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Abstract

Computing accurate deterministic performance bounds is a strong need for communi-

cation technologies having stringent requirements on latency and reliability. Within new

scheduling protocols such as TSN, the FIFO policy remains at work inside each class of

communication.

In this paper, we focus on computing deterministic performance bounds in FIFO net-

works in the Network Calculus framework. We propose a new algorithm based on linear

programming that presents a trade-o� between accuracy and tractability. This algorithm

is �rst presented for tree networks. Next, we generalize our approach and present a linear

program for computing performance bounds for arbitrary topologies, including cyclic depen-

dencies. Finally, we provide numerical results, both of toy examples and realistic topologies,

to assess the interest of our approach.

1 Introduction

Some communication technologies aim at providing deterministic services, with strong require-
ments on bu�er occupancy, latency and reliability. An example of such a standard under dis-
cussion is Time-Sensitive Networking (TSN), which is part of the 802.1 working group [1] and
has potential applications to industrial and automotive networks. In this new communication
paradigm, critical tra�c (having strong delay and reliability requirements) and best-e�ort tra�c
can share switches and routers. Even though scheduling policies have been de�ned to cope with
these heterogeneous tra�c classes, it is a necessity to develop tools for accurately dimensioning
the bandwidth allocated to each class.

Properly dimensioning a network relies on the ability to compute accurate performance
bounds (delay or bu�er occupancy) in networks. As far as deterministic performance bounds
are concerned, one popular theory is Network Calculus, which is based on the (min, plus)
semi-ring. Elements of the network, such as the tra�c �ows and switches, are described by
curves, and upper bounds of the performances (delay, bu�er occupancy) are computed from this
description. This theory has already been successfully applied to various types of networks. One
can cite switched network [2], ATM networks [3], AFDX (Avionics Full Duplex) networks [4],
TSN/AVB [5, 6].

Di�erent solutions have recently been proposed to analyze these types of networks with
Network Calculus. It is �rst required to give a precise modeling of the scheduling policy � for
example, priorities or processor sharing scheduling, such as DRR (De�cit Round Robin) [7] and
WRR (Weighted Round Robin) � to deduce network guarantees for �ows scheduled in the same
class, where the FIFO (First In First Out) policy is at work. Being able to compute accurate
performance bounds is FIFO networks is then crucial.

1



Recent works focused on the analysis of FIFO networks, and their main goal was to reduce
the computational cost for deriving performance guarantees (upper bounds of worst-case delay).
For example, Mohammadpour et al. propose in [8] a modeling of TSN, and the insertion of
regulators [9] to control the arrival processes at each router; Thomas et al. compare in [10] the
analysis with partial insertion of regulators (from complete to none) using TFA++ (total �ow
analysis) proposed in [11]. These analyses have a very low complexity, which allows the analysis
of large-scale networks, but can have pessimistic bounds.

Other works focused on the accuracy of the bounds computed, in order to get the tightest
result possible. From the �rst paper on Network Calculus, phenomena such as the pay burst
only once (the burst parameter of the �ow under analysis impacts the computation of its end-
to-end performance once) and the pay multiplexing only once (the burst parameter for any
competing �ow impacts the computation of the end-to-end performance of a �ow once) have
been investigated, and each time they led to improvements of the performance bounds. More
recently, algorithms based on linear programming have been proposed in [12, 13] to compute
tight bounds in FIFO networks, but the complexity of these algorithms is too high to be used
in most of the networks. Nevertheless, some networks are not so large that they require very
low complexity performance bounds. For example, Zhang et. al present in [14] a TSN industrial
network with less than 20 nodes, where every �ow crosses at most �ve routers; Zhao et al. study
a variety of networks in [6]. The largest one has 15 switches and each class of AVB tra�c has
at most 25 �ows (the network is presented in [15]). The network of [14] is small enough to
be analyzed with the linear-programming techniques from [13]. With 15 switches (resulting in
100 servers in the Network Calculus modeling), the network of [15] might be too large to be
directly analyzed that way. However, the performances of this network could bene�t from a
more accurate analysis at a computational cost that would still be manageable, even though
this would be out of reach for larger networks.

Objective and contributions The objective of this paper is to explore a solution between
these two extremes, which is both tractable and leads to accurate bounds. We introduce a
new polynomial-size linear-programming technique to compute performance bounds in FIFO
networks, which presents a good trade-o� between complexity and accuracy to analyze medium-
size networks. Furthermore, we compare this algorithm with di�erent existing Network Calculus
methods. More precisely, our contributions are the following.

1. We �rst propose a simpli�ed model (with respect to that presented in [12]) for a linear
program computing bounds in FIFO trees. This model can also take into account the
shaping of transmission links. While losing some accuracy, this algorithm is more tractable,
and achieves better performance bounds than the other methods in the literature in most
cases (obvious exceptions are when tight bounds with explicit formulas are already known,
as in [16]).

2. We generalize the linear-programming technique to networks with cyclic dependencies.
This will then improve the stability region compared to previous works that combine the
�xed-point method and the more classical analysis techniques (TFA/TFA++ and SFA
described in Section 3).

3. We compare our algorithms against the literature in both toy examples (tandems and
rings) and realistic use-cases.

The rest of the paper is organized as follows. First, the Network Calculus framework and
our network model are brie�y recalled in Section 2. The state of the art on Network Calculus
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for FIFO networks is described in Section 3. In Section 4, we present the �rst contribution
of the paper, that is, a new linear programming proposal to compute performance bounds
in FIFO tree networks, in polynomial time. This approach is generalized in Section 5 and 6
respectively to the case of feed-forward networks and networks with a general topology, including
cyclic dependencies. Finally, we compare the new algorithm with the state of the art in several
examples in Section 7 before concluding.

2 Network Calculus framework

In this section, we recall the Network Calculus framework and present the basic results that
will be used in the next parts of the paper. More details about the framework can be found
in [17, 18, 19].

We will use the following notations: R+ is the set of non-negative reals, for all n ∈ N,
Nn = {1, . . . n}, and for all x ∈ R, [x]+ = max(0, x).

2.1 Arrival and service curves

Data processes and arrival curves Flows of data are represented by cumulative processes.
More precisely, if A : R+ → R+ represents a �ow at a certain point in the network, A(t) is
the amount of data of that �ow crossing that point during the time interval [0, t), with the
convention A(0) = 0. The cumulative processes are non-decreasing, left-continuous and null at
zero. We denote by F the set of such processes.

A cumulative process A is constrained by the arrival curve α, or is α-constrained, if

∀s, t ∈ R+ with s ≤ t, A(t)−A(s) ≤ α(t− s).

In the following we will mainly consider token-bucket curves: γb,r : 0 7→ 0; t 7→ b + rt, if t > 0.
The burst b can be interpreted as the maximal amount of data that can arrive simultaneously
and the arrival rate r as a maximal long-term arrival rate of data.

Servers and service curves An n-server S ⊆ Fn × Fn (illustrated for n = 1 in Figure 1)
is a relation between n arrival processes (Ai)

n
i=1 and n departure processes (Di)

n
i=1 such that

Ai ≥ Di for all i ∈ Nn, whenever ((Ai)
n
i=1, (Di)

n
i=1) ∈ S. We assume that the servers are causal.

This means in particular that Ai ≥ Di, and that Di(t) only depends on (Aj(s))j∈Nn,s≤t.

SA D

Figure 1: Server model.

The role of a service curve is to constrain the relation between the inputs of a server and its
outputs.

We say that β ∈ F is a service curve for 1-server S if

∀(A,D) ∈ S, A ≥ D ≥ A ∗ β, (1)

where ∗ is the (min, plus)-convolution: for all t ≥ 0, A ∗ β(t) = inf0≤s≤tA(s) + β(t− s). In the
following we will use

� rate-latency service curves: βR,T : t 7→ R[t − T ]+, where T the latency until the server
becomes active and R as its minimal service rate after this latency;
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� pure delay service curves: δd : t 7→ 0 if t ≤ d; t 7→ +∞ if t > d. We have A ∗ δd(t) =
A((t− d)+). In other words, all data are delayed by a delay d.

An n-server S o�ers a service curve β if it o�ers the service curve β for the aggregate �ows:
for all ((Ai)

n
i=1, (Di))

n
i=1 ∈ S, (

∑n
i=1Di) ≥ (

∑n
i=1Ai) ∗ β and Ai ≥ Di for all i ∈ Nn. We call

the �ow with arrival process
∑n

i=1Ai the aggregate process of �ows 1, . . . , n.

FIFO service policy In this paper, we assume that the service policy in this system is FIFO
(First-In-First-Out): data are served in their arrival order. Figure 2 illustrates the FIFO policy
in the case of a 2-server. The service of data can be decomposed in three steps: �rst the
arrival processes are aggregated (A = A1 + A2); second the departure process in computed
(D1 +D2 = D ≥ A ∗ β); third, D1 and D2 are computed using the FIFO property:

D(t) ≥ A(u)⇔ ∀i ∈ Nn, Di(t) ≥ Ai(u),
D(t) ≤ A(u)⇔ ∀i ∈ Nn, Di(t) ≤ Ai(u).

(2)
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Figure 2: Description of the FIFO policy for a 2-server (from [12]).

It is possible to �nd service guarantees for individual �ows. The following theorem gives the
result for 2-server. It can be generalized to an n-server by �rst aggregating �ows 2, . . . , n to
compute the residual service curve of �ow 1.

Theorem 1 ([18, Proposition 6.2.1]). Consider a FIFO server with service curve β, crossed by
two �ows with respective arrival curves α1 and α2. For all θ ≥ 0, βθ is a residual service curve
for the �rst �ow, with

βθ = [β − (α2 ∗ δθ)]+ ∧ δθ.

One can notice that the service curves computed when θ varies are not comparable (i.e.,
they might intersect each other), and lead to di�erent performances.

Greedy shapers In most networks, the transmission rate is physically limited by the capacity
of a wire or a channel, which limits the quantity of data that can be transmitted to the next
server. This phenomenon is taken into account by greedy shapers. Let B be a cumulative process,
crossing a token-bucket greedy shaper σ = γL,C . The departure process is D = B ∗ σ. Here
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C represents the maximum capacity of the server, and L can represent a packet length, hence
takes into account the packetization e�ect.

A server whose transmission rate is limited by a token-bucket greedy shaper can then be
modeled by a system that is composed of a server β and a greedy shaper σ, as depicted on
Figure 3. We will always assume that σ ≥ β, which is not a restriction since the service o�ered
to a �ows is limited by the physical limitations of the server.

Consider a system consisting in a 1-server with service curve β followed by a greedy-shaper
σ. The departure process then satis�es:

D = B ∗ σ ≥ (A ∗ β) ∗ σ = A ∗ (β ∗ σ) = A ∗ β,

where the last equality comes from β ≤ σ and β(0) = σ(0) = 0.

β σA
B

D

Figure 3: Shaping of the departure process.

As a consequence, the whole system still o�ers a service curve β.

Output arrival curve A departure process is also characterized by an arrival curve. Such an
arrival curve can be computed as a function of the arrival curve of the arrival process and the
shaping and service curves of the server.

Theorem 2 ([17, Theorem 5.3]). Suppose that A is α-constrained and crosses a server o�ering
the service curve β and with greedy shaper σ. Then the departure process D is (α � β) ∧ σ-
constrained, where � is the (min, plus)-deconvolution: α� β(t) = supu≥0 α(t+ u)− β(u).

Functions δ0 or ε : t 7→ ∞ are valid greedy-shapers for all servers. In case of a token-bucket
arrival curve α = γb,r and rate-latency service curve β = βR,T with R > r, (α�β)∧δ0 = γb+rT,r
is an arrival curve for the departure process (the only di�erence between α� β and (α� β)∧ δ0
is the value at 0).

2.2 Performance guarantees in a server

Backlog and delay Let S be a 1-server and (A,D) ∈ S. The backlog of that server at time
t is b(t) = A(t)−D(t). The worst-case backlog is then bmax = supt≥0 b(t).

We denote bmax(α, β) the maximum backlog obtained for an α-constrained �ow crossing a
server o�ering the service curve β. It has been shown to be the maximum vertical distance
between α and β. For example, we have bmax(γb,r, βR,T ) = b+ rT if r ≤ R.

The delay of data exiting at time t is d(t) = sup{d ≥ 0 | A(t− d) > D(t)}. The worst-case
delay is then dmax = supt≥0 d(t).

We denote dmax(α, β) the maximum delay that can be obtained for an α-constrained �ow
crossing a server o�ering the service curve β. It can be shown to be the maximum horizontal
distance between α and β. For example, we have dmax(γb,r, βR,T ) = T + b

R if r < R.
Backlog and delay are illustrated on Figures 4a and 4b.

From performance bounds to output arrival curves It is also possible to compute al-
ternative arrival curves of the output processes using delay and backlog upper bounds of the
servers.
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Figure 4: Processes and worst-case performance.

Theorem 3. Consider a FIFO server crossed by an α-constrained �ow, among others. Suppose
that d is an upper bound of the delay of this �ow. Then α � δd is an arrival curve for the
departure process.

Theorem 3 is a fundamental result for the TFA method described in Paragraph 3.1 and is
proved in A. The next theorem will be useful to compute performances in feed-forward networks
and networks with cyclic dependencies in Sections 5 and 6.

We need the following additional hypotheses:

(H1) The arrival process of �ow of interest (f.o.i.) is α-constraint with α = γb,r, and α is the only
arrival constraint for this �ow, meaning that all arrival processes that are α-constrained
are possible.

(H2) The last server crossed by the f.o.i. o�ers a convex service curve βn. Moreover, for any
aggregate arrival process An to server n, for any aggregate departure process Dn from
server n, for all t ≥ 0, there exists an admissible departure process D′n from server n such
that 1) ∀s ≤ t, Dn(s) = D′n(s); 2) D′n is right-continuous at t.

Theorem 4. Consider a system crossed by a �ow of interest satisfying (H1) and (H2). Let B be
the largest backlog that can be achieved by the f.o.i., for any of its possible arrival and departure
processes. Then α′ = γB,r is an arrival curve for the departure process.

A similar result has already been proved in [20] in a slightly di�erent setting (strict service
curves) and in [21] when a service curve for the whole system is known for the α-constrained
�ow. For the sake of completeness, we provide the proof in B and show a useful case where (H2)
is satis�ed (this is the case Theorem 4 will be applied in Section 5).

2.3 Network model

Consider a network N composed of n servers numbered from 1 to n and crossed by m �ows
named f1, . . . , fm, such that

� each server j guarantees a service curve βj and has a greedy shaper σj . The service policy
is FIFO;

� each �ow fi is αi-constrained and circulates along an acyclic path πi = 〈πi(1), . . . , πi(`i)〉
of length `i.

We will always assume in the following that arrival curves and greedy shapers are token-bucket
ones and the service curves rate-latency ones. We will use the following additional notations:

� F
(j)
i ∈ F is the cumulative process of �ow i entering server j. The departure process after

the last server crossed by �ow fi is be denoted F
(n+1)
i ;
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� the arrival curve of F (j)
i is denoted α(j)

i = γ
b
(j)
i ,ri

. In particular, F (π(1))
i is α-constrained

and b(π(1))i = bi;

� the service curve of server j is βj = βRj ,Tj and the shaping curve is σj = γLj ,Cj ;

� for a server j, we de�ne Fl(j) = {i | ∃`, πi(`) = j} the set of indices of the �ows crossing
server j and Fl(j, h) = {i | ∃`, (πi(`), πi(` + 1)) = (j, h)} the set of indices of the �ows
crossing servers j and h in sequence;

� for all �ows fi, for j ∈ π(i), we denote by succi(j) is the successor of server j in �ow fi.
If j = π(`i), then succi(j) = n + 1. For all servers j, prec(j) is the set of predecessors of
server j.

