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The stochastic network calculus (SNC) holds promise as a versatile and uniform framework to calculate

probabilistic performance bounds in networks of queues. A great challenge to accurate bounds and efficient

calculations are stochastic dependencies between flows due to resource sharing inside the network. However, by

carefully utilizing the basic SNC concepts in the network analysis the necessity of taking these dependencies

into account can be minimized. To that end, we unleash the power of the pay multiplexing only once

principle (PMOO, known from the deterministic network calculus) in the SNC analysis. We choose an analytic

combinatorics presentation of the results in order to ease complex calculations. In tree-reducible networks,

a subclass of general feedforward networks, we obtain an effective analysis in terms of avoiding the need

to take internal flow dependencies into account. In a comprehensive numerical evaluation, we demonstrate

how this unleashed PMOO analysis can reduce the known gap between simulations and SNC calculations

significantly, and how it favourably compares to state-of-the art SNC calculations in terms of accuracy and

computational effort. Motivated by these promising results, we also consider general feedforward networks,

when some flow dependencies have to be taken into account. To that end, the unleashed PMOO analysis is

extended to the partially dependent case and a case study of a canonical example topology, known as the

diamond network, is provided, again displaying favourable results over the state of the art.
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1 INTRODUCTION
Stochastic network calculus (SNC) is a promising uniform framework to calculate probabilistic

end-to-end performance bounds for individual flows in networks of queues. The most prominent

goal is to control tail probabilities for the end-to-end (e2e) delay, i.e., probabilities for rare events

shall be bounded, e.g., P(e2e delay > 10ms) ≤ 10
−6
. Many modern systems are eager after such

guarantees, as exemplified in visions like, e.g. Tactile Internet [19] or Industrial IoT [10].

SNC originates in the deterministic analysis by Rene Cruz [15, 16] and was subsequently supple-

mented by the use of min-plus algebra [1]. In the following years, it was transferred to a stochastic
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(a) Original topology (b) Reduction to end-to-end server
after network analysis

Fig. 1. Interleaved tandem network

setting [11, 12, 14, 21, 27]. Over the course of almost 30 years, two main branches of SNC have

evolved: either by characterizing arrivals and service by envelope functions / tail bounds [12, 17, 27],

or, by moment-generating function (MGF) bounds [11, 21]. While a larger class of processes can be

modelled with tail bounds, [34] comes to the conclusion that using MGFs leads to tighter bounds

under the assumption of independence.

It should be mentioned that the uniform approach of SNC, in particular to apply the union bound

to evaluate sample-path events, comes at a price: already in the single-node case there is a known

gap between simulations and SNC calculations (see Figure 2a on the next page for some typical

numerical results). In fact, there is a tight analysis for the single-node case for some traffic classes

based on martingale techniques [13, 33] (avoiding the use of the union bound); yet, an end-to-end

martingale analysis remains an elusive goal. Therefore, in this paper, we keep following the uniform

approach of SNC and concentrate our efforts on not widening the simulation-calculation gap further

when analysing larger and more complex networks.

Analysing more general networks of queues, in particular feedforward networks, usually requires

the consideration of stochastically dependent flows. Even if all external arrival and service processes

are independent, the sharing of resources by individual flows at queues generally makes them

stochastically dependent at subsequent queues. How much this kind of dependencies has to be

taken into account is affected by the network analysis method because different methods require

different levels of knowledge about the internal characterization of flows. Further on, we call these

dependencies method-pertinent. To deal with (method-pertinent) stochastic dependencies in SNC,

typically, the MGF of, e.g. the sum of dependent flows is upper bounded by Hölder’s inequality (HI).

While HI’s generality is convenient and consistent with SNC’s aspiration as a uniform framework,

it often incurs the drawback of degrading bound accuracy considerably, further widening the

simulation-calculation gap. In addition, it increases the computational effort by introducing an

additional parameter to optimize for each application of HI, such that in larger scenarios runtimes

quickly become prohibitive (see also Subsection 4.2). Consequently, SNC analysis methods with

less method-pertinent dependencies are strongly favourable as they require less invocations of HI.

In fact, previous work in relatively simple network scenarios has indicated that techniques which

completely avoid HI achieve significantly better delay bounds [29, 38].

Different network analysis methods have been investigated intensively in the deterministic

setting; some better known ones are, e.g. Separate Flow Analysis (SFA) or Pay multiplexing only

once (PMOO) [35]. These typically try to reduce the analysis (e.g. for the delay) of a particular flow

in the network to a simple analysis of this flow traversing a single server; the characteristics of

that so-called end-to-end server depend on the cross-flows and the servers of the original network,

see also Figure 1. The main goal for the network analysis in the deterministic case was to properly

account for the bursts of the flows to ensure that they are only "paid once". In particular, the PMOO

principle [8, 20, 35, 36] tries to ensure this for all flows in the network by, whenever possible,

concatenating servers first before calculating residual service by "subtracting" cross-flows. As

discussed above, in SNC the main concern is dependencies, yet it turns out that, to some extent, this
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is related to the proper accounting of bursts. In fact, in [29], it has been observed that the PMOO

analysis known from deterministic network calculus [8, 20, 35, 36] leads to less method-pertinent

dependencies compared to SFA and is thus also promising in an SNC analysis.

However, the application of PMOO in the SNC has, so far, been limited to so-called nested

interference structures – this is very restrictive. For instance, for a network with interleaved

interference as in Figure 1a, state-of-the-art analysis still requires at least one application of HI,

even if we assume all external arrival processes to be independent. This is also illustrated in

Figure 2b (anticipating some of the results from Section 4): method-pertinent dependencies force

the state-of-the-art SNC bounds to deteriorate significantly; in particular, it is observable that, in

comparison to the single-node case, even the scaling of the delay bounds is not captured correctly

any more and the simulation-calculation gap widens considerably even for such a small network.

The overall goal of our paper is therefore to unleash the power of the PMOO principle in the

SNC framework in order to not widen the simulation-calculation gap further even in more complex

and larger networks of queues. To that end, we make the following contributions:

• We present a PMOO-based SNC end-to-end analysis for a subclass of feedforward networks,

so-called tree-reducible networks; the main result is given in Theorem 6. It achieves zero
method-pertinent stochastic dependencies when external arrivals and service processes are

independent. I.e., if all input flows are assumed to be independent, we can derive bounds

without using Hölder’s inequality. Also, Theorem 6 allows us to calculate the residual service

in one big step avoiding the sequencing penalty in previous network analysis methods.

• We apply analytic combinatorics [23] to recover bounds from state-of-the-art analysis meth-

ods in simple networks and enable a generalization to more complex settings.

• We conduct an extensive numerical evaluation with respect to the accuracy of the new bounds

for several traffic classes and different network topologies.

• We discuss first results to extend our new method from tree-reducible to general feedforward

networks, still striving for the goal to minimize method-pertinent dependencies.

2 MGF-BASED NETWORK CALCULUS AND ANALYTIC COMBINATORICS
In this section, we briefly introduce the two main tools we employ in our paper, namely the MGF-

based stochastic network calculus in Subsection 2.1 and analytic combinatorics in Subsection 2.2.

Furthermore, we show in Subsection 2.3 how analytic combinatorics can be used to express complex

calculations in MGF-based SNC in a concise manner.

2.1 Stochastic network calculus framework
We present the main concepts of the moment-generating function (MGF)-based network calculus

for the single-server case (the network case is postponed to Section 3 in the context of our new
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Fig. 2. SNC delay bounds and simulation results (for traffic with exponentially distributed increments and
constant rate servers). For more details, see Section 4.
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contribution). More details can be found in [11, 21]. We assume time is discrete and space is

continuous. We deal with bivariate functions and always assume that their definition domain is

{(𝑠, 𝑡) ∈ N2 | 𝑠 ≤ 𝑡} and that they are non-negative: 𝑓 (𝑠, 𝑡) ≥ 0 for all 𝑠 ≤ 𝑡 .

Bivariate arrival processes. A bivariate (arrival) process 𝐴 of a flow at some point in the network

represents the amount of data of the flow traversing that point of the network during any interval of

time: let 𝑎𝑖 be the amount of data during the 𝑖-th time slot; we define for all 𝑠 ≤ 𝑡 ,𝐴(𝑠, 𝑡) = ∑𝑡
𝑖=𝑠+1 𝑎𝑖 ,

with the convention 𝐴(𝑡, 𝑡) = 0. Note that bivariate arrival processes are additive: for all 𝑠 ≤ 𝑢 ≤ 𝑡 ,
𝐴(𝑠,𝑢) +𝐴(𝑢, 𝑡) = 𝐴(𝑠, 𝑡).

(min, plus) operations. To describe the transformation between bivariate processes when travers-

ing a server, we rely on the following operations in the (min,plus)-algebra. Let 𝑓 and 𝑔 be two

bivariate functions.

• (min, plus)-convolution: 𝑓 ⊗ 𝑔(𝑠, 𝑡) = min𝑠≤𝑢≤𝑡 𝑓 (𝑠,𝑢) + 𝑔(𝑢, 𝑡);
• (min, plus)-deconvolution: 𝑓 ⊘ 𝑔(𝑠, 𝑡) = max0≤𝑢≤𝑠 𝑓 (𝑢, 𝑡) − 𝑔(𝑢, 𝑠).

𝑆-servers. Let 𝑆 be a non-negative bivariate function. A server is a dynamic 𝑆-server if the

relation between its bivariate arrival and departure processes 𝐴 and 𝐷 satisfies for all 𝑡 ≥ 0,

𝐴(0, 𝑡) ≥ 𝐷 (0, 𝑡) ≥ 𝐴 ⊗ 𝑆 (0, 𝑡).
This notion of server can be too weak in some situations when performing a network analysis,

and we introduce work-conserving 𝑆-servers: assume that 𝑆 (𝑡, 𝑡) = 0 for all 𝑡 and let 𝑠𝑡𝑎𝑟𝑡 (𝑡) =
sup {𝑠 ≤ 𝑡 | 𝐴(0, 𝑠) = 𝐷 (0, 𝑠)} be the last instant before 𝑡 when the server is empty. We also call it

the start of the backlogged period of 𝑡 . Note that from this definition, if the server is idle at time 𝑡 ,

then 𝑠𝑡𝑎𝑟𝑡 (𝑡) = 𝑡 . We say that the 𝑆-server is work-conserving if for all 𝑡 and 𝑠 ∈ {𝑠𝑡𝑎𝑟𝑡 (𝑡), . . . , 𝑡},
𝐷 (0, 𝑡) ≥ 𝐷 (0, 𝑠) +𝑆 (𝑠, 𝑡). In other words, the service offered between times 𝑠 and 𝑡 is at least 𝑆 (𝑠, 𝑡),
provided that the server is always backlogged between times 𝑠 and 𝑡 . We can always assume that 𝑆

is additive, whereas this does not have to hold for dynamic 𝑆-servers.

The notions of dynamic 𝑆-server and of work-conserving 𝑆-server, respectively, correspond to

the notions of service curve and strict service curve in deterministic network calculus [6]. Note

that a work-conserving 𝑆-server is also a dynamic 𝑆-server.

Departure process characterization and performance bounds. Consider a dynamic 𝑆-server and 𝐴

and 𝐷 its respective bivariate arrival and departure processes.

The backlog at time 𝑡 is 𝑞(𝑡) = 𝐴(0, 𝑡) − 𝐷 (0, 𝑡) and the virtual delay at time 𝑡 is 𝑑 (𝑡) = inf{𝑇 ∈
N | 𝐴(0, 𝑡) ≤ 𝐷 (0, 𝑡 +𝑇 )}.

Theorem 1 (Sample-Path Bounds [11, 21]). Consider a dynamic 𝑆-server traversed by a flow
with bivariate arrival process 𝐴. Then,
• 𝐷 (𝑠, 𝑡) ≤ 𝐴 ⊘ 𝑆 (𝑠, 𝑡);
• 𝑞(𝑡) ≤ 𝐴 ⊘ 𝑆 (𝑡, 𝑡);
• 𝑑 (𝑡) ≥ 𝑇 ⇒ ∃𝑠 ≤ 𝑡, 𝐴(𝑠, 𝑡) > 𝑆 (𝑠, 𝑡 +𝑇 − 1).

(𝜎, 𝜌)-constraints. MGF-based SNC relies on bounds on theMGF and the Laplace transform for the

arrival and service process, respectively. Specifically, we assume that𝐴 and 𝑆 are bivariate stochastic

processes, and that E[𝑒\𝐴(𝑠,𝑡 ) ] and E[𝑒−\𝑆 (𝑠,𝑡 ) ] both exist for some \ > 0.We say that the bivariate

arrival process 𝐴 is (𝜎𝐴, 𝜌𝐴)-constrained if there exist \ > 0 and 𝜎𝐴 (\ ), 𝜌𝐴 (\ ) ∈ R+ such that

E[𝑒\𝐴(𝑠,𝑡 ) ] ≤ 𝑒\ (𝜎𝐴 (\ )+𝜌𝐴 (\ ) (𝑡−𝑠 ) ) . Similarly, we say that the bivariate service process 𝑆 is (𝜎𝑆 , 𝜌𝑆 )-
constrained if there exist \ > 0 and 𝜎𝑆 (\ ), 𝜌𝑆 (\ ) ∈ R+ such that E[𝑒−\𝑆 (𝑠,𝑡 ) ] ≤ 𝑒\ (𝜎𝑆 (\ )−𝜌𝑆 (\ ) (𝑡−𝑠 ) ) .

