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Chapter 1

Introduction

With the emergence of a multitude of network architectures, performance evaluation, originating from
Erlang’s work, has become an important research topic. The simplest model of a communication system
is the queue, and by extension systems of queues, that have a high modeling power. A queue is composed
of a waiting queue and of a server that processes data in the waiting queue. If X(t) is the number of
data in the queue at time t, C the number of data that can be processed by unit of time, and A(t) the
number of data entering the system between tome t and t + 1, the first (and most important) formula
that can be written is the Lindley formula [84],

X(t+ 1) = max(X(t)− C, 0) +A(t). (1.1)

The queuing theory, based on this formula, derives properties for X(t) based of the knowledge of
C(t) and A(t) given by some distributions and independence relations. Among the important results
derived from this formula are the Pollaczek-Khinchine formula and the Little formula [85]. As far as
stochastic models are concerned, queuing theory is still an active topic, and with the emergence of
large and complex networks new models have also being developed. Among them, one can mention the
mean-field theory [8, 78, 66, 56], stochastic geometry [5, 6], random graphs [63, 13, 54]...

It is also possible to make use of the ’+’ and the ’max’ in Equation (1.1). Then systems of queues can
be analyzed using the (max,plus) (or tropical) algebra [7]. Compared to classical algebra, the addition
is replaced by the maximum, and the multiplication by the addition. Timed Petri nets is a model that
can handle some queuing networks - it naturally models concurrency, synchronicity and choices - and
makes use of the (max,plus) algebra to derive performances of the system. When only concurrency and
synchronization are involved, its boils down to the study of a (max,plus) matrix (with possibly random
coefficients) and to the study of the eigen-value (or Lyapunov coefficient) of this matrix. when choices
are involved, 1-bounded systems can be modeled by heaps of pieces [67, 68] or (max,+) automata [77, 76].

Another theory based on the + and the max in Equation (1.1) is the Network calculus, which is the
subject of this document. Unlike timed Petri nets and classical queuing theory, it is based on the study
of envelopes and bounding processes rather than studying their exact value. Introduced by the seminal
work of Cruz [51, 52], in which the traffic is characterized by (σ, ρ)-envelopes to compute maximum
delays. The notion of envelope has then been formalized and generalized to functions with values in the
(min,+)-dioid [53]. The elements of network, namely, the wires, switches, processors... have also been
generalized from conservative link (the amount of data that can be served during each unit of time is
constant) to more general envelopes in the same functional space. In this model, data flows and systems
are abstracted by functions in the dioid of the (min,plus) functions and performances can be derived by
combining those functions through (min,+) operators such as the (min,+)-convolution, the (min,plus)
deconvolution or the sub-additive closure. The main references on the topic are the textbooks [45]
and [79].

The target application was originally communication networks, such as Internet. Network calculus
was successfully applied to study networks with differentiated services (DiffServ), as it enables to compute
a guaranteed rate for the best effort flows and integrated services (IntServ), that guarantees a bandwidth
for each flow [89, 90, 61]. Another success is the application of network calculus to define efficients load-
balanced switches, the Birkhoff-Von Neumann switch for example, that has a periodic scheme to connect
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any input to any output during a time proportional to the bandwidth requested for this connection
[46, 47, 48]. A third example of application in this field is the video-on-demand (VoD) [87, 55, 64].

However, in other fields of communication networks, Network calculus leads to over-pessimistic results.
Indeed, the transmission times are often not critical: worst-case performances are not the right parameter
to study - it happens very rarely - whereas the mean or the variability of the transmission delay might
be the parameters to study, as the users of the network might be more sensitive to a slower than usual
network. As a consequence, stochastic models are more relevant. To this aim, the stochastic counterpart
of Network calculus has been developed, the stochastic network calculus [44, 72, 60]. The aim of this
theory is to compute the violation probability of some flow to have a certain maximum delay. As a
consequence, it mixes the network calculus theory with the deviation theory.

Another class of applications where network calculus is relevant is real-time and critical systems.
Those systems have hard deadlines and requires a deterministic analysis. An emblematic example where
network calculus has been successfully used in the AFDX (Avionic Full Duplex), [62, 35, 40] and recent
developments of network calculus have been obtained in this context. AFDX is an embedded network
based on the Ethernet technology and where switches are connected using full-duplexed links, that is,
between two switches, there are two different wires, one for each direction, avoiding collisions. A realistic
network is composed of a dozen of switches and thousands of flows, called virtual links. As a consequence,
the techniques developed to analyze such networks must be algorithmically efficient and compute accurate
upper bounds on the transmission delays.

In the field of embedded networks, network calculus competes with other techniques. Among them,
one can cite model checking [49]. Model checking is based on the exhaustive modeling of the states of
the system with objects such as timed automata (or recently adapted to the context of network calculus,
event-count automata [43]) and computes the exact bounds by analyzing them. As a consequence, it will
give very accurate bounds, but at a prohibitive algorithmic cost. For example, in [92] a 3-node network
can be analyzed in 30 minutes... A second and classical technique is scheduling. In the context of the
AFDX network, the trajectorial approach has been developed [86]. Given a sporadic flow (almost periodic
with jitters) and a packet of this flow, the aim is to find a bound on the worst-case delay suffered by this
packet given the interacting flows. The equation giving this worst-case delay can then be solved using a
fix-point equation. Here again, the bounds computed with this technique seem more accurate (though
not exact) but the computing cost can be high. Unfortunately, flows have been found in this theory,
invalidating it until further investigations [75, 74]. Instead, with network calculus techniques, the bounds
may be less accurate, but the techniques used are computationally very light. Recent development have
been made in order to tighten the bounds by taking into account a refined model of AFDX, for example
by detailing the behavior of flows with fixed-size packets [102, 103].

As a consequence, there are several reasons in favor of using network calculus for those kinds of
networks. Its nice modeling based on the (min,plus) algebra makes it modular (it is possible to analyze
parts of the whole system and then see those parts as network elements), mathematically sound, and
the computations are algorithmically efficient. Roughly speaking, network calculus is the combination
of three concepts: it is designed for performance evaluation, it is theoretically based on the (min,plus)
algebra and it uses a model of envelopes (or curves). Its originality, compared with performance evalu-
ation using (max,plus) techniques such as Petri nets is the use of the curves, enabling non-determinism
in the trajectories. Nevertheless, it suffers from two major limitations: the pessimism of the bounds
as the size of the network grows and the inherent difficulties of the model. Indeed, as the theory was
developed, the elegant (min,plus) framework was not enough to obtain good performance bounds and
new concepts have been included. Among them, different types of service curves, packetization, residual
service curves... On the one hand, system are described in a more and more detailed manner (beyond the
classical arrival curve and service curve, the size of the longest packet, the type of the service curve, the
service policy...) that require a modeling that is not only in the (min,plus) framework; on the other hand,
the analysis is still performed using (min,plus) methods. Then, one can ask whether there is a possible
modeling of the different concepts that have been introduced with (min,plus) functions or envelopes or
if the (min,plus) algebra is the right framework to perform the final analysis. In the first part of the
manuscript (Chapters 3 and 4), we will try to answer those questions.

In the second part of the manuscript, we will ask quite the reverse question, about using the network
calculus concept (curves and (min,plus) functions) for other goals than performance evaluation. Of
course, when dealing with tropical algebra the answer is yes: it is a branch of mathematics and is studied
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in areas ranging from algebraic geometry (see [42] for a clear introduction) to analysis ([41]). Concerning
the concept of curves, it is used for modeling clocks in synchronous systems [93], but the goal is to
bound buffers, therefore, the aim is very close to that of performance evaluation. We will present one
application for each of these points, where the solutions, have a network calculus flavor: the first one is
the prolongation of [34], as defining an efficient algorithm for (min,plus) convolution, while the second
one borrows directly the concept of arrival curves.

Organization of the document

More precisely, the main contributions are organized as follows.

Chapter 3 Formalization of the network calculus concepts: While attempting to compute efficient
bounds, we faced the difficulty of handling different, but almost similar concepts of service curves,
that model the guarantee of the servers in a network. After some beginner’s mistakes, it became
necessary to clarify those concepts and, if possible, unify them. The main contribution is a detailed
comparison between the types of service curves presented in the literature. Here, we will present
this comparison only between the two main types of service curves: the simple service curve and
the strict service curve. The results can be set this way: strict and simple service curves are
inherently different and one cannot get rid of one to perform a global analysis.

Chapter 4 Computing tight bounds in networks: the final objective of network calculus is to compute
good performance upper bounds in networks. It is well-known that using (min,plus)-convolution
lead to pessimistic performance bounds, and this pessimism become huge as the network grows. The
main contribution is the computation of exact worst-case performance bounds for some networks,
by getting rid of the (min,plus) algebraic framework and using linear programming instead. Under
general assumptions, blind multiplexing and FIFO networks can be modeled by linear
constraints and computing the exact worst-case performance bounds boils down to
solving a linear program. Moreover, this problem is NP-hard.

Chapter 5 Efficient algorithms for the basic operations: in order to have efficient algorithms, the
(min,plus) operators should also be efficiently implemented. Such algorithm have already been
presented in [34]. Here, we present a linear time algorithm to compute the (min,plus)
convolution of a convex function by a concave function and an application to numerical
approximation of the long-term behavior of Hamilton-Jacobi equation.

Chapter 6 Using network calculus constraints for supervising a flow: In the context of the PhD of
Aurore Junier, we present an algorithm to supervised flow. The key element of this supervision
is the use of arrival curves, and we define an on-line algorithm that follows the changes in
the periodic behavior of a flow and detect the changes of arrival rates, thus allowing some
tolerance.

Chapter 2 is an introduction to Network calculus and Chapter 7 is the conclusion and presents some
perspectives.

Other research works not described in this manuscript

Besides the content of this manuscript, I also got interest in other related models, that mostly concern the
qualitative properties of some networks, whereas Network Calculus mainly concerns their quantitative
properties. However, similar tools can be used, in the sense that they are based on the (min,plus) and
(max,plus) algebra, through (max,plus) automata or Petri nets.