We call the family of cumulative (F
(j)
i )i∈Nm,j∈πi∪{n+1} a trajectory of the network, and

an admissible trajectory if it satis�ed all the Network Calculus constraints described above:
arrival, service and shaping constraints and FIFO scheduling (in particular arrival and departure
processes of each server satisfy the properties of Equation (2)).

The induced graph GN = (Nn,A) is the directed graph whose vertices are the servers and
the set of arcs is

A = {(πi(k), πi(k + 1)) | i ∈ Nm, k ∈ N`i−1}.
We will consider di�erent types of topologies:

� if no assumption is made about the induced graph, we say that the network has a general
topology;

� if the induced graph GN is acyclic, we say that the network is feed-forward;

� if the induced graph GN contains cycles, we say that the network has cyclic dependencies
(or is not feed-forward);

� if the induced graph GN is an out-tree [22, page 207] (the graph is simply connected and
all vertices have out-degree 1 except one, named the root, that has out-degree 0), we say
that the network is a tree network;

� if the induced graph GN is linear (it is an out-tree and moreover all vertices have in-degree
at most one), we say that the network is a tandem network;

Since we will focus on the performances of a �ow (either its maximum end-to-end delay or
the maximum amount of data in transit along its path), we can restrict the analysis to a sub-part
of the network. The network induced by �ow fi, denoted N (fi) is a sub-network of N de�ned
as follows:

� the servers are the servers j of N for which there exists a path in GN from j to πi(`i), the
destination of �ow fi;

� the �ows are the �ows of N , with paths restricted to the servers of N (fi). Remark that
the new paths are necessarily pre�xes of the original paths;

� service curves and greedy shapers of the kept servers remain unchanged, as well as the
arrival curves of the �ows. If the path of a �ow becomes empty, it can be safely removed
from the network.

Figure 5 illustrates a tree network, with induced graph is ({1, 2, 3, 4, 5}, {(1, 3), (2, 3), (3, 5), (4, 5)}).
In this example, π1 = 〈2, 3, 5〉 and Fl(5) = {1, 3, 4}. The network induced by �ow f2, N (f2),
is composed of servers {1, 2, 3}, and the paths become π′1 = 〈2, 3〉, π′2 = 〈1, 3〉, π′3 = 〈3〉 and
π′4 = 〈〉. Flow f4 can be removed from N (f2).
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Figure 5: Example of a tree network.

Stability We will also be interested in the network stability.

De�nition 1 (Global stability). A network is globally stable if there exists B < ∞ such that
the backlog of each server is bounded by B.

Note that we de�ne the global stability as being able to �nd a bound on the backlog in each
server. In the following, we will rather bound the maximum end-to-end backlog of a �ow (i.e.,
the maximum amount of data in transit at any time in a �ow). End-to-end backlogs can also
be used as a global stability condition: if B′ is a bound on the end-to-end backlog for each �ow,
then mB′ is a backlog bound for each server. Conversely, if B is a bound of the backlog of each
server, then nB is a bound for the end-to-end backlogs. This de�nition is also equivalent to that
of [23], where the condition is that the total backlog in the system is bounded.

Deciding if a network is stable is an open problem in the Network Calculus setting, and only
partial results exist. A necessary condition is that the arrival rate in each server is less than
the service rate, but this condition is not su�cient: Andrews showed in [24] that there exists
FIFO networks with arbitrary small local loads that can be unstable. Other works concern the
de�nition of su�cient conditions for stability. For example Charny and Le Boudec [25] derive
a su�cient stability condition (and delay bound) that depends on the maximum length h of a
�ow. They show that the network is stable if the load of each server is less than a/(b(h−1)+1),
where a and b depend on the service and shaping rates. Rizzo and Le Boudec [26] derive
another su�cient stability condition based on the route interference number (RIN), the number
of interfering �ows at each server. Finally, Rizzo and Le Boudec improve in [23] the stability
condition based on the �xed point of a (non-linear) operator. Another, more classical, direction
is to compute arrival curves of each �ow at the input of each server it crosses as a �xed point.
This technique has mainly been applied to networks with arbitrary multiplexing [20, 27], and
more recently to FIFO networks [10].

Local stability refers to the arrival rate being less than the service rate in every server of the
network. In the following, we will always assume local stability. In our setting, this means that
for all server j,

∑
i∈Fl(j) ri ≤ Rj .

3 State of the art on computing bounds in FIFO networks in

Network Calculus

In this section, we describe the state-of-the-art methods to compute performance bounds in
FIFO networks using Network Calculus. For all those methods, we assume that the network is
locally stable.

3.1 TFA (Total �ow analysis) and TFA++

the FIFO versions of TFA and TFA++ are based on Theorem 3: the worst-case delay in a
FIFO server is the same for the aggregate �ow and all �ows crossing it. Servers are treated in
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the topological order, as described in Algorithm 1, speci�ed for token-bucket arrival curves and
rate-latency service curves. First an arrival curve α of the aggregate arrival process is computed
� only the burst parameters are useful, thus only the sum of the burst parameters is computed
(line 3); then an upper bound on the delay of the server dj is computed as the horizontal distance
between α and the service curve βj (line 4): δdj is a residual service curve for all �ows crossing
server j; last, the arrival curve of the departure processes are computed using Theorem 3 (line

5): α(succi(j))
i = α

(j)
i � δdj ∧ δ0 = γ

b
(j)
i +ridj ,ri

. Again, as the arrival rate remains ri, we only need

to compute the burst parameter of the arrival curves computed.
Finally, the delay of �ow fi is computed by summing all the delays of the servers on its path.

Algorithm 1: TFA analysis: delay of �ow fi

1 begin
2 foreach server j in the topological order do

3 b←
∑

i∈Fl(j) b
(j)
i ;

4 dj ← Tj + b
Rj
;

5 foreach �ow fi ∈ Fl(j) do b
(succi(j))
i ← b

(j)
i + ridj ;

6 return
∑

j∈πi dj

Assuming a topological order is given (otherwise, it can be computed in time linear in the
size of the induced graph, or memoization technique can be used), the number of operations
required is O(

∑
i `i), the sum of the lengths of the �ows (total number of operations of line 5).

In the worst case,
∑

i `i = nm, but is usually much less. The bound computed will be very
loose: �rst, it is computed as the sum of the upper delay bounds of each server, without taking
into account the Pay-burst-only-once principle. Second, the residual service curve computed is
a pure delay (as in Theorem 3), which introduces some pessimism in the computation of the
arrival curve of the departure processes.

TFA++ is similar to TFA except that it takes into account the shaping rate of the greedy-
shaper of the preceding servers. It has �rst been introduced in Grieux's PhD thesis [28] and
then popularized by Mifdaoui and Leydier under the name TFA++ in [11]. In short, between
Algorithm 1 and 2, lines 3 and 4 di�er. Under the technical assumption of [11] on the rates of
the shapers, the complexity of computing delay dj is now linear in the number of predecessors
of server j, but the time complexity of the algorithms remains O(

∑
i `i). As we will see in

Section 7, the delay bounds are drastically improved with TFA++ and can be quite accurate in
some cases.

The case with cyclic dependencies is studied in [10], and will be commented in more details
in Section 6.

Algorithm 2: TFA++ analysis: delay of �ow fi

1 begin
2 foreach server j in the topological order do

3 α←
∑

h∈prec(j) min(σh,
∑

i∈Fl(h,j) α
(j)
i ) +

∑
i | πi(1)=j αi;

4 dj ← dmax(α, βj);

5 foreach �ow fi ∈ Fl(j) do b
(succi(j))
i ← b

(j)
i + ridj ;

6 return
∑

j∈πi dj
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3.2 SFA (Separated �ow analysis)

SFA is the technique that exploits the Pay-burst-only-once principle through the use of (min,
plus) operators. We give here a possible algorithm when the network is FIFO, by choosing a
particular value of θ in Theorem 1. This choice is locally optimal: from Theorem 4, the backlog
bound characterizes the maximum burst of the output arrival curves, so θ is chosen to minimize
the backlog bound for each �ow at each server.

Corollary 1 (of Theorem 1). Consider a FIFO server with service curve β = βR,T , crossed by
two �ows f1 and f2 with respective arrival curves α1 = γb1,r1 and α2 = γb2,r2. A residual service
curve for �ow f1 is

β′ : t 7→ (R− r2)(t− (T + b2/R))+.

The output arrival curve is α′1 = α1 + (T + b2/R)r1.

This is Theorem 1 with θ = T + b2/R (see also [18, Corollary 2.6.3]). Note that Boyer et al.
in [29] use the SFA method with θ = T . In that case the residual service curve computed has a
larger latency: T + b2/(R− r2).

Algorithm 3 describes the procedure to compute the delay of a �ow with the SFA method,
when arrival curves are token-bucket ones and service curves rate-latency ones. In line 4, the
aggregate burst of the cross-tra�c of �ow fi′ is computed. A residual curve β(j)i′ = β

R
(j)

i′ ,T
(j)

i′
is

computed for each server and each �ow crossing it (lines 5 and 6). Then the burst parameter of
the output arrival curve is computed (line 7). Finally, line 8 the end-to-end delay is computed.
The end-to-end service curve for �ow fi is the convolution of all service curves computed for
�ow fi: β

(πi(1)
i ∗ · · · ∗ β(πi(`i))i = βR,T with T =

∑
j∈πi T

(j)
i and R = minj∈πi R

(j)
i .

Algorithm 3: SFA analysis: delay of �ow fi

1 begin
2 foreach server j in the topological order do
3 foreach �ow i′ ∈ Fl(j) do

4 b←
∑

k∈Fl(j)−i′ b
(j)
k ;

5 T
(j)
i′ ← (Tj + b/Rj);

6 R
(j)
i′ ← Rj −

∑
k∈Fl(j)−i′ rk;

7 b
(succi′ (j))
i′ ← b

(j)
i′ + T

(j)
i′ ri′ ;

8 return
∑

j∈πi T
(j)
i + bi/(minj∈πi R

(j)
i )

Given a topological order on the servers, this algorithm requires a constant number of opera-
tions per server and �ow crossing it (note that the cost of computing b does not have to be paid
at each inner loop, as the sum of all bursts arriving at a server can be pre-computed). The time
complexity of this algorithm is then also O(

∑
i `i). SFA always compute better performance

bounds than TFA (smaller arrival curves for the departure process are computed, and SFA ben-
e�ts from the Pay-burst-only-once principle). However, the SFA algorithm described here does
not take into account the shaping e�ect, so it is usually outperformed by TFA++. Whereas the
combination with greedy shapers is possible, no study in the literature, to our knowledge, takes
the shaping of the cross-tra�c into account in the SFA analysis of a FIFO network, so we will
only compare our work to the SFA algorithm presented in Algorithm 3.

Networks with cyclic dependencies can be analyzed with SFA by applying the �xed-point
method [17].

10



3.3 Deborah

Deborah(DElay BOund Rating AlgoritHm) [30] is a software designed to compute delay bounds
in FIFO tandem networks. It is based on the optimization of θ parameters that appear in
Theorem 1. For nested networks (the path of each �ow is either contained in, contains or is
disjoint from the path of any other �ow), it de�nes one θ parameter per �ow, and the parameter
of one �ow depends on the parameters of �ows nested in this �ow. These parameters are then
optimized to compute the delay bound, called LUDB, of a �ow. Lenzini et al. showed in [16]
that the delay bounds are tight for sink-tree tandems, and more generally for sink-trees (all
�ows end at the last server). However, Bisti et al. exhibit in [31] a very small example for which
LUDB does not achieve tightness for other nested tandems. The general case of tandems can
be tackled by cutting the tandem into nested sub-tandems [32, 33]. An additional optimization
step is performed to �nd the optimal decomposition into sub-tandems. In [34], the single tandem
analysis (STA) is introduced: non-nested tandem are transformed into a nested one by cutting
the competing �ows but not the �ow of interest, resulting in more accurate delay bounds, but a
larger optimization problem.

Computing the LUDB in a nested tandem requires optimizing the θ-parameters, which can be
done using piecewise-linear programming, when explicit formulas are not derived. The number
of decompositions to test in sub-tandems highly depends on the topology. Experimentally, the
computation of the LUDB grows exponentially with the size of the tandem. Nevertheless, when
non-nested tandem are cut (including the �ow of interest), the algorithm becomes scalable.

Deborah requires token-bucket arrival curves and rate-latency service curves, and does not
take into account the shaping e�ect of a maximal service curve.

3.4 Linear programming

The linear programming approach developed in [12, 13] consists in writing the Network Cal-
culus relations as linear constraints. If the arrival curves are piecewise linear and concave and
the service curves, piecewise linear and convex, then the exact worst-case performance bounds
in feed-forward networks can be computed by a MILP (Mixed-integer linear program). How-
ever, this solution is very costly as the number of variables is exponential and there are integer
variables. The MILP can be relaxed by removing the integer variables and their correspond-
ing constraints. While this relaxation gives accurate bounds (better than other methods), the
number of constraints is still too high to be able to compute bounds in large network. In the
following, we call ELP the relaxed linear program.

3.5 Linear-programming and algebraic methods under arbitrary multiplex-
ing

The methods described above have their counterparts under arbitrary multiplexing (no schedul-
ing policy is assumed among the �ows crossing the servers, while still assuming per-�ow FIFO
scheduling). Under arbitrary multiplexing, it was shown that TFA is always worse than SFA (the
blind multiplexing version of TFA must replace the worst-case delay of the aggregate server by
the length of its backlogged period, TFA++ does not provide any improvement in most cases).
In addition to SFA and TFA methods, another bound has been studied, named PMOO1, was
obtained by multi-dimensional (min, plus)-convolution [36, 37, 38]. In short, the PMOO method
�rst reduces the analysis of a tandem network to the analysis of a single end-to-end 1-server,

1For nested tandem, the LUDB analysis, before the optimization of the parameters is similar to a PMOO
analysis. For more general topologies (non-nested tandems), there is currently no equivalent to the PMOO
method for FIFO scheduling. The formula given in [35] has been proved incorrect in [31].
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whose characteristics depend on the servers and of the competing �ows. Then the computation
of the delay or the backlog is done using this 1-server. Schmitt et al. showed in [39] that SFA
and PMOO cannot be compared (there are networks where one method is better that the other
and conversely).

A �rst step into the computation of tight bounds in feed-forward network was obtained by
using linear programming [40]. It was shown that, under technical assumptions, computing tight
bounds in tandem networks is polynomial, while it is a NP-hard problem in general feed-forward
networks. Following this �rst result, explicit tight delay and backlog bounds for tree networks
have been derived in [41, 20] for networks with token-bucket arrival curves and rate-latency
service curves. The time complexity is O(n2 +m).

Because the general problem is NP-hard, the linear-programming bounds cannot be used
directly for analyzing general feed-forward networks. Another thread of research consists in
using the algebraic methods (e.g., SFA and PMOO) smartly to approach the exact worst-case
bound. In [42], Bondorf et al. backtrack in the network to test every (min, plus)-decomposition
of the network using �ow aggregation [43, 44] to better bound the cross-tra�c in addition
to PMOO and SFA. The delays obtained are quasi-tight. While the time complexity of this
approach is exponential for tandem networks, it scales well on the tested networks.

We will compare our contribution with the FIFO methods described in this section. From the
point of view of the complexity, we call scalable the methods that have a low time complexity, as
TFA++ and SFA: they can be used to analyze large networks (at least a few hundred servers).
On the contrary, we call untractable the methods that have a (super)-exponential complexity,
such as the linear programming methods for FIFO networks (including ELP). They can only
be used to analyze network with a few nodes (less than 10 servers) in reasonable time (a few
minutes). We are now interested in in-between methods: they might not scale as well as scalable
methods but can be used to analyze networks with tens of servers and lead to better performance
bounds than the scalable methods. Basically, their complexity is polynomial. In the rest of the
paper, we call these methods tractable. The term performance or performance bound always
refers to the end-to-end delay or backlog of a �ow. The term accuracy will be used to de�ne
the quality or tightness of this bounds and the terms scalability or tractability will refer to the
algorithmic complexity or execution time of the methods.