Such linear bounds in the transform space provide the advantage that they are closed with respect

to network calculus operations, e.g. multiplexing of flows. However, more general bounds are not
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fundamentally precluded and in some of the following results we also provide this generality when

it does not harm the clarity of the presentation.

2.2 Analytic combinatorics framework
Let 𝑓 = (𝑓𝑛)𝑛∈N ∈ RN+ be a sequence of non-negative numbers. The (ordinary) generating function

(related to the 𝑧-transform) associated to 𝑓 is the function 𝐹 (𝑧) = ∑∞
𝑛=0 𝑓𝑛𝑧

𝑛
. An important example

in the following is the geometric sequence 𝑓𝑛 = 𝑎𝑛 , for which

𝐹 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧𝑛 =
1

1 − 𝑎𝑧 . (1)

Given a generating function 𝐹 (𝑧), we denote the 𝑛-th term of its associated sequence by [𝑧𝑛]𝐹 (𝑧).
In other words, with the previous notation, [𝑧𝑛]𝐹 (𝑧) = 𝑓𝑛 . Analytic combinatorics [23] is a branch

of combinatorics whose aim is the study of such sequences, and, in particular, the relation between

the singularities of the generating function and the asymptotic behaviour of 𝑓 . We denote by 𝑟𝐹 the

dominant singularity of 𝐹 . In the following, we only use rational fractions, and the dominant singu-

larity corresponds to the smallest root of the denominator. For example, the dominant singularity

of 𝐹 (𝑧) in Equation (1) is 𝑟𝐹 = 𝑎−1.
Next, we apply the framework of analytic combinatorics to simplify some SNC calculations,

in particular, when computing error bounds for backlogs and delays. Let us first present some

operations on sequences and their associated generating functions.

Cauchy product: Let 𝑓 = (𝑓𝑛)𝑛∈N and 𝑔 = (𝑔𝑛)𝑛∈N be two sequences. The Cauchy product of

these sequences is ℎCau = (ℎCau,𝑛)𝑛∈N with ℎCau,𝑛 =
∑𝑛
𝑝=0 𝑓𝑝𝑔𝑛−𝑝 . The generating function of ℎCau

is

𝐻Cau (𝑧) =
∞∑︁
𝑛=0

∑︁
𝑝+𝑞=𝑛

𝑓𝑝𝑔𝑞𝑧
𝑛 = (

∞∑︁
𝑝=0

𝑓𝑝𝑧
𝑝 ) (

∞∑︁
𝑞=0

𝑔𝑞𝑧
𝑞) = 𝐹 (𝑧)𝐺 (𝑧),

and is also called the Cauchy product of 𝐹 and 𝐺 . The dominant singularity of 𝐻Cau is 𝑟𝐻Cau
=

min(𝑟𝐹 , 𝑟𝐺 ). In the SNC, the (min,plus)-convolution corresponds to a Cauchy product.

Hadamard product: Let 𝑓 = (𝑓𝑛)𝑛∈N and 𝑔 = (𝑔𝑛)𝑛∈N be two sequences. The Hadamard product

of these sequences is ℎHad = (ℎHad,𝑛)𝑛∈N with ℎHad,𝑛 = 𝑓𝑛𝑔𝑛 . There is no simple expression for the

generating function of the Hadamard product in the general case. Yet, in the case where 𝑓 = (𝑎𝑛)𝑛∈N
is a geometric sequence, the Hadamard product of 𝐹 and 𝐺 is

𝐻Had (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑔𝑛𝑧
𝑛 = 𝐺 (𝑎𝑧). (2)

The dominant singularity of 𝐻Had is 𝑟𝐻Had
= 𝑟𝐹 · 𝑟𝐺 . In the SNC, the Hadamard product is used when

computing the (min,plus)-deconvolution.

Sum of last terms: Let 𝑓 = (𝑓𝑛)𝑛∈N be a summable sequence. Let 𝑔𝑛 =
∑
𝑚≥𝑛 𝑓𝑚 . The generating

function of 𝑔 = (𝑔𝑛)𝑛∈N, proved in Appendix A.1, is

𝐺 (𝑧) = 𝐹 (1) − 𝑧𝐹 (𝑧)
1 − 𝑧 . (3)

Note that 1 is not a singularity of 𝐺 (𝑧) if it is not a singularity of 𝐹 . Consequently, 𝐹 and 𝐺 have

the same dominant singularity. This operation is used when computing delay bounds.
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2.3 A combinatorial view of MGF-based network calculus
The purpose of this subsection is to present the (𝜎, 𝜌)-constraints on arrival and service processes

as generating functions. This alleviates the calculation of residual service constraints in complex

scenarios, thus enabling accurate performance bounds. The use of analytic combinatorics in not

new in the field of queueing theory. For example, Flajolet and Guillemin in [22] analyze Markovian

queues, Guillemin and Pinchin in [25] study the processor sharing policy, and more recently, [7]

presents an attempt to use analytical combinatorics in Network Calculus. The approach of all

these references is to model the distributions of the queues by a generating functions and use the

machinery to compute the asymptotic behavior of the queue. Here, we use generating functions

only for the purpose of simplifying the computations of the SNC framework. To our knowledge,

this is the first time this tool is used for this purpose.

Definition 2. Let 𝐴 be a bivariate arrival process. An arrival bounding generating function of 𝐴 at

\ is a function 𝐹𝐴 (\, 𝑧) such that for all 𝑠, 𝑛 ≥ 0, E[𝑒\𝐴(𝑠,𝑠+𝑛) ] ≤ [𝑧𝑛]𝐹𝐴 (\, 𝑧).
For example, if 𝐴 is (𝜎𝐴, 𝜌𝐴)-constrained and 𝜎𝐴 (\ ), 𝜌𝐴 (\ ) ∈ R+,

𝐹𝐴 (\, 𝑧) =
∞∑︁
𝑛=0

𝑒\ (𝜎𝐴 (\ )+𝜌𝐴 (\ )𝑛)𝑧𝑛 =
𝑒\𝜎𝐴 (\ )

1 − 𝑒\𝜌𝐴 (\ )𝑧
is an arrival bounding generating function for 𝐴 at \ .

Similarly, if 𝑆 is a service process, a service bounding generating function of 𝑆 at \ is a function

𝐹𝑆 (\, 𝑧), such that for all 𝑠, 𝑛 ≥ 0, E[𝑒−\𝑆 (𝑠,𝑠+𝑛) ] ≤ [𝑧𝑛]𝐹𝑆 (\, 𝑧).
In the following, it shall be clear from the context whether a bounding generating function is an

arrival or a service one. Therefore, we omit this precision for the sake of readability.

Using bounding generating functions of 𝐴 and 𝑆 at \ , we can derive bounding generating

functions for the departure process and the violation probability of the probabilistic delay bound.

The backlog bound can be directly deduced from the departure process. The following results

provide bounding generating functions for the departure process and the performance bounds.

Lemma 1 (Departure process bounding generating function). Consider a dynamic 𝑆-server
traversed by a flow with bivariate process𝐴 that is (𝜎𝐴, 𝜌𝐴)-constrained. Assume that 𝑆 has the service
bounding generating function 𝐹𝑆 and that the arrival and service processes 𝐴 and 𝑆 are independent.
Then, for all \ such that 𝑒−\𝜌𝐴 (\ )𝑟𝑆 (\ ) < 1, an arrival bounding generating function of the departure
process 𝐷 is

𝐹𝐷 (\, 𝑧) =
𝑒\𝜎𝐴 (\ )𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) )

1 − 𝑒\𝜌𝐴 (\ )𝑧
.

Proof. As 𝐹𝐴 (\, 𝑧) is geometric, we have [𝑧𝑛+𝑚]𝐹𝐴 (\, 𝑧) = 𝑒\𝜌𝐴 (\ )𝑚 [𝑧𝑛]𝐹𝐴 (\, 𝑧). Since 𝐷 (𝑠, 𝑡) ≤
𝐴 ⊘ 𝑆 (𝑠, 𝑡) = sup𝑢≤𝑠 𝐴(𝑢, 𝑡) − 𝑆 (𝑢, 𝑠), then for \ > 0,

E[𝑒\𝐴⊘𝑆 (𝑠,𝑡 ) ] ≤
∑︁
𝑢≤𝑠

E[𝑒\ (𝐴(𝑢,𝑡 )−𝑆 (𝑢,𝑠 ) ) ]

=
∑︁
𝑢≤𝑠

E[𝑒\𝐴(𝑢,𝑡 ) ] · E[𝑒−\𝑆 (𝑢,𝑠 ) ]

≤
∑︁
𝑢≤𝑠
[𝑧𝑡−𝑢]𝐹𝐴 (\, 𝑧) · [𝑧𝑠−𝑢]𝐹𝑆 (\, 𝑧)

= 𝑒\𝜌𝐴 (\ ) (𝑡−𝑠 )
∑︁
𝑢≤𝑠
[𝑧𝑠−𝑢]𝐹𝐴 (\, 𝑧) · [𝑧𝑠−𝑢]𝐹𝑆 (\, 𝑧)

≤ 𝑒\𝜌𝐴 (\ ) (𝑡−𝑠 )
∑︁
𝑛≥0
[𝑧𝑛]𝐹𝐴 (\, 𝑧) · [𝑧𝑛]𝐹𝑆 (\, 𝑧)
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= 𝑒\𝜌𝐴 (\ ) (𝑡−𝑠 )𝑒\𝜎𝐴 (\ )𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) )
= [𝑧𝑡−𝑠 ]𝐹𝐴 (\, 𝑧)𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) ).

To obtain the second to last equality, we applied the Hadamard product to a geometric series as

in Equation (2) with 𝑧 = 1. We now recognize the (𝑡 − 𝑠)-th term of a geometric series with ratio

𝑒\𝜌𝐴 (\ ) , so

𝐹𝐷 (\, 𝑧) =
𝑒\𝜎𝐴 (\ )𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) )

1 − 𝑒\𝜌𝐴 (\ )𝑧
is a bounding generating function for the departure process. □

Corollary 1 (Probabilistic backlog bound). Let us denote 𝑞(𝑡) as the backlog at time 𝑡 . Then,
under the same assumptions as in Lemma 1,

P(𝑞(𝑡) ≥ 𝑏) ≤ 𝑒−\𝑏𝑒\𝜎𝐴 (\ )𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) ).

Proof. As from Theorem 1 we have 𝑞(𝑡) ≤ 𝐴 ⊘ 𝑆 (𝑡, 𝑡), we can apply the Chernoff bound using

the first term of the generating function 𝐹𝐷 (\, 𝑧) of Lemma 1:

P(𝑞(𝑡) ≥ 𝑏) ≤ E[𝑒\𝐴⊘𝑆 (𝑡,𝑡 ) ]𝑒−\𝑏

≤ 𝑒\𝜎𝐴 (\ )𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) )𝑒−\𝑏 .
□

In the particular case of 𝐹𝑆 (\, 𝑧) = 𝑒\𝜎𝑆 (\ )

1−𝑒−\𝜌𝑆 (\ )𝑧 , for all \ ≥ 0 such that 𝜌𝐴 (\ ) < 𝜌𝑆 (\ ),

P(𝑞(𝑡) ≥ 𝑏) ≤ 𝑒\ (𝜎𝐴 (\ )+𝜎𝑆 (\ ) )

1 − 𝑒\ (𝜌𝐴 (\ )−𝜌𝑆 (\ ) )
𝑒−\𝑏 .

We have made the assumption of (𝜎𝐴, 𝜌𝐴)-constraints for the arrival processes, and our proofs

rely on this assumption. Yet, we remark that the calculations can be done in a more general setting,

at the price of more complex formulas. For example, if the arrival bounding generating function of

the arrival process 𝐴 is a sum of geometric series, as for example for Markov-modulated arrivals,

the calculation directly follows, and the arrival bounding generating function of 𝐷 would be a sum

of geometric series as well. Another case where computations can be adapted is when the service

is bounded by a geometric series: symmetric computations can be done.

Lemma 2 (Delay bound generating function). Let us denote 𝑑 (𝑡) as the virtual delay at time
𝑡 . Under the same assumptions as in Lemma 1, a bounding generating function for the violation
probability of the probabilistic delay bound is

𝐹𝑑 (\, 𝑧) = 𝑒\𝜎𝐴 (\ )
𝑒\𝜌𝐴 (\ )𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) ) − 𝑧𝐹𝑆 (\, 𝑧)

1 − 𝑒−\𝜌𝐴 (\ )𝑧
. (4)

A proof can be found in Appendix A.2. In the particular case of 𝐹𝑆 (\, 𝑧) = 𝑒\𝜎𝑆 (\ )

1−𝑒−\𝜌𝑆 (\ )𝑧 , for all

\ ≥ 0 such that 𝜌𝐴 (\ ) < 𝜌𝑆 (\ ), 𝐹𝑑 (\, 𝑧) = 𝑒\ (𝜎𝐴 (\ )+𝜎𝑆 (\ )+𝜌𝐴 (\ ) )

1−𝑒−\ (𝜌𝑆 (\ )−𝜌𝐴 (\ ) ) ·
1

1−𝑒−\𝜌𝑆 (\ )𝑧 , so

P(𝑑 (𝑡) ≥ 𝑇 ) ≤ 𝑒
\ (𝜎𝐴 (\ )+𝜎𝑆 (\ )+𝜌𝐴 (\ ) )

1 − 𝑒−\ (𝜌𝑆 (\ )−𝜌𝐴 (\ ) )
𝑒−\𝜌𝑆 (\ )𝑇 .