• Timed Petri nets and web services: Petri nets are a powerful tool to model concurrent timed
systems and one example of such systems is web services. Those systems can be interpreted
as services that are composed of elementary service through the operations of synchronization,
concurrency and choice, which makes Petri nets a good modeling candidate. I was interested in the
problem of the monotony of web-services and the identification of the critical elementary service.
Monotonic web services (web-service whose response time is improved if the response time of any of
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its elementary service is improved) are those that can be modeled with event graphs (they involve no
choice, only concurrency and synchronization). Under Markovian assumptions, the critical service
(the improvement of the response time of a critical elementary service improves the response time of
the global service by the same quantity) can be identified by analyzing a Markov chain. This work,
presented in [32] and [21], has been done in collaboration with Sydney Rosario, Albert Benveniste
and Stefan Haar.

• Residuation in (max,plus) automata: Residuation of (max,plus) automata may have some
application in control theory: when a system’s timed behavior is not known exactly and some
actions are controllable, a controller can force the timed behavior into a target behavior. The
question is how to compute this controller. One way to do this is to model the frame the behavior
of the original system by (min,plus) and (max,plus) automata, as well as the target behavior. The
residuation of the system automata by the target automata will result in the controller automata.
Then the question of computing this residuation raises. In fact, this is a difficult problem in general
that is related to that of the determinization of (max,plus) automata [76]. But in our case, we
avoid this difficulty by mixing (max,plus) and (min,plus) automata and computing the residuation
of a (max,plus) by a (min,plus) automata. This work has been done in collaboration with Philippe
Darondeau, Philippe Badouel and Jan Komenda and appears in [9].

• Study of link-state routing protocols: In the context of Aurore Junier’s PhD and of the
partnership of INRIA and Alcatel-Lucent, we studied the detection of anomalies in routing protocols
such as OSPF ([70]). Besides the work presented in Chapter 6, we presented a refined modeling
of part of the protocol by way of Petri nets. This modeling enables to modify some parameters of
the protocols in order to simulate it and estimate the best parameters for the protocol. Further,
we studied the correlation of infrequent alarms. Those works are presented in [22] and [29].
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Chapter 2

The Network calculus model

In this chapter, we present the principal features of Network calculus, that is the use of the (min,plus)
algebra and the use of envelopes to model the arrival processes. We first introduce in Section 2.1 the
(min,plus)–framework on which are based the basic concepts of Network calculus and then start with
the simplistic example of a single queue in Section 2.2 that is used to define the core notions in NC, the
curves. Arrival curves is detailed in Sections 2.3 and service curves in Section 2.4. Finally, we present
how to compute performance bounds from these curves in Section 2.5. Most of the content of this chapter
can be found in the two reference books [45, 79].

2.1 The (min,plus) dioid

Let Rmin = R ∪ {+∞}. Equipped with the operators min and +, Rmin is an idempotent semi-ring,
hence a dioid. It can be lifted to the dioid of the (min,plus) functions: we denote by F the set of
functions from R+ to Rmin and F↑ the set of functions in F that are non-decreasing, left-continuous
and take value 0 at 0, that is F = {f : R+ → R ∪ {+∞}} and F↑ = {f : R+ → R ∪ {+∞} | f(0) =
0 and f is left-continuous and non-decreasing}. Then (F ,∧, ∗) and (F↑,∧, ∗) are dioids with unit element
δ0 : 0 7→ 0; t 7→ ∞ otherwise and zero element, ε : t 7→ ∞ and where ∀f, g ∈ F ,

• point-wise minimum: ∀t ∈ R+, f ∧ g(t) = min(f(t), g(t)) and

• (min,plus)-convolution: ∀t ∈ R+, f ∗ g(t) = inf0≤s≤t f(s) + g(t− s).

In addition to those two operators, two others can be defined: the sub-additive closure, that plays
the role of a pseudo-inverse, and the deconvolution that can also be viewed as the equivalent as the
residuation (or pseudo-division) operator in the context of dioids.

Sub-additive closure Let f ∈ F . Define f0 = δ0 the unit element and fn+1 = f ∗ fn. Then, ∀f ∈ F ,

• sub-additive closure: f∗ =
∧
n∈N f

n.

For f∗ to be well-defined, f must be non-negative in a neighborhood of 0 (otherwise, f∗ could take
−∞ values). So, if f ∈ F↑, then f∗ is well-defined and, in addition, belongs to F↑. An alternative
is to use the complete semi-ring, Rmin = Rmin ∪ {−∞}. The function f∗ is also defined as the largest
sub-additive function that is not larger than f .

This operator is useful to compute the performances of systems with backward control.

Deconvolution: a pseudo-division Let f, g, h ∈ F . We have the equivalence

f ∗ g ≥ h⇔ ∀0 ≤ s ≤ t, f(s) + g(t− s) ≥ h(t)⇔
∀0 ≤ s ≤ t, f(s) ≥ h(t)− g(t− s)⇔ ∀t ≥ 0, f(t) ≥ sup

u≥0
h(t+ u)− g(u).

This equivalence defines the residuation of the convolution operator.
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• (min,plus) deconvolution: ∀f, g ∈ F , ∀t ∈ R+, f � g(t) = supu≥0 f(t+ u)− g(u).

This operator will be used when computing the worst-case backlog (α � β(0)) and the propagation
of the arrival constraints (α � β) for a system offering a service curve β to a CAF that is α-upper
constrained. More algebraic properties about the deconvolution can be found in [79].

2.2 Data processes

Flows and servers (or systems) in the network are modeled by left-continuous, non-decreasing functions
f : t 7→ f(t), where t represents time and f(t) a quantity of data. In the whole document, unless stated
otherwise, we will assume that the time is continuous and t ∈ R+.

A DS

Figure 2.1: A system S with cumulative arrival function A and cumulative departure function D.

Consider the example represented on Figure 2.1: one system is crossed by one data flow and during
any period of time t this system can serve exactly R.t bits of data. Let A(t) be the quantity of data that
arrives at the system until time t and D(t) be the amount of data that departs from the system until
time t. Initially, the system is empty and we choose A(0) = 0 and D(0) = 0. The function A is called
the cumulative arrival function (CAF) of the system and D the cumulative departure function (CDF) of
the system. Let us now derive the relation between A and D.

Suppose that during the time interval ]u, t], the system is never empty (we also say that it is always
backlogged), meaning that during this period of time, exactly R(t− u) bits of data exit the system:

D(t)−D(u) = R(t− u). (2.1)

The assumption that the system is always backlogged is mandatory. Otherwise we would have
D(t)−D(u) ≤ R(t− u), which is not a guarantee for the service offered.

As A(0) = D(0), s0 = sup{s ≤ t | A(s) = D(s)} the last instant before t at which A(s0) = D(s0)
exists. Using the latter formula, we obtain

D(t) = A(s0) +R(t− s0).

If s < s0, then D(t) ≤ D(s) +R(t− s) ≤ A(s) +R(t− s) as D(s) ≤ A(s).
If s > s0, then A(s) +R(t− s) ≥ A(s) +D(t)−D(s) ≥ D(t) and we finally obtain

D(t) = inf
0≤s≤t

A(s) +R(t− s). (2.2)

This formula corresponds to the (min,plus)-convolution of A and β : t 7→ R.t: in short, we note
D = A ∗ β.

Using this formula, performance bounds can be derived when A is known. For example, the backlog
at time t is A(t)−D(t) = A(t)− inf0≤s≤tA(s) +R(t− s) = sup0≤s≤t(A(t)−A(s))−R(t− s). The aim
of network calculus is to compute worst-case bounds when A and the amount of service offered are not
known exactly, using some knowledge about them. This knowledge is given by arrival and service curves
that we now define.

2.3 One type of arrival curves

Definition 1 (Arrival curve). A CAF A ∈ F↑ is upper-constrained by α ∈ F if ∀s ≤ t,

A(t)−A(s) ≤ α(t− s).

A CAF A ∈ F↑ is lower-constrained by α ∈ F if ∀s ≤ t,

A(t)−A(s) ≥ α(t− s).

The functions α and α are respectively called maximal and minimal arrival curves of A.
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We will use the following notations: A(α) = {A ∈ F↑ | ∀0 ≤ s ≤ t, A(t)−A(s) ≤ α(t− s)} is the set
of CAFs that are upper-constrained by α and A(α) = {A ∈ F↑ | ∀0 ≤ s ≤ t, A(t)−A(s) ≥ α(t− s)} is
the set of CAFs that are lower-constrained by α.

In network calculus, the minimal arrival curves are often omitted, but it can be useful, in particular
when the CAF is known to be quite regular. When the minimum or maximum nature of an arrival curve
is not mentioned, it is by default a maximum arrival curve.

A common class of arrival curves are the affine functions: α : t 7→ σ + ρt, where σ represents the
maximum amount of data that can arrive simultaneously and ρ the maximal long-term arrival rate.

It is well-known that the maximal arrival curves can be replaced by their sub-additive closure. Indeed,
∀s ≤ u ≤ t, A(t)− A(s) = A(t)− A(u) + A(u)− A(s) ≤ α(t− u) + α(u− s), and α can be chosen such
that α(u + v) ≤ α(u) + α(v) for all u, v ≥ 0. We denote by α∗ the sub-additive closure of α. Similarly,
α can be chosen super-additive. These closures are optimal in the sense that ∀α′ < α∗, A(α′) ( A(α).

When dealing with both α and α, the question of whether the choice of those functions is optimal is
more involving and has been addressed by Altisen and Moy in [3, 4]. They present an algorithm that
computes the smallest α′ ≤ α and the greatest α′ ≥ α such that A(α′) ∩A(α′) = A(α) ∩A(α) for large
classes of functions.

2.4 System guarantees and different types of service curves

Definition 2 (System). S ⊆ F↑ × F↑ is called a system, or server, if ∀(A,D) ∈ S, A ≥ D. In other
words, it is a binary relation between the CAFs and the CDFs of this system.

We will always assume that there is no loss and no creation of data in the system. Then the
constraint that A ≥ D is natural. Also note that this relation may not be defined for all the CAFs and
is not deterministic (one CAF may produce several CDFs). Given S ⊆ F↑ × F↑, (A,D) ∈ S is called a
trajectory of S.

A guarantee on the service offered allows to define constraints on the CDF, given a CAF. Following
our example, we obtain two equivalent definitions for a constant rate server:

D = A ∗ β and D(t)−D(u) = β(t− u) if ∀s ∈]u, t[, A(s) > D(s).

Unfortunately, those two definitions are not equivalent in the general case and both are required in
order to deal with networks of systems.