4 A polynomial-size linear program for tree networks

In this section, we propose an alternative to the linear program of [12] that keeps the number
of constraints and variables polynomial in the size of the network for a tree network. Simply
removing constraints from the linear program proposed in [12] can make the bounds more pes-
simistic than SFA or TFA. Therefore, we propose to incorporate these latter bounds to improve
the tightness of our new proposal. We also adapt the linear program so that it can take into
account the shaping of the cumulative processes due to the link capacities. We �rst describe
the linear program and prove that its optimal solution is an upper bound of the performance
in Paragraph 4.1, and then comment it in Paragraph 4.2. In particular, we compare it with the
previous MILP proposed in [12].

4.1 A linear program to compute upper performance bounds

In this paragraph, we describe a new linear proposal to compute performance upper bounds.
To give the intuition of these variables and constraints, we apply the construction on the

small network for Figure 6. The linear program is given in Table 1, and the schematic view of
the constraints in Figure 7.
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1 2f1

f2 f3

Figure 6: Toy network for the linear program description.

For the general description of the linear program, we assume that the network is a tree, and
that we are computing the performance of a �ow of interest exiting at the root of the tree (by
considering the sub-network induced by this �ow). The bit of interest is the bit of data we are
computing the performance of.

As the network is a tree, each server j, except the root, has a unique successor that we denote
succ(j). We also set succ(n) = n+ 1. In the example of Figure 6, succ(1) = 2 and succ(2) = 3.

To simplify the notations, we will use F (succ(πi(`i)))
i instead of F (n+1)

i for the departure processes
of the �ows. Let us denote d(j) the depth of server j. We set the depth of the root d(n) = 1,
and d(j) = d(succ(j)) + 1.

We now describe the linear program. In the following, we write the variables in bold letters
to di�erentiate them from times and cumulative processes.

Variables

� Time variables: we introduce one variable t(n+1,0) representing the departure time of the
bit of interest. For each server j, there are d(j) + 1 variables t(j,k) for k ∈ {0, . . . , d(j)}.
Intuitively, t(j,k) corresponds to a time when arrival processes at server j will be evaluated
in the linear program;

� Process variables: we introduce variables F(j)
i t(j,k) for all i ∈ Nm, j ∈ πi∪{succ(πi(`i))} and

k ∈ {0, . . . , d(j)}. Intuitively, F(j)
i t(j,k) corresponds to the values of the arrival cumulative

processes of �ow fi at server j and at time t(j,k).

Example 1. In our example, we have 6 time variables: t(3,0) for the departure time of the bit
of interest, t(2,0) and t(2,1) are de�ned for arrivals at server 2, and t(1,0), t(1,1), t(1,2) are de�ned
for arrivals at server 1.

Constraints In the constraints given below, server h is the successor of server j (h = succ(j)).

� Time constraints:

� ∀j ∈ Nn, ∀k ∈ {0, . . . , d(j)− 1}, t(j,k) ≥ t(j,k+1);

� ∀j ∈ Nn, ∀k ∈ {0, . . . , d(j)}, t(j,k) ≤ t(h,k);

� FIFO constraints:

� ∀j ∈ Nn, ∀k ∈ {0, . . . , d(h)}, ∀i ∈ Fl(j), F(j)
i t(j,k) = F

(h)
i t(h,k);

� Service constraints:

� ∀j ∈ Nn,
∑

i∈Fl(j)F
(h)
i t(h,d(h)) ≥

∑
i∈Fl(j)F

(j)
i t(j,d(j));

� ∀j ∈ Nn,
∑

i∈Fl(j)F
(h)
i t(h,d(h)) ≥

∑
i∈Fl(j)F

(j)
i t(j,d(j)) +Rj(t(h,d(h))− t(j,d(j)))−RjTj ;

� TFA++ constraints: We denote by dTFAj the delay of server j computed in Algorithm 2,
line 4.

13



� ∀j ∈ Nn, ∀k ∈ {0, . . . , d(h)}, t(h,k) − t(j,k) ≤ dTFAj ;

� SFA constraints: We denote by dSFAi the delay computed with Algorithm 3, with j = πi(1)
and h′ = succ(πi(`i)),

� ∀i ∈ Nm, ∀k ∈ {0, . . . , d(h′)}, t(h′,k) − t(j,k) ≤ dSFAi ;

� Arrival constraints: with j = πi(1),

� ∀i ∈ Nm, ∀0 ≤ k < k′ ≤ d(j), F
(j)
i t(j,k) − F

(j)
i t(j,k′) ≤ bi + ri(t(j,k) − t(j,k′));

� Shaping constraints:

� ∀j ∈ Nn, ∀0 ≤ k < k′ ≤ d(h),
∑

i∈Fl(j,h)(F
(h)
i t(h,k) − F

(h)
i t(h,k′)) ≤ Lj + Cj(t(h,k) −

t(h,k′));

� Monotonicity constraints: with j = πi(1),

� ∀i ∈ Nm, ∀k ∈ {0, . . . , d(j)− 1}, F(j)
i t(j,k) ≥ F

(j)
i t(j,k+1).

Objectives: Several objectives can be de�ned depending on the performance to compute. For
example, in the rest of the paper, we will use:

� delay objective: To compute the an upper bound of the delay of �ow fi, ending at server
n,

� max : t(n+1,0) − t(πi(1),0).

� backlog objective (or maximum amount of data of �ow fi in transit at any time): Alterna-
tively, to obtain an upper bound of the worst-case end-to-end backlog of �ow fi starting
at server j and ending at server n, one introduces the following constraints and objective:

� ∀k ∈ {0, . . . , d(j)}, F(j)
i t(n+1,0) − F

(j)
i t(j,k) ≤ bi + ri(t(n+1,0) − t(j,k));

� max : F
(j)
i t(n+1,0) − F

(n+1)
i t(n+1,0).

Number of variables and constraints The total number of time variables is at most (n+
2)(n + 1)/2 (the worst-case is obtained for trees of maximal depth, that is tandem networks),
and for each �ow, there is at most one process variable per time variable, so the number of
process variables is at most m(n+ 2)(n+ 1)/2 (this number is reached when all �ows cross all
servers). In total, the number of variables is O(mn2).

Similarly, there are at most n(n + 1) time constraints, mn(n − 1)/2 FIFO constraints, 2n
service constraints, mn(n+ 1)/2 TFA++ constraints, mn SFA constraints, mn(n+ 1)/2 arrival
constraints, n2(n + 1)/2 shaping constraints and mn(n + 1)/2 monotonicity constraints. The
additional constraints for computing the backlog is at most n. In total, the number of constraints
is O(mn3).

The number of variables and constraints is then polynomial in the size of the network.

Theorem 5. 1. Let D be an optimal solution of the linear program described above with the
delay objective and d be the worst-case delay of the �ow of interest. Then D ≥ d.

2. Let B be an optimal solution of the linear program described with the backlog objective and
b be the worst-case backlog of the �ow of interest. Then B ≥ b.
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Maximize: t(3,0) − t(1,0)
such that t(1,0) ≤ t(2,0) ≤ t(3,0)
(Time t(1,1) ≤ t(2,1)
constraints) t(2,1) ≤ t(2,0)

t(1,2) ≤ t(1,1) ≤ t(1,0)

(FIFO F
(1)
1 t(1,0) = F

(2)
1 t(2,0) = F

(3)
1 t(3,0)

constraints) F
(1)
1 t(1,1) = F

(2)
1 t(2,1)

F
(1)
2 t(1,0) = F

(2)
2 t(2,0)

F
(1)
2 t(1,1) = F

(2)
2 t(2,1)

F
(2)
3 t(2,0) = F

(3)
3 t(3,0)

(Service F
(2)
1 t(2,1) + F

(2)
2 t(2,1) ≥ F

(1)
1 t(1,2) + F

(1)
2 t(1,2) +R1(t(2,1) − t(1,2))−R1T1

constraints) F
(2)
1 t(2,1) + F

(2)
2 t(2,1) ≥ F

(1)
1 t(1,2) + F

(1)
2 t(1,2)

F
(3)
1 t(3,0) + F

(3)
3 t(3,0) ≥ F

(2)
1 t(2,1) + F

(2)
3 t(2,1) +R2(t(3,0) − t(2,1))−R2T2

F
(3)
1 t(3,0) + F

(3)
3 t(3,0) ≥ F

(2)
1 t(2,1) + F

(2)
3 t(2,1)

(TFA++ t(2,0) − t(1,0) ≤ dTFA1

constraints) t(2,1) − t(1,1) ≤ dTFA1

t(3,0) − t(2,0) ≤ dTFA2

(SFA t(3,0) − t(1,0) ≤ dSFA0

constraints) t(2,0) − t(1,0) ≤ dSFA1

t(2,1) − t(1,1) ≤ dSFA1

t(3,0) − t(2,0) ≤ dSFA2

(Greedy-shaper F
(1)
1 t(2,0) − F

(1)
1 t(2,1) ≤ L1 + C1(t(2,0) − t(2,1))

constraints)

(Arrival F
(1)
1 t(1,0) − F

(1)
1 t(1,1) ≤ b1 + r1(t(1,0) − t(1,1))

constraints) F
(1)
1 t(1,1) − F

(1)
1 t(1,2) ≤ b1 + r1(t(1,1) − t(1,2))

F
(1)
1 t(1,0) − F

(1)
1 t(1,2) ≤ b1 + r1(t(1,0) − t(1,2))

F
(1)
2 t(1,0) − F

(1)
2 t(1,1) ≤ b2 + r2(t(1,0) − t(1,1))

F
(1)
2 t(1,1) − F

(1)
2 t(1,2) ≤ b2 + r2(t(1,1) − t(1,2))

F
(1)
2 t(1,0) − F

(1)
2 t(1,2) ≤ b2 + r2(t(1,0) − t(1,2))

F
(2)
3 t(2,0) − F

(2)
3 t(2,1) ≤ b3 + r3(t(2,0) − t(2,1))

(Monotonicity F
(1)
1 t(1,0) ≥ F

(1)
1 t(1,1) ≥ F

(1)
1 t(1,2)

constraints) F
(1)
2 t(1,0) ≥ F

(1)
2 t(1,1) ≥ F

(1)
2 t(1,2)

F
(2)
3 t(2,0) ≥ F

(2)
3 t(2,1)

Table 1: Linear program for the toy example of Figure 6.
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(1)
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2 F

(2)
1 , F
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3 F

(3)
1 , F

(3)
3

server 2server 1
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3
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C
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2

A
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1
,
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(a) FIFO, service and arrival constraints

server 2server 1

t(3,0)t(2,0)

t(2,1)

t(1,0)

t(1,1)

t(1,2)

≤ dTFA
1

≤ dSFA
2

≤ dTFA
2

≤ dSFA
3

≤ dTFA
1

≤ dSFA
2

≤ dSFA
1

S
h
C
1

(b) TFA++, SFA and shaping constraints

Figure 7: Schematic view of the constraints for the linear program to analyze network of Figure 6.
Times are ordered by solid or dashed lines from bottom-left to top-right. (a) the processes
attached to the times are noted above. FIFO (FC) and service (SC) constraints with the involved
�ows are in solid lines, and arrival constraints (AC) in dashed lines. (b) TFA++ and SFA
constraints (solid lines) impose upper bounds between dates involved in the FIFO constraints,
and shaping constraints (ShC) in dashed lines are used at the output of server 1.

Proof. The proof is similar to the proof in [12, 13] (upper bound part). We prove only the �rst
statement (delay bound). The proof of the end-to-end backlog is similar.

Let (F
(j)
i )i,j be an admissible trajectory for the network, and assume without loss of gener-

ality that f1 is the �ow of interest. Let t(n+1,0) be the departure time (at server n) of a bit of
interest.

The �rst step of the proof is to assign values to the time and process variables and the second
step is to prove that this assignment satis�es all the linear constraints.

To set the variables, we proceed by a backward induction on the servers and build times
(t(h,k))k∈{0,...,d(h)} and assignment of the variables satisfying:

� for all k ∈ {0, . . . , d(h)}, t(h,k) = t(h,k);

� for all k ∈ {0, . . . , d(h)− 1}, F (h)
i (t(h,k)) ≤ F

(h)
i t(h,k) ≤ F

(h)
i (t+(h,k));

� F
(h)
i t(h,d(h)) = F

(h)
i (t(h,d(h))),

with the right-limit notation f(t+) = lims→t,s>t f(s).

For the initialization, h = n+1, we set t(n+1,0) = t(n+1,0) and for all i ∈ Fl(n), F(n+1)
i t(n+1,0) =

F
(n+1)
i (t(n+1,0)).
Assume the assignment is done for server h, and consider server j such that succ(j) = h.
Let us assign the time variables of server j: for all k ∈ {0, . . . , d(h)}, there exists s such that

∀i ∈ Fl(j), F (j)
i (s) ≤ F

(h)
i t(h,k) ≤ F

(j)
i (s+). Set t(j,k) to the maximal value of such s, assign

t(j,k) = t(j,k) and F
(j)
i t(j,k) = F

(h)
i t(h,k).
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There exists s such that∑
i∈Fl(j)

F
(h)
i (t(h,d(h))) ≥ [(

∑
i∈Fl(j)

F
(j)
i ) ∗ βj ](t(h,d(h)))

=
∑

i∈Fl(j)

F
(j)
i (s) + βj(t(h,d(h)) − s).

As F(h)
i t(h,d(h)) = F

(h)
i (t(h,d(h))), set t(j,d(j)) = s and assign t(j,d(j)) = t(j,d(j)) and F

(j)
i t(j,d(j)) =

F
(j)
i (t(j,d(j))).

For �ows fi that do not cross server j but for which F
(j)
i is de�ned (the last server they cross

is a predecessor of server j), we assign the variables as F(j)
i t(j,k) = F

(j)
i (t(j,k)).

The assignment of variables corresponding to server j is then done according to the desired
properties.

Note that by transitivity,

F
(n+1)
1 (t(n+1,0)) = F

(n+1)
1 t(n+1,0) = F

(π1(1))
1 t(π1(1),0)

∈ [F
(π1(1))
1 (t(π1(1),0)), F

(π1(1))
1 (t+(π1(1),0))],

and for all s ≤ t(π1(1),0), F
(n+1)
1 (t(n+1,0)) ≥ F

(π1(1))
1 (s), so from the de�nition of the delay,

t(n+1,0) − t(π1(1),0) is at least the delay experienced by the bit of interest.

The second step is to check that the variables thus assigned satisfy all the linear constraints
of the linear program. By construction, the FIFO and service constraints are satis�ed.