So far, we have focused on the case of independent stochastic processes, let us now release this

assumption. Since our analysis is based on moment-generating functions, the common approach

in the literature is to upper bound the product of dependent processes by Hölder’s inequality: let
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𝑋1, . . . , 𝑋𝑛 ≥ 0 be integrable random variables; then, for all positive numbers 𝑞1, . . . , 𝑞𝑛 such that∑𝑛
𝑖=1

1

𝑞𝑖
= 1,

E[𝑋1 · · ·𝑋𝑛] ≤
𝑛∏
𝑖=1

E[𝑋𝑞𝑖
𝑖
]

1

𝑞𝑖 . (5)

Note that E[𝑒𝑝\𝐴(𝑠,𝑡 ) ]1/𝑝 ≤ 𝑒𝑝\ (𝜎𝐴 (𝑝\ )+𝜌𝐴 (𝑝\ ) (𝑡−𝑠 ) ) (1/𝑝 ) = 𝑒\ (𝜎𝐴 (𝑝\ )+𝜌𝐴 (𝑝\ ) (𝑡−𝑠 ) ) and, similarly,

E[𝑒−𝑞\𝑆 (𝑠,𝑡 ) ]1/𝑞 ≤ 𝑒\ (𝜎𝑆 (𝑞\ )−𝜌𝑆 (𝑞\ ) (𝑡−𝑠 ) ) .
The following lemma contains the translation of an existing output bound from [3] to the

combinatorial framework as well as backlog and delay bounds for the dependent case.

Lemma 3. Consider a dynamic 𝑆-server traversed by a flow with bivariate process𝐴 that is (𝜎𝐴, 𝜌𝐴)-
constrained, and assume that the process 𝑆 is also (𝜎𝑆 , 𝜌𝑆 )-constrained. Then for all 𝑝, 𝑞 such that
1

𝑝
+ 1

𝑞
= 1 and 𝜌𝐴 (𝑝\ ) < 𝜌𝑆 (𝑞\ ),

• 𝐹𝐷 (\, 𝑧) = 𝑒\ (𝜎𝐴 (𝑝\ )+𝜎𝑆 (𝑞\ ) )

1−𝑒−\ (𝜌𝑆 (𝑞\ )−𝜌𝐴 (𝑝\ ) ) ·
1

1−𝑒\𝜌𝐴 (𝑝\ )𝑧 ;

• P(𝑞(𝑡) ≥ 𝑏) ≤ 𝑒\ (𝜎𝐴 (𝑝\ )+𝜎𝑆 (𝑞\ ) )

1−𝑒−\ (𝜌𝑆 (𝑞\ )−𝜌𝐴 (𝑝\ ) ) 𝑒
−\𝑏 ;

• P(𝑑 (𝑡) ≥ 𝑇 ) ≤ 𝑒\ (𝜎𝐴 (𝑝\ )+𝜎𝑆 (𝑞\ )+𝜌𝐴 (𝑝\ ) )

1−𝑒−\ (𝜌𝑆 (𝑞\ )−𝜌𝐴 (𝑝\ ) ) 𝑒
−\𝜌𝑆 (𝑞\ )𝑇 .

3 TREE NETWORK ANALYSIS UNDER COMPLETE INDEPENDENCE
In this section, we derive a result enabling us to unleash the power of the PMOO principle for the

SNC when all arrival and service processes are originally independent. In particular, this result is

directly applicable to tree networks. However, given an overall network with servers and flows, it

is only from the perspective of the flow of interest (foi) that the network has to constitute a tree. In

other words, in a preliminary step, we (attempt to) reduce the network to a tree, with all associated

arrival and service processes still being independent, by performing the following steps:

(1) Terminate flows after their last direct or indirect interaction with the foi and reduce the

network by deleting all flows with which the foi has neither a direct nor indirect dependency

(also delete all servers that do not carry any flows any more).

(2) Check for all remaining flows whether they directly or indirectly rejoin (a) the foi, or, (b)

each other.

(3) If there is any rejoining flow in step (2) then the network is not tree-reducible, otherwise, it

is and the remaining flows and servers form an in-tree whose root is the last server traversed

by the foi.

While not being perfectly formal, it should be clear from this procedure that tree-reducibility

imposes clearly a restriction to general feedforward networks, simply speaking by prohibiting

rejoining flows. Nevertheless, it covers quite a number of cases and generalizes significantly

on previous work in SNC network analysis. In Section 5, we come back to the issue of general

feedforward networks with rejoining flows and how we can leverage from the PMOO result for

tree networks in that case.

Two elementary operations to analyse networks in network calculus are computing residual

service offered to the flow of interest for a server crossed by multiple flows and the concatenation

of servers when a flow traverses multiple servers. Let us recall the main results from the literature

concerning MGF-based network calculus.

Theorem 3 (Residual server [21]). Consider a work-conserving 𝑆-server traversed by two flows
with respective bivariate arrival processes𝐴1 and𝐴2. The residual server of flow 1 can be characterized
by a dynamic 𝑆1-server with

𝑆1 (𝑠, 𝑡) = [𝑆 (𝑠, 𝑡) −𝐴2 (𝑠, 𝑡)]+, ∀𝑠 ≤ 𝑡,
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Fig. 3. Two example networks.

where [𝑥]+ = max(0, 𝑥).

Here, we make no assumption about the service policy regarding the sharing between flows.

This is also known as arbitrary or blind multiplexing.

Theorem 4 (End-to-end server [21]). Consider a flow traversing a tandem of dynamic 𝑆𝑖 -servers,
𝑖 ∈ {1, . . . , 𝑛}. The overall service offered is a dynamic 𝑆e2e-server with 𝑆e2e = 𝑆1 ⊗ · · · ⊗ 𝑆𝑛 .

In this section, we generalize and combine these two central theorems for tree networks. We

first bound the service process for the end-to-end dynamic server offered to a flow traversing a

network in Subsection 3.1. Next, in Subsection 3.2 we derive the corresponding bounding generating

function and apply the framework from Subsection 2.3 to derive performance bounds.

3.1 A Pay-Multiplexing-Only-Once formula for bivariate processes
In this section, we consider a tree network. More precisely, the network can be described as follows.

(1) The network is composed of 𝑛 servers, numbered from 1 to 𝑛 according to the topological

order: if server ℎ is the successor of server 𝑗 , then ℎ > 𝑗 . The topology is a tree directed to

server 𝑛: each server 𝑗 ≠ 𝑛 has a unique successor that we denote by 𝑗•. Each server 𝑗 is

work-conserving and offers the service 𝑆 𝑗 (𝑠, 𝑡) during the time slots 𝑠+1, . . . , 𝑡 . By convention,
we write 𝑛• = 𝑛 + 1.

(2) There are𝑚 flows in the network, numbered from 1 to𝑚. We denote 𝜋𝑖 = ⟨𝜋𝑖 (1), . . . , 𝜋𝑖 (ℓ𝑖 )⟩
the path, i.e. the sequence of servers, of length ℓ𝑖 ∈ N \ {0} followed by flow 𝑖 and 𝐴𝑖 (𝑠, 𝑡)
is the amount traffic of flow 𝑖 arriving in the network during the time slots 𝑠 + 1, . . . , 𝑡 . We

write 𝑖 ∈ 𝑗 if flow 𝑖 crosses server 𝑗 (or equivalently 𝑗 ∈ 𝜋𝑖 ).
(3) We denote 𝐴

( 𝑗 )
𝑖
(𝑠, 𝑡) the bivariate process of flow 𝑖 at the input of server 𝑗 , and consequently,

𝐴
( 𝑗• )
𝑖
(𝑠, 𝑡) is the bivariate process at the output of server 𝑗 . Note that we have 𝐴𝑖 = 𝐴 (𝜋𝑖 (1) )𝑖

.

Example 5. The networks of Figures 3a and 3b are two examples of tree networks. They both

have three flows and three servers. In the network of Figure 3a, we have 1
• = 2, 2

• = 3 and 3
• = 4,

whereas in the network of Figure 3b, we have 1
• = 2

• = 3 and 3
• = 4. Graphically, the relation

𝑗• = ℎ means that ( 𝑗, ℎ) is an edge of the network.

We can now state the main result of this section. Theorem 6 also generalizes that of [8, 35, 36]

in deterministic network calculus from tandems to trees. More precisely, all the results in those

references assume that the flow for which we compute the residual service curve traverses the

entire tandem network. Here we relax this assumption. However, the principle of the proof remains

the same, and our result is directly applicable to deterministic network calculus. For the sake of

self-containedness, we give a proof in Appendix B.1.
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Theorem 6. With the notations above, assume that the last server traversed by flow 1 is 𝑛. The
residual service offered to flow 1 is a dynamic 𝑆e2e-server with ∀0 ≤ 𝑡𝜋1 (1) ≤ 𝑡𝑛+1,

𝑆e2e (𝑡𝜋1 (1) , 𝑡𝑛+1) =
[

inf

∀ 𝑗, 𝑡 𝑗 ≤𝑡 𝑗•

𝑛∑︁
𝑗=1

[𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• )] −
𝑚∑︁
𝑖=2

𝐴𝑖 (𝑡𝜋𝑖 (1) , 𝑡𝜋𝑖 (ℓ𝑖 )• )
]
+

.

Note that there is a parameter 𝑡 𝑗 for each server 𝑗 following the topological order of the servers.

Example 7. The end-to-end server for flow 1 for the network in Figure 3a is

𝑆e2e (𝑡1, 𝑡4) =
[

inf

𝑡1≤𝑡2≤𝑡3≤𝑡4
(𝑆1 (𝑡1, 𝑡2) + 𝑆2 (𝑡2, 𝑡3) + 𝑆3 (𝑡3, 𝑡4) −𝐴2 (𝑡1, 𝑡3) −𝐴3 (𝑡2, 𝑡4))

]
+
.

In this formula, the infimum is computed at all times 𝑡2 and 𝑡3 satisfying the conditions 𝑡1 ≤ 𝑡2 ≤
𝑡3 ≤ 𝑡4 (𝑡1 and 𝑡4 are fixed), according to the network’s topology.

The end-to-end server for flow 1 for the network in Figure 3b is

𝑆e2e (𝑡1, 𝑡4) =
 inf

𝑡1≤𝑡3≤𝑡4,
𝑡2≤𝑡3

(𝑆1 (𝑡1, 𝑡3) + 𝑆2 (𝑡2, 𝑡3) + 𝑆3 (𝑡3, 𝑡4) −𝐴2 (𝑡2, 𝑡4) −𝐴3 (𝑡1, 𝑡3))
+ .

Here again, the infimum is computed for all 𝑡2 and 𝑡3, but the conditions change with the network

topology: no lower bound is enforced for 𝑡2 as server 2 has no predecessor, that is still upper

bounded by 𝑡3 and the new bounds for 𝑡3 become 𝑡1 ≤ 𝑡3 ≤ 𝑡4, as (1, 3) is an edge of the network.

Proof of Theorem 6. Consider server 𝑗 . For all 𝑡 𝑗 ≤ 𝑡 𝑗• in the same backlogged period,∑
𝑖∈ 𝑗 [𝐴

( 𝑗• )
𝑖
(0, 𝑡 𝑗• )−𝐴 ( 𝑗

• )
𝑖
(0, 𝑡 𝑗 )] ≥ 𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• ). In particular, this formula is true when 𝑡 𝑗 = 𝑠𝑡𝑎𝑟𝑡 𝑗 (𝑡 𝑗• ),

the start of the backlogged period of 𝑡 𝑗• at server 𝑗 . In that case 𝐴
( 𝑗• )
𝑖
(0, 𝑡 𝑗 ) = 𝐴 ( 𝑗 )𝑖 (0, 𝑡 𝑗 ), and∑︁

𝑖∈ 𝑗
[𝐴 ( 𝑗

• )
𝑖
(0, 𝑡 𝑗• ) −𝐴 ( 𝑗 )𝑖 (0, 𝑡 𝑗 )] ≥ 𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• ).

Summing over all servers 𝑗 , we obtain

𝑛∑︁
𝑗=1

(∑︁
𝑖∈ 𝑗
[𝐴 ( 𝑗

• )
𝑖
(0, 𝑡 𝑗• ) −𝐴 ( 𝑗 )𝑖 (0, 𝑡 𝑗 )]

)
≥

𝑛∑︁
𝑗=1

𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• ).

Now, by exchanging the two sums on the left-hand side, most of the terms cancel, and (remind that

𝐴
(𝜋𝑖 (1) )
𝑖

= 𝐴𝑖 )
𝑚∑︁
𝑖=1

[𝐴 (𝜋𝑖 (ℓ𝑖 )
• )

𝑖
(0, 𝑡𝜋𝑖 (ℓ𝑖 )• ) −𝐴𝑖 (0, 𝑡𝜋𝑖 (1) )] ≥

𝑛∑︁
𝑗=1

𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• ).