Definition 3 (Simple service curve). A system S ⊆ F↑ × F↑ offers the minimum simple service curve
(or guarantees the service) β if

S ⊆ Ssimple(β) = {(A,D) ∈ F↑ ×F↑ | A ≥ D ≥ A ∗ β}.

A system S ⊆ F × F is said to offer the maximum service curve β if

S ⊆ S(β) = {(A,D) ∈ F↑ ×F↑ | 0 ≤ D ≤ min(A ∗ β,A)}.

In network calculus, the maximal service curves is often omitted, but it can be useful to improve the
performance bounds computed. Moreover, a usual maximum service curve is given by the capacity of
the links of the network. When the minimum or maximum nature of a service curve is not mentioned,
it is by default a minimum service curve.

Given a trajectory (A,D) ∈ F↑ ×F↑, a backlogged period is an interval I ⊆ R+ of time during which
the backlog is non-null, i.e. ∀u ∈ I, A(u) > D(u). For t ∈ R+, the start of the backlogged period of t
is start(t) = sup{u ≤ t | A(u) = D(u)}. Since the cumulative functions A and D are assumed left-
continuous, it holds A(start(t)) = D(start(t)). If A(t) = D(t), then start(t) = t. For any t ∈ R+,
]start(t), t[ is a backlogged period (and so is ]start(t), t] if A(t) > D(t)).

Definition 4 (Strict service curve). A system S ⊆ F↑ ×F↑ offers the strict service curve β if

S ⊆ Sstrict(β) = {(A,D) ∈ F↑ ×F↑ | A ≥ D, and ∀ backlogged period ]s, t], D(t) ≥ D(s) + β(t− s)}.

Three common families of service curves are
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• the pure delay curve δT : t 7→ 0 if t ∈ [0, T ]; t 7→ +∞ otherwise. When simple service curves are
considered, this means that the sojourn time of each bit of data is at most T : A∗δT = A((·−T )+),
where (x)+ = max(x, 0). When strict service curve are considered, this means that a backlogged
period never exceeds T .

• the guaranteed rate curve λR : t 7→ Rt. For every arrival process, the minimal admissible trajectory
is such that either the service rate is exactly ρ or the server is empty. This is the service curve of
our example. The minimal admissible trajectory is the same for strict and simple service curves.
However, the difference is that during a backlogged period, the service rate R is not guaranteed
with a simple service curve, whereas it is with a strict service curve.

• the rate-latency service curve β : t 7→ R(t − T )+ that is the combination of the two latter curves.
Given a CAF, the minimum CDF is such that every bit of data first waits a time T , and among
the bits of data that waited T units of time, the service rate is R for simple service curves. For
strict service curves, for each service curve, there is a latency of T where no data is served, then
data is served at rate R, whenever it arrives.

2.5 Performance guarantees

Given an input/output system, bounds for the worst-case backlog and worst-case delay can be easily
deduced from the arrival and service curves.

Consider a system S and (A,D) a trajectory of S. The backlog of the flow at time t is b(t) =
A(t)−D(t), and the delay endured by data entering at time t (assuming FIFO discipline for the flow) is

d(t) = inf{s ≥ 0 | A(t) ≤ D(t+ s)}
= sup{s ≥ 0 | A(t) > D(t+ s)}.

For the trajectory, the worst-case backlog is Bmax = supt≥0

(
A(t)−D(t)

)
and the worst-case delay is

Dmax = supt≥0 d(t) = sup{t− s | 0 ≤ s ≤ t and A(s) > D(t)}.
For the system S, the worst-case backlog (resp. delay) is the supremum over all its trajectories. Upper

bounds for these worst-case performances can be computed using the following theorem.

Theorem 1 ([45, 79]). Let S be a system and α, β ∈ F such that S ⊆ Ssimple(β). If (A,B) ∈ S and
A ∈ A(α), then

1. Bmax ≤ sup{α(t)− β(t) | t ≥ 0} = α� β(0) (maximal vertical distance between α and β).

2. Dmax ≤ inf{d ≥ 0 | ∀t ≥ 0, α(t) ≤ β(t+ d)} (maximal horizontal distance between α and β).

3. α′ = α� β is an arrival curve for D (or D ∈ A(α� β)).

The worst-case backlog is bounded by the maximal vertical distance between α and β while the
worst-case delay is given by the maximal horizontal distance between those two functions. Figure 2.2
illustrates this fact. Those bounds are tight if α is sub-additive ([79]) and β(0) = 0, that is, there exists
(A,B) ∈ S(β) such that Bmax = α � β(0) and Dmax is the horizontal distance between α and β: for
example, it is obtained with A = α and B = min(β, α)(≥ α ∗ β).

The constraint propagation can be improved in the case where a minimal arrival curve α and a
maximal service curve β are known for the flow and the system:

α′ = (α ∗ β)� β and α′ = α ∗ β.

2.5.1 Backward control

This operator can be use for backward control of a system: consider a system offering a service curve
β, and that the input is controlled so that the amount of data in the system never exceeds W . The
complementary data is stored in another queue, waiting to enter the system. This system is depicted in
Figure 2.3 (left). With the notations of the figure, we obtain a service guarantee for the global system

(input/output relation between A and B) βeff1 = β ∗ (β +W )∗:

[A1 = A ∧B +W = A ∧B ∗ Iw ∧B ≥ A1 ∗ β]⇒ B ≥ (A ∧B ∗ IW ) ∗ β ⇒ B ≥ A ∗ β ∗ (β +W )∗,
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Figure 2.2: Guaranteed bounds on backlog and delay.

W
B

β2β1
A

βeff1 βeff2

β
BA

W
A1

Figure 2.3: Backward control of a queue. Left: a simple system; right: application to write-block systems
with a finite buffer.

with IW : 0 7→W ; t 7→ +∞ otherwise. Note that ∀f ∈ F , f ∗ IW = f +W .
As show in [31], this model can also be used to compute the exact service offered by systems in

tandem, when the first system can be blocked when the the buffer of the second system is full, as shown
on Figure 2.3 (right). In this case, the service offered by the first system, taking into account the blocking
due to the second system is

βeff2 = β1 ∗ ((β2 +W ) ∗ β1)∗.

This results can be generalized to tandem of arbitrary size [31] and to fork-join networks [104].
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Chapter 3

Curves in network calculus

Arrival and service curves are necessary to compute performance guarantees in Network calculus, but
service curves have received much more attention as it is a much trickier concept and as a system can be
described more precisely than by a service curve only. First, as suggested in the previous chapter, several
types of service curves co-exist, and the necessity of this must be explained and clarified. Second, we
only defined systems with a single input and a single output (SISO), whereas most of the time, systems
have multiple inputs and multiple outputs (MIMO). Then the notion of system must be extended to
such systems for which the service policy must also be taken into account. This enables us to preciser
bounds, leading to the notion of residual service curve. Third, the data that flows in the system is made
of packets in practice, which slightly modifies the departure process if the whole packet is assumed to
depart at once from the system. Usually, this issue is tackled by taking into account the size of the
longest packet in the service curve. However, a more precise description of the sizes of the packets may
be given by packet curves, that counts the number of entire packets in a given amount of data. For some
service policies, it can lead to more accurate service curves.

Following these three points, this chapter is organized as follows: In Section 3.1, we compare simple
and strict service curves. In Section 3.2, we introduce the notion of MIMO server and describe different
service policies and the corresponding residual service curves, before presenting the composition of service
curves, which will allow to compute performance bounds for composite networks in Section 3.3. The
chapter ends by defining packet curves in Section 3.4 and shows some examples of use cases. The work
about the comparison of service curves has been partially done with Laurent Jouhet and Éric Thierry,
while the work about packet curves has been done with Nadir Farhi and Bruno Gaujal.

3.1 Single-Input-Single-Output (SISO) systems

Dealing with strict and simple service curves is mandatory when analyzing composite systems and we
address here the question of whether it is possible to find an equivalence between those two notions in
order to make it possible to deal with only one type of curve. Unfortunately, the answer will be no. To
show this, let us first focus on systems with one input and one output flow.

In this section, for the sake of simplification, we will only deal with service curves in F↑. In [24, 14],
these results have been presented in the more general context of F and to more types of service curves
defined below.

3.1.1 Different types of service curves

In the literature, different notions of service curves can be found. For the sake of simplicity, we will only
deal with the two main types of service curves, but let us comment on some other possible definitions.

• Weakly strict service curve: Swstrict(β) = {(A,D) ∈ F↑ × F↑ | A ≥ D, and ∀t ≥ 0, D(t) ≥
D(start(t)) +β(t− start(t))}. This notion is studied in [23, 24] and is intermediate between simple
and strict service curves. Some results from the strict service curves can be adapted to this case.

• Variable capacity node: Svcn(β) = {(A,D) ∈ F↑×F↑ | ∃C ∈ F↑,∀t ≥ 0, D(t) = inf0≤s≤t
[
A(s)+

C(t) − C(s)
]

and ∀0 ≤ s ≤ t, C(t) − C(s) ≥ β(t − s)}. This notion has been widely used in the

11



special case of the guaranteed rate server C(t)−C(s) = R(t− s). In most of the cases, the notion
of variable capacity nodes and strict service curves coincide. An important family of service curves
where the equivalence does not hold is the pure delays δT , T ∈ R+.

• Adaptive service curve: Sasc(β, β̃) = {(A,D) ∈ S × S | A ≥ D and ∀t ∈ R+, ∀s ≤ t, D(t) ≥
(D(s)+β̃(t−s))∧infs≤u≤tA(u)+β(t−u)}. This notion has been defined in [1] in order to take into
account the advantages of the simple and of the strict service curves. Dealing with two different
curves however introduces additional complexity and no evidence that better performance bounds
can be derived has been found.

• Adaptive service curve (unique curve): Suasc(β) = {(A,D) ∈ S × S | A ≥ D and ∀t ∈
R+, ∀s ≤ t, D(t) ≥ (D(s) + β(t− s))∧ infs≤u≤tA(u) + β(t− u)}. When the two curves are equal
in the adaptive service curve, it can be shown (in [14]) that when β is convex, A ∗ β ∈ Suasc(β), so
in this case, better performance bounds cannot be derived.

Real-time calculus The notion of service curve in the real-time calculus theory (RTC) is slightly
different from the previous ones: besides the fact that maximum service curves and minimal arrival
curves are systematically used, there are two main differences:

• the time variable ranges over R and not R+;

• CAF and CDF are defined as functions of two parameters: A(s, t) is the amount of data that
arrives during the interval [s, t).