As the system is causal, that is, F (j)
i ≥ F

(succ(j))
i , and the cumulative processes are non-

decreasing, the time and monotonicity constraints are satis�ed.
For all i ∈ Nm, let us denote j = πi(1) the �rst server crossed by �ow fi, for all 0 ≤ k <

k′ ≤ d(j), F(j)
i t(j,k) − F

(j)
i t(j,k′) ≤ F

(j)
i (t+(j,k))− F

(j)
i (t(j,k′)) ≤ bi + ri(t(j,k) − t(j,k′)). The arrival

constraints are then satis�ed.
Similarly, consider server j and its departure processes F (h)

i . For all 0 ≤ k < k′ ≤ d(h),∑
i∈Fl(j)

(F
(h)
i t(h,k) − F

(h)
i t(h,k′)) ≤

∑
i∈Fl(j)

(F
(h)
i (t+(h,k))− F

(h)
i (t(h,k′)))

≤ Lj + Cj(t(h,k) − t(h,k′)),

and the shaping constraints are satis�ed.
Let us focus on the TFA++ constraints. For each FIFO constraint F

(j)
i t(j,k) = F

(h)
i t(h,k),

we have
F

(j)
i (t(j,k)) ≤ F

(j)
i t(j,k) = F

(h)
i t(h,k) ≤ F

(h)
i (t+(h,k)),

so t(h,k) − t(j,k) ≤ dTFAj and the constraint t(h,k) − t(j,k) ≤ dTFAj is satis�ed.
Similarly, for each �ow fi, let j be the �rst server it crosses and h′ be the successor of the last

server it crosses. For all t(h′,k) where F
(h′)
i is de�ned, and t(j,k) such that F(j)

i t(j,k) = F
(h′)
i t(h′,k)

(by transitivity) we have

F
(j)
i (t(j,k)) ≤ F

(j)
i t(j,k) = F

(h′)
i t(h′,k) ≤ F

(h′)
i (t+(h′,k)),

so t(h′,k) − t(j,k) ≤ dSFAi and then the constraint t(h′,k) − t(j,k) ≤ dSFAi is satis�ed.
If d is the delay of the bit of interest and D the maximal solution of the linear program, we

have d ≤ D. This is valid for all bits of data of �ow f1, which �nished the proof.
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4.2 Comments and comparison with [12, 13]

The proposed solution is mostly inspired from [12] and [13]. The time, FIFO, service, arrival
and monotonicity constraints are of the same type.

A simpli�cation of [13] The �rst di�erence with [13] is that we introduce fewer dates at each
server: instead of introducing 2k time variables for nodes at depth k, we only have k + 1 times
variables. The reason is that for each server, we introduce only one service relation (resulting in
two linear constraints to take into account the rate-latency shape of the service curve).

The simpli�cation for the network of Figure 6 is depicted in Figure 8.

server 2server 1

t(3,0)t(2,0)

t(2,1)

t(1,0)

t(1,1)

t(1,2)

FIFO FIFO

FIFO

SC

SC

(a) New linear program

server 2server 1

t1t2

t3

t4

t6

t7

t5

FIFO FIFO

FIFO

SC

SC

SC

(b) Linear program of [12]

Figure 8: Time variables for the linear program to analyze network of Figure 6. Times are
ordered from bottom-left to top-right for the FIFO and service (SC) constraints (solid line).
These orders induce an order on the dates corresponding to each server (dashed lines). In (a),
only 3 time variables are introduced for server 2, and they are totally ordered. On the contrary,
in [12], t5 and t6 can not be ordered directly. Either Boolean variables have to be introduced to
ensure the monotonicity or the processes relaxed.

TFA++ and SFA constraints As we will see in Example 2, only removing variables does not
lead to an acceptable solution, as the performance bounds would be larger than those obtained
with SFA or TFA++. To overcome this issue, we introduced SFA and TFA++ constraints, a
second di�erence with [12]. The idea here is to reintroduce the missing service-curve constraints,
using instead pure-delay service curves, as per Theorem 3. Indeed, if dTFAj is a delay bound for
server j, then δdTFAj

is a service curve for server j. Applying this service curve at time t(succ(j),k)
does not require the introduction of a new time variable: t(j,k) can be used.

Shaping constraints The third di�erence is the introduction of shaping constraints. This is a
reinforcement of the model, and these type of constraints can also be added to the linear programs
of [12, 13] if information about the shaping rate is available, as well as to the linear programs
used to compute performance bounds for other scheduling policies (arbitrary multiplexing in [40]
and priorities in [45]). We will see in Example 2 and later in Section 7 that these constraints
are not very useful for tandem networks, but much more useful for non-tandem trees.

Example 2. Consider the example of Figure 6, with arrival curves α : t 7→ 1 + t for all �ows
and service curves β : t 7→ 4(t − 1)+ for both servers. We will consider two cases: in the �rst
case, server 1 is not a greedy-shaper, and in the second case server 1 is also a greedy-shaper
with σ1 : t 7→ 4t. In this example, we want to illustrate the usefulness of the SFA and TFA++
constraints in both cases. We call PLP the method described in this section, PLP' this method
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when the TFA++ and SFA constraints are removed, ELP the exponential-size linear program
described in [12], without the Boolean variables. The delays are given in Table 2.

Method TFA++ SFA ELP PLP' PLP
delay without σ1 3.38 2.83 2.81 3.25 2.81
delay with σ1 2.95 2.83 2.81 3.25 2.81

Table 2: Comparison of the delay bounds of �ow f0 of the toy example of Figure 6. Note that
without σ1 the TFA++ bounds and constraints are TFA bounds and constraints.

One can �rst notice that the delay bounds are improved when introducing the shaping con-
straints only for the TFA++ method (which was designed for that purpose). An explanation is
that, in this case, the shaping will not improve the worst-case delay bound: it has been showed
in [12, Lemma 4] that the worst-case delay in nested tandems is obtained when the service is
exact (the rightmost inequality in Equation (1) is an equality). The improvement of the delay
bound from PLP' to PLP is then not due to the shaping constraints, but on the SFA and TFA++
constraints. Counter-intuitively, a closer look at the linear programs shows that the improvement
in that case is due to the TFA++ constraints (of the �rst server).

Figure 9 shows the trajectories computed by the linear program PLP' without σ1 and provides
an explanation: �rst, if PLP' is used, the time variable t(2,0), used to describe the �ows entering
the second server appears only as a FIFO constraints in server 1, and is not involved in a service
constraint. In this linear program, t(2,0) is set to t(3,0), inducing a larger delay: all data of �ow
f3 have been served before serving �ow f1, as if server 2 gave the priority to �ow f3. When
adding the TFA++ constraint between times t(1,0) and t(2,0), we enforce that t(2,0) ≤ 1.5, and
then t(3,0) = t(2,0) does not maximize the delay anymore, and the FIFO policy is enforced in
server 2.

1

1

0
t(1,0) = t(1,1) = t(1,2)

1.25
t(2,1)

3.25
t(3,0) = t(2,0)

F
(1)
2

F
(2)
2

F
(2)
3

F
(3)
3

Figure 9: Trajectory reconstructed from the toy example without shaping. (blue) cumulative
processes of �ow f2 at server 1; (green) cumulative processes of �ow f3 at server 2;(red) cumula-
tive addition of the processes of �ow f1. At time 0, the burst of size 1 arrives. It is transmitted
at time 1.25, and served until time 3.25.

A lower bound of the worst-case performance In [12], a lower bound on the worst-case
delay was also computed. It was done by adding more constraints on the linear program (equality
of some time variables, t5 = t7 in Figure 8(b)), and resulted in a polynomial-size linear program.
One can notice that there is a correspondence between the time variables of the linear program
of our new linear program and the linear program to compute the lower bound.
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Note that when adding shaping constraints to the MILP of [12], the tightness of the bounds
in this case is not proved, and as a consequence the lower bound might not be valid anymore.
An exception is for nested tandems, for which it was proved that a worst-case scenario can be
obtained for exact servers. In particular, the departure process of each server is shaped by the
service rate.

Tandem vs. tree topologies In this section, we presented the linear program for tree net-
works, and not for tandems or directly for feed-forward networks. This choice aims at empha-
sizing that the complexity gap happens between the tree networks and feed-forward networks.
Whereas most publications dealing with simple topologies focus on tandem networks or sink-tree
networks, the choice here is to present the linear program for tree topologies (that encompass
both of them). Indeed, for linear programming approaches, solving the problem for tree network
has the same order of complexity than for tandem networks. For example, in [40, Theorem 2],
the number of time variables to introduce is the number of paths ending at the root, which is
exactly the number of servers for a tree network. Moreover, the subset of times that need to be
totally ordered are all naturally ordered by the start of backlogged period relation. Therefore,
�nding the tight performance bound is a polynomial problem. Another example, in [13], the
main step in the generalization of the linear programming approach from tandem networks to
feed-forward networks is that at each server, time variables corresponding to that server are
deduced from the time variables for each successor, leading to a double exponentiation of the
number of time variables. For tree networks, as each server only has one successor, the number
of time variables remains exponential. Similar to these examples, the linear problem we propose
here has a polynomial size for tree networks. In Section 5, we will see that it can have an
exponential size for feed-forward networks.

Generalization to piecewise linear arrival and service constraints Like [12] this linear
programming approach remains valid when arrival curves are piecewise linear and concave, and
the service curves are piecewise linear and convex. Each arrival curve is then the minimum of
token-bucket arrival curves and constraints have now to be written for each token-bucket curve.
Similarly, piecewise linear and convex service curves are the maximum of rate-latency curves,
and constraints have to be written for each rate-latency curve. The number of variables remains
the same, and the number of constraints remains polynomial, provided that the total number of
linear pieces is polynomial.

5 Linear programs for feed-forward networks

The linear program proposed in the previous section strongly relies on the tree topology of
the network. In this section, we show how to extend the linear programming approach to
feed-forward networks. The �rst method, presented in Paragraph 5.1, is the more accurate
and consists in unfolding the network in order to transform it into a tree. This construction
is an alternative interpretation of the linear programming for feed-forward network from [13]
applied to our simpli�ed linear program of previous section. Unfortunately, the size of the
constructed tree might become exponential compared to the size of the original network. We
then propose in Paragraph 5.2 an alternative construction to reduce this complexity. For example
the decomposition of the network into smaller pieces. These two constructions can of course be
combined to optimize the trade-o�s between accuracy and tractability. This will be brie�y
discussed in Paragraph 5.3.

20



5.1 Unfolding a feed-forward network into a tree network

Intuitively, this is equivalent to introducing FIFO and service time variables independently
for each predecessor of servers. Therefore, if a server has two successors, FIFO and service
constraints for this server be will be introduced twice and independently. The unfolding of the
network of Figure 10 is depicted in Figure 11.

1

2

3

4f1
f2

Figure 10: Toy feed-forward network.

〈1, 2, 4〉

〈1, 3, 4〉

〈2, 4〉

〈3, 4〉

〈4〉

(f1, π1)
(f2, 〈2, 3, 4〉)

(f2, π2)
(f1, 〈1, 3, 4〉)

Figure 11: Unfolded network of the network of Figure 10. For example, the original �ow following
the path 〈1, 2, 4〉, leads to two �ows in the unfolding: paths 〈〈1, 2, 4〉, 〈2, 4〉, 〈4〉〉 and 〈〈1, 2, 4〉〉.

The unfolding construction Consider a feed-forward network N and a numbering of the
servers such that if (j, h) is an arc, then j < h, and that server n is the only server with
out-degree 0 of its induced graph (for example, N is the sub-network induced by a �ow).

The unfolded network of N is denoted U and de�ned as follows:

� let Π be the set of paths in N ending at server n. Then Π is the set of servers of U , server
〈j1, j2, . . . , n〉 o�ers the service curve βj1 ;

� for each node π = 〈j1, j2, . . . , n〉 and each �ow fi, with path πi, let π′ = 〈j1, j2, . . . , jk〉 be
the longest common pre�x of πi and π. If this pre�x is not empty, then there is a �ow
(fi, π) from node π to 〈jk, . . . , n〉 with arrival curve αi. If �ow fi is ending at server n, we
call the �ow from π to 〈n〉 the copy for �ow fi.

The unfolding procedure can lead to exponential-size linear programs. Consider for example
a network with n servers, for which the arcs of the induced graph are {(j, h) | j < h}. There are
2n−1 paths to node n (all the increasing sequence of {1, . . . , n} containing n), and the unfolded
network has 2n−1 nodes.

One can easily check the following lemmas:

Lemma 1. If π 6= π′, the two �ows (fi, π) and (fi, π
′) do not share any common sub-path.

Lemma 2. For each server π = 〈j, . . . , n〉 of U , for all i ∈ Fl(j) in N , there exists a �ow (fi, π
′)

such that (fi, π
′) ∈ Fl(π) in U .
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Theorem 6. Let N be a feed-forward network, U be its unfolded network and fi be a �ow of N
ending at server n. Let dNi be the worst-case delay of �ow fi in N and dUi that of the copy of
�ow i in U . Then dNi ≤ dUi .

Proof. Let (F
(j)
i ) be an admissible trajectory for network N . Let us build a trajectory for U . For

each �ow (fi, π) of U , where π = 〈j1, j2, . . . , n〉, if π′ = 〈j1, j2, . . . , jk〉 is the maximum common

pre�x of πi and π, we set F
(〈jx,...,n〉)
i,π = F

(jx)
i for x ≤ k, and F (n+1)

i,π = F
(jk+1)
i . We now need to

check that this trajectory is admissible for U .

� First, the arrival processes F (π)
i,π = F

(πi(1))
i so it is αi-constrained.

� Second, consider a server 〈j, h, . . . , n〉. The processes arriving to (resp. departing from)

this server are F (〈j,h,...,n〉)
i,π = F

(j)
i (resp. F (〈h,...,n〉)

i,π = F
(h)
i or F (n+1)

i,π = F
(h)
i ) if i ∈ Fl(j)

and 〈j, h, . . . , n〉 is a pre�x of π. The arrival and departure processes are then the same
as in server j of N , so the service and shaping constraints and FIFO properties are all
satis�ed.

As a consequence, the trajectory is admissible in U . In addition, if we consider the copy (fi, π)

of �ow fi, we have F
(π)
i,π = F

(π(1))
i and F (n+1)

(i,π) = F
(n+1)
i , so the delay for the copy of fi in U is

the same as the delay of �ow fi in N .
For each admissible trajectory of N , we have built an admissible trajectory in U with the

same worst-case delay for �ow fi, which means that dNi ≤ dUi .

A similar result holds for the backlog bounds. This unfolding procedure is very similar to the
generalization from tandem network to general feed-forward networks in [13]. First, in [13], the
times variables de�ned for each server are inherited from the time variables of all its successors.
For server 1 of the network of Figure 10, server 1 inherit from time variables of servers 2 and 3.
The unfolding procedure duplicates server 1, which is equivalent when considering only the dates
that are introduced for each server. The di�erence is that the unfolding procedure forgets the
dependence between duplicated servers, which can be interpreted as removing Boolean variables
in the framework of [13]. Similarly, applying the unfolding procedure in the blind-multiplexing
case described in [40] would lead to the same performance bounds as the linear program named
ULP (taking the partial order between the time variables). It has been shown in these references
that the pessimism introduced by this unfolding procedure is limited. A similar unfolding
procedure has already been used in [45] for �ows with static priorities. In this latter case,
the unfolding could be pruned because of the total priority order on the �ows and applied to
non-feed-forward topologies. This is not the case here.

Like these approaches, the unfolding procedure remains valid when arrival curves are piece-
wise linear and concave, and the service curves are piecewise linear and convex.

5.2 Decomposition into a tree network by cutting �ows

Another solution to cut �ows into smaller pieces in order to obtain a tree, or a forest (collection
of trees), and compute the arrival curves at places where �ows have been cut. Cutting �ows
is a very classical operation in Network Calculus: one of its main strength is its modularity.
The extreme case of cutting are the TFA and SFA methods where servers are analyzed one
after the other (hence cut is done at each arc of the induced graph). Cutting is also key to the
LUDB analysis of non-nested tandems [32], where the network is cut is nested sub-tandems.
Examples of cutting strategies can also be found for the analysis of networks with arbitrary
multiplexing scheduling. For instance, in [42], part of the analysis consists in cutting a network
into sub-tandem to apply a PMOO analysis. In all these references, cutting is only the �rst step
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of the analysis. The second step is combining the analyses of the smaller networks to compute
end-to-end performance. The cutting procedure has been described in [17], and we brie�y recall
it here.

Consider GN = (Nn,A) the graph induced by N , and de�ne Ar ⊆ A such that (Nn,A−Ar)
is a tree or a forest. Note that Ar is not uniquely de�ned, and we consider any possible choice
for it. A �ow fi is then transformed into Ki �ows (fi, k) with paths 〈πi(hik), . . . , πi(hik+1 − 1)〉
in (Nn,A − Ar), where hi1 = 1, hiKi+1 = `i + 1 and (πi(h

i
k − 1), πi(h

i
k)) ∈ Ar for 1 < k ≤ Ki.