Keeping only 𝐴
(𝜋𝑖 (ℓ𝑖 )• )
1

(0, 𝑡𝜋𝑖 (ℓ𝑖 )• ) on the left-hand side of the inequality and using 𝐴
(𝜋𝑖 (ℓ𝑖 )• )
𝑖

(0, ·) ≤
𝐴𝑖 (0, ·), we obtain

𝐴
(𝜋1 (ℓ1 )• )
1

(0, 𝑡𝜋1 (ℓ1 )• ) ≥ 𝐴1 (0, 𝑡𝜋1 (1) ) +
𝑛∑︁
𝑗=1

𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• ) −
𝑚∑︁
𝑖=2

[𝐴 (𝜋𝑖 (ℓ𝑖 )
• )

𝑖
(0, 𝑡𝜋𝑖 (ℓ𝑖 )• ) −𝐴𝑖 (0, 𝑡𝜋𝑖 (1) )]

≥ 𝐴1 (0, 𝑡𝜋1 (1) ) +
𝑛∑︁
𝑗=1

𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• ) −
𝑚∑︁
𝑖=2

𝐴𝑖 (𝑡𝜋𝑖 (1) , 𝑡𝜋𝑖 (ℓ𝑖 )• ),

We also have∀𝑗 ∈ 𝜋1,𝐴 ( 𝑗 )
1
(0, 𝑡 𝑗 ) = 𝐴 ( 𝑗

• )
1
(0, 𝑡 𝑗 ) ≤ 𝐴 ( 𝑗

• )
1
(0, 𝑡 𝑗• ). So𝐴 (𝜋1 (ℓ )

• )
1

(0, 𝑡𝜋1 (ℓ1 )• ) ≥ 𝐴1 (0, 𝑡𝜋1 (1) ).
The final result follows by taking the minimum on all possible values of 𝑡 𝑗 , 𝑗 ∉ {𝜋1 (1), 𝜋1 (ℓ1)•},

and noticing that 𝜋1 (ℓ1)• = 𝑛 + 1. □
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This result is valid for any bivariate arrival and service processes. The next subsection demon-

strates its use in the analytic combinatorics framework. Before that, let us briefly discuss the power

of Theorem 6: Looking at the end-to-end server calculation, it can be noted that all arrival and

service processes appear in the formula as they originally enter the network. We point out that

the tree generalization is crucial here, because it avoids the need for characterizing internal flows

that may have become dependent after sharing a server. Hence, this calculation introduces no
method-pertinent dependencies at all. Moreover, the end-to-end server calculation is performed in

one big step, in contrast to a sequential application of network calculus operations. This is already

known to avoid a sequencing penalty [2], yet completely avoiding it by performing all operations

simultaneously is only possible now with Theorem 6.

3.2 Bounding generating function of the end-to-end server
In this subsection, we assume that

(𝐻1) all processes and servers are mutually independent;

(𝐻2) flow 𝐴𝑖 is (𝜎𝐴𝑖
, 𝜌𝐴𝑖
)-constrained for all flow 𝑖 ∈ {1, . . . ,𝑚} and 𝑆 𝑗 is (𝜎𝑆 𝑗 , 𝜌𝑆 𝑗 )-constrained

for all server 𝑗 ∈ {1, . . . , 𝑛}.
We can now derive a service bounding generating function for the end-to-end dynamic server.

Theorem 8. Under hypothesis (𝐻1) and (𝐻2), the end-to-end service for flow 1 is bounded by the
service bounding generating function

𝐹𝑆e2e (\, 𝑧) =
𝑒
\ (∑𝑚

𝑖=2 𝜎𝐴𝑖
(\ )+∑𝑛

𝑗=1 𝜎𝑆𝑗 (\ ) )∏
𝑗∉𝜋1
(1 − 𝑒−\ (𝜌𝑆𝑗 (\ )−

∑
𝑖∈ 𝑗 𝜌𝐴𝑖

(\ ) ) )

∏
𝑗∈𝜋1

1

1 − 𝑒−\ (𝜌𝑆𝑗 (\ )−
∑

1≠𝑖∈ 𝑗 𝜌𝐴𝑖
(\ ) )

𝑧
.

Proof. From Theorem 6, we can derive a bound of the Laplace transform of the service for flow

1. For the sake of concision, in the last line, we omit the function argument \ .

E[𝑒−\𝑆e2e (𝑡𝜋1 (1) ,𝑡𝑛+1 ) ] ≤
∑︁

∀ 𝑗, 𝑡 𝑗 ≤𝑡 𝑗•
E[𝑒−\ (

∑𝑛
𝑗=1 𝑆 𝑗 (𝑡 𝑗 ,𝑡 𝑗• )−

∑𝑚
𝑖=2𝐴𝑖 (𝑡𝜋𝑖 (1) ,𝑡𝜋𝑖 (ℓ𝑖 )• ) ) ]

=
∑︁

∀ 𝑗, 𝑡 𝑗 ≤𝑡 𝑗•

𝑛∏
𝑗=1

E[𝑒−\𝑆 𝑗 (𝑡 𝑗 ,𝑡 𝑗• ) ]
𝑚∏
𝑖=2

E[𝑒\𝐴𝑖 (𝑡𝜋𝑖 (1) ,𝑡𝜋𝑖 (ℓ𝑖 )• ) ] (6)

≤
∑︁

∀ 𝑗, 𝑡 𝑗 ≤𝑡 𝑗•

𝑛∏
𝑗=1

𝑒
\ (𝜎𝑆𝑗 (\ )−𝜌𝑆𝑗 (\ ) (𝑡

•
𝑗 −𝑡 𝑗 ) )

𝑚∏
𝑖=2

𝑒\ (𝜎𝐴𝑖
(\ )+𝜌𝐴𝑖

(\ ) (𝑡𝜋𝑖 (ℓ𝑖 )•−𝑡𝜋𝑖 (1) ) )

≤
∑︁

∀ 𝑗, 𝑢 𝑗 ≥0,∑
𝑗 ∈𝜋

1
𝑢 𝑗=𝑡𝑛+1−𝑡𝜋

1
(1)

𝑛∏
𝑗=1

𝑒
\ (𝜎𝑆𝑗 (\ )−𝜌𝑆𝑗 (\ )𝑢 𝑗 )

𝑚∏
𝑖=2

𝑒\ (𝜎𝐴𝑖
(\ )+𝜌𝐴𝑖

(\ ) (∑𝑗 ∈𝜋𝑖 𝑢 𝑗 ) )

= 𝑒
\ (∑𝑚

𝑖=2 𝜎𝐴𝑖
(\ )+∑𝑛

𝑗=1 𝜎𝑆𝑗 (\ ) )
∑︁

∀ 𝑗, 𝑢 𝑗 ≥0,∑
𝑗 ∈𝜋

1
𝑢 𝑗=𝑡𝑛+1−𝑡𝜋

1
(1)

𝑛∏
𝑗=1

𝑒
−\ (𝜌𝑆𝑗 (\ )−

∑
1≠𝑖∈ 𝑗 𝜌𝐴𝑖

(\ ) )𝑢 𝑗

=
𝑒
\ (∑𝑚

𝑖=2 𝜎𝐴𝑖
+∑𝑛

𝑗=1 𝜎𝑆𝑗 )∏
𝑗∉𝜋1

(
1 − 𝑒−\ (𝜌𝑆𝑗 −

∑
𝑖∈ 𝑗 𝜌𝐴𝑖

) ) ∑︁
∑

𝑗 ∈𝜋
1
𝑢 𝑗=𝑡𝑛+1−𝑡𝜋

1
(1)

∏
𝑗∈𝜋1

𝑒
−\ (𝜌𝑆𝑗 −

∑
1≠𝑖∈ 𝑗 𝜌𝐴𝑖

)𝑢 𝑗 .

In Equation (6), we use the independence of the arrivals and service; in the third line, the constraints

on the processes; in the fourth line, we changed the variables: 𝑢 𝑗 = 𝑡
•
𝑗 − 𝑡 𝑗 (hence 𝑡𝜋𝑖 (ℓ𝑖 )• − 𝑡𝜋𝑖 (1) =∑

𝑗∈𝜋𝑖 𝑢 𝑗 ), and in the sixth line summed the terms not constrained by

∑
𝑗∈𝜋1 𝑢 𝑗 = 𝑡𝑛+1 − 𝑡𝜋1 (1) .
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We can recognize the terms of the Cauchy product of geometric series, hence the service is

bounded by the generating function

𝐹𝑆e2e (\, 𝑧) =
𝑒
\ (∑𝑚

𝑖=2 𝜎𝐴𝑖
(\ )+∑𝑛

𝑗=1 𝜎𝑆𝑗 (\ ) )∏
𝑗∉𝜋1

(
1 − 𝑒−\ (𝜌𝑆𝑗 (\ )−

∑
𝑖∈ 𝑗 𝜌𝐴𝑖

(\ ) ) ) ∏
𝑗∈𝜋1

1

1 − 𝑒−\ (𝜌𝑆𝑗 (\ )−
∑

1≠𝑖∈ 𝑗 𝜌𝐴𝑖
(\ ) )

𝑧
.

□

Example 9. A service bounding generating function for the end-to-end server for flow 1 in the

network of Figure 3a is

𝐹𝑒2𝑒 (\, 𝑧) =
𝑒\ (𝜎𝐴2

+𝜎𝐴
3
+𝜎𝑆

1
+𝜎𝑆

2
+𝜎𝑆

3
)

(1 − 𝑒−\ (𝜌𝑆1−𝜌𝐴2
)𝑧) (1 − 𝑒−\ (𝜌𝑆2−𝜌𝐴2

−𝜌𝐴
3
)𝑧) (1 − 𝑒−\ (𝜌𝑆3−𝜌𝐴3

)𝑧)
.

A service bounding generating function for the end-to-end server for flow 1 in the network of

Figure 3b is

𝐹𝑒2𝑒 (\, 𝑧) =
𝑒\ (𝜎𝐴2

+𝜎𝐴
3
+𝜎𝑆

1
+𝜎𝑆

2
+𝜎𝑆

3
)

1 − 𝑒−\ (𝜌𝑆2−𝜌𝐴2
)

1

1 − 𝑒−\ (𝜌𝑆1−𝜌𝐴3
)𝑧

1

1 − 𝑒−\ (𝜌𝑆3−𝜌𝐴2
)𝑧
.

Note the slight difference between the two formulas: informally, there is a ’𝑧’ variable only for

factors corresponding to the servers crossed by flow 1.

The end-to-end service process is not necessarily (𝜎, 𝜌)-constrained. Corollary 2 below gives a

simpler bounding generating function, a proof is given in Appendix B.1. In short,𝐺 (\, 𝑧), defined in
the statement of Corollary 2, is a bounding generating function of 𝐹𝑒2𝑒 (\, 𝑧) obtained by bounding

its factors not related to the dominant singularity.

Let us first alleviate the notations and denote

𝐹𝑆e2e (\, 𝑧) = 𝑒\𝜎𝑆e2e (\ )
∏
𝑗∈𝜋1

1

1 − 𝑒−\𝜌
′
𝑗
(\ )
𝑧
,

with

𝑒\𝜎𝑆e2e (\ ) =
𝑒
\ (∑𝑖≠1 𝜎𝐴𝑖

(\ )+∑𝑗 𝜎𝑆𝑗 (\ ) )∏
𝑗∉𝜋1

(
1 − 𝑒−\ (𝜌𝑆𝑗 (\ )−

∑
𝑖∈ 𝑗 𝜌𝐴𝑖

(\ ) ) ) and 𝜌 ′𝑗 (\ ) = 𝜌𝑆 𝑗 (\ ) −
∑︁
1≠𝑖∈ 𝑗

𝜌𝐴𝑖
(\ ),

and assume (without loss of generality, by renumbering the servers) that 𝜌 ′𝑗 (\ ) = 𝜌 ′
1
(\ ) for all

𝑗 ≤ 𝑘 and 𝜌 ′𝑗 (\ ) > 𝜌 ′
1
(\ ) for all 𝑗 > 𝑘 .

Corollary 2. 𝐺 (\, 𝑧) = 𝑒
\𝜎𝑆

e2e
(\ )∏𝑚

𝑗=𝑘+1

(
1−𝑒−\ (𝜌

′
𝑗
(\ )−𝜌′

1
(\ ) ) ) (

1

1−𝑒−\𝜌
′
1
(\ )
𝑧

)𝑘
is a bounding generating function

of 𝐹𝑆e2e (\, 𝑧).

3.3 Performance bounds
We can now apply the results of Subsection 2.3 to the end-to-end dynamic server. In the following, we

assume stability, that is we consider only values of \ such that for all 𝑗 ∈ {1, . . . , 𝑛}, 𝜌 ′𝑗 (\ ) > 𝜌𝐴1
(\ )

(the residual rate at server 𝑗 is larger than the arrival rate).

Output departure process and backlog bound. With Lemma 1, we can compute an arrival bounding

generating function for the departure process:

𝐹𝐷 (\, 𝑧) =
𝑒\ (𝜎𝐴1

(\ )+𝜎𝑆
e2e
(\ ) )∏

𝑗∈𝜋1
(
1 − 𝑒\ (𝜌𝐴1

(\ )−𝜌 ′
𝑗
(\ ) ) ) 1

1 − 𝑒\𝜌𝐴1
(\ )𝑧

.

We recognize a (𝜎, 𝜌)-constraint for the departure process, and observe that 𝜌𝐷 (\ ) = 𝜌𝐴 (\ ).
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3

4

𝑛 + 1

Fig. 4. Canonical tandem.

From Corollary 1, the backlog bound for flow 1 is then

P(𝑞(𝑡) ≥ 𝑏) ≤ 𝑒\ (𝜎𝐴1
(\ )+𝜎𝑆

e2e
(\ ) )∏

𝑗∈𝜋1 (1 − 𝑒
\ (𝜌𝐴

1
(\ )−𝜌 ′

𝑗
(\ ) ) )

𝑒−\𝑏 .