One can easily get rid of the second difference, as the cumulative processes obeys to the Chasles relation
(A(u, s) + A(s, t) = A(u, t)) and then A(s, t) can be replaced by A(t) − A(s) in the network calculus
theory. The first difference is fundamental as the performance bounds obtained with RTC are different
(see [105] and [107]) for example). The main reason of this is that the worst-case performances are often
obtained near the initialization point t = 0 in network calculus. In RTC, this point does not exist.
Real-time calculus when time ranges over R+ is exactly the variable capacity nodes.

3.1.2 Hierarchy and equivalence

Let us now give a precise comparison between simple and strict service curves.
First, the notion of service curve is monotonic for non-decreasing curves: let β, β′ ∈ F↑. We have the

following equivalences:

• Ssimple(β) ⊆ Ssimple(β′)⇔ β ≥ β′;

• Sstrict(β∗̄) ⊆ Sstrict(β′∗̄)⇔ β∗̄ ≥ β′∗̄,

where β∗̄ is the super-additive closure of β (the smallest super-additive function that is greater than β).
Second, the following well-known theorem, establishes a hierarchy between the strict and simple

service curves.

Theorem 2. Let β ∈ F↑. Then Sstrict(β) ⊆ Ssimple(β). Moreover, Sstrict(β) = Ssimple(β) ⇔ β↑ = δ0
or 0.

Indeed, for any t ∈ R+, set s = start(t), the last start of backlogged period before t. For (A,D) ∈
Sstrict(β), we can write D(t) ≥ D(s) + β(t− s) = A(s) + β(t− s) ≥ A ∗ β(t).

There are only two cases where the equality between strict and simple service curves holds: the null
service curve and the infinite service curve. Nevertheless, if one considers the equality of the output
process when the service is exact (that is, when the last inequalities are replaced by an equality in the
definition of ST (β), T ∈ {simple, strict}) for any arrival process, equivalence cases are more frequent:
for example when β = λr, r ∈ R+ ∪ {+∞}.

The following theorem states that there cannot exist an equivalence between simple and strict service
curves apart from the two cases mentioned above.

Theorem 3. 1. Non equivalence of service types : Let β ∈ F↑. If β 6= δ0 and 0, then @β′ ∈ F↑
such that Ssimple(β′) = Sstrict(β).
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2. Families of curves : Let I and J be finite sets and (βi)i∈I and (β′j)j∈J be two families in F↑.
Then,

⋂
i∈I Ssimple(βi) =

⋂
j∈J Ssimple(β′j) if and only if {β ∈ F | ∃i ∈ I, β ≤ βi} = {β ∈ F | ∃j ∈

J, β ≤ β′j}.

3. No translation with families : @(βi)i∈I ∈ FI↑ , (β′j)j∈J ∈ FJ↑ ,
⋂
i∈I Ssimple(βi) =

⋂
j∈J Sstrict(β′j),

except for the equality cases defined in Theorem 2.

For the first assertion, β can be assumed to be super-additive. If there existed β′ ∈ F↑ such that
Ssimple(β′) = Sstrict(β), then we would have (δ0, β) ∈ Ssimple(β′) and so β′ ≤ β. But, also (δ0, β

′) ∈
Sstrict(β), so β′ ≥ β, hence β′ = β.

The second assertion states that even families of simple service curves cannot be expressed in a
simpler way: assume (without loss of generality due to the monotony property) that the curves in
(βi)i∈I are not 2-by-2 comparable and neither are the curves in (β′j)j∈J . In order to have the equivalence
of the two families of service curves, there must be a one-to-one correspondence φ between I and J
such that βi = β′φ(i). Strict service curves behave better concerning this issue: if (βi)i∈I be a family of

super-additive functions in F↑ (which can always be assumed),
⋂
i∈I Sstrict(βi) = Sstrict(supi∈I βi)..

Finally, the third assertion generalizes the first one to families of curves.

3.2 Multiple-Input-Multiple-Output (MIMO) systems

Let us now focus on systems with multiple input and output flows. The worst-case performances of a
single flow can be computed if the service effectively offered to the flow, which we call the residual service,
is known. This section presents how this residual service is computed under various service policies using
Network calculus. As mentioned above, one must care about the type of service curve involved.

MIMO as the aggregation of flows

A relation S is a system with m input flows and m output flows if S ⊆ Fm↑ × Fm↑ and satisfies
∀((Ai)mi=1, (Di)

m
i=1) ∈ S, ∀i ∈ {1, . . . ,m}, Ai ≥ Di. The aggregated system if S is

Ag(S) = {(
m∑
i=1

Ai,

m∑
i=1

Di) | ((Ai)
m
i=1, (Di)

m
i=1) ∈ S}

and the projection of this server on I ⊆ {1, . . . ,m} is PI(S) = {((Ai)i∈I , (Di)i∈I) | ((Ai)
m
i=1, (Di)

m
i=1) ∈

S}. Those notations are illustrated on Figure 3.1.

(a) (c)(b)

A1

A2

B1

B2

S
B1A1

P1(S)

B1 +B2

Ag(S)

A1 +A2

Figure 3.1: (a) system with two input and two output flows; (b) aggregated system; (c) projection of the
system on the first input/output.

The system S ∈ Fm ×Fm offers a service curve β of type T if Ag(S) ∈ ST (β). In the following, we
only consider the case m = 2, from which the general case can be deduced. We will always assume that
each flow has a FIFO service policy.

Theorem 4 (Blind multiplexing, [79]). Let S ∈ F2
↑ ×F2

↑ and β ∈ F↑. The following statements hold.

(i) If ∃T > and β(T ) = 0, Ag(S) ⊆ Ssimple(β) ; ∃β′ 6= 0 such that P1(S) ⊆ Ssimple(β′);

(ii) Ag(S) ⊆ Sstrict(β) and P2(S) ⊆ A(α2) ; P1(S) ⊆ Sstrict((β − α2)↑).

S ⊆ A(α) is an abuse of notation. It stands for {A | (A,B) ∈ S} ⊆ A(α).
Concerning (ii), it is possible to obtain a residual strict service curve as stated in [14], but the residual

curve computed, (β−α2� (β−α1)↑)↑ if A1 is α1-upper constrained, would be too pessimistic to obtain
good bounds on the delay, so we will not use it.
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In Theorem 4, we made no assumption about the service policy and the worst-case scenario in
considered. This is arbitrary, or blind multiplexing. More precise results exist when dealing with a
precise service policy, and we now present some of them.

Different service policies

We consider a system crossed by 2 flows, flow 1 and flow 2, with respective CAFs A1 and A2 and CDFs
D1 and D2.

First In First Out (FIFO) Data is served in the order of its arrival, independently of the flow it
belongs to. This means that a bit of a flow arriving at time t will be transmitted only when all the traffic
arrived before time t (and belonging to any flow traversing that server) has been transmitted. More
formally, a system S ∈ F2

↑ ×F2
↑ is FIFO if for all (A1, A2, D1, D2) ∈ S, ∀i, j ∈ {1, 2}, ∀u, t ∈ R+,

Di(t) > Ai(u) ⇒ Dj(t) ≥ Aj(u) and

Di(t) < Ai(u) ⇒ Dj(t) ≤ Aj(u).

Network Calculus also allows one to derive equivalent service curves for the individual flows, which
can then be employed to compute delay bounds through Theorem 1.

Proposition 1. [79, Chapter 6.2] Let β, α2 ∈ F↑ and S ⊆ F2 ×F2 a FIFO system.

Ag(S) ∈ Ssimple(β)
P2(S) ∈ A(α2)

}
⇒ ∀θ ∈ R+, P1(S) ∈ Ssimple(β1

θ ),
with β1

θ (t) = [β(t)− α2(t− θ)]+1t>θ.

Note that those service curves are not comparable, and it is not possible to derive a unique equivalent
service curve. If β : t 7→ R(t−T )+ is rate-latency and α2 : t 7→ σ2 +ρ2t is affine, then β1

θ with θ = σ2

R +T
is also a rate-latency function and α1 � β1

θ is the smallest arrival curve for the CDF.

Static priorities Flows can be ordered according to the priority they have over the other input flows.
Suppose that flow 1 is given a higher priority than flow 2. Then, if on the time interval [s, t], flow 1 is
always backlogged, flow 2 will not receive any service:

∀u ∈ [s, t], A1(u)−D1(u) > 0⇒ D2(t) = D2(s).

This property can be used to show that the residual service is strict.

Proposition 2 ([23]). Let β, α1 ∈ F and S ⊆ F2 ×F2. Then, if flow 1 has a higher priority than flow
2,

Ag(S) ⊆ Sstrict(β)
P1(S) ⊆ A(α1)

}
⇒
{
P1(S) ⊆ Sstrict(β) and
P2(S) ⊆ Sstrict((β − α2)↑)

GPS (generalized processor sharing) Consider φ1, φ2 ≥ 0 such that φ1 + φ2 = 1. The service
policy is general processor sharing (GPS) if for any interval of time where flow i ∈ {1, 2} is backlogged,

φj(Di(t)−Di(s)) ≥ φi(Dj(t)−Dj(s)).

That is, each flow i is guaranteed a proportion φi of the total service offered by the system.
The following formula generalizes the work done by Pareck and Gallager in [89] where Proposition 3

is proved for guaranteed rates only.

Proposition 3. Let S ∈ F2 × F2, β, α1 ∈ F↑ and φ1 ∈ (0, 1). Assume that β is convex and that the
service policy is GPS, flow 1 being guaranteed a proportion φ1 of the service and flow 2 a proportion
1− φ1.

Ag(S) ⊆ Sstrict(β)
P1(S) ⊆ A(α1)

}
⇒ P2(S) ⊆ Sstrict(max [φ2β, (β − α1)+]).
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3.3 Composition of service curves

The composition of service curves is another very important aspect of Network calculus. Thank to
the algebraic framework, composing simple service curves is very easy: it corresponds to the (min,plus)-
convolution. Unfortunately, here again, the composition is not compatible with the other types of service
curves, as stated in Theorem 5.

3.3.1 Two systems in tandem

We first consider two servers S1 and S2 in tandem, as represented on Figure3.2. The system representing
the concatenation of those two servers is

S2 ◦ S1 = {(A,D2) | ∃D1 ∈ F such that (A,D1) ∈ S1 and (D1, D2) ∈ S2}.

