)
. (44)

2. For all ε ∈ (0, 1), for all n ≥ 2, the violation probability of at most ε, i.e.,
P (B > b(n, ℓ1, . . . , ℓn, ε)) ≤ ε with

b(n, ℓ1, . . . , ℓn, ε)
def
= ℓtot

⌈√ log n− log ε

2(n− 1)
− η
⌉
. (45)

3. A bound on the tail probability of the aggregate burstiness of all groups B
is given by P (B > b) ≤ n(1 − p̄(n, ℓ1, . . . , ℓn, b)), where p̄(n, ℓ1, . . . , ℓn, b) is

computed as in Equation (23), where for all k ∈ Nn−1, uk =
[
∑k+1

j=1 ℓj−b]+

ℓtot
.

When all flows have the same packet-sizes ℓ, this is model (H) and the bounds
provided are exactly the same as in Section 4. Algorithm 1 can also be used
to compute the bound of item 3 if a) line 1 is replaced by m ← max{k ≥
0 |

∑k+1
j=1 ℓj ≤ b} and b) the values of um are adapted in line 4.

Proof. The proof is done by adapting Proposition 1. Then the proofs of each
item follow exactly the steps of Theorems 1, Corollary 1 and Theorem 2. The
key difference in Proposition 1 is the computation of Hi,j : Hi,j ≤

∑j−i+1
k=1 ℓk −

ℓtot(Tj − Ti): we bound this value as if the packets arrived in this arrival where
the j − i+ 1 longest ones. ⊓⊔

6 Numerical Evaluation

In this section, we numerically illustrate our bounds in Fig. 1 and Fig. 2.

6.1 Homogeneous Case

In Fig. 1a, we consider 250 flows with the same packet size (with respect to a
unit, is assumed to be 1) and the same period. We then compute bounds on the
tail probability of their aggregate burstiness using Theorems 1 and 2. We also
compute the bound using simulations: For each flow, we independently pick a
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Fig. 1: (a): Bound on the tail probability of the aggregate burstiness obtained by Theo-
rems 1, 2, and simulations. (b): The obtained quasi-deterministic burstiness with violation
probability of 10−7 by Theorem 1 and Theorem 2, as the number of flows grows; the de-
terministic bound (dashed plot) grows linearly with the number of flows.

phase uniformly at random, and we then compute the aggregate burstiness as
in (1); we repeat this 108 times. We then compute bounds on the tail probabil-
ity of their aggregate burstiness and its 99% Kolmogorov–Smirnov confidence
band. The bound of Theorem 2 is slightly better than that of Theorem 1. Also,
compared to simulations, our bounds are fairly tight.

In Fig. 1b, we consider n ∈ {2, . . . , 3000} flows with the packet size 1 and
same period. We then compute a quasi-deterministic burstiness bound with vi-
olation probability of 10−7 once using Corollary 1 and once using Theorem 2;
they are almost equal and as n grows are exactly equal, as Theorem 1 is as
tight as Theorem 2 for large n. Also, our quasi-deterministic burstiness bound
is considerably less than the deterministic one (i.e., n) and grows in

√
n log n.

6.2 Heterogeneous Case

To assess the efficiency of the bound in the heterogeneous case, we consider in
Fig. 2a 10000 homogeneous flows with period and packet length 1, and divide
them into g groups of 10000/g flows, for g ∈ {1, 2, 4, 5, 8}. We compute a bound
for each group by Theorem 1, and combine them once with the convolution bound
of Theorem 3 and once by the union bound (as explained after Proposition 2).
Our convolution bound is significantly better than the union bound, and the
differences increases fast with the number of sets.

In Fig. 2b, we consider 10 (resp. 5) homogeneous groups of 10 (resp. 20) flows,
flows of each set g ∈ N10 (resp. g ∈ N5), have a packet-size equal to g, and all
flows have the same period. We then compute the bound on the tail probability of
the aggregate burstiness once with Theorem 3 and once with Theorem 4. When
groups are small (here of 10 flows), Theorem 4 provides better bounds than
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Fig. 2: (a): Comparison of the convolution bound of Theorem 3 to the union bound when
combining bound obtained for homogeneous sets of flows. (b): Slight improvement of
Theorem 4 compared to Theorem 3 when the number of flows per packet-size is small.

Theorem 3, but when groups are larger (here of 20 flows), Theorem 3 dominates
Theorem 4.

7 Conclusion

In this paper, we provided quasi-deterministic bounds on the aggregate bursti-
ness for independent, periodic flows. When a small violation tolerance, is allowed,
the bounds are considerably better compared to the deterministic bounds. We
obtained a closed-form expression for the homogeneous case, and for the het-
erogeneous case, we combined bounds obtained for homogeneous sets using the
convolution bounding technique.

We on purpose limited our study to the burstiness. Quasi-deterministic delay
and backlog bounds can be obtained by applying any method from deterministic
network calculus, and combining, either by mean of the union bound or (in case of
independence) convolution-like manipulations of the burstiness violation events
defined for this paper for all groups of flows. Our results can for example be
directly applied to [3, Theorem 5], where the model S3BB was used to compute
probabilistic delay bounds in tandem networks.
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