Delay bound. It is not as straightforward to compute the delay bound: the bounding generating

function of the service does not correspond to a (𝜎, 𝜌)-constraint. The bounding generating function
for the delay is

𝐹𝑑 (\, 𝑧) = 𝑒\𝜎𝐴1
(\ ) 𝑒

\𝜌𝐴
1
(\ )𝐹𝑆e2e (\, 𝑒\𝜌𝐴1

(\ ) ) − 𝑧𝐹𝑆e2e (\, 𝑧)
1 − 𝑒−\𝜌𝐴1

(\ )𝑧
. (7)

As 𝐹𝑆e2e (\, 𝑧) is a rational function, 𝐹𝑑 (\, 𝑧) is. Moreover, all the singularities of these functions

are known. Note that 𝑒\𝜌𝐴1
(\ )

is not a singularity of 𝐹𝑑 (\, 𝑧). Indeed, when 𝑧 = 𝑒−\𝜌𝐴1
(\ )

, the

numerator of Equation (7) is zero. The singularities of 𝐹𝑑 (\, 𝑧) are then those of 𝐹𝑆e2e (\, 𝑧), that is
𝑒
\𝜌 ′𝑗 (\ ) , for 𝑗 ∈ {1, . . . , 𝑛}. All the terms of the generating function of Equation (7) can be computed

automatically with symbolic computation tools such as SageMath [37]. However, there are several

cases where the exact expression is compact enough to be given here.

• Residual rates are all distinct (see derivation in Appendix B.2): ∀𝑇 ≥ 0,

P(𝑑 (𝑡) ≥ 𝑇 ) ≤ [𝑧𝑇 ]𝐹𝑑 (\, 𝑧) =
𝑛∑︁
𝑗=1

𝑒\ (𝜎𝐴1
(\ )+𝜎𝑆

e2e
(\ )+𝜌𝐴

1
(\ ) )

1 − 𝑒\ (𝜌𝐴1
(\ )−𝜌 ′

𝑗
(\ ) ) ·


∏
𝑘≠𝑗

1

1 − 𝑒\ (𝜌
′
𝑗
(\ )−𝜌 ′

𝑘
(\ ) )

 𝑒−\𝜌
′
𝑗 (\ )𝑇 .

(8)

• Residual rates are all equal (see derivation in Appendix B.3): ∀𝑇 > 0,

P(𝑑 (𝑡) ≥ 𝑇 ) ≤ [𝑧𝑇 ]𝐹𝑑 (\, 𝑧) = 𝑒\ (𝜎𝐴1
(\ )+𝜎𝑆

e2e
(\ )+𝜌𝐴

1
(\ ) ) ·

[
𝑛∑︁
𝑖=1

(
𝑇 + 𝑖 − 2
𝑇 − 1

)
𝑒−\𝜌

′
1
(\ )𝑇(

1 − 𝑒−\ (𝜌 ′1 (\ )−𝜌𝐴1
(\ ) ) )𝑛−𝑖+1

]
.

(9)

In the general case, one can first use the service bounding generating function of Corollary 2 to be

in the case of equal residual rates, and then use Equation (9) to obtain ∀𝑇 > 0,

P(𝑑 (𝑡) ≥ 𝑇 ) ≤ 𝑒\ (𝜎𝐴1
(\ )+𝜎𝑆

e2e
(\ )+𝜌𝐴

1
(\ ))∏𝑛

𝑗=𝑘+1 1 − 𝑒
−\ (𝜌 ′

𝑗
(\ )−𝜌 ′

1
(\ ) ) ·

[
𝑘∑︁
𝑖=1

(
𝑇 + 𝑖 − 2
𝑇 − 1

)
𝑒−\𝜌

′
1
(\ )𝑇(

1 − 𝑒−\ (𝜌 ′1 (\ )−𝜌𝐴1
(\ ) ) )𝑘−𝑖+1

]
. (10)

3.4 Recovering existing results for the canonical tandem
In this subsection, we recover the state of the art in SNC for the “canonical tandem” (Figure 4), as it

is frequently analysed in the literature, e.g. [12, 21, 34]. Since this simple flow interference structure

provides no opportunity for the PMOO principle to pay off, our new bounds based on analytic

combinatorics cannot further improve it (in contrast to the scenarios we present in Section 4). To

the best of our knowledge, the best technique for this topology is to calculate the optimum of

two bounds originally derived in [21, Theorem 3], denoted by “[21] Thm. 3” below. However, this

bound targets a closed-form solution for the stochastic delay and, hence, compromises on tightness.

Attempting a fair comparison, we also compare the novel result from Equation (10) to a tighter

version of “[21] Thm. 3” that does not make this compromise and is given in [21] Eqn. (9) as an
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Fig. 5. Stochastic delay bounds for the canonical tandem (for traffic with independent exponentially dis-
tributed increments with _ = 1 and constant rate servers).

intermediate result. One can show that our Equation (10) recovers the result in [21] Eqn. (9), since

both start with the same inequalities and, afterwards, only equivalent term manipulations are used.

We also verified this numerically for exponential i.i.d. arrivals in Figure 5. The closed-form

solution in “[21] Thm. 3” tends to lead to less accurate bounds, depending on the utilization as well

as the number of servers. We note that it is the only approach that exploits the positive part in

Theorem 3, but this effect is negligible for the chosen traffic class. Anyway, the positive part can

also be incorporated in the analytic combinatorics; yet, we omit this here for the sake of brevity.

3.5 Relation to state-of-the-art analyses
A typical network calculus analysis to derive end-to-end performance bounds consists of three

separate sequential steps:

(1) Reducing the network to a tandem traversed by the flow of interest, by output bounding.

(2) Reducing the tandem to an end-to-end server that represents the complete system.

(3) Computation of performance bounds.

Various SNC analysis techniques have been derived in the literature. In [4], a sequential separated
flow analysis (SFA) is used, where each network calculus operation is applied one after the other in

contrast to a simultaneous technique as in Theorem 6. On the other hand, it has been shown in

[21] that combining step (2) and (3) is able to avoid a sequencing penalty to some degree (see also

[2]). Moreover, one could also convolve servers as much as possible before subtracting cross-flows.

In [30], this is called “PMOO”, however, it is not fully able to use the power of the PMOO principle,

as it involves a sequential order of network calculus operations which is why we call it “seqPMOO”

in the following.

However, none of the above mentioned techniques is able to avoid a sequencing penalty entirely.

On the other hand, the newly introduced PMOO analysis avoids this pitfall by combining all

three steps of the analysis and also reduces the overall number of calculations. In the next section

(Section 4), we show that this approach leads to significantly more accurate delay bounds.

4 NUMERICAL EVALUATION OF TREE NETWORKS
In this section, we compute bounds on the delay’s violation probability and stochastic delay

bounds applying state-of-the-art techniques as well as our unleashed PMOO. We perform several

experiments for different network topologies. For the arrivals, we assume three discrete-time

processes all adhering to the class of (𝜎𝐴, 𝜌𝐴)-constrained arrivals: Exponentially distributed

arrivals increments [2] with parameter _, Weibull distributed arrival increments with fixed shape

parameter 𝑘 = 2 and scale parameter _, and discrete-time Markov-modulated On-Off (MMOO)

arrivals [2, 11]. The latter can be described by three parameters: the probability to stay in the “On”-

state in the next time step, 𝑝on, the probability to stay in the “Off”-state, 𝑝off , and a constant peak rate
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𝑃 , at which data is sent during the “On”-state. For the service, we always assume work-conserving

𝑆-servers with a constant rate.

4.1 Interleaved tandem
In our first numerical evaluation, we calculate stochastic delay bounds for a standard example

in network calculus when PMOO effects shall be illustrated: the interleaved tandem network

in Figures 3a. These are compared to simulation results. The “standard bound” consists of the

minimum of the state-of-the-art techniques described in Section 3.5. They are then compared

to our new analytic combinatorics based PMOO using two variants: The first, again based on

Equation (10), is called “PMOO-AC: General Bound” in this example. The second, “PMOO-AC:

Explicit Bound” exploits that we choose all parameters such that the residual rates are distinct.

Therefore, we can apply Equation (8). In addition, we provide simulation results with respective

pointwise 95%-confidence bands that are based on order statistics of a binomially distributed sample

[26] to see how the bounds relate to the empirical delay. The results are provided in Figure 6.

We observe that, while the PMOO-AC bounds lead to quite similar results, they both outperform

the standard bound significantly. For example, for a delay violation probability of 10
−3
, the delay

bound is improved from 28 to 18, and for a violation probability of 10
−7
, from 45 to 31. These

examples indicate an improvement of more than 35%.

These positive results are mainly caused by the fact that the PMOO analysis is able to provide

bounds without introducing any method-pertinent dependencies. The standard bound, in contrast,

suffers from such a dependency in the calculation and, consequently, needs to apply Hölder’s

inequality. Furthermore, it also potentially loses accuracy due to the sequencing penalty.

In addition, we see that the gap between simulation results and bounds is considerably reduced

and the scaling of the delay in the simulations is captured well (getting closer to single-node results

again). Recalling that Figure 6a without the new bounds has been used in Section 1 to illustrate

that the known SNC gap will widen too much, we now provide a new prospect for this again.

4.2 Extended interleaved tandem
In the next experiment, we generalize the case of an interleaved tandem by varying its lengths

while keeping the interference structure (Figure 7). Here, the standard bound only includes the

sequential and simultaneous SFA approaches, as the number of possible (combinations of) network

calculus operations in the seqPMOO grows exponentially with the number of servers and, therefore,

is computationally prohibitive.

In Figure 8, we show stochastic delay bounds for a fixed violation probability of 10
−6.While the

standard bound explodes in the number of servers (we have only included the results from 3 to 5

servers), the new technique scales significantly better. This is mainly due to the fact that the SFA
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Fig. 6. Delay bounds and simulations for the interleaved tandem with server rates𝐶1 = 2.5, 𝐶2 = 3.0, 𝐶3 = 2.0.
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Fig. 7. Extended interleaved tandem.
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Fig. 8. Delay bounds for the extended interleaved tandem with server rates 𝐶𝑖 = 2.0 for 𝑖 = 1, . . . , 12.

leads to the application of 𝑛 − 1 Hölder inequalities for an interleaved tandem of size 𝑛, whereas the

new PMOO-AC does not incur any method-pertinent dependencies in the analysis of this topology.

Not only does this lead to tighter performance bounds, it also impacts runtimes significantly as

it reduces an 𝑛-dimensional non-linear optimization problem (one \ and 𝑛 − 1 Hölder parameters)

to a 1-dimensional optimization problem.
1
Specifically, for the standard bound (in the case of

MMOO arrivals), runtimes increase quickly from 5.2 seconds (3 servers) over 2 minutes (4 servers)

to roughly 1.5 hours (5 servers). On the other hand, PMOO-AC took a maximum runtime of 0.46

seconds in the case of 12 servers.

4.3 Case study: tree network
In Section 3.5, we explained that the PMOO-AC calculates performance bounds by combining all

the steps of the analysis into a single large one. The following case study shall mainly investigate

the benefit of this.

To that end, we consider the tree network in Figure 9. Standard SNC techniques first compute

the output bounds of flows 3 and 4 at server 2 in order to compute the residual service at servers

3 and 4; this incurs again method-pertinent dependencies. The application of Theorem 6 allows

us to circumvent these dependencies. In contrast, state-of-the-art analysis using SFA needs three

applications of Hölder’s inequality and seqPMOO requires one, respectively.

The results are shown in Figure 10. Similar to the results for the interleaved tandem, we observe

that the PMOO considerably improves the bound on the delay’s violation probability. Again, we

are able to achieve a similar scaling compared to the simulation results, in contrast to the standard

bound. Further, while the state-of-the-art analysis requires an optimisation of up to 4 parameters

(three Hölder and \ ), the PMOO only has \ to optimise, substantially improving the runtime.

1
In our numerical experiments, we apply a grid search followed by a downhill simplex algorithm to optimise the parameters.

1

2

3 4
1

2

3

4

Fig. 9. Case study tree network.
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Fig. 10. Delay bounds and simulations for the tree network with server rates 𝐶𝑖 = 2.0, 𝑖 = 1, . . . , 4.

5 TOWARDS FEEDFORWARD NETWORK ANALYSIS UNDER PARTIAL DEPENDENCE
In previous sections, we focused on mutually independent flows and servers in tree-reducible

networks. However, if we want to analyse general feedforward networks, rejoining flows eventually

force us to deal with dependencies. As discussed in Section 3, in the presence of rejoining flows, the

network will not be tree-reducible any longer. Thus, we cannot completely avoid method-pertinent

dependencies using PMOO, but need to extend it to the partially dependent case.

As mentioned in Section 2, the use of Hölder’s inequality allows us to calculate performance

bounds also in the dependent case. Yet, as we discuss in this section, its number of applications

as well as their induced inaccuracy can be influenced by the transformation to a tree-reducible

network – our goal is to minimize the impact of Hölder’s inequality on the performance bounds.

First, in Subsection 5.1, we extend PMOO under partial dependence; next, in Subsection 5.2,

we apply this to the canonical example of rejoining flows: the “diamond network”. Finally, in

Subsection 5.3, we discuss how to extend these promising results to larger feedforward networks.