The transformation is illustrated in Figure 12.

1

2

3

4(f1, 1)
(f2, 1)

(f2, 2)

Figure 12: Decomposition of a network into a tree. Example of the network in Figure 10 .

Our aim is to compute a new network N cut such that:

� its induced graph is the forest (Nn,A− Ar);

� its servers o�er the same guarantees as those of N ;

� its �ows are Fcut = {(fi, k), i ∈ Nm, k ∈ NKi}. The arrival curve of (fi, k) is an arrival
curve for fi at server πi(hik);

� the arrival processes are shaped: for all (j, h) ∈ Ar, �ows {(fi, k) | (πi(h
i
k − 1), πi(h

i
k)) =

(j, h)} are shaped by the curve σj for all k ∈ {2, . . . ,Ki}.

The arrival curves of the �ows remain to be computed. As the network is feed-forward, the
removed arcs can be sorted in the topological order, and the computations be done according
to this order, as described in Algorithm 4.

Algorithm 4: Network analysis of a feed-forward network by �ow cutting

1 begin
2 Sort Ar in the topological order in N according to the �rst coordinate;
3 foreach arc (j, h) in the topological order do
4 foreach �ow (fi, k + 1) with k > 0 starting at server h do
5 Compute an arrival curve for �ow (fi, k + 1)

To compute of the arrival curve for �ow (fi, k+1), we will use Theorem 4. The service curves
and greedy shapers are the only constraints for the servers, so hypothesis (H2) is satis�ed. In
short, one just has to compute the maximum backlog of �ow (fi, k). Let j be the �rst server
crossed by �ow (fi, k). There are two possibilities:

� either we do not take into account the greedy shaper of server j, so (H1) is satis�ed and
Theorem 4 can be applied. However, not taking into account the shaping e�ect could lead
to pessimistic bounds;

� or we take into account the greedy shaper of server j. If done directly, (H1) is not satis�ed
and Theorem 4 cannot be applied.
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We propose to slightly transform the network so that the shaping e�ect can be taken into
account for all �ows except �ow (fi, k). The transformation is illustrated in Figure 13.

Nf.o.i.

σ2

σ1
N nsf.o.i.

σ2

σ1

Figure 13: System transformation: (left) the �ow of interest (in red and bold) is shaped with two
other �ows (in blue) by the greedy-shaper σ1; (right) the �ow of interest is not shaped anymore.
The rest of the network is not modi�ed.

More precisely, let us consider N(fi,k) = N cut((fi, k)) the sub-network of N cut induced by
�ow (fi, k) and N ns

(fi,k)
the same network, except the shaping of the arrival processes becomes:

for all h such that (j, h) ∈ Ar, �ows {(fi′ , k′) | (πi′(h
i′
k′ − 1), πi′(h

i′
k′)) = (j, h)} \ {(fi, k)} are

shaped by the curve σj .

Lemma 3. If α is an arrival curve for the departure process of �ow (fi, k) in N ns
(fi,k)

, then it is
also an arrival curve for the departure process of that �ow in N(fi,k).

Proof. If �ow (fi, k) is not shaped then the two networks are the same and there is nothing to
prove. Otherwise, let us denote I the set of �ows shaped together with �ow (fi, k) by σj in

N(fi,k). Let (F
(j)

f̃
) be an admissible trajectory in N(fi,k). It is then also an admissible trajectory

in N ns
(fi,k)

. To prove this, it is enough to check that
∑

f̃∈I\{(fi,k)} F
(j)
j is σj-constrained: ∀s ≤ t,∑

f̃∈I\{(fi,k)}

(
F

(j)

f̃
(t)− F (j)

f̃
(s)
)
≤ σj(t− s)−

(
F

(j)
(fi,k)

(t)− F (j)
(fi,k)

(s)
)
≤ σj(t− s),

since F (j)
(fi,k)

is non-decreasing.
The set of possible departure processes of (fi, k) in N(fi,k) is then included in those of (fi, k)

in N ns
(fi,k)

, meaning that if α is an arrival curve for the departure process in N ns
(fi,k)

, it is also one
for those in N(fi,k).

Using the transformation, (H1) is now satis�ed and according to Theorem 4, the arrival curve
of �ow (fi, k+1) can then be computed according to Algorithm 5, where the backlog bound can
be computed with the linear program given in Section 4.

Algorithm 5: Arrival curve for �ow (fi, k + 1)

1 begin
2 if k = 0 then return αi;
3 Compute N(fi,k) = N cut((fi, k)) the network induced by �ow (fi, k) in N F (see

page 7);
4 Compute N ns

(fi,k)
= (N(fi,k))

ns the network where shaping of �ow (fi, k) has been

removed;
5 Compute B the backlog bound for �ow (fi, k) in N ns

(fi,k)
computed with the linear

program presented in Section 4;
6 return γB,ri

The end-to-end delay of a �ow is then obtained by summing the end-to-end delays of its
sub-�ows.
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5.3 Trade-o� between accuracy and tractabilty

The two constructions presented in this section can be applied to any linear programming
method, which includes the linear program presented in [12, 13]. Also, the unfolding and cut-
ting procedures can be combined: a network can be cut in sub-networks that are not necessarily
trees, and unfolding be performed on each sub-network.

The cutting procedure can also be used to improve the tractability of the linear programming
methods: if a network is cut in (more) smaller sub-networks, then the time needed to analyze
each sub-network will be reduced. A trade-o� has then to be found between the size of sub-
networks, and the number of intermediate arrival curves to compute.

Cutting in smaller pieces also deteriorates the accuracy and natural questions arise:

� What is the maximal size of a sub-network to guarantee the tractability of the computa-
tion?

� Is it better to use PLP with cutting into medium-size sub-networks (e.g., 10-20 nodes) or
ELP with small size sub-networks (e.g., 5 nodes)?

� Where to cut the network?

These questions strongly depend on the analyzed network. An example is given in Section 7 for
the two �rst questions, where a tandem is decomposed into pieces of di�erent lengths, and both
delay bounds and computation time are compared for PLP and ELP.

The third question is more involving and is beyond obtaining sub-networks of reasonable
size. Intuitively, cutting arcs leading to under-loaded servers and arcs crossed by single �ows
seem good starting points to build a �rst heuristic.

Deciding where to cut a network is an optimization problem itself, and has been studied in
other contexts. In blind multiplexing, Bondorf et al. [42] compute the performance bounds for
each possible (min, plus) decomposition of the network. In [46], Geyer and Bondorf use deep
neural networks to �nd a quasi-optimal decomposition of the network. In the FIFO context,
in [10], Thomas et al. cut the network and adds regulator at cuts. The optimization problem is
to minimize the number of regulators while maintaining good performance bounds.

6 Network with a general topology

In this section, we study networks with a general topology, including those with cyclic depen-
dencies. For this, we will apply the �xed-point analysis, that has already been described several
times in [17, 18, 19], to the analysis of Section 5.2: arcs are removed, so that the induced graph
becomes a forest and �ows are cut accordingly. Because of the cyclic dependencies, removed
arcs cannot be sorted in the topological order, and the �xed point on the arrival curves of all
cut �ows has to be computed.

In Paragraph 6.1, we �rst prove a general result about linear programs and �xed points, and
�rst apply it to compute performance bounds in networks with a general topology. Then in
Paragraph 6.2, we apply the same result to provide an alternative presentation of the TFA++
analysis for networks with cyclic dependencies developed in [10].

6.1 A linear-program formulation for the analysis of networks with general
topology

We formulate the �xed-point equation with a linear program. More precisely, we prove that
the �xed point is obtained by extracting some variables from the optimal solution of a linear
program.
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A �rst generic result about �xed points Let us �rst state a generic result about linear
programs: We call a LP-function a function L : RN+ → RN+ such that for all p ∈ NN , there exists
matrices Ap, Bp, Cp such that for all x ∈ RN+ ,

Lp(x) = max{Ap(x, y)t | Bp(x, y)t ≤ Cp, y ≥ 0},

where vectors x and y represent variables, and (x, y)t is the transposition of the line vector (x, y).
We will focus on LP-functions that satisfy the properties (P1) and (P2) stated below. Note

that they only concern coe�cients that relate to the variables x and not to the variables y: in
the next description, (Bp)c,q is the coe�cient of the variable xq for constraint c.

(P1) For all constraints c, for all f̃ ′ ∈ Fcut, a) [(Bp)c,q < 0 ∧ (Bp)c,r < 0] =⇒ q = r and b)
(Bp)c,q ≤ 0. In other words, a) there is at most one variable of type xq in each constraint,
and b) this variable appears as an upper bounds.

(P2) For all q, (Ap)q ≥ 0: the objective is increasing with the variables xq.

We will use the following result, proved in C.

Theorem 7. Let L : RN+ → RN+ be a LP-function such that Lp(0) > 0 for all p ∈ NN and
satisfying properties (P1) and (P2). Then x∗ = sup{x ∈ RN+ | x ≤ L(x)} ∈ (R+ ∪ {+∞})N is
well-de�ned and if x∗ ∈ RN+ , it is the unique �xed-point of L.

Moreover, x∗ is also the optimal solution of the linear program

max{
N∑
p=1

xp | ∀p ∈ {1, . . . , N}, xp ≤ Ap(x, yp)
t, Bp(x, yp)

t ≤ Cp, x, yp ≥ 0}, (3)

where we call optimal solution a vector x ∈ RN+ such that there exists yp ≥ 0 satisfying the
constraints of this linear program and maximizing the sum of its coe�cients.

Application to the linear-programming approach We use the same notations as in Para-
graph 5.2: the induced graph of the cut network N cut is a forest and Fcut = {(fi, k), i ∈ Nm, k ∈
NKi} is the set of �ows in the network with cuts. Let us set N = |Fcut|. As we will use Theo-
rem 4, all the arrival curves computed for a �ow (fi, k) will have arrival rate ri, we only focus
of the burst of the �ows, that we denote x(fi,k) to enforce that it is a variable.

For all x = (xf̃ )f̃∈Fcut
∈ RN+ and all f̃ ∈ Fcut, let us de�ne Lf̃ (x) as the backlog bound

computed at line 5 of Algorithm 5, when the burst parameter of �ow f̃ ′ is xf̃ ′ for all f̃
′ ∈ Fcut

and L(x) = (Lf̃ (x))f̃∈Fcut
. Since the cut network is a forest (hence feed-forward) and since we

assume the local stability of the network, L(x) ∈ R|Fcut|
+ , and it is possible to de�ne C = {x ∈

RN+ | x ≤ L(x)}.
Theorem 8 reminds a su�cient condition for the stability of the network and the arrival

curves of the cut �ows.

Theorem 8 ([17, Theorem 12.1]). If x∗ = sup(C) is �nite, then N is globally stable and the
burst of the arrival curve of �ow f̃ is x∗

f̃
.

Proof. To prove the result, we use the classical stopped-time method. For all τ ∈ R+, we call
and denote Aτ = A : t 7→ A(t ∧ τ) the process A stopped at time τ . Consider network N τ

when the arrival processes are stopped at time τ . As the amount of data entering the network
is �nite, network N τ is stable. Let ατ = (ατ

f̃
)f̃∈Fcut

be the family of the best arrival curves in
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N τ at each cut of N cut and F τ be a method to compute these arrival curves as a function of ατ

in N cut. As ατ is the family of best arrival curves, we have ατ ≤ F (ατ ).
Suppose that we restrict to the arrival curves of the form γb,rf̃ for �ow f̃ (where r(fi,k) =

ri) and xτ = (xτ
f̃
)f̃∈Fcut

is the best burst parameters. For all functions G computing bursts

parameters, we also have xτ ≤ G(xτ ). Indeed, for all r ∈ R+, for all arrival curve α, the smallest
function γb,r such that α ≤ γb,r is with b = supt∈R+

{α(t)− rt}. Then, for each choice of F , the

best burst parameter for each �ow f̃ is xτ
f̃

= supt∈R+
{ατ

f̃
(t)−rf̃ t} ≤ supt∈R+

{F (ατ )f̃ (t)−rf̃ t} :=

G(xτ )f̃ .
This is true for all functions G computing burst parameters at cuts, so this is in particular

true for L, and we have xτ ≤ L(xτ ).
If x∗ is �nite, then for all τ , xτ ≤ x∗, so x∗ is a family of arrival curves at the cuts for the

(non-stopped) processes. The amount of data in transit in N can be bounded by the amount of
data in transit in the locally stable feed-forward network N cut, where the arrival curve of �ow
f̃ is γx∗

f̃
,rf̃
, hence it is stable.

Our goal is now to apply Theorem 7 in order to compute sup(C) as the linear program of
Equation (3). Let us �rst focus on some properties of Lf̃ (x). The variables of this linear program

are the time variables t(j,k) and process variables F
(j)
i t(j,k) described in Section 4. These variables

are represented by the vector y in the generic formulation. The burst parameters only appear
in the arrival curve constraints such as F(j)

i t(j,k′) − F
(j)
i t(j,k) ≤ xi + ri(t(j,k′) − t(j,k)). So if xi

becomes a variable, the program remains linear: function L is an LP-function.
We now show that L satis�ed properties (P1) and (P2).

� The objective for �ow f̃ is max : F
(j)

f̃
t(n+1,0) − F

(n+1)

f̃
t(n+1,0) for some j and n. Vector

Af̃ has only null coe�cients, except at coordinates corresponding to variables F(j)

f̃
t(n+1,0)

(coe�cient 1) and F
(n+1)

f̃
t(n+1,0) (coe�cient -1). The objective has no variable of type xf̃ ′ ,

so (P2) is satis�ed.

� If constraint c is F(j)

f̃ ′
t(j,k′)−F

(j)

f̃ ′
t(j,k) ≤ xf̃ ′+rf̃ ′(t(j,k′)−t(j,k)), row c of matrix Bf̃ has only

null coe�cients, except those corresponding to variables F(j)

f̃ ′
t(j,k′) (coe�cient 1), F

(j)

f̃ ′
t(j,k)

(coe�cient -1), t(j,k′) (coe�cient −ri), t(j,h) (coe�cient ri) and xf̃ ′ (coe�cient -1).
No variable xf̃ appears in the other types of constraints.

In conclusion, at most variable of type xf̃ ′ appears in each constraint, with coe�cient -1,
so (P1) is satis�ed.

We can now apply the formulation of Equation (3), to the linear programs of Section 4. We
proceed as follows:

� we �rst compute a delay bound for each server using TFA++ (either using [10] or the next
paragraph) in order to be able to include TFA++ constraints. As �ows are cut, we do not
compute the SFA delays for each �ow, hence will not include the SFA constraints in the
procedure.

� we write the linear constraints for computing the backlog of each �ow (fi, k), k < Ki,
replacing all parameters bf̃ (the burst parameter of the arrival curve of �ow f̃) by a
variable xf̃ . Except the variables xf̃ , all variables are used in only one sub-linear program
(one sub-linear program per backlog computed);
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� each objectives max : F
(j)

f̃
t(j,k) − F

(n+1)

f̃
t(n+1,0) is replaced by the linear constraint xf̃ ≤

F
(j)

f̃
t(j,k) − F

(n+1)

f̃
t(n+1,0);

� for �ow f̃ = (fi, 1), the constraint xf̃ ≤ bi is added;

� the objective is max :
∑

f̃∈Fcut
xf̃ .

The end-to-end delay of a �ow is computed by summing the end-to-end delays of its sub-�ows,
setting the burst parameters of the cut �ows as the �xed-point just computed.