The composition of n similar systems is defined by S0 = {(A,A) | A ∈ F↑} and ∀n ≥ 0, Sn+1 = S ◦Sn.

D2A D1

β1 β2

Figure 3.2: Servers in tandem.

Theorem 5. The following statements hold.

(i) Ssimple(β2) ◦ Ssimple(β1) ⊆ Ssimple(β1 ∗ β2);

(ii) Let β1 and β2 such that there exist T1, T2 > 0 with β1(T1) = 0 and β2(T2)=0. Then @β > 0 such
that Sstrict(β2) ◦ Sstrict(β1) ⊆ Sstrict(β).

The proof of the classical statement (i) can be found in [79, 45]. Note that the inclusion may be
strict as shown in [14], where the second statement is also proved.

3.3.2 A new notion of service curve?

We have just discussed two important properties of service curves: the computation of residual service
curves and the composition of service curves. These properties respectively allow to deal with several
flows and composite systems. On the one hand, we have to deal with strict service curves for computing
residual service curves (with the notable exception of FIFO multiplexing), and on the other hand, the
composition of service curves results in simple service curves. The existence of an intermediate type
of service curve, between the simple and the strict, that would be stable with the composition and the
residuation especially with the blind multiplexing) would simplify the theory. In this section, we explain
why this not possible. The complete proof can be found in [14].

Assume that there exists such a notion of intermediate curve. More precisely, let us denote by Ŝ(β)
the relation between trajectories that must be satisfied for an intermediate service curve β. Then Ŝ
should satisfy at least

1. Sstrict(β) ⊆ Ŝ(β) ⊆ Ssimple(β);

2. Ŝ(β2) ◦ Ŝ(β1) ⊆ Ŝ(β1 ∗ β2).

Let S ⊆ F × F . The closure of S is

S = {(A,D′) ∈ F × F | ∀ε > 0, ∃(A,D) ∈ S such that ∀t ∈ R+, A(t) ≥ D′(t) ≥ D(t− ε)}.

S is the smallest system of F × F containing S, closed and such that (A,D) ∈ S ⇒ ∀D′ ≥ D,
(A,D′) ∈ S. With this definition, the problem of the strict inclusion of the composition exposed in
Theorem 5 is avoided: Ssimple(β2) ◦ Ssimple(β1) = Ssimple(β1 ∗ β2), and we can state the theorem:
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Theorem 6. To each convex and piecewise affine function β in F , associate Ŝ(β) a system such that
Sstrict(β) ⊆ Ŝ(β) ⊆ Ssimple(β). If ∀β1, β2 convex piecewise affine functions Ŝ(β2) ◦ Ŝ(β1) ⊆ Ŝ(β1 ∗ β2),

then ∀β, Ŝ(β) = Ssimple(β).

To see the intuition of the proof, consider the case of pure delay service curves. Let T > 0 and consider
the service curves δT and δT/n. When the service is simple, we have Ssimple(δT/n) ◦ · · · ◦ Ssimple(δT/n) =

Ssimple(δT ). Let A be a cumulative arrival process in a system composed of n systems in tandem,
offering a strict service curve δT/n. When n grows to +∞, and when the service is exact, the cumulative
departure process tends to A ∗ δT , as illustrated on Figure 3.3.

(a) (b)
t

#
b

it
s

DA1A

#
b

it
s

t

DA A4

Figure 3.3: Example of CDF after 1 and 4 servers in tandem. (a) one server: the CAF A (blue) and
CDF for strict A1 (red) and simple D (green) service curves. (b) CAF A and CDF D for a simple service
curve. From light to dark, the CDFs after each server with strict service curve δT/4. A1, A2 and A3 are
dashed and A4, the CDF of the whole system is plain.

Sufficiently strict service curves Recently Schmitt, Golan et al. in [97] introduced a new type of
service curves in order to deal with non-FIFO flows and their performance evaluation. Those sufficiently
strict service curves are defined as follows.

• Ss3c(β) = {(A,D) ∈ F × F | ∀t ∈ R+, A(t) ≥ D(t) ≥ A(t−Dw(t)) + β(Dw(t))},

where Dw(t) is the maximum achievable dwell period (MADP) at time t, that is, D(t) = t− t0(t) where
t0 is the arrival time of the oldest bit of data in the system at time t under all possible processing orders.
Under our assumptions (FIFO per flow), and for a single server, t0(t) = start(t). In [97, Theorem 5],
the authors show that their curve has the concatenation property, which seems in contradiction with
Theorem 6, and appears as a good candidate for intermediate service curves. In fact, this is not,
because of the parameter Dw(t) that contains more information than just the service curve. Nevertheless,
Theorem 6 suggests that the description of a system by a service curve is not precise enough to describe a
system, and lots of information is lost by the concatenation and by computing individual service curves.
Then, adding the information contained in the MADP may lead to the right notion: let D : Ss3c(β) →
P(F); (A,D) 7→ D((A,D)) ⊆ {Dw ∈ F | Dw is a possible dwell period for (A,D)} (a possible dwell
period must be such that ∀t ∈ R+, Dw(t) ≤ t− start(t)). Then, one can define another type of service
curves:

• S(β,D) = {(A,D) ∈ F × F | ∃Dw ∈ D(A,D), ∀t ≥ 0, A(t) ≥ D(t) ≥ A(t−Dw(t))}.

Then the following theorem is straightforward: the first statement is a reformulation of [97, Theo-
rem 5] and the second statement is obvious as Dw(t) = t− start(t).

Theorem 7. Let β, β1, β2 ∈ F , D : Ss3c(β)→ P(F), D1 : Ss3c(β1)→ P(F) and D2 : Ss3c(β2)→ P(F)
be possible dwell periods for respectively β,β1 and β2. Then,

• Ss3c(β2,D2) ◦ Ss3c(β1,D1) ⊆ S(β1 ∗ β2,D′) with ∀t, D′(A,C) = {Dw | ∃Dw ∈ F ,∃Dw1 ∈
D1(A,D), Dw2 ∈ D2(D,C), such that Dw(t) = Dw2(t) +Dw1(t−Dw2(t))};

• If S ∈ F2 ×F2, then Ag(S) ⊆ Ss3c(β,D) and P2(S) ⊆ A(α2)⇒ P1(S) ⊆ Ss3c((β − α2)↑,D).
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This notion of service curve is an intermediate between simple and strict service curves, with the nice
properties we targeted. But, if this curve is obtained after several steps of computations, the topology of
the network being studied is hidden in D. Moreover, up to our knowledge, there is no nice representation
for the MADP.

3.4 Packet curves

We have now described the two classes of curves used in Network calculus and assumed that the flows
are fluid: each packet can be split in pieces of infinitesimal size. However, in practice, this is not always
the case and packets cannot be divided. An easy way to analyze packet flows is to study it as a fluid
flow, but modifying the service curves to take into account the size of the packet. More precisely, if β is
a strict service curve for a flow of packets whose size does not exceed `max, then (β − `max)+ is a strict
service curve for the packetized flow.

The aim of this section is to present a possible analysis when more knowledge in available about the
packet sizes, using the concept of packet curves. More details are presented in [17, 18].

Packet operator and packet curves In addition to a CAF A, one may consider P the packet flow
associated to this CAF: ∀t ≥ 0, P (t) is the number of entire packets that arrive until time t. The
transformation of an arrival flow into a packet flow is made using the packet operator, which is a function
P : R → N such that for an amount x of arrival data, P(x) is the number of entire packets in x:
P = P ◦A(t).

The operator P may not be perfectly known, but some information about it may be available, more
precise than only the minimum and maximum packet length respectively denoted by `min and `max. For
example, a flow with packets of size 1 and 2, where in three successive packets, there are at least one
packet of size 1 and at least one packet on size 2. In order to take into account this information, we
introduce the packet curve of a packet operator:

A function π (resp. Π) is a minimum (resp. maximum) packet curve for P if ∀0 ≤ x ≤ y,

P(y)− P(x) ≥ π(y − x) (resp. P(y)− P(x) ≤ Π(y − x)).

With the example described above, one can take π : x 7→ (3/5(x − 2/3))+ and Π : x 7→ 3/4x + 3/2,
where (x)+ = max(0, x). Stair-case functions are more precise, but affine functions and rate-latency
functions are easier to handle from an computational viewpoint. Note that if π is defined as π : x 7→
µ(x− ν)+, then ν ≥ lmax and µ ≥ 1/`max and if Π is defined as Π : x 7→ V + Ux, then V ≤ 1/`min and
V ≥ 1.

Properties of the packet curves We assume here that A (resp. Ai, i ∈ {1, 2}) is upper-constrained
by the arrival curve α (resp. αi) and has packet operator P (resp. Pi) with packet curves π and Π (resp.
πi and Πi) and that β is a (strict) service curve of the server. Then, the following properties hold.

(i) Π and π are maximal and minimal packet curves for D.

(ii) Π ◦ α is an arrival curve for the packet flow P .

(iii) π ◦ β is a minimum (strict) service curve for P .

(iv) If β′ be a minimum simple (resp. strict) service curve for a packet flow P = P◦A, then, (Π)−1◦bβc
(resp. (Π)−1 ◦ dβe) is a minimum simple (resp. strict) service curve for (P)−1 ◦ P ◦A.

(v) π1 ∗ π2 is a minimum packet curve for the (blind) aggregation of A1 and A2.

We now describe two examples where packet curves are useful.
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Superposition of periodic flows. When the aggregation of several flow is FIFO, better packet curves
than π1 ∗ π2 can be found. A special case is the superposition of periodic flow. Consider N flows, where
flow n, 1 ≤ n ≤ N , is composed of packets of size Sn arriving with period Tn. Set ρn = Sn/Tn. Then
πN and ΠN are respective minimum and maximum packet curves for the superposition of those flows:

π(x) =

(
N∑
n=1

x

Tn
∑
i ρi
−

N∑
n=1

∑
i Tiρi

Tn
∑
i ρi

)
+

Π(x) =

N∑
n=1

x

Tn
∑
i ρi

+

N∑
n=1

∑
i Tiρi

Tn
∑
i ρi

.

Note that the rates of the two functions are equal, thus optimal.