5.1 End-to-end server and performance bounds
To deal with the partial dependency of random variables, we adapt the notion of dependency graph
defined to prove the Lovász Local Lemma (see [28], for instance). Let (𝑋ℎ)ℎ∈𝐻 be a finite family of

processes. In our case a process can be a service process 𝑆 𝑗 or an arrival process𝐴𝑖 . The dependency

graph associated to (𝑋ℎ)ℎ∈𝐻 is the graph whose vertices are the processes (𝑋ℎ)ℎ∈𝐻 and process 𝑋ℎ
is not adjacent with processes with which it is mutually independent. More precisely, if Γ(𝑋ℎ) is
the set of neighbours of 𝑋ℎ , 𝑋ℎ is mutually independent of {𝑋ℎ′ | 𝑋ℎ′ ∉ (Γ(𝑋ℎ) ∪ {𝑋ℎ})}.

Assume that the dependency graph contains 𝐾 strongly connected components 𝐺1, . . . ,𝐺𝐾 , and

that for all ℎ ∈ 𝐻 , and for some \ > 0, E[𝑒\𝑋ℎ (𝑠ℎ,𝑡ℎ ) ] ≤ 𝑒\_ℎ (\,𝑠ℎ,𝑡ℎ ) . The following lemma shows

how to use as few Hölder inequalities as possible.

Lemma 4. With the hypotheses and notations above, for positive (𝑝ℎ)ℎ∈𝐻 such that ∀𝑘 ∈ {1, . . . , 𝐾},∑
ℎ∈𝐺𝑘

1

𝑝ℎ
= 1,

E[𝑒\ (
∑

ℎ∈𝐻 𝑋ℎ (𝑠ℎ,𝑡ℎ ) ) ] ≤
∏
ℎ∈𝐻

𝑒\_ℎ (𝑝ℎ\,𝑠ℎ,𝑡ℎ ) .

Proof.

E[
∏
ℎ∈𝐻

𝑒\𝑋ℎ (𝑠ℎ,𝑡ℎ ) ] =
𝐾∏
𝑘=1

E[
∏
ℎ∈𝐺𝑘

𝑒\𝑋ℎ (𝑠ℎ,𝑡ℎ ) ] ≤
𝐾∏
𝑘=1

∏
ℎ∈𝐺𝑘

(𝑒𝑝ℎ\_ℎ (𝑝ℎ\,𝑠ℎ,𝑡ℎ ) )1/𝑝ℎ =
∏
ℎ∈𝐻

𝑒\_ℎ (𝑝ℎ\,𝑠ℎ,𝑡ℎ ) .

The first equality is deduced from the dependency graph: we have mutual independence between

families of processes of distinct connected components. The inequality is the application of the

Hölder inequality inside the connected components, as well as the use of the MGF bounds. □
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We can now derive an end-to-end service for partially dependent servers and arrival processes.

Theorem 10. The end-to-end service for flow 1 is bounded by the service bounding generating
function

𝐹𝑆e2e (\, (𝑝𝑖 ), (𝑞 𝑗 ), 𝑧) =
𝑒
\ (∑𝑖≠1 𝜎𝐴𝑖

(𝑝𝑖\ )+
∑

𝑗 𝜎𝑆𝑗 (𝑞 𝑗\ ) )∏
𝑗∉𝜋1
(1 − 𝑒−\ (𝜌𝑆𝑗 (𝑞 𝑗\ )−

∑
𝑖∈ 𝑗 𝜌𝐴𝑖

(𝑝𝑖\ ) ) )

∏
𝑗∈𝜋1

1

1 − 𝑒−\ (𝜌𝑆𝑗 (𝑞 𝑗\ )−
∑

1≠𝑖∈ 𝑗 𝜌𝐴𝑖
(𝑝𝑖\ ) )𝑧

,

for all (𝑝𝑖 ), (𝑞 𝑗 ) such that for all 𝑘 ≤ 𝐾 , ∑𝐴𝑖 ∈𝐺𝑘\{1}
1

𝑝𝑖
+∑

𝑆 𝑗 ∈𝐺𝑘

1

𝑞 𝑗
= 1.

Proof. The proof follows almost along the same lines as in Theorem 8. Lemma 4 is used at

Equation (6). If 𝑋ℎ = 𝐴𝑖 , we have 𝑠ℎ = 𝑡𝜋𝑖 (1) , 𝑡ℎ = 𝑡𝜋𝑖 (ℓ𝑖 ) and _ℎ (\, 𝑠ℎ, 𝑡ℎ) = 𝜎𝐴𝑖
(\ ) + 𝜌𝐴𝑖

(\ ) (𝑡ℎ − 𝑠ℎ).
If 𝑋ℎ = 𝑆 𝑗 , we have 𝑠ℎ = 𝑡 𝑗 , 𝑡ℎ = 𝑡 𝑗• and _ℎ (\, 𝑠ℎ, 𝑡ℎ) = 𝜎𝑆 𝑗 (\ ) − 𝜌𝑆 𝑗 (\ ) (𝑡ℎ − 𝑠ℎ). □

This is straightforward if 𝐴1’s connected component is a singleton: 𝐴1 is then mutually inde-

pendent of all other processes and Lemmas 1 and 2 apply. If 𝐴1 is not mutually independent of

all other processes, the end-to-end server and 𝐴1 are not independent. While a first solution is to

apply again Hölder inequality, we propose to compute the bound directly. Instead of computing

the end-to-end server first, we directly start with the delay expression from Theorem 6. The proofs

use the same arguments as before, so we defer them to Appendix C.

Theorem 11. With the same notations as above, for all (𝑝𝑖 ), (𝑞 𝑗 ) such that for all𝑘 ≤ 𝐾 ,
∑
𝐴𝑖 ∈𝐺𝑘

1

𝑝𝑖
+∑

𝑆 𝑗 ∈𝐺𝑘

1

𝑞 𝑗
= 1 and \ ≥ 0 such that for all 𝑗 ∈ {1, . . . , 𝑛}, ∑𝑖∈ 𝑗 𝜌𝐴𝑖

(𝑝𝑖\ ) < 𝜌𝑆 𝑗 (𝑞 𝑗\ ),
(1) the departure process of flow 1 is bounded by the arrival bounding generating function

𝐹𝐷e2e
(\, (𝑝𝑖 ), (𝑞 𝑗 ), 𝑧) =

𝑒\𝜎𝐴1
(𝑝1\ )𝐹𝑆e2e (\, (𝑝𝑖 )𝑖≠1, (𝑞 𝑗 ), 𝑒\𝜌𝐴1

(𝑝1\ ) )
1 − 𝑒\𝜌𝐴1

(𝑝1\ )𝑧
;

(2) the delay of flow 𝐴1 is bounded by the generating function

𝐹𝑑 (\, (𝑝𝑖 ), (𝑞 𝑗 ), 𝑧) =
𝑒\ (𝜎𝐴1

(𝑝1\ )+𝜌𝐴
1
(𝑝1\ ) )𝐹𝑆e2e (\, (𝑝𝑖 )𝑖≠1, (𝑞 𝑗 ), 𝑒\𝜌𝐴1

(𝑝1\ ) )
1 − 𝑒−\𝜌𝐴1

(𝑝1\ )𝑧

−
𝑒\𝜎𝐴1

(𝑝1\ )𝑧𝐹𝑆e2e (\, (𝑝𝑖 )𝑖≠1, (𝑞 𝑗 ), 𝑧)
1 − 𝑒−\𝜌𝐴1

(𝑝1\ )𝑧
.

5.2 Case study: diamond network
Here, we consider the diamond network from Figure 11, where two originally independent flows

separate and then rejoin. If we assume some kind of resource-sharing scheduling policy at server 0,

then their outputs are dependent when interfering at server 3. This network is not tree-reducible.

5.2.1 Transformation into a tree-reducible network. A solution to transform this feedforward

network into a tree-reducible network is the cutting of flows. If we are interested in the performance

of flow 1, we can cut flow 2, either between servers 0 and 2 or between servers 2 and 3, as shown

in Figure 12. Clearly, we obtain a tree-reducible network and can now apply Theorems 10 and 11

from the previous subsection.

The analysis of the two obtained networks follows similar lines, so let us focus on the transforma-

tion when flow 2 is cut between servers 2 and 3 (on the right of Figure 12). A flow 2
′′
is then created,

and it stochastically depends on flow 1, flow 2, server 0 and server 2. Using the independence

of these flows and servers and results from Section 3.3, we can compute a bounding generating

function for the arrival process of flow 2
′′
:

𝐹𝐴
2
′′ (\, 𝑧) = 𝐹𝐷2

(\, 𝑧) = 𝑒\ (𝜎𝐴1
(\ )+𝜎𝐴

2
(\ )+𝜎𝑆

0
(\ )+𝜎𝑆

2
(\ ) )

(1 − 𝑒−\ (𝜌𝑆0 (\ )−𝜌𝐴1
(\ )−𝜌𝐴

2
(\ )) ) (1 − 𝑒−\ (𝜌𝑆2 (\ )−𝜌𝐴2

(\ )) )
1

1 − 𝑒\𝜌𝐴2
(\ )𝑧

.
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Fig. 11. Diamond network.

0

1

2

3

1

2
′

2
0

1

2

3

1

2 2
′′

Fig. 12. Two possibilities for cutting flows to transform the diamond network into a tree-reducible network.

Now, when analysing flow 1, we do not need to consider server 2 (a simple case of tree reduction).

The dependency graph of the processes has one non-trivial connected component {𝐴1, 𝐴2, 𝐴2
′′ , 𝑆0},

and the other components {𝑆1} and {𝑆3} are singletons. In the last step, in order to compute the

performance bounds for flow 1, we first obtain the bounding generating function of the end-to-end

service with Theorem 10:

𝐹𝑆e2e (\, 𝑧) =
𝑒\ (𝜎𝐴1

(𝑝
2
′′\ )+𝜎𝐴

2
(𝑝2\ )+𝜎𝐴

2
(𝑝

2
′′\ )+𝜎𝑆

0
(𝑞0\ )+𝜎𝑆

0
(𝑝

2
′′\ )+𝜎𝑆

1
(\ )+𝜎𝑆

2
(𝑝

2
′′\ )+𝜎𝑆

3
(\ ) )

(1 − 𝑒−𝑝2′′\ (𝜌𝑆0 (𝑝2′′\ )−𝜌𝐴1
(𝑝

2
′′\ )−𝜌𝐴

2
(𝑝

2
′′\ ) ) )

1

𝑝
2
′′ (1 − 𝑒−𝑝2′′\ (𝜌𝑆2 (𝑝2′′\ )−𝜌𝐴2

(𝑝
2
′′\ ) ) )

1

𝑝
2
′′

· 1

(1 − 𝑒−\ (𝜌𝑆0 (𝑞0\ )−𝜌𝐴2
(𝑝2\ ) )𝑧) (1 − 𝑒−\𝜌𝑆1 (\ )𝑧) (1 − 𝑒−\ (𝜌𝑆3 (\ )−𝜌𝐴2

(𝑝
2
′′\ ) )𝑧)

.

Theorem 11 can now be applied to compute, for instance, the delay violation probability with the

relation 1/𝑝1 + 1/𝑝2 + 1/𝑝2′′ + 1/𝑞0 = 1.

5.2.2 Numerical evaluation. Here, we provide some numerical results for delay bounds for the

diamond network from Figure 11. We compare a sequential analysis, representing the state of the

art, with the aforementioned cutting technique to enable the PMOO analysis; simulation results

are provided as well. The results are displayed in Figure 13.

We can observe that both cuts followed by PMOO-AC calculations lead to significantly tighter

delay bounds than the standard approach. To be precise, for a violation probability of 10
−6

the cut

between servers 2 and 3 (called Cut (2,3) in Figure 13) as well as Cut (0,2) lead to a delay bound of

14, while the standard bound results in 27. Moreover, the cutting-based PMOO-AC is able to capture

almost the same scaling as the simulations, which is in clear contrast to the standard bound. It is

striking that the gap to the simulation does not increase significantly compared to the independent

case, despite the application of Hölder’s inequality. This indicates that the inaccuracy induced

by Hölder’s inequality cannot only be assessed by the number of its applications, but requires a

detailed look at the dependency structure.

5.3 Discussion
In this section, we have compared state-of-the-art bounds with our new results for a canonical

network with rejoining flows; here are only two options to cut the network, leading to almost the

same bounds. While the cutting technique can generally be applied in larger networks, it may no

longer be an option to simply try all (combinations of) cuts as these generally grow exponentially

in the size of the network. A clever search for "good" cuts is conceivable – similar to advanced
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Fig. 13. Delay bounds and simulations for the diamond network with server rates 𝐶𝑖 = 2.0 for 𝑖 = 1, . . . , 4.

network analysis techniques in deterministic network calculus, for instance using machine learning

techniques as in [24] – but left for future work.We also remark that besides cutting other approaches

exist to transform a general feedforward network into a tree-reducible one such as “unfolding” [5].

Unfolding achieves tree-reducibility by “cloning” the server at which the rejoining flows had joined

first such that their dependent characteristic is preserved. Details with respect to the bounding

generating function and the analysis can be found in [9]. For the diamond network, cutting actually

outperformed unfolding. Yet, in larger networks, the situation is unclear. The diamond network is

also considered in [31]. There, it is conjectured that the dependence of the rejoining flows could be

upper bounded by the independent case. This could potentially play a major role in dealing with

dependence. Again, we leave this for future work.