The assumption Lf̃ (0) > 0 for all f̃ ∈ Fcut has not been discussed yet. It might not always
hold. For example, when the initial bursts and the latencies of the servers are all null. However,
this assumption holds in general. As we do not shape the �ows of interest to compute the burst,
we have the following properties: consider a �ow with arrival curve γb,r crossing a server with
service curve βR,T . The maximal backlog in the server is b+ rT , so if either b or T is non-null,
the backlog bound transmitted for the bound of the next �ow is non-null. Then there exists k
such that Lk

f̃
(0) > 0 for all f̃ , where Lk is the k-th iteration of the composition of L. Here,

for example, k can be chosen as maxiKi. The positivity assumption is only required for the
uniqueness of the �xed point of L. Because L is non-decreasing and concave (see Lemma 5), so
is Lk. Then Lemma 7 can be applied to Lk. As a �xed point of L is necessary a �xed point of
Lk, this proves the uniqueness of the �xed point of L.

Finally, note that these results also apply to the other methods to compute performance
bounds that are based on linear programming. In particular, this applies to the exponential size
linear program for FIFO networks of [12], and the linear program for blind multiplexing of [40].

6.2 Application to TFA++

Let us now give an alternative formulation of the solution with TFA++ given in [10]. In that
paper, the authors compute performances networks with cyclic dependencies using the TFA++
method for each server.

Two limitations can be overcome by using the linear-programming approach.

1. The authors assume that they take into account the shaping only when the shaping rates
exceed some given value. The reason for this seems to be the simpli�cation of the com-
putation of maximum delay, and more precisely the place where the horizontal distance
between the aggregate arrival curve and the service curve is maximized. With the linear
programming approach, this place is not directly computed but given as the solution of a
linear program. It also allows more complex service curves than rate-latency ones.

2. The method chosen to compute the �xed point is iteration from the origin. The authors
show that the least �xed point is indeed a valid solution for computing the performance
bounds, which is an improvement compared to [17] that states this result for the greater
�xed point. As we showed the uniqueness of the �xed point, the two previous approaches
are in fact similar. Here, the linear program avoids the iteration whose raw output would
be a lower approximation of the �xed point (the iterated are lower bounds of the �xed
point) and thus require additional (yet simple) computations to obtain upper bounds. The
authors choose to compute to apply ceiling functions at each iteration, so that they can
ensure, in case if convergence, convergence in �nite time. Still, the relation between the
�xed point of the function and the �xed point of the ceiling of this function is unclear if
the uniqueness of the �xed point is not assumed.
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Linear program for the TFA++ method: single server The key-step of the TFA++
method is to compute an upper bound of the delay for each server.

First consider a single-server network crossed by m �ows f1, . . . , fm with respective arrival
curves αi = γxi,ri . Assume that some groups of �ows are shaped: there exist H disjoint sets
Gh ⊆ Nm for h ∈ NH , such that the aggregation of �ows (fi)i∈Gh is constrained by the greedy-
shaper σh = γLh,Ch . The server o�ers a service curve βR,T .

Computing a delay bound for the server can be done using a linear program presented in
Section 4. In the case of one server, the SFA and TFA++ constraints are useless. We use the
notation Ai (resp. Di) for the arrival (resp. departure) process of �ow fi. This linear program
is presented in Table 3.

Maximize t− s

u ≤ s ≤ t time constraints
∀i ∈ Nm Ais−Aiu ≤ xi + ris− riu arrival constraints
∀h ∈ NH

∑
i∈Gh(Ais−Aiu) ≤ Lh + Chs− Chu shaping constraints∑m
i=1Dit ≥

∑m
i=1Aiu +Rt−Ru−RT service constraints∑m

i=1Dit ≥
∑m

i=1Aiu
∀i ∈ Nm Ais = Dit FIFO constraints

Table 3: Linear program for the delay bound of one server.

Note that this linear program can be simpli�ed: s − u can be replaced by s, t − u by t,
Ais−Aiu by Ais, and Dit−Aiu by Dit. Doing so, one gets rid of variables u and Aiu.

This linear program corresponds to the formulation of PLP and ELP, and all time variables
can be ordered in the single-server case, so the linear program corresponds to the exact worst-
case delay computed in [12], hence to the maximum horizontal distance between the aggregate
arrival curve and the service curve. For the sake of being self-contained, we give a direct proof
in D.

Lemma 4. The optimal solution of Table 3 is the horizontal distance between α =
∑H

h=1(σLh,Ch∧∑
i∈Gh γxi,ri) +

∑
i/∈

⋃
h∈NH

Gh
γxi,ri and βR,T .

The linear program to compute the burst parameter of the departure process of any �ow
crossing the server is then given in Table 4 (exempli�ed for �ow f1).

Maximize x1 + r1d

s ≤ t time constraints
∀i ∈ Nm Ais ≤ xi + ris arrival constraints
∀h ∈ NH

∑
i∈Gh Ais ≤ Lh + Chs shaping constraints∑m
i=1Dit ≥ +Rt−RT service constraints∑m
i=1Dit ≥ 0

∀i ∈ Nm Ais = Dit FIFO constraints
d = t− s delay at server j

Table 4: Linear program for the burst parameter of the departure process of �ow f1.

Linear program for the TFA++ method: general topology Now consider a network
with a general topology. In the TFA++ analysis, the network is cut at every arc: Ar = A and
one can denote the cut �ows by fi,j , j ∈ π(i), where fi,j corresponds to �ow i crossing server
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j. We use the notation A(j)
i (resp. D(j)

i ) for the arrival (resp. departure) process of �ow fi at
server j.

One can de�ne the function L as follows:

� if j = πi(1), Lfi,πi(1)(x) = bi: the burst parameter at the �rst server crossed by a �ow is
�xed. Properties (P1) and (P2) are satis�ed;

� otherwise, Lfi,πi(k)(x) is given by the linear program of Table 4, where x1 is xfi,πi(k−1)

and the other variables xi are xfi′ ,πi(k−1), the burst of the �ows entering server πi(k − 1).
Note that in the arrival constraints, whenever a variable xi is present, it appears as an
upper bound, so (P1) is satis�ed. Moreover, the objective is increasing with x1, so (P2) is
satis�ed.

From Theorem 7, following the formulation of Equation (3), the linear program used to
compute the �xed point is written in Table 5.

Strictly applying formulation of Equation (3) would require solving |Fl(j)| times the linear
program corresponding to server j. This is unnecessary as the same delay bound is computed
each �ow crossing server j, and similarly, as the bursts are increasing proportionally to the delay
bounds, the objective

∑
i,j x

(j)
i can be replaced by

∑
j dj .

Maximize
∑

i,j x
(j)
i or

∑
j dj

such that for all server j
0 ≤ sj ≤ tj time constraints

∀i ∈ Fl(j) A
(j)
i sj ≤ x

(j)
i + risj arrival constraints

∀h
∑

i∈Fl(h,j)A
(j)
i sj ≤ Lh + Chsj shaping constraints∑

i∈Fl(j)D
(j)
i tj ≥ Rjtj −RjTj service constraints∑

i∈Fl(j)D
(j)
i tj ≥ 0

A
(j)
i sj = D

(j)
i tj FIFO constraint

dj ≤ tj − sj delay at server j

∀i ∈ Fl(j) x
(succ(j))
i ≤ x

(j)
i + ridj burst propagation

∀i x
(πi(0))
i ≤ bi initial bursts

Table 5: Linear program for TFA++ with general topology.

Equivalence with the bound of [10] In this paragraph, we make explicit the relation
between out TFA++ delay bound and that computed in Theorem 2 of [10]. In that paper, the
shaping curves are σh = γ`max,ch , where `max is the maximum length of a packet and ch the
shaping rate for server h. The procedure of Theorem 2 of [10] is done in three steps for each
server:

1. Compute the aggregate arrival curve α at server j, using the arrival curves of each �ow
crossing it and the greedy shapers from the preceeding servers. The arrival curve is given
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by Equation (2) in [10] is (with our notations2 and neglecting the packetization e�ect)

α =

H∑
h=1

(σh ∧
∑
i∈Gh

αi) +
∑

i/∈
⋃
h∈NH

Gh

αi.

To take into account the packetization e�ect, αi = γbi,ri must be replaced by γbi+`max
ri
Ch

,ri
.

2. Compute the delay bound D as the maximal horizontal distance between α and the service
curve β of this server (that is rate latency). This is where the additional hypothesis on
a lower bounds of the shaping rates is used, to simplify the computation of the maximal
horizontal distance.

3. Compute the arrival curves of the departure processes for each �ow after this server as3

α′i = αi � δD = γbi+riD,ri .

The packetization e�ect enables to improve this formula by replacing D by D′ = D −
`min( 1

Rj
− 1

Cj
), where `min is the minimum length of a packet and Cj the shaping rate of

the server.

Table 4 directly implements the three steps, and Table 5 computes the �xed point without
resorting to iteration. Incidentally, ceiling is not required anymore.

In Tables 4 and 5, the packetization e�ect and improvement are neglected. They can be
taken into account by replacing the propagation constraint by x

(succ(j))
i ≤ x

(j)
i +ridi−`min( 1

Rj
−

1
Cj

) + `max
ri
Cj
. The term with `min corresponds to the improvement of step 3, and the term with

`max to the packetization e�ect in step 1.

7 Experimental results

In this section, we compare our solution to the state-of-the-art ones. In the �rst part of the
experimental results, we use very simple topologies for the comparisons: tandem networks,
mesh network and the ring. In the second part, we use networks topologies met in realistic
applications.

The numerical evaluations are performed on a laptop equipped with Intel Core i7-8565
1.8GHz CPU, 16 Gb of RAM, Windows 10 64bit. The algorithms presented in this paper have
been implemented in Python 3.7. The linear programming methods are solved in two steps.
First a linear program is generated (with a Python script), and then solved with the open-source
linear programming solver lp_solve 5.5.2.11. This implementation is not optimal for at least
two reasons. First commercial like Cplex and Gurobi and other open source can solve linear
programs more than 100 times faster [47, 42]. Second, there exists solutions to use lp_solve

directly inside Python code. This choice is made to allow easy interpretation of the solutions.
This being said, the comparison of the computation times between non-LP solutions and

LP solutions can be unfair, but the comparison between LP solutions is still valid. We do not

2In [10], λch = γ0,ch and we assume that by "λch + `max", the authors mean σh = γ`max,ch , and similarly
for the right-hand term when packetization is taken into account. In that case, the convolution is between two
sub-additive functions null at 0, and the (min, plus) convolution in the paper is also the minimum of the functions
(see [17, Proposition 2.6]).

3In [10], Equation (4) is α′i = αi ∧ γ0,Cj � δD. But it is also stated that the obtained function is leaky bucket.

This is not true if D < bi
Cj−ri

. Indeed, αi ∧ γ0,Cj � δD = αi(· + D) ∧ γ0,Cj (· + D) = γbi+riD,ri ∧ γCjD,Cj and

γCjD,Cj ≥ γbi+riD,ri if and only if CjD ≥ bi + riD. We then assume that the authors meant our formulation.
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compare the execution times of the scalable methods: whatever the network, they remain below
200ms. Our interest is about the ability of our PLP to analyze medium-size networks (up to 25
servers) in reasonable time, not being faster than TFA++ or SFA.

7.1 Toy examples

We will compare the �ve methods we introduced in this paper: LUDB (the upper bound com-
puted by the Deborah software [30]), TFA++, SFA, ELP (linear program upper bound from [12],
without Boolean variables, but including shaping constraints), PLP (polynomial-size linear pro-
gram from Section 4), and the performances obtained when the network has regulators after
each server [9]. Regulators regulate the �ows according to their arrival curve. It is shown that
the delays induced by them is not modi�ed, but the end-to-end delays are computed in a way
similar to the TFA algorithm recalled in Algorithm 1, except that in line 5, b(succi(j))i remains

b
(j)
i . When we mention the delay bounds with regulators, this refers to the bounds computed
this way, and not to the worst-case delay bounds when inserting regulators.

7.1.1 Tandem networks

A tandem network with n servers is a network whose underlying graph is a line. By convention,
we number the servers from 1 to n in the topological order. We assume uniform networks: each
server o�ers a service curve β : t 7→ R(t − T )+ and a greedy-shaper σ : t 7→ ηRt, with η ≥ 1;
each �ow is constrained by the arrival curve α : t 7→ b+ rt.

We �x T = 0.001 s, b = 1Kb and R = 10Mb/s. The arrival rate r will vary to study the
network at di�erent loads, and η vary in order to study the sensitivity of TFA++ and PLP to
the shaping rate. We say that delay d1 is X% higher than delay d2 if (d1 − d2)/d2 = 0.01X.

The �ow of interest (f.o.i.) crosses all servers, and we will study three di�erent con�gurations:
sink-tree tandems, interleaved tandems, and source-sink networks.

Sink-tree tandems First, in order to assess the accuracy of our approach compared to exact
method, we compare the bounds of the di�erent methods for sink-tree tandems, where LUDB
(Deborah) computes exact worst-case delays: for a tandem of n servers, there are n �ows with
respective paths 〈i, . . . , n〉, i ∈ Nn.

Sink-tree tandems are a particular case of nested tandems, so using shaping with η = 1 does
not decrease the worst-case delay.
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Figure 14: Comparison of di�erent methods for sink-tree tandems.
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Figure 14a depicts the delays when the length of the tandem grows for U = 0.5. The
di�erence between LUDB and PLP is not visible, and less than 1%. One can also notice that
the TFA++ bound is quite accurate (TFA++ is 8% higher than LUDB for length 25), whereas
SFA is outperformed. Figure 14b depicts the delay bounds for a sink-tree tandem of length 10
and for varying loads. PLP slightly looses accuracy (at load U = 1, PLP is 7% higher than
LUDB). The two other bounds are outperformed at high loads.

Interleaved tandems There are n− 1 interfering �ows, with path 〈i, i+ 1〉 for all 1 ≤ i < n
as depicted on Figure 15 for 4 servers.

1 2 3 4f1
f2

f3

f4

Figure 15: Interleaved tandem network of length 4.

If the arrival rate is r, then the load of the network is U = 3r/R.
Figure 16a shows the delay bound obtained when the number of servers varies from 1 to 25,

when η = 1 and U = 0.5. ELP method can only be computed up to 7 servers. One can check
that ELP gives the tightest bound, followed by PLP, which con�rms to our results.

The regulators also allow obtaining slightly better bounds for tandems longer than 15, which
seems also intuitive as the bursts cannot propagate in the network, and regulating the �ows
then has more e�ect on longer networks. More surprisingly, one can see that the SFA method,
that does not take into account the shaping e�ect of the maximal service curve behaves almost
like TFA++, specially for long network. For the tandem of length 25, TFA++ is 37% higher
than PLP and SFA 41% higher than PLP. LUDB is very close to PLP. To obtain this we run
the option �-ludb-nnested-sta (without this option, SFA outperforms LUBD).

Figure 16b compares the execution time of the two linear programming methods. One can
check that PLP, whose execution time is below 5 seconds for 25 servers, scales much better than
ELP, whose execution time is already 10 seconds for 7 servers. One can also notice that LUDB is
not tractable, and the computation could not be done is less than minute for networks with size
at least 15. To obtain bounds for networks larger than 15, we use the option ludb-heuristic 1,
whose computation time is much lower, but still exponential, and PLP would be more e�cient
for network with sizes at least 25.
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Figure 16: Comparison of di�erent methods for interleaved tandems when varying the number
of servers.
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Figure 17a shows the delay bounds obtained for a network of 10 servers in function of the
load. We discard the ELP method. The �rst observation is that SFA is always outperformed
by one method from the state of the art (LUDB or TFA++). TFA++ is better that LUDB for
very small loads (less than 0.38), but behaves very poorly for high loads. PLP is better that
LUDB for loads less than 0.7, and then becomes worse than LUDB: the TFA++ constraints do
not enable to improve the delay bounds anymore. This e�ect is even more visible on Figure 17b
that shows the sensitivity of the delay to the shaping rate. We here compare the servers for
shaping rates ηR, for η ∈ {1, 2}. When η = 2. TFA++ is completely outperformed by LUDB
and PLP. While TFA++ seems very sensitive to the shaping rate, the delays computed with
PLP do not vary much, but LUDB is almost always better. Nevertheless, PLP is less sensitive
to the shaping rate than TFA++.
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Figure 17: Comparison of di�erent methods for interleaved tandems in function of the load.