Non-preemptive service curves. Figure 3.4 gives the general scheme of computation, using the
basic properties of packet curves. This scheme is more efficient that the computations that may be done

(α2, π2,Π2)
A2A1

(iii)+(v)

(α1, π1,Π1)

β
Fluid service policy

(ii)

D2

β1 = Π−1
1 ◦ β′1 β2 = Π−1

2 ◦ β′2

D1

(iv)+(i)

P1 P2

(Π1 ◦ α1) (Π2 ◦ α2)

β′ = (π1 ∗ π2) ◦ β

β′1 β′2

Packet service policy

Figure 3.4: Non-preemptive service calculus scheme.

using classical methods and taking into account the minimum and maximum packet sizes only when the
service policy is based on counting packets. An example of such policy is the Round-Robin. For this
policy, three service curves can be computed (we consider two flows, and the residual service curve of
the first):

• Classical method: βc(t) =
(
`min
i

n`max β − `max
)+

,

• Scheme method: βs(t) = (Πi)
−1
(

1
n (πi ∗ π2 ◦ β)− 1

)+
,

• Ad-hoc method: βah(t) = (Id+ π−1
2 ◦Π1 + 1)−1 ◦ (β − `max)+.

Numerically, with `min = 1, `max = 2, π1 = π2 = π, Π1 = Π2 = Π defined above, and β(t) = 10t, we
have βc(t) = 2.5(t− 0.8)+, βs(t) = 4(t− 0.97)+ and βah(t) = 4.44(t− 0.68)+. The residual service rate
using the scheme is much better, but the ad-hoc method is the best.

In this chapter we presented the basic building blocks for computing a service curve for a given flow:
for each flow and each server a residual service curve can be computed and then for these service curves
can be composed to obtain a global service curve. The adaptations have also been presented in case the
flow is made of packets. Then, performance bounds can be derived. The next chapter will present the
advantages and limitations of such an approach and will be more specifically focused on the performance
guarantees.
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Chapter 4

Performance bounds in networks

In the previous chapter, we formalized the notion of server and defined operations that can be used
to compute performance bounds in more complex networks by using the operation of composition of
systems (convolution of service curves) and by computing residual service curves, depending on the type
of service curve involved. We are now ready to compute performance bounds for more complex networks
using these results. Although algorithmically efficient and elegant, these methods are over pessimistic:
the tightness of the bounds, that is valid for one server, is lost as soon as at least two flows and two
servers are involved. Then, an important issue is how to compute exact performance bounds and what
is the complexity of this problem. We will answer those questions by using a different technique, linear
programs.

In Section 4.1, we introduce the model and notations and in Section 4.2, we present a simple ex-
ample illustrating the difficulties of getting exact bounds with purely (min,plus) techniques. Then, in
Section 4.3, we give a general algorithm for computing performance bounds with those techniques before
presenting in Section 4.4 a new method based on the mathematical programming, and more specifically
on the linear programming. The main drawback of this method is its complexity that is exponential
in the size of the network. In fact, the problem of computing a tight bounds under this framework is
NP-hard. The blind multiplexing problem has been done in collaboration with Éric Thierry and Laurent
Jouhet, while the FIFO problem is the result of a collaboration with Giovanni Stea.

4.1 Network of systems

Let us first define the notations for this chapter. They are quite heavy, however this is necessary in
order to define the relations between the flows and the systems rigorously. We still use the following
convention: systems are represented by letters h, k and appear as exponents. Flows are represented by
the letters i and j, and appear as indices.

Description of a network Consider a network N is composed of n systems and m flows.

• description of a flow: ∀i ∈ {1, . . . ,m}, flow i is described by an arrival curve αi and a path
µi = 〈µi(1) · · ·µi(`i)〉 where µi(`) ∈ {1, . . . , n}. We write h ∈ µi or i ∈ Fl(h) if there exits
` ∈ {1 . . . , `i} such that h = µi(`). If h = µi(`), then predi(h) = µi(` − 1), with the convention
that if j = 1, then predi(h) = 0. We also note end(i) the last system visited by i, that is, µi(`i).

• description of a server: ∀h ∈ {1, . . . , n}, system h is described by a service curve β(h) ∈ F↑
(that is strict or simple depending on the context).

Trajectories For i ∈ {1, . . . ,m}, h ∈ µi, we denote by F
(h)
i the CDF of flow i from system h and by

F
(0)
i its CAF. The family of cumulative processes (F

(h)
i )i∈{1,...,m},h∈{0}∪µi is called a trajectory of the

system. If moreover the following conditions are satisfied, it is called an admissible trajectory:

1. for each flow i ∈ {1, . . . ,m}, F (0)
i ∈ A(αi);
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2. for each server h ∈ {1, . . . , n}, (
∑
i∈Fl(h) F

(predi(h))
i ,

∑
i∈Fl(h) F

(h)
i ) ∈ ST (β(h)), where T ∈ {simple, strict}

depending on the context.

3. Each server h obeys to its service policy.

The underlying graph of the network is the graph with set of vertices {1, . . . , n} and set of edges
{(k, h) | ∃i ∈ {1, . . . ,m}, µi = 〈. . . , k, h. . . .〉}. We will only consider feed-forward networks, whose
underlying graphs is acyclic.

A system is said to be stable if there exists a constant C such that for each server, the backlog is
always upper bounded by C. Let Rh = limt→∞ βh(t)/t and ρp = limt→∞ αp(t)/t. We assume that the
system is stable, that is, ∀h ∈ [1, N ], Rh ≥

∑
p3h ρp (see [79] for example).

4.2 Loss of the tightness

Given a network, we say that the performance bounds computed are tight if there exists an admissible
trajectory of the network that have those performances. To illustrate the complexity of getting good
bounds, consider the following small example with two servers and two flows.

• for h ∈ {1, 2}, β(h) : t 7→ R(h)(t− T (h))+, flow 1 has a higher priority than flow 2;

• for i ∈ {1, 2}, αi : t 7→ σi + ρi, µi = 〈1, 2〉.

To compute an upper bound on the delay of flow 2, at least two methods can be used:

(a) first compute the residual service curves for flow 2 and compute the convolution of the two curves
obtained: β̃a = (β(1) − α1)+ ∗ (β(2) − (α1 � β(1)))+.

(b) first compute the convolution of the two service curves and then compute the residual service
for flow 2. Note that even though the service is not strict anymore and Theorem 4 can not be
applied, a direct computation as performed in [23, 99, 100] leads to the residual service curve
β̃b = (β(1) ∗ β(2) − α1)+.

The second formula uses the principle of pay multiplexing only once, introduced in [100]: each bit of
data of flow 2 can be overtaken only once by a bit of data of flow 1. This phenomenon is taken into
account in the second computation only. Intuitively, this formula should lead to better delay bounds. In
fact, that is not always the case. We find

β̃a(t) = (min(R1, R2)− ρ1)(t− σ1 +R1T1

R1 − ρ1
− σ1 + ρ1T1 +R2T2

R2 − ρ1
)+

and

β̃b(t) = (min(R1, R2)− ρ1)(t− σ1 + min(R1, R2)(T1 + T2)

min(R1, R2)− ρ1
)+.

If β1 = β2, then β̃2 ≤ β̃1. But if σ1 = 0, T1 = 0 and R2 > R1, then β̃1 ≤ β̃2.
The first method, used to compute β̃a, can be generalized for general feed-forward networks. This

is the object of Section 4.3. The second method, leading to β̃b, can be generalized in two ways. First,
for tandem networks, using a multi-dimensional (min,plus)-convolution, as defined in [19] and [20]. For
example, a residual for flow 2 would be in that case ∀t ≥ 0

β̃c(t) = min
u+s=t

β(1)(s) + β(2)(u)− α1(s+ u),

which leads in this specific case to the same expression as β̃b. Unfortunately, there is no known algorithm
to compute such a function in polynomial. But the horizontal and vertical distances with a concave
function with the multi-dimensional (min,plus)-convolution of concave arrival curves and convex service
curves can be performed in polynomial time (details of this approach can be found in [20] and [30]).

A second way to generalize this approach is to use linear programs. Indeed, it follows more or less
the same computing scheme: first work with the trajectories, and bound using the arrival and service
curves only at the last step of the computation. This will be discussed in Section 4.4.
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4.3 Performance bounds with (min,plus) techniques

As we consider that the network is feed-forward: the servers can be numbered such that each path µi is
increasing (µi(j) > µi(j − 1)), which we now assume from now on.

Algorithm 1 gives a generic way to compute performance bounds. First, for each flow at each system

it computes α
(h)
i , an arrival curve for F

(h)
i , β

(h)
i , a residual service curve for flow i at system h. Then,

it computes the global service curve for each flow by a convolution and worst-case performance upper
bounds can be computed using that curve and Theorem 1.

Algorithm 1: Generic SFA (separated flow analysis)

Data: (αi) ∈ Fm↑ , βj ∈ Fn↑ , µ ∈ {1, . . . , n}m, where µi is increasing.

Result: β̃i a simple service curve for each flow i, for the global network.
begin1

for h = 1 to n do2

foreach i such that h ∈ µi do3

β
(h)
i ← (β(j) −

∑
i∈Fl(h) α

(predi(h))
i )+;4

α
(h)
i ← α

(predi(h))
i � β(h)

i ;5

foreach i = 1 to m do6

β̃i =∗h∈µiβ(h)
i7

end8

Algorithm 1 is valid for blind multiplexing (and thus for any other service policy) if the systems offer
strict service curves. The performance bounds computed with this algorithm can be improved if more
information is known about the systems and the curves.

1. If maximum service curves β
(h)

and and minimum arrival curves αi are known for each system h
and each flow i, then lines 4-5 can be replaced by the four following lines (with obvious notations):

β
(h)
i ← (β(j) −

∑
i∈Fl(h) α

(predi(h))
i )+;

α
(h)
i ← min(α

(predi(h))
i ∗ β(predi(h)) � β(h)

i , β
(predi(h))

);

β
(h) ← β

(predi(h))
;

α
(h)
i ← α

(predi(h))
i ∗ β(h)

i ;

2. If the service policy is FIFO (server can offer a simple service curve), SP or GPS, the it suffices to
replace lines 4-5 by the formulas corresponding to the specific policy, that is using Propositions 1, 2
or 3. Naturally, it is possible to combine the different service policies with maximum service curves
and minimum arrival curve.

The algorithm presented here does not claim for optimality, but for algorithmic efficiency. Indeed, it
requires O(nm) basic operations (convolution, deconvolution...). When only one type of service policy
is chosen for the whole network, it is possible to take advantage of this service policy.