In conclusion, it is clear that, while we have "opened the door" for an accurate and efficient SNC

analysis of general feedforward networks, there is now a "large room" to explore for future work.

6 CONCLUSION
We have presented a new network analysis method that unleashes the power of the paymultiplexing

only once (PMOO) principle in the stochastic network calculus. Based on this method, we applied

techniques from analytic combinatorics to keep bounds accurate even in rather complex scenarios.

Equipped with this, it is now possible to calculate rigorous probabilistic performance bounds

for tree-reducible networks without incurring any method-pertinent stochastic dependencies. In

numerical evaluations, we observed that we are largely successful in not widening the known

simulation-calculation gap further, and, at least, closely capture the scaling of the performance

bounds. We have also made a promising step towards a stochastic network calculus analysis of

general feed-forward networks laying the foundation to reuse the PMOO as much as possible.

While ourmethod can benefit from improvements based on a preliminary network transformation

(e.g. flow prolongation [30]) at no cost, we believe it can also exploit other recent techniques such as

the ℎ-mitigators, which were successfully applied to sink-tree networks in [32]. As discussed at the

end of Section 5, for future work it is very promising to invest more effort in good strategies for the

transformation of large general feedforward networks into tree-reducible ones. More disruptively,

the PMOO method could also be a first step to enable martingale techniques (as in [13, 33]) in the

end-to-end analysis, in order to completely close the simulation-calculation gap.
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A ADDITIONAL PROOFS OF SECTION 2
A.1 Proof of Equation (3)

𝐺 (𝑧) =
∞∑︁
𝑛=0

(
∞∑︁
𝑚=𝑛

𝑓𝑚)𝑧𝑛 =

∞∑︁
𝑛=0

(
∞∑︁
𝑚=0

𝑓𝑚)𝑧𝑛 −
∞∑︁
𝑛=0

(
𝑛−1∑︁
𝑚=0

𝑓𝑚)𝑧𝑛

= 𝐹 (1)
∞∑︁
𝑛=0

𝑧𝑛 −
∞∑︁
𝑛=1

(
𝑛−1∑︁
𝑚=0

𝑓𝑚)𝑧𝑛 =
𝐹 (1)
1 − 𝑧 − 𝑧

∞∑︁
𝑛=0

(
𝑛∑︁

𝑚=0

𝑓𝑚)𝑧𝑛

=
𝐹 (1)
1 − 𝑧 − 𝑧

∞∑︁
𝑛=0

(
𝑛∑︁

𝑚=0

𝑓𝑚𝑧
𝑚𝑧𝑛−𝑚) = 𝐹 (1)

1 − 𝑧 − 𝑧
∞∑︁
𝑚=0

(𝑓𝑚𝑧𝑚
∞∑︁
𝑛=𝑚

𝑧𝑛−𝑚)

=
𝐹 (1)
1 − 𝑧 − 𝑧

𝐹 (𝑧)
1 − 𝑧 =

𝐹 (1) − 𝑧𝐹 (𝑧)
1 − 𝑧 .

A.2 Proof of Lemma 2
As 𝐹𝐴 (\, 𝑧) is a geometric series, we have [𝑧𝑛+𝑚]𝐹𝐴 (\, 𝑧) = 𝑒\𝜌𝐴 (\ )𝑚 [𝑧𝑛]𝐹𝐴 (\, 𝑧). Let us denote
𝑑 (𝑡) the delay at time 𝑡 . We have for all 𝑇 > 0,

P(𝑑 (𝑡) ≥ 𝑇 ) = P(𝐴(0, 𝑡) > 𝐷 (0, 𝑡 +𝑇 − 1))
≤ P(∃𝑠 ≤ 𝑡, 𝐴(𝑠, 𝑡) > 𝑆 (𝑠, 𝑡 +𝑇 − 1))

≤
∑︁

0≤𝑠≤𝑡
P(𝐴(𝑠, 𝑡) > 𝑆 (𝑠, 𝑡 +𝑇 − 1))

≤
∑︁

0≤𝑠≤𝑡−1
E[𝑒\ (𝐴(𝑠,𝑡 )−𝑆 (𝑠,𝑡+𝑇−1) ) ] (𝐴(𝑡, 𝑡) = 0 and 𝑆 (𝑡, 𝑡 +𝑇 − 1) ≥ 0)

=
∑︁

0≤𝑠≤𝑡−1
E[𝑒\𝐴(𝑠,𝑡 ) ]E[𝑒−\𝑆 (𝑠,𝑡+𝑇−1) ] (independence of 𝐴 and 𝑆)

≤
∑︁

0≤𝑠≤𝑡−1
[𝑧𝑡−𝑠 ]𝐹𝐴 (\, 𝑧) · [𝑧𝑡−𝑠+𝑇−1]𝐹𝑆 (\, 𝑧)

≤
∑︁
𝑢>0

[𝑧𝑢]𝐹𝐴 (\, 𝑧) · [𝑧𝑢+𝑇−1]𝐹𝑆 (\, 𝑧) (𝑢 ← 𝑡 − 𝑠)
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= 𝑒−\𝜌𝐴 (\ ) (𝑇−1)
∑︁
𝑢>0

[𝑧𝑢+𝑇−1]𝐹𝐴 (\, 𝑧) · [𝑧𝑢+𝑇−1]𝐹𝑆 (\, 𝑧)

= 𝑒−\𝜌𝐴 (\ ) (𝑇−1)
∑︁
𝑢≥𝑇
[𝑧𝑢]𝐹𝐴 (\, 𝑧) · [𝑧𝑢]𝐹𝑆 (\, 𝑧). (11)

We recognize the sum of the last terms of a Hadamard product in the right-hand term. Let ℎ𝑢 =

[𝑧𝑢]𝐹𝐴 (\, 𝑧) · [𝑧𝑢]𝐹𝑆 (\, 𝑧) and ℎ′𝑢 =
∑
𝑢≥𝑇 ℎ𝑢 . Let𝐻 (𝑧) and𝐻 ′ (𝑧) be their corresponding generating

functions. In particular, we have 𝐻 (𝑧) = 𝑒\𝜎𝐴 (\ )𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ )𝑧). Now,

P(𝑑 (𝑡) ≥ 𝑇 ) ≤ 𝑒−\𝜌𝐴 (\ ) (𝑇−1) [𝑧𝑇 ]𝐻 ′ (𝑧),

and we recognize again a Hadamard product of a geometric series and 𝐻 ′, and use Equation (3) to

obtain

𝐹𝑑 (𝑧) = 𝑒\𝜌𝐴 (\ )𝐻 ′ (𝑒−\𝜌𝐴 (\ )𝑧) = 𝑒\𝜌𝐴 (\ )
𝐻 (1) − 𝑒−\𝜌𝐴 (\ )𝑧𝐻 (𝑒−\𝜌𝐴 (\ )𝑧)

1 − 𝑒−\𝜌𝐴 (\ )𝑧

= 𝑒\ (𝜎𝐴 (\ )+𝜌𝐴 (\ ) )
𝐹𝑆 (\, 𝑒\𝜌𝐴 (\ ) ) − 𝑒−\𝜌𝐴 (\ )𝑧𝐹𝑆 (\, 𝑧)

1 − 𝑒−\𝜌𝐴 (\ )𝑧
.

B PROOFS AND COMPUTATIONS OF SECTION 3
B.1 Proof of Corollary 2
It suffices to prove that for all 𝑡 ∈ N, [𝑧𝑡 ]𝐹𝑆e2e (\, 𝑧) ≤ [𝑧𝑡 ]𝐺 (\, 𝑧). For all 𝑡 ∈ N,

[𝑧𝑡 ]𝐹𝑆e2e (\, 𝑧) =𝑒\𝜎𝑆e2e (\ )
∑︁

𝑢1+...+𝑢𝑛=𝑡

𝑛∏
𝑗=1

𝑒
−\𝜌 ′𝑗 (\ )𝑢 𝑗

=𝑒\𝜎𝑆e2e (\ )𝑒−\𝜌
′
1
(\ )𝑡

∑︁
𝑢1+...+𝑢𝑛=𝑡

𝑛∏
𝑗=1

𝑒
−\ (𝜌 ′𝑗 (\ )−𝜌 ′1 (\ ) )𝑢 𝑗

=𝑒\𝜎𝑆e2e (\ )𝑒−\𝜌
′
1
(\ )𝑡

∑︁
𝑠1+𝑠2=𝑡

( ∑︁
𝑢1+...+𝑢𝑘=𝑠1

1

)
· ©«

∑︁
𝑢𝑘+1+...+𝑢𝑛=𝑠2

𝑛∏
𝑗=𝑘+1

𝑒
−\ (𝜌 ′𝑗 (\ )−𝜌 ′1 (\ ) )𝑢 𝑗 ª®¬

=𝑒\𝜎𝑆e2e (\ )𝑒−\𝜌
′
1
(\ )𝑡

∑︁
𝑠1+𝑠2=𝑡

(
𝑠1 + 𝑘 − 1
𝑘 − 1

)
· ©«

∑︁
𝑢𝑘+1+...+𝑢𝑛=𝑠2

𝑛∏
𝑗=𝑘+1

𝑒
−\ (𝜌 ′𝑗 (\ )−𝜌 ′1 (\ ) )𝑢 𝑗 ª®¬

≤𝑒\𝜎𝑆e2e (\ )𝑒−\𝜌 ′1 (\ )𝑡
(
𝑡 + 𝑘 − 1
𝑘 − 1

) ©«
∑︁

𝑢𝑘+1+...+𝑢𝑛≤𝑡

𝑛∏
𝑗=𝑘+1

𝑒
−\ (𝜌 ′𝑗 (\ )−𝜌 ′1 (\ ) )𝑢 𝑗 ª®¬

≤𝑒\𝜎𝑆e2e (\ )𝑒−\𝜌 ′1 (\ )𝑡
(
𝑡 + 𝑘 − 1
𝑘 − 1

) 𝑛∏
𝑗=𝑘+1

1

1 − 𝑒−\ (𝜌
′
𝑗
(\ )−𝜌 ′

1
(\ ) ) = [𝑧

𝑡 ]𝐺 (\, 𝑧).
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B.2 Proof of Equation (8): 𝐹𝑆e2e (\, 𝑧) has singularities with multiplicities 1 only.
We first use partial fraction decomposition [18]:

𝑛∏
𝑗=1

1

1 − 𝑟 𝑗𝑧
=

𝑛∑︁
𝑗=1

∏
𝑘≠𝑗

(
1

1 − 𝑟−1
𝑗
𝑟𝑘

)
1

1 − 𝑟 𝑗𝑧
.

and

𝑟−1
0

1 − 𝑟0𝑧

𝑛∏
𝑗=1

1

1 − 𝑟−1
0
𝑟 𝑗
− 𝑧

1 − 𝑟0𝑧

𝑛∏
𝑗=1

1

1 − 𝑟 𝑗𝑧

=
𝑟−1
0

1 − 𝑟0𝑧

𝑛∏
𝑗=1

1

1 − 𝑟−1
0
𝑟 𝑗
− 𝑧

[ 𝑛∑︁
𝑗=0

( ∏
𝑘≥0,𝑘≠𝑗

1

1 − 𝑟−1
𝑗
𝑟𝑘

)
1

1 − 𝑟 𝑗𝑧

]
= 𝑟−1

0

𝑛∏
𝑗=1

1

1 − 𝑟−1
0
𝑟 𝑗
−

𝑛∑︁
𝑗=1

𝑧

1 − 𝑟0𝑟−1𝑗

( ∏
𝑘≥1,𝑘≠𝑗

1

1 − 𝑟−1
𝑗
𝑟𝑘

)
1

1 − 𝑟 𝑗𝑧
.

In the bounding generating function of the delay, by identifying 𝑟0 as 𝑒
−\𝜌𝐴

1
(\ )

and for all 𝑗 > 0,

𝑟 𝑗 as 𝑒
−\𝜌 ′𝑗 (\ ) , we obtain (for ease of presentation, we drop the dependence of the 𝜎 ’s and 𝜌’s in \ )

𝐹𝑑 (\, 𝑧) = 𝑒\𝜎𝐴1

𝑒\𝜌𝐴1 𝐹𝑆e2e (\, 𝑒\𝜌𝐴1 ) − 𝑧𝐹𝑆e2e (\, 𝑧)
1 − 𝑒−\𝜌𝐴1𝑧

=
𝑒\ (𝜎𝐴1

+𝜎𝑆
e2e
+𝜌𝐴

1
)∏𝑛

𝑗=1

(
1 − 𝑒\ (𝜌𝐴1

−𝜌 ′
𝑗
) ) 1

1 − 𝑒−\𝜌𝐴1𝑧
− 𝑒

\ (𝜎𝐴
1
+𝜎𝑆

e2e
)𝑧

1 − 𝑒−\𝜌𝐴1𝑧

𝑛∏
𝑗=1

1

1 − 𝑒−\𝜌
′
𝑗𝑧

=
𝑒\ (𝜎𝐴1

+𝜎𝑆
e2e
+𝜌𝐴

1
)∏𝑛

𝑗=1

(
1 − 𝑒\ (𝜌𝐴1

−𝜌 ′
𝑗
) ) + 𝑛∑︁

𝑗=1

𝑒\ (𝜎𝐴1
+𝜎𝑆

e2e
)𝑧

𝑒
\ (𝜌 ′

𝑗
−𝜌𝐴

1
) − 1

(∏
𝑘≠𝑗

1

1 − 𝑒\ (𝜌
′
𝑗
−𝜌 ′

𝑘
)

)
1

1 − 𝑒−\𝜌
′
𝑗𝑧
.