Let us now focus more precisely on the di�erent type of constraints of PLP. As mentioned in
Section 4, compared to ELP, some constraints have been removed (service constraints), and some
added (SFA and TFA++ and shaping constraints). Let us denote by PLP' the linear program
obtained from PLP by removing the SFA and TFA++ constraints. Figure 18a compares di�erent
versions of linear programs to see the impacts of the two types of added constraints: the SFA
and TFA++ ones on the one hand and the shaping ones on the other hand. To quantify the
pessimism of the bounds, we also depict the lower bound derived in [12] (named LLP in the
�gure). Note that this lower bound of the worst-case delay is valid only when there is no shaper,
but still this might give some insight on the accuracy of the bounds. We compare the bounds
when the number of servers varies (with U = 0.5) and when the load varies (with n = 10). We
depicted only PLP and PLP'. The e�ect of shaping in this example is negligible. PLP' is 10%
higher than PLP for 25 servers in Figure 18a and 29% for a load of 1 in Figure 18b. PLP is
30 % higher than the lower bound LLP for 25 servers and 90% higher for 10 servers and a load
U = 1.

Finally, in order to investigate the trade-o� between tractability and accuracy of the bounds,
let us consider a network with 100 servers. In this case, the tractability limit is reached when
applying directly the linear program of Section 4. Instead, we use the results of Section 5, and
cut the tandem in smaller pieces. This procedure can be done for both PLP and ELP. We
take η = 1 and U = 0.5. The delay obtained with SFA is 0.96 s, and with TFA++, 1.83 s. In
that case, SFA is better than TFA++. Deborah is limited to networks with size at most 63, so
LUDB is not computed. Figure 19a, we compute the delays when the tandem is decomposed
into sub-tandems of a given length (with a potential shorter �rst sub-tandem), and we vary that
length. Figure 19b depicts the execution time. We stop when the execution time is more than
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Figure 18: Improvement obtained when adding the SFA and TFA++ constraints in interleaved
tandems.

1 minute. First, one can notice that in both cases, the delay bounds decrease when the length
of the sub-tandem decrease. Next, in PLP, the execution time �rst decreases (less very short
sub-tandem to analyze), and then increases. The execution time for decomposition of length
1 is more e�cient with ELP than PLP because SFA and TFA++ bounds are computed then
added to PLP. With ELP, we can decompose the tandem in sub-tandems of length 4 at most,
and obtain a delay of 0.24s. With PLP, we can decompose tandems in sub-tandems of length up
to 30, and obtain a delay of 0.18 s (ELP is then 33% higher than PLP), it was possible to obtain
a delay of 0.24 s by decomposing into sub-tandems of length 8, and the bound was computed in
8.7 s.
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Figure 19: Delay and execution time for ELP and PLP for an interleaved tandem of length 100
when decomposing into sub-tandems.

Source-sink network The shaping e�ect is limited with interleaved networks. We turn to
another example where the shaping might have more e�ect, and change the comparison between
the bounds (in particular TFA++ and LUDB versus SFA). We call source-sink tandem a tandem
with n servers and 2n− 1 �ows. Each �ow either starts at server 1 or ends at server n. In the
uniform case, there is one �ow per possible path, as depicted in Figure 20 with n = 4. There
are n �ows crossing each server, so the load of the network is nr/R.

Figure 21a depicts the delay bounds computed by each method when the length of the
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Figure 20: Source-sink tandem of length 4.

tandem grows from 1 to 25 when η = 1 and U = 0.5. One can still check that the linear
programming methods give the best delay bounds. Here, the gap between the ELP and PLP
methods is very small. The TFA++ also performs very well: for 25 severs it is only 17% higher
than PLP. These three bounds are below the bound obtained with regulators. SFA and LUDB
are completely outperformed. Indeed, at each server, n − 1 �ows continue to the next server.
Then the shaping has a very strong e�ect on the performances.

Figure 21b compares the execution times of ELP and PLP. Again we see the tractability
improvement of this new approach compared to ELP.
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Figure 21: Comparison of di�erent methods for source-sink networks in function of the number
of servers.

Figure 22a shows how the delay bounds grow with the load of a tandem of length 10. When
the load is small, TFA++ and PLP are similar, but the gap between the two grows exponentially
fast. For example, TFA++ is 13% higher than PLP for a load of 0.5 and 105% for a load of 0.8.
PLP is smaller than the delay bound with regulators until a load of 0.95.

Figure 22b compares the delay bounds for shaping service rates, with η ∈ {1, 2}. Again, the
PLP method is not very sensitive to this parameter, contrary to the TFA++ method. LUDB
outperforms TFA++ when η = 2.

7.1.2 Mesh network

Consider the mesh network of Figure 23. There is one �ow per path from server 0 or 1 to server
8, which represents a total of 16 paths. Servers 0 to 7 have the same characteristics as above,
and server 8's service rate is 2R, as there are twice as many �ows crossing it compared to the
other servers. We also keep the same characteristics as above for the �ows.

Figures 24 compares the delays obtained for TFA++, SFA and the two di�erent methods
introduced for analyzing feed-forward networks: network unfolding and �ow cutting. Due to
its computation time, we do not compare with ELP. Figure 24a depicts the delays when η = 1
and Figure 24b when η = 5. Similar to the previous cases, TFA++ is very accurate when
η = 1 and the load is small, but becomes pessimistic for larger values of η or higher loads. It
is not surprising that the unfolding the network leads to tighter delay bounds than cutting the
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Figure 22: Comparison of di�erent methods for source-sink networks in function of the load.
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Figure 23: Mesh network.

network. Indeed, cutting a �ow induces some over-approximations. But the unfolded network's
size being exponential in the size of the original network, this method is not scalable. We notice
that the gap between the two methods is not very large, specially when η = 1.
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Figure 24: Comparison of di�erent methods for a mesh network in function of the load.

7.1.3 Ring network

Consider a ring network, as depicted on Figure 25 for n = 4. There are n �ows of length n in a
ring of length n. If the arrival rate is r, then the load of the network is U = nr/R. Figure 26a
shows the worst-case delay bound for the di�erent methods when the number of servers grows
from 2 to 10 (and to 4 for ELP). The load of the network is 0.5 and η = 1. One can see that
the bounds found for ELP and PLP are really close to one another and the gap with TFA++
of the same order as in the previous topologies. Here again, SFA gives very inaccurate bounds.
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Figure 25: Ring network with n = 4.

This is inline with the example of the source-sink tandem: at each server n− 1 �ows are shaped
together, which makes TFA++ very e�cient. The execution time of ELP and PLP is depicted
in Figure 26b. One can see that PLP takes longer to compute, because computing the �xed
point requires solving a much larger linear program than for tandem networks. More precisely,
three linear programs need to solved: 1) compute the TFA++ delays (using Paragraph 3.1);
2) compute the �xed point as the optimal solution of the linear program of Equation (3); 3)
compute the delay bound of the �ow of interest. The second linear program to solves takes
most of the computation time. For networks of respective size 3, 5 and 10, the computation of
TFA++ delays take respectively 0.007 s, 0.008 s, 0.018 s, the computation of Equation (3) takes
0.009 s, 0.081 s and 8.679 s, and the computation of the delay of the �ow of interest takes 0.007 s,
0.014 s and 0.103 s.

Figure 27a compares the di�erent approaches (except ELP) when the load of the ring of
length 7 grows from 0 to 1. Similar to the previous examples, PLP computes much tighter bounds
than TFA++ for hight loads, and has a larger stability region (local stability). The in�uence of
TFA++ on PLP is also more visible: when the TFA++ delay bounds become in�nite, the delay
bounds of PLP increases faster. Again, Figure 27b shows how the performances evolve when
the shaping rate of the servers grows, for η ∈ {1, 2, 5}. When η = 5, the delays of TFA++ are
comparable with SFA. With TFA++, the stability region also decreases with η: the su�cient
conditions for the stability computed by TFA++ for η = 1, 2, 5 are respectively U < 0.85,
U < 0.55 and U < 0.38. From PLP, the local stability condition seems su�cient to ensure
the global stability in ring networks. In this example, the stability condition is also improved
compared to the one of Rizzo and Le Boudec in [23], where for a ring of length 6, the stability
condition is U < 0.9.
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Figure 26: Comparison of di�erent methods for the ring network in function of the number of
servers.
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Figure 27: Comparison of di�erent methods for the ring network in function of the load.
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Figure 28: Carrier network with three types of paths: direct paths (red), one-ring path (blue),
two-ring path(green).

7.2 Realistic examples

7.2.1 Carrier network

Consider the network of Figure 28. It is made of two bidirectional rings. There are 8 �ows
departing from each router, 4 of them going to each of the neighbors (except the two central
nodes that are not considered as neighbors). Two �ows follow a direct path (path of length 1)
and one follows a path along one ring and the last path follows the two rings, as depicted on
Figure 28. Links are bidirectional, so Figure 28 is not the exact representation of the network,
that we do not give here for the sake of readability: there are 18 servers and 64 �ows in this
network. In the example, all packets have length L = 1024 b and are periodically sent for each
�ow at period P = 125µs. Then each �ow is constrained by the arrival curve α : t 7→ B+ tT/P .
The service curve of each link is β : t 7→ R(t − L/R). The greedy-shaper de�ned to take into
account the packetization at each router is σ : t 7→ Ct+L. The problem is to �nd the rate R to
allocate to these �ows so that a maximum delay bound is satis�ed for all �ows. Let us assume
that the target delay is 75µs.

Table 6 shows the rates to be allocated in two scenarios: �rst when hard slicing is at work,
that is C = R, and the other when soft slicing is at work, that is C = 10Gb/s is the total
capacity of the links.

TFA++ PLP ELP
R = C 690Mb/s (0.166 s) 650Mb/s (112 s) 510Mbps (24min)
R, C = 10Gb/s 1.350Gb/s (0.2 s) 1.0Gb/s (130 s) 540Mbps (10min)

Table 6: Service rate required to guarantee the maximum delay of 75µs, with di�erent methods.
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One can observe that in the case of hard-slicing, TFA++ compares well with PLP (it is only
6% higher). This can be explained because to obtain a delay bound as small as 75µs, the load
of the network is small (approximately 15%). But the TFA++ is 35% higher than ELP. In this
scenario, a 24 minute computation might not be considered too costly given the gain on the
bandwidth. In the case of soft slicing, TFA++ is 35% higher than PLP, and 150% higher than
ELP.

7.2.2 Smart-Campus network

In this example, the network topology is a sink tree. Four classes of �ows are circulating in
the network, from the leaves to the root, as depicted in Figure 29, every class of tra�c has
�ows following all paths, and the service policy is FIFO per class. Among the four classes, the
DRR scheduling is at work, and each �ow is o�ered the same guarantee, that is 25% of the
service rate, and the quantum assigned to each class is Q. If a network element has service curve
β = βR,0, the DRR service curve for class i is, according to Boyer et al. [7], βDRRi = βR/4,Ti ,
with Ti = [3Q(Q + `i) + (L − `i)]/R where `i is the maximum length of a packet of class i,
and L =

∑4
i=1 `i. The service rate of each server is given (in Gb/s) on Figure 29 and we take

Q = 16 kb. The characteristics of each class of �ow is given in Table 7. Moreover, there is a
shaping for each class of �ow (separately) at the entrance of the network, at rate 1Gb/s. The
shaper is then t 7→ 109t+ `i for class i.

Class burst arrival rate packet size
Electric protection 42.56 kb 8.521Mb/s 3040 b
Virtual reality game 2.16Mb 180Mb/s 12 kb
Video conference 3.24Mb 162Mb/s 12 kb
4K video 7.2Mb 180Mb/s 12 kb

Table 7: Characteristics of the 4 classes of �ows.

Table 8 summarizes the delay found for each class and each method. In order to make
all methods more tractable and accurate, we �rst concatenate servers that are crossed by the
same sets of �ows. This enables ELP to compute the delays fast, which would not be possible
otherwise.

This is a case where LUDB can compute tight delay bounds, when shaping is not taking into
account. This bound then gives an idea of the e�ect of shaping. SFA also does not take into
account the shaping e�ect, and SFA is then larger than LUDB.

The other bounds take the shaping into account, and we can see TFA++ are slightly better
than LUDB, but is still twice as large as ELP and PLP. The PLP provides a good approximation
of ELP. We also see that ELP and PLP provide good approximations of the actual worst-case:
the last column of Table 8 represents the delay obtained when the network is simulated and the
maximum tra�c arrived from time 0. The gap can also be explained by the fact that the DRR
service curve can be pessimistic and that this trajectory may not be the one maximizing the
delays.

Last, to assess the usefulness of both algebraic and shaping constraints, in Table 9 shows
the di�erent delay bounds obtained by PLP when removing shaping and/or SFA and TFA++
constraints. One can observe that both types of new sets of constraints improve the bounds.
Moreover, the improvement obtained by combining of these two types of constraints is drastic.
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class TFA++ SFA PLP ELP LUDB simulation
EP 200 240 170 166 223 33
VR 5066 7005 2614 2550 5760 1911
VC 7402 10373 3775 3659 8567 3171
4KV 16482 22995 8289 8082 18864 7147

Table 8: Delays (in µs) with for the four classes of tra�c with the di�erent methods, and the
simulation of a candidate trajectory for the worst-case delay.

class PLP PLP (no shaping) PLP' PLP' (no shaping)
EP 170 222 185 224
VR 2614 5801 4114 6551
VC 3775 8615 5869 9600
4KV 8289 18000 13071 21444

Table 9: Delays (in µs) obtained from PLP by removing shaping and/or SFA and TFA++
constraints.
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8 Conclusion

In this paper, we have proposed a new linear program to compute performance bounds in FIFO
networks. This linear program o�ers a good trade-o� between accuracy of the bounds and
tractability. While it does not lead to performance bounds as accurate as the linear programs
of [13], it can be performed in polynomial time, which enables to use it in larger networks
from realistic cases. This new algorithm also improves the performances bounds compared to
the algebraic methods from the literature (SFA, TFA++). Interestingly, this improvement is
obtained by introducing these algebraic bounds in the linear program.

We also presented a linear-programming solution to deal with networks having cyclic de-
pendencies. Although presented for FIFO networks, this solution is valid for the other linear-
programming methods used in other models of Network Calculus (e.g., blind multiplexing in
[40]). This method improves both the delay bounds and the stability region of the literature.

Comparison with other scalable methods (TFA++, SFA) also enables to have a more precise
knowledge of when these bounds are accurate. While SFA is never accurate, we can exhibit
cases where TFA++ provides accurate performance guarantees: when the load of the network
is small or medium and the service and shaping rates coincide.

Through the example of TFA++, it was already known that shaping plays a very important
in reducing the performance bounds. We show it is also the case with the linear-programming
techniques. One research direction would also be to see if SFA can be adapted to take into
account the shaping e�ect into a SFA++ method. Some work has already been done in this
direction [48], and when the �ow of interest is shaped at the input of the network. The e�ect of
the shaping of the cross-tra�c still requires investigation.

The trade-o� between accuracy and tractability presented in this paper is a �rst step toward
obtaining good trade-o�s between accuracy and scalability. Many questions remain open for
scalability. First, the PLP algorithm is tractable, but it might not yet be usable directly for large
network. We showed one example where it can be used for analyzing networks with 100 servers
by decomposing it in sub-networks. This approach has to be generalized. In particular, it raises
the issue of �nding good decompositions of networks. Several directions can be investigated:
�nding good heuristics, use backtracking algorithms as in [42], or use deep-learning approaches
as in [46].