For example, the FIFO policy has been extensively studied, specially by Lenzini, Mangozzi and Stea.
From Proposition 1, an infinite number of service curves can be computed, and we have to choose θ(h) for
each server h that fits the best. A classical solution, when dealing with rate-latency service curves and
affine arrival curves is to take θ(h) = σ

R +T , so that the residual service curves are still rate-latency. This
choice may not be the best anymore when several servers in tandem are considered. The choice of these
θ(h) has received quite a lot of attention, leading to the implementation of a software, Deborah (Delay
Bound Rating AlgoritHm, [12]) to compute a least upper delay bounds (LUDB). A good choice of θ(h) is
computed using linear programs that are optimized to have good performances. In [81], it is proved that
the optimal choice can be efficiently computed in the case of sink-tree networks (the network topology is
a tree and every flow ends at the root of that tree) and that exact performances bounds can be derived.
The principle of the computation is to compute the best family of θ(h) by removing flows of the networks
one by one and after the deletion of each flow, computing the residual service curves resulting from it.
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As a consequence, it is primary designed for nested tandems networks. However, this approach can be
used for modeling general tandem networks, as explained in [82, 83], by cutting the flows to transform
the non-nested network into a nested network. An optimization must also be performed to choose the
best way of cutting the flows. Unfortunately, in [11], it is shown that even for small nested tandems (an
example in given with a source-tree tandem with two servers) the bounds computed are not tight.

Networks satisfying the GPS policy has also received an lot of attention, and initially by Parekh and
Gallager in [89, 90]. In these articles, the authors first derive bounds for a single servers and then study
networks. They more precisely study policies (the choice of the parameters φi they know to be stable,
even for cyclic networks). More recently, Barta, Nemeth, et al. in [10, 88] study more general choices of
φ and present an algorithm giving a sufficient condition for the stability. This condition is based on the
computation of a fixed point of the intermediate arrival curves. If they converge to some finite functions,
then the network is stable.

4.4 Tight performance bounds with linear programming

In this section, we present a method that enables to compute the exact worst-case delays in feed-forward
networks in the case of arbitrary multiplexing. Moreover, this method may be adapted to other service
policies to obtain better bounds than the existing ones. However, in that latter case, the tightness is
lost, except for the special case of FIFO networks, that we will mention at the end of the section.

We make the additional assumption that the arrival curves are piece-wise linear affine and concave
and that the service curves are piecewise affine and convex. That is, we can write αi = minp Lp and
β(h) = maxpMp where Lp and Mp are affine functions. We present this method in the case of tandem
networks, even though it is valid for any feed-forward network and discuss the difficulties that arise for
the general case.

4.4.1 Blind multiplexing

Consider one server crossed by one flow. To compute the worst-case delay at time t, we combine those
equations:

• strict service curve: F (1)(t)− F (1)(s) ≥ β(t− s);

• choose s = start(t): F (1)(s) = F (0)(s);

• introduce the arrival date, u of the bit that departs at time t: s ≤ u ≤ t and F (0)(u) ≥ F (1)(t)

• arrival curve: F (0)(u)− F (0)(s) ≤ α(u− s);

As we chose α piecewise affine concave (i.e the minimum of a finite number of affine curves) and
β piecewise affine convex (i.e the maximum of a finite number of affine curves), all these equalities
and inequalities generate linear constraints where u, s, t, F (0)(t)... are variables and α and β only are
constant. To compute the worst-case delay, it remains to maximize t− u under those constraints.

Computing the worst-case performance in tandem networks can be done by generalizing this linear
program backward from server N to server 1.

The linear program

The variables Let us first define the variables of the linear program. Note that, to emphasize the
meaning of the variable, we denote them the same way as the date of the function value they represent.

Thus, they will mainly be named tk or F
(h)
i (tk).

• time variables: the time constraints are t0, . . . , tN and u with the following interpretation: consider
a bit of data that exits the system at time tN then tN−1 is the start of the backlog period of server
N at time tN (tN−1 = startN (tN )) and more generally, ti−1 = starti(ti). The variable u represents
the arrival date in the system of the bit of data considered;
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• functional variables: the constraints variables are F
(0)
i (tk) and F

(h)
i (tk) for i ∈ h and k ∈ {h, h−1}.

Intuitively, F
(h)
i (tk) represents the value of the CAF F

(h)
i at time tk, and the important dates for

F
(h)
i are th, the date at which the bit of interest exits server h and th−1 the start of the backlogged

period of server h. The variable F
(0)
i (tk) represents the CAF of flow i, that is an upper bound for

F
(h)
i (tk). The variable F

(0)
i (u) will also be used to compute the worst-case delay of flow i.

The linear constraints for the worst-case delay of flow i or backlog at node h. Constraints
are given inside brackets.

• time constraints: ∀h, [[th−1 ≤ th]];

• service constraints: ∀h, [[
∑
i∈Fl(h) F

(h)
i (th) ≥

∑
i∈Fl(h) F

(h)
i (th−1) + β(h)(th − th−1)]]

• start of backlogged period constraints: ∀h, ∀i ∈ Fl(h), [[F
(h)
i (th−1) = F

(h−1)
i (th−1)]];

• causality constraints: ∀h, ∀i ∈ Fl(h) and k ∈ {h, h− 1}, [[F
(0)
i (tk) ≥ F (h−1)

i (tk) ≥ F (h)
i (tk)]];

• non-decreasing constraints: ∀i, ∀h ∈ µ(i), [[F
(0)
i (th) ≥ F (0)

i (th−1); F
(h)
i (th) ≥ F (h)

i (th−1)]];

• arrival constraints: ∀i, ∀k < h ∈ µ(i),[[F
(0)
i (th)− F (0)

i (tk) ≤ αi(th − tk)]];

• constraints involving u: (for the worst-case delay only) [[tµi(1)−1 ≤ u ≤ tend(i); F
(0)
i (u)−F (0)

1 (tµi(1)−1) ≤
α1(u− tµi(1)−1)}; F (0)

i (u) ≥ F (end(i))
i (tend(i))]].

The objectives

• for the worst-case delay of flow i:
Maximize tend(i) − u;

• for the worst-case backlog at node h:

Maximize
∑

i∈Fl(h)

F
(0)
i (th)−

∑
i∈Fl(h)

F
(h)
i (th).

For a given network N , let us denote λ the linear program defined above and dλ its optimal solution
if the objective is to find the worst-case delay, and bλ if the objective is to find the worst-case backlog.
The following theorem holds.

Theorem 8. Let N be a tandem network with n servers and p flows. The LP instance λ has O(pn)
variables and O(pn2) constraints and is such that the optimum is the worst end-to-end delay for flow i
is dλ (resp. the worst backlog at server h is bλ).

The proof can be found in [25]. Here, we explain the principle of the proof on an example. It is based
on the construction of an admissible trajectory that satisfy the solution of the LP.

t2 t3t1t0

α2

α1

α3β(1) β(2) β(3)

Figure 4.1: Tandem network with 3 nodes and 3 flows.

Consider the network of Figure 4.1. This network has been extensively studied in [99], where it is
shown that the exact delay cannot be computed using the application of (min,plus) algebraic methods
only. Figure 4.2 explains the relation between the linear program and the trajectories. Given an ad-
missible trajectory, the assignments variables can be read from the figure: let t3 be exit time of the
bit for which the delay is computed. The variables ti are defined as the beginning of the backlogged
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period at each server. Then, the variables F
(h)
i (tk) are assigned the value of the CAF F

(h)
i at time tk.

Those variable satisfy of course all the constraints, that are derived from the network calculus basics.
Conversely, to reconstruct the trajectories from a solution of the linear program, it is enough to linearly

interpolate the CAFs: F
(µi(1)−1)
i between tµi(1)−1 and tend(i); and F

(h)
i between th−1 and th. After this

period, the function can be set equal to F
(µi(1)−1)
i , and before th−1, equal to F

(h−1)
i .
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delay delay

Figure 4.2: From the trajectories to the linear program and back to the trajectories for blind multiplexing.

Leftover service curve Let N be a network and flow 1 be the flow of interest, until now we have
investigated a way to compute the worst delay for fixed constraints (αi)i∈F and (βj)j∈S . One may want
to measure how the global network acts upon flow 1, in particular whether some minimum end-to-end
service curve β can be guaranteed. It is called a universal end-to-end service curve if β is independent
of α1 (i.e. β remains an end-to-end service curve for any choice of α1). Precomputing such an universal
curve can be useful to quickly compute a bound on end-to-end delays for flow 1 for several different
curves α1 (thanks to the horizontal distance of Theorem 1).

For tandem networks, it is possible to compute a universal end-to-end service curve which is optimal
in the sense that it is maximal for all the universal service curves, using the duality principle of linear
programming ([101]).

Generalization to feed-forward networks The same ideas can be applied to general feed-forward
networks. But several difficulties arise, making the problem much more difficult to analyze.

• The number of dates to consider grows exponentially with the size of the network.
Indeed, from one given date used for the start of backlogged period of one given server, several
dates must be defined for the beginning of the backlogged period of all the predecessors of this
server. As a consequence, the number of dates to define is the number of paths from any node the
last server visited by the flow of interest.

• Those dates are not totally ordered and every order compatible with the NC constraints
must be generated, leading to one different linear program for each different order. Now, the exact
worst-case delay is the maximum solution of an exponential number of linear programs.

To illustrate this fact, consider the example of Figure 4.3. The departure date of the bit of interest
if t∅, and we can define t4 = start4(t∅), t24 = start2(t4) and t34 = start3(t4). But then, for server
1, two start of backlogged period have to be defined: t134 and t124. Four orders have to be consider:
either t24 and t34 belong to different backlogged period, in which case we have t124 ≤ t24 ≤ t134 ≤ t34

or t134 ≤ t34 ≤ t124 ≤ t24, or they belong to the same backlogged period, in which case we have
t134 = t124 ≤ t34 ≤ t24 or t134 = t124 ≤ t24 ≤ t34. Date u also has to be inserted in these orders,
inducing even more linear programs. The other constraints depending of the order of the dates (arrival,
non-decreasing) have to be generated accordingly to these orders.

A reduction of X3C (Exact-three-cover, [65]) to this problem shows that it is in fact NP-hard to
compute the exact worst-case performances under the assumptions we made.
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Figure 4.3: Example of a feed-forward network.