This is of the form 𝑓 (𝑧) = 𝑎 +∑𝑛
𝑗=1

𝑏 𝑗𝑧

1−𝑟 𝑗𝑧 , and the coefficients of 𝑓 are [𝑧0] 𝑓 (𝑧) = 𝑓 (0) = 𝑎 and for

all 𝑇 > 0,

[𝑧𝑇 ] 𝑓 (𝑧) =
𝑛∑︁
𝑗=1

[𝑧𝑇 ]
𝑏 𝑗𝑧

1 − 𝑟 𝑗𝑧
=

𝑛∑︁
𝑗=1

[𝑧𝑇−1]
𝑏 𝑗

1 − 𝑟 𝑗𝑧
=

𝑛∑︁
𝑗=1

𝑏 𝑗𝑟
𝑇−1
𝑗 . (12)

As a consequence, for all 𝑇 > 0,

[𝑧𝑇 ]𝐹𝑑 (\, 𝑧) =
𝑛∑︁
𝑗=1

𝑒\ (𝜎𝐴1
+𝜎𝑆

e2e
)

𝑒
\ (𝜌 ′

𝑗
−𝜌𝐴

1
) − 1

(∏
𝑘≠𝑗

1

1 − 𝑒\ (𝜌
′
𝑗
−𝜌 ′

𝑘
)

)
𝑒
−\𝜌 ′𝑗 (𝑇−1)

=

𝑛∑︁
𝑗=1

𝑒\ (𝜎𝐴1
+𝜎𝑆

e2e
+𝜌𝐴

1
)

1 − 𝑒\ (𝜌𝐴1
−𝜌 ′

𝑗
)

(∏
𝑘≠𝑗

1

1 − 𝑒\ (𝜌
′
𝑗
−𝜌 ′

𝑘
)

)
𝑒
−\𝜌 ′𝑗𝑇 .

B.3 Proof of Equation (9): 𝐹𝑆e2e (\, 𝑧) has exactly one singularity
In this subsection, we assume that all 𝜌 ′𝑗 (\ ), 𝑗 ∈ {1, . . . , 𝑛} are equal.

We also use partial fractional decomposition:

1

(1 − 𝑟0𝑧) (1 − 𝑟1𝑧)𝑛
=

1

(1 − 𝑟0𝑧) (1 − 𝑟−1
0
𝑟1)𝑛
−

𝑟−1
0
𝑟1

(1 − 𝑟−1
0
𝑟1)𝑛+1

[
𝑛∑︁
𝑖=1

(
1 − 𝑟−1

0
𝑟1

1 − 𝑟1𝑧

)𝑖 ]
,
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and

𝑟−1
0

(1 − 𝑟0𝑧) (1 − 𝑟−1
0
𝑟1)𝑛
− 𝑧

(1 − 𝑟0𝑧) (1 − 𝑟1𝑧)𝑛
=

𝑟−1
0

(1 − 𝑟−1
0
𝑟1)𝑛
+

𝑟−1
0
𝑟1𝑧

(1 − 𝑟−1
0
𝑟1)𝑛+1

[
𝑛∑︁
𝑖=1

(
1 − 𝑟−1

0
𝑟1

1 − 𝑟1𝑧

)𝑖 ]
,

The bounding generating function of the delay can be obtained by replacing 𝑟0 by 𝑒
−\𝜌𝐴

1 and 𝑟1
by 𝑒−\𝜌

′
1 :

𝐹𝑑 (\, 𝑧) = 𝑒\ (𝜎𝐴1
+𝜎𝑆

e2e
)
(

𝑒\𝜌𝐴1

(1 − 𝑒−\ (𝜌 ′1−𝜌𝐴1
) )𝑛

+𝑒\ (𝜌𝐴1
−𝜌 ′

1
)𝑧

[
𝑛∑︁
𝑖=1

1

(1 − 𝑒−\ (𝜌 ′1−𝜌𝐴1
) )𝑛−𝑖+1

1

(1 − 𝑒−\𝜌 ′1𝑧)𝑖

])
.

If 𝑓 (𝑧) = 1

(1−𝑟𝑧 )𝑚 , then its coefficients are [𝑧𝑇 ] 𝑓 (𝑧) =
(
𝑇+𝑚−1
𝑇

)
𝑟𝑇 . Then, following the same

computations as in (12), one can deduce that for all 𝑇 > 0,

[𝑧𝑇 ]𝐹𝑑 (\, 𝑧) = 𝑒\ (𝜎𝐴1
+𝜎𝑆

e2e
+𝜌𝐴

1
−𝜌 ′

1
)

[
𝑛∑︁
𝑖=1

1

(1 − 𝑒−\ (𝜌 ′1−𝜌𝐴1
) )𝑛−𝑖+1

(
𝑇 + 𝑖 − 2
𝑇 − 1

)
𝑒−\𝜌

′
1
(𝑇−1)

]
= 𝑒\ (𝜎𝐴1

+𝜎𝑆
e2e
+𝜌𝐴

1
)

[
𝑛∑︁
𝑖=1

1

(1 − 𝑒−\ (𝜌 ′1−𝜌𝐴1
) )𝑛−𝑖+1

(
𝑇 + 𝑖 − 2
𝑇 − 1

)
𝑒−\𝜌

′
1
𝑇

]
.

C PROOF OF THEOREM 11
C.1 Bounding generating function of the departure process
We have

𝐴1 ⊘ 𝑆e2e (𝑠, 𝑡) = sup

𝑢≤𝑠
𝐴1 (𝑢, 𝑡) − 𝑆e2e (𝑢, 𝑠)

= sup

𝑢≤𝑠
sup

𝑡 𝑗 ≤𝑡 𝑗•
𝑡𝜋

1
(1)=𝑢

𝑡𝜋
1
(ℓ
1
)•=𝑠

𝐴1 (𝑢, 𝑡) −
𝑛∑︁
𝑗=1

𝑆 𝑗 (𝑡 𝑗 , 𝑡 𝑗• ) +
𝑚∑︁
𝑖=2

𝐴𝑖 (𝑡𝜋𝑖 (1) , 𝑡𝜋𝑖 (ℓ𝑖 )• ).

When computing the MGF E[𝑒\ (𝐴1⊘𝑆e2e (𝑠,𝑡 ) ) ], one can take advantage of the partial independence

of 𝐴1 with the other processes.

For all (𝑝𝑖 ), (𝑞 𝑗 ) such that for all 𝑘 ∈ {1, . . . , 𝐾}, ∑𝐴𝑖 ∈𝐺𝑘

1

𝑝𝑖
+ ∑

𝑆 𝑗 ∈𝐺𝑘

1

𝑞 𝑗
= 1, we have, using

Lemma 4 in the second line,
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E[𝑒\ (𝐴1⊘𝑆e2e (𝑠,𝑡 ) ) ] ≤
∑︁
𝑢≤𝑠

∑︁
𝑡 𝑗 ≤𝑡 𝑗•
𝑡𝜋

1
(1)=𝑢

𝑡𝜋
1
(ℓ
1
)•=𝑠

E[𝑒\ (𝐴1 (𝑢,𝑡 )−
∑𝑛

𝑗=1 𝑆 𝑗 (𝑡 𝑗 ,𝑡 𝑗• )+
∑𝑚

𝑖=2𝐴𝑖 (𝑡𝜋𝑖 (1) ,𝑡𝜋𝑖 (ℓ𝑖 )• ) ) ]

≤
∑︁
𝑢≤𝑠

∑︁
𝑡 𝑗 ≤𝑡 𝑗•
𝑡𝜋

1
(1)=𝑢

𝑡𝜋
1
(ℓ
1
)•=𝑠

𝑒\ (𝜎𝐴1
(𝑝1\ )+𝜌𝐴

1
(𝑝1\ ) (𝑡−𝑢 ) )

(
𝑛∏
𝑗=1

𝑒
−\ (𝜎𝑆𝑗 (𝑞 𝑗\ )−𝜌𝑆𝑗 (𝑞 𝑗\ ) (𝑡 𝑗•−𝑡 𝑗 ) )

𝑚∏
𝑖=2

𝑒\ (𝜎𝐴𝑖
(𝑝𝑖\ )+𝜌𝐴𝑖

(𝑝𝑖\ ) (𝑡𝜋𝑖 (ℓ𝑖 )•−𝑡𝜋𝑖 (1) ) )

)
=

∑︁
𝑢≤𝑠

𝑒\ (𝜎𝐴1
(𝑝1\ )+𝜌𝐴

1
(𝑝1\ ) (𝑡−𝑢 ) ) ·

∑︁
𝑡 𝑗 ≤𝑡 𝑗•
𝑡𝜋

1
(1)=𝑢

𝑡𝜋
1
(ℓ
1
)•=𝑠

(
𝑛∏
𝑗=1

𝑒
−\ (𝜎𝑆𝑗 (𝑞 𝑗\ )−𝜌𝑆𝑗 (𝑞 𝑗\ ) (𝑡 𝑗•−𝑡 𝑗 ) )

𝑚∏
𝑖=2

𝑒\ (𝜎𝐴𝑖
(𝑝𝑖\ )+𝜌𝐴𝑖

(𝑝𝑖\ ) (𝑡𝜋𝑖 (ℓ𝑖 )•−𝑡𝜋𝑖 (1) ) )

)
=

∑︁
𝑢≤𝑠
[𝑧𝑡−𝑢]𝐹𝐴1

(\, 𝑝1, 𝑧) [𝑧𝑠−𝑢]𝐹𝑆e2e (\, (𝑝𝑖 ), (𝑞 𝑗 ), 𝑧).

Similar calculations to those in Lemma 1 lead to

𝐹𝐷e2e
(\, (𝑝𝑖 ), (𝑞 𝑗 ), 𝑧) =

𝑒\𝜎𝐴1
(𝑝1\ )𝐹𝑆e2e (\, (𝑝𝑖 )𝑖≠1, (𝑞 𝑗 ), 𝑒\𝜌𝐴1

(𝑝1\ ) )
1 − 𝑒\𝜌𝐴1

(𝑝1\ )𝑧
.

C.2 Bounding generating function of the delay
From the proof of Lemma 2 and then Lemma 4,

P(𝑑 (𝑡) ≥ 𝑇 ) ≤
∑︁

0≤𝑠≤𝑡−1
E[𝑒\ (𝐴1 (𝑠,𝑡 )−𝑆e2e (𝑠,𝑡+𝑇−1) ) ]

≤
∑︁

0≤𝑠≤𝑡−1

∑︁
𝑡 𝑗 ≤𝑡 𝑗•
𝑡𝜋

1
(1)=𝑠

𝑡𝜋
1
(ℓ
1
)•=𝑡+𝑇−1

E[𝑒\ (𝐴1 (𝑠,𝑡 )−
∑𝑛

𝑗=1 𝑆 𝑗 (𝑡 𝑗 ,𝑡 𝑗• )+
∑𝑚

𝑖=2𝐴𝑖 (𝑡𝜋𝑖 (1) ,𝑡𝜋𝑖 (ℓ𝑖 )• ) ) ]

≤
∑︁
𝑠≤𝑡−1

∑︁
𝑡 𝑗 ≤𝑡 𝑗•
𝑡𝜋

1
(1)=𝑠

𝑡𝜋
1
(ℓ
1
)•=𝑡+𝑇−1

𝑒\ (𝜎𝐴1
(𝑝1\ )+𝜌𝐴

1
(𝑝1\ ) (𝑡−𝑠 ) )

(
𝑛∏
𝑗=1

𝑒
−\ (𝜎𝑆𝑗 (𝑞 𝑗\ )−𝜌𝑆𝑗 (𝑞 𝑗\ ) (𝑡 𝑗•−𝑡 𝑗 ) )

𝑚∏
𝑖=2

𝑒\ (𝜎𝐴𝑖
(𝑝𝑖\ )+𝜌𝐴𝑖

(𝑝𝑖\ ) (𝑡𝜋𝑖 (ℓ𝑖 )•−𝑡𝜋𝑖 (1) ) )

)
≤

∑︁
𝑠≤𝑡−1

[𝑧𝑡−𝑠 ]𝐹𝐴1
(\, 𝑝1, 𝑧) · [𝑧𝑡+𝑇−𝑠−1]𝐹𝑆e2e (\, (𝑝𝑖 ), (𝑞 𝑗 ), 𝑧).
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Following the same lines as in Lemma 2 leads to

𝐹𝑑 (\, (𝑝𝑖 ), (𝑞 𝑗 ), 𝑧) =
𝑒\ (𝜎𝐴1

(𝑝1\ )+𝜌𝐴
1
(𝑝1\ ) ) (𝐹𝑆e2e (\, (𝑝𝑖 )𝑖≠1, (𝑞 𝑗 ), 𝑒\𝜌𝐴1

(𝑝1\ ) )
1 − 𝑒−\𝜌𝐴1

(𝑝1\ )𝑧
−

𝑒\𝜎𝐴1
(𝑝1\ )𝑧𝐹𝑆e2e (\, (𝑝𝑖 )𝑖≠1, (𝑞 𝑗 ), 𝑧))

1 − 𝑒−\𝜌𝐴1
(𝑝1\ )𝑧

.
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