Last, one limitation of the linear-programming methods is that they require concave arrival
curves. Taking into account the packetization e�ect and the length of packets can improve the
performance bounds. This was demonstrated in [49, 50] for priorities and GPS, and recently
in [51] for WRR. In [10], the length of the packets of the bit of interest is also taken into account.
Packetization is also taken into account in [6] to compare di�erent methods in FIFO networks.
While some packetization e�ects can be integrated in TFA++ constraints, future work will also
focus on the introduction of packetization constraints.
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A Proof of Theorem 3

Let d be an upper bound of the delay in the server, and assume without loss of generality that
the α-constrained �ow is �ow 1. Let us denote by A the aggregate arrival process and A1 the
arrival process of �ow 1, and similarly for the departure processes D and D1.

Let d be an upper bound of the delay in the server: for all t, D(t) ≥ A([t − d]+). From
Equation (2), we also have D1(t) ≥ A1([t− d]+) = A1 ∗ δd(t): δd is a service curve for �ow 1.

As a consequence, Theorem 2 can be applied with service curve δd and greedy-shaper ε : t 7→
∞: α� δd ∧ ε = α� δd is an arrival curve for the departure process D1.

B Proof of Theorem 4

Let us denote by A the cumulative arrival process of the �ow of interest in the system and D
its departure process from the system. Fix s and t such that s ≤ t. Our goal is to show that
D(t)−D(s) ≤ B + r(t− s).
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Let us �rst transform the arrival process A in A′ so that A′(u) = A(u) for all u ≤ s and
A′(u) is maximized for all u > s. As from (H1), α is the only constraint for the �ow, there exists
H ≥ 0 such that for all u > t, A′(u) = A(s) +H + r(u− s).

Consider a departure process D′ corresponding to the modi�ed arrival process. As the
systems is causal, D′(u) = D(u) for all u ≤ s.

We now distinguish two cases, depending on whether D′ is right-continuous at s (note that
since the processes are always left-continuous, this means that whether D′ is continuous at t).

1) IfD′ is right-continuous at s, thenD(s) = D′(s) = D′(s+) (whereD′(s+) = limu→s,s>uD
′(u)),

then the backlog at time s+ with the modi�ed arrival process A′ satis�es A′(s+)−D′(s+) ≤ B.
Consequently, we have B ≥ A′(s+)−D′(s+) = A(s) +H −D(s) and

D(t)−D(s) ≤ A(t)−D(s) ≤ A′(t)−D(s) ≤ A(s) +H + r(t− s)−D(s) ≤ B + r(t− s).

2) If D′ is not right-continuous at time s, we use hypothesis (H2) to modify the departure
process.

Let A′n (resp. D′n) be the aggregated arrival (resp. departure) process of server n with the
modi�ed arrival process A′. There exists D′′n that is modi�ed according to (H2) that is right-
continuous at s and such that D′′n(u) = D′n(u) for all u ≤ s. As D′′n is right-continuous at s and
is the sum of departure processes, all departure processes are continuous at s, and in particular
that of the f.o.i., that we denote D′′. In particular, D(s) = D′′(s) = D′′(s+). Similar to the
previous case, B ≥ A′(s+)−D′′(s+) = A(s) +H −D(s). As a consequence,

D(t)−D(s) ≤ A′(t)−D(s) ≤ A(s) +H + r(t− s)−D(s) ≤ B + r(t− s),

which �nishes the proof.
Let us now focus on a case where (H2) holds: for each arrival process An, server n admits all

departure processes Dn such that An ≥ Dn ≥ An ∗βn and Dn ∗σn = Dn where the token-bucket
greedy shaper σn is greater than βn.

As βn is continuous, there exists v ≤ s such that Dn(s) ≥ An(v) + βn(s− v).
So, we can modify Dn from time s so that it is right-continuous at s: de�ne D′n as D′n(u) =

Dn(u) for all u ≤ s and D′n(u) = min(Dn(u),max(Dn(s), An(v) + βn(u− v))) for all u > s.
D′n ∈ F : a) D′n(0) = Dn(0) = 0; b) D′n is the combination left-continuous functions, so

it is left-continuous; c) D′n is non-decreasing on [0, s] and (s,+∞). Moreover, for all u > s,
D′n(u) ≥ min(Dn(s), Dn(u)) = Dn(s) = D′n(s), so D′n is non-decreasing.

Let us now check that An ≥ D′n ≥ An ∗ βn:

� �rst D′n ≤ Dn ≤ An;

� second, for all u > s, we have Dn(u) ≥ (An ∗βn)(u) and An(v) +βn(s− v) ≥ (An ∗βn)(u),
so D′n(u) ≥ An ∗ βn(u). For all u ≤ s, D′n(u) = Dn(u) ≥ An ∗ βn(u). Then D′n ≥ An ∗ βn.

Let us now check that D′n = D′n∗σn, or equivalently that Dn is σn-constrained. For all t ≥ s,
if D′n(t) = Dn(s), then for all u ≤ t, D′n(t)−D′n(u) ≤ Dn(s)−min(Dn(s), Dn(u)) ≤ σn(s−u) ≤
σn(t− s). We now only consider cases where D′n(t) is either Dn(t) or An(v) + βn(t− v).

For all u ≥ 0, either D′n(u) = Dn(u) and for all t ≥ u, D′n(t) −D′n(u) ≤ Dn(t) −Dn(u) ≤
σn(t−u), or D′n(u) ≥ An(v)+βn(u−v) and for all t ≥ u, D′n(t)−D′n(u) ≤ βn(t−v)−βn(u−v) ≤
σn(t− u) (as σn ≥ βn, the rate of σn is larger than any chord of the convex function βn).

Finally, (An, D
′
n) is an admissible pair of arrival and departure processes for server n satis-

fying the arrival and departure admissible relation and continuous at s.

C Proof of Theorem 7

In all the paragraph, we assume that L satis�es properties (P1) and (P2).
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Preliminary results

Lemma 5 (Shape of L). For all p ∈ NN , Lp is concave and non-decreasing.

Proof. To prove the result, let us rewrite function Lp(x) using the duality of the linear program.
First, we separate variables x and y. From Property (P1), one can transform Bp(x, y)t ≤ Cp into
B′py

t ≤ C ′p(x), where now the coe�cients of C ′p depend on x. Property (P1) tells us that the
coe�cients of C ′p(x) are linear and non-decreasing in each variable of x. From Property (P2),
one can rewrite Ap(x, y)t as A′py

t +A′′px
t, where all the coe�cients of A′′p are non-negative.

We then have Lp(x) = max{A′pyt | B′pyt ≤ C ′p(x), y ≥ 0}+A′′px
t. As Lp(x) ∈ R+, the linear

problem involved in Lp(x) has a �nite optimal solution. The dual problem then has the same
optimal solution, and we can express Lp(x) as

Lp(x) = min{C ′p(x)twt | B′tp wt ≥ A
′t
p , w ≥ 0}+A′′px

t.

The polyhedron de�ned by {B′tp wt ≥ A
′t
p , w ≥ 0} does not depend on x. The optimal solution

is obtained at a vertex of this polyhedron, that has a �nite number of vertices. Then Lp(x) is
the minimum of non-decreasing linear functions (the coe�cients of C ′p(x) are non-decreasing in
x). Then Lp(x) is non-decreasing and concave.

Let us denote C = {x ∈ RN+ | x ≤ L(x)}.

Lemma 6 (Existence of a �xed point x∗). The supremum of C is well-de�ned in (R+ ∪{∞})N ,
and if x∗ = sup(C) ∈ RN+ , x∗ is a �xed-point of L: x∗ = L(x∗).

Proof. To prove that sup(C) is well-de�ned, it su�ces to show that x, x′ ∈ C, then x̄ = x∨x′ ∈ C,
where the maximum ∨ is taken coordinate-wise. As L is non-decreasing, for all p ∈ NN , xp ≤
Lp(x) ≤ Lp(x ∨ x′) = Lp(x̄). Similarly, x′p ≤ Lp(x′) ≤ Lp(x ∨ x′) = Lp(x̄), so x̄p = xp ∨ x′p ≤
Lp(x ∨ x′) and x̄ ≤ L(x̄). In other words, x̄ ∈ C.

Let us prove that if x∗ ∈ RN+ , then x∗ is a �xed-point of L. First, x∗ ∈ C. Indeed, for all x ∈ C,
x ≤ x∗, so x ≤ L(x) ≤ L(x∗), and x∗ = sup{x | x ∈ C} ≤ sup{L(x) | x ∈ C} ≤ sup{L(x∗) | x ∈
C} = L(x∗). On the other hand, as L is non-decreasing, the inequality L(x∗) ≤ L(L(x∗)) also
holds, so L(x∗) ∈ C and L(x∗) ≤ x∗. Finally we have proved that x∗ = L(x∗) and x∗ is a
�xed-point of L.

Uniqueness of the �xed-point Let us now prove that if x∗ is �nite, L has a unique �xed-
point. To prove this, we will follow the lines of the proof of Kennan [52], where the result is
proven for strictly concave functions and strict quasi-increasing functions. These assumptions
do not hold as functions Lp are piecewise linear. We then adapt the proof in the case where
Lp(0) > 0 for concave and quasi-increasing functions. The adaptation in straightforward, but
for sake of completeness, let use write it.

De�nition 2. A function g = (g1, . . . , gN ) : RN+ → RN+ is quasi-increasing if for all p ∈ NN , for
all x, y, such that y ≥ x and xp = yp, gp(y) ≥ gp(x).

In our case, as L in non-decreasing, L − Id is quasi-increasing, where Id is the identity
function.

Lemma 7. Let F be a function from RN+ to RN+ , that is concave and such that F − Id is
quasi-increasing and Fp(0) > 0 for all p ∈ NN . If F has a �xed point, then this �xed point is
unique.
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Proof. Suppose x and y are two �xed points of F : F (x) = x and F (y) = y. De�ne γ =
minq≤N (

xq
yq

) = xr
yr
. If γ ≥ 1, then x ≥ y. Suppose now that γ < 1 and de�ne w = γy. On the

one hand, wp < yp for all p ≤ N . So by concavity of Fp, we have Fp(w) ≥ (1−γ)Fp(0)+γFp(y) >
γFp(y) = γyp = wp. In particular, Fr(w) > wr.

On the other hand, w ≤ x and wr = xr. Indeed, wq = γyq ≤ xq
yq
yq = xq, and the inequality

becomes an equality when p = r. As F − Id is quasi-increasing, then Fr(x)− xr ≥ Fr(w)−wr.
But x is a �xed point, so combining the obtained inequalities, we get 0 = Fr(x) − xr ≥

Fr(w)− wr > 0, which is a contradiction. So one must have x ≥ y.
By inverting the roles of x and y, we also obtain x ≤ y, and �nally x = y. This concludes

the proof regarding the uniqueness of the �xed point.

As L satis�es all the hypotheses of Lemma 7, i.e., L is concave, L(0) > 0 and L − Id is
quasi-increasing, if L has a �nite �xed point, then it is unique.

Computation of the �xed-point The second part of the theorem consists in �nding a linear
program whose optimal solution is that �xed point. Let us consider the linear program

max{
N∑
p=1

xp | ∀p ∈ NN , xp ≤ Ap(x, yp)
t, Bz(x, yp)

t ≤ Cp, x, yp ≥ 0}. (4)

The set of solutions of this linear program is

C′ = {x ∈ RN+ | ∀p ∈ NN ,∃yp ≥ 0, xp ≤ Ap(x, yp)t, Bz(x, yp)t ≤ Cp}.

Let us �rst show that the set of solutions is exactly the set C.

Lemma 8. C = C′

Proof.

x ∈ C ⇔ ∀p ∈ NN , xp ≤ Lp(x)

⇔ ∀p ∈ NN , ∃yp ≥ 0, xp ≤ Ap(x, yp)t and Bp(x, yp)t ≤ Cp
⇔ x ∈ C′.

An optimal solution of Equation (4) is a solution that maximizes the sum of its coe�cients.

Lemma 9. The optimal solution of Equation(4) is unique and is x∗.

Proof. As x∗ = sup(C) is well-de�ned and C = C′, x∗ = sup(C′). As a consequence, for each
solution x of Equation(4), x ≤ x∗. Then,

∑N
p=1 xp ≤

∑N
p=1 x

∗
p. The equality holds if and only if

x = x∗.

D Proof of Lemma 4

We will use the following classical lemma.

Lemma 10. For all n ∈ N, X,Y ∈ R+ and y ∈ Rn+ such that
∑n

i=1 yi ≥ Y , if X ≤ Y then
there exists x ∈ Rn+ such that xi ≤ yi and

∑n
i=1 xi = X.

50



Proof. We de�ne recursively for all i ∈ Nn, xi = min(yi, X−
∑i−1

j=1 xj). By construction xi ≤ yi,
and it remains to show that

∑n
i=1 xi = X. We proceed by induction and show that the partial

sums
∑i

j=1 xj = min(
∑i

j=1 yj , X).

� Initialization: for i = 1, x1 = min(y1, X), by de�nition;

� Induction: Assume that
∑i

j=1 xj = min(
∑i

j=1 yj , X). Then

i+1∑
j=1

xj =

i∑
j=1

xj + min(yi+1, X −
i∑

j=1

xj)

= min(
i∑

j=1

xj + yi+1, X)

= min(min(
i∑

j=1

yj , X) + yi+1, X)

= min(
i+1∑
j=1

yj , X + yi+1, X)

= min(
i+1∑
j=1

yj , X).

One can conclude, as
∑n

i=1 xi = min(
∑n

i=1 yi, X) = X as X ≤ Y ≤
∑n

i=1 yi.

Proof of lemma 4. We already showed how to get rid of the variables related to u. Set As =∑m
i=1Ais. For all s, we have the equivalence between

∃Ais, ∀i ∈ Nm, Ais ≤ xi + ris and ∀h ∈ NH ,
∑
i∈Gh

Ais ≤ Lh + Chs

and

∃As, As ≤
H∑
h=1

(
∑
i∈Gh

xi + ris ∧ Lh + Chs) +
∑

i/∈
⋃
h∈Nh

Gh

xi + ris.

The �rst direction of the equivalence is obtained by setting As =
∑n

i=1Ais. To simplify, set
GH+1 = Nm \ ∪h∈NHGh and LH+1 = CH+1 = ∞. The second direction us obtained by using
twice Lemma 10:

� �rst to the group to �nd variablesA(h)s such that
∑H+1

h=1 A(h)s = As, with Y =
∑H+1

h=1 (
∑

i∈Gh xi+
ris ∧ Lh + Chs) and yh =

∑
i∈Gh xi + ris ∧ Lh + Chs for all h ∈ NH+1;

� second to each group: �nd Ais such that
∑

i∈Gh Ais = A(h) and Y =
∑

i∈Gh xi + ris ∧
Lh + Chs, and yi = xi + ris.

As Ais = Dit, for all i ∈ Nm, one can get rid of the FIFO constraints and replace Dit by
Ais in the service constraints.

(s, t, (Ais)
m
i=1, (Dit)

m
i=1) is a satis�es the linear constraints if and only is there exists s, t and

As such that s ≤ t and

(βR,T (t) =) max(0, R(t− T )) ≤ As ≤
H+1∑
h=1

(
∑
i∈Gh

xi + ris ∧ Lh + Chs)(= α(s)).
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It is now possible to remove the variable As, and replace s by t−d, and introduce the functions
α and βR,T and we obtain the equivalent formulation: maximizing d such that there exists t ≥ 0
such that t ≥ d and

βR,T (t) ≤ α(t− d),

which is exactly the formulation of the maximal horizontal distance between α and βR,T .
Remark that the delay and horizontal distance at t (page 5) is expressed with a strict

inequality (dmax = supt(sup{d ≥ 0 | βR,T (t) < α(t− d)})). As α is strictly increasing, we also
have dmax = supt(sup{d ≥ 0 | βR,T (t) ≤ α(t− d)}).
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