Generalization to other service policies The blind multiplexing, or arbitrary multiplexing gives
very pessimistic performance bounds when the service policy is known. It may not always be possible
to find a simple linear program that computes the exact worst-case performances efficiently even for
tandem networks. For example, an attempt to find a linear program encoding Static Priorities can be
found in [26]. As solution to improve the bounds obtained by Algorithm 1 and the exact worst-case for
blind multiplexing is to mix those two approaches. This is done by applying the steps of Algorithm 2.

Algorithm 2: Mixing linear program with (min,plus) techniques.

begin1

Generate the LP program corresponding to the blind multiplexing;2

Compute the intermediate arrival curves for each flow, at each node it crosses using3

Algorithm 1;
Add the linear constraints corresponding to those arrival curves;4

Compute the optimal solution with those constraints.5

end6

4.4.2 FIFO multiplexing

Difference with the blind multiplexing case FIFO multiplexing is a special case where it is also
possible to compute tight bounds using linear programs. Two elements differ from the blind multiplexing
case:

• use the FIFO multiplexing;

• consider simple service curves.

This two elements induce the following linear constraints for one server crossed by two flows: if t is
the departure date of the bit of interest,

• (simple service curve) there exists s ≤ t such that we have F
(1)
1 (t)+F

(1)
2 (t) ≥ (F

(0)
1 +F

(0)
2 )∗β(t) =

F
(0)
1 (s) + F

(0)
2 (s) + β(t− s), and

• (FIFO hypothesis) there exists u ∈ [s, t] such that F
(0)
1 (u) = F

(1)
1 (t) and F

(0)
2 (u) = F

(1)
2 (t),

and the monotonicity, causality and arrival curves constraints are still valid. The start of backlog period
constraints are dropped. Notice that for one date (t), two new dates have been introduces (s and u).
Consequently, the number of dates defined at each server will double and we will also face the problem
of the ordering of those variables.

t2, t3 t1t4, t5, t6, t7

α3

α1

α2 β(1) β(2)

Figure 4.4: Example of a network with two servers and three flows.
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Consider the example of two servers and three flows on Figure 4.4. Define t1, t2 and t2 as t, u and
s of the previous example. We also write t2 = FIFO(t1) and t3 = SC(t1). For server 1, we can define
t4 = FIFO(t2), t5 = SC(t2), t6 = FIFO(t3) and t7 = SC(t3). We know that t3 ≤ t2 ≤ t1, that
t5 ≤ t4 ≤ t2, that t7 ≤ t6 ≤ t3 and that t7 ≤ t5 and t6 ≤ t4. But, t5 and t6 cannot be ordered. A
total order is necessary to get tight bounds to ensure the monotonicity of the functions. This order can
be set by the linear program using Boolean variables: consider a sufficiently large constraint M (in our
case, this constant is can easily be computed and some LP solver can also compute this constant), b be
a Boolean variable (taking value 0 or 1) and the following constraints to force the monotony of f :

t5 + bM ≥ t6 f(t5) + bM ≥ f(t6)

t6 + (1− b)M ≥ t5 f(t6) + (1− b)M ≥ f(t5)

If b = 1, then we have t5 + M ≥ t6, which is a dumb constraint for M large enough, so t6 ≤ t5 and
f(t6) ≤ f(t5); if b = 0, we have t5 ≤ t6 and t6 +M ≥ t5 (also dumb for M large enough).

The linear program

The variables More formally, the variables of our problem are the following:

• time variables: t1, . . . , t2N+1−1, where t2k and t2k+1 correspond to the FIFO hypothesis and the
service curve constraints with regards to tk, respectively: t2k = FIFO(tk) and t2k+1 = SC(tk);

• functional variables: F
(h)
i (tk) for h ∈ [µi(1) − 1, end(i)] and k ∈ [2n+1−h, 2n+2−h − 1], where we

define F
(µi(1)−1)
i as F

(0)
i . If the backlog at server n is computed, then variables F

(0)
i (t1), i ∈ Fl(n)

must also be defined.

The linear constraints for the delay of flow i or the backlog at node h As said before, the
number of dates (hence of variables) grows exponentially with the tandem length, since it doubles at each
node as we go backwards and in a multi-node scenario, these dates are only partially ordered. We have (*)
t2k+1 ≤ t2k ≤ tk for k < 2n and (**) if tk ≤ tk′ , then t2k ≤ t2k′ and t2k+1 ≤ t2k′+1 for 2h ≤ k, k′ < 2h+1.
The transitive closure of these properties only lead to a partial order of t2h , . . . , t2h+1−1.

If there exists h such that 2h ≤ k, k′ < 2h+1, tk and tk′ are ordered by introducing a binary variable
if necessary. This is done recursively backward the following way:

• For server n, t2 ≥ t3:

• Suppose that dates are ordered for all k ∈ [2h−1, 2h − 1] and consider dates tk, k ∈ [2h, 2h+1 − 1].

– First generate the partial known order using (*) and (**);

– if k = 2` and k′ = 2`′ or if k = 2`+ 1 and k′ = 2`′ + 1, use the variable that orders t` and t`′ ;

– for any other pair, introduce a new binary variable.

If variables x and y use the variable b to be ordered, we note x ≤b y to represent the constraints

x+ bM ≥ y

y + (1− b)M ≥ x.

Also, if no binary variable is needed, we write x ≤∅ y to represent the constraint x ≤ y.
We can now write the linear constraints:

• time and monotonicity constraints: if tk ≤b tk′ , then [[tk ≤b tk′ ; F (h)
i (tk) ≤b F (h)

i (tk′)]];

• FIFO hypothesis: if µ(1) ≤ h then [[F
(h)
i (tk) = F

(h−1)
i (t2k)]];

• service constraints: [[D(h)(tk) ≥ A(h−1)(t2k+1) + βh(tk − t2k−1)]];

• arrival constraints: if tk ≤∅ tk′ then [[F
(0)
i (t′k) − F (0)

i (tk) ≤ αi(tk′ − tk)]]; if ∃b 6= ∅ and tk ≤b tk′
then [[F

(0)
i (tk′)− F (0)

i (tk) ≤ αi(tk′ − tk) + (1− b) ·M, F
(0)
i (tk)− F (0)

i (tk′) ≤ αi(tk − tk′) + b ·M ]];

• additional arrival constraints for the backlog at server n: if i ∈ Fl(n) then [[F
(0)
i (t1)−F (0)

i (t2n−µi(1)−1) ≤
αi(t1 − t2n−µi(1)−1)]].
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Objective If the objective is to compute the worst-case delay, then the objective of the LP is then
max t2n−end(i) − t2n−µi(1)−1 .

If the objective is to compute the worst backlog at server n, then the objective of the LP is

max
∑
i∈Fl(n) F

(µi(1)−1)
i (t1)−

∑
i∈Fl(n) F

(h)
i (t1).

For a given network N , let us denote by λ the linear program defined above and dλ its optimal
solution if the objective is to find the worst-case delay, and bλ if the objective is to find the worst-case
backlog. The following theorem holds.

Theorem 9. The worst-case delay for flow i is dλ and the worst-case backlog at server n is bλ

This can be generalized with no difficulty to any server. The proof of this theorem can be found
in [33]. We here only illustrate using the example of Figure 4.3.
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Figure 4.5: From the trajectory to the linear program and back to the trajectories for the network of
Figure 4.3. Left: from the trajectory to the linear program: the circles represent the values associates to

the variables of the form F
(h)
i (tk). Right: from those variables, it is possible to draw a new trajectory

satisfying the constraints where the arrival are maximized according to their constraints, staircase shaped
for the intermediate flows, and follows the service curve for the last server.

4.4.3 Numerical experiments

To illustrate the improvements of the performance bounds compared to existing methods, consider the
following example of a tandem network composed of 6 servers and one flow crossing all the servers while
interfering flows cross two servers at most, as shown on Figure 4.6. We use the following characteristics
for the flows and servers: ∀h ∈ {1, . . . , n}, β(h) = β : t 7→ R(t − T )+ with R = 10 and T = 1 and
∀i ∈ {1, . . . ,m}, αi = α : t 7→ σ + ρt where σ = 1 and ρ = RU/3 where U ∈]0, 1[.

(1, 1) (h, h+ 1) (N,N)

(1, N)

Figure 4.6: Non-nested tandem with 6 servers.

The results are depicted in Figure 4.7, when U varies from 0.3 to 1: for arbitrary multiplexing on
the left (compared with the SFA algorithm) and for FIFO multiplexing on the right (compared with the
lower and upper bounds obtained with the software Deborah vDeb and VDeb). Note that in the first case,
the delay using SFA delay is computed using priorities, as it has been shown in [26] that the Earliest-
Deadline-First policy is a policy leading to the worst-case delay of arbitrary multiplexing. In this latter
case, we only computed lower and upper bounds (vLP and VLP ) of the exact one, using a linear program
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that does it more efficiently that the one described here: the upper bound discards about the monotony
of the CAFs and CDFs, so that the linear program has no integer variable, and the lower bound forces
the equality of some dates so that there is only a quadratic number of dates in the linear program.
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Figure 4.7: Numerical comparisons of the performance bounds.

In this chapter, we presented algorithms to compute tight performance bounds in feed-forward net-
works, using linear programs. While this method is quite general (it only assumes that the curves are
piecewise affine and convex or concave, which is classical, but make it pessimistic for packet flows), it
has some drawbacks: first, with the notable exception of tandem networks in blind multiplexing, those
algorithm are doubly exponential in time (number of constraints and number of linear programs/integer
variables). This issue can be partially overcome by relaxing some constraints in order to obtain a single
linear program with no integer variable. Second, it has no simple generalization to non feed-forward and
feedback controlled networks. For some service policies, such as static priorities or some GPS policies, it
is possible to compute good upper bound by applying the LP techniques on the unfolding of the network,
because the network is known to be stable. But how to obtain (possibly) finite delay upper bound when
a network is not known to be stable is still an open problem.
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Chapter 5

Algorithms for (min,plus) functions

In the previous chapters, we have made an extensive use of the (min,plus) operators to compute perfor-
mance bounds in networks, and used those operations as basic blocks for our algorithms. It is then an
important issue to have efficient implementations of those operations. The question is natural in Network
calculus, but also arises in other domains, and in this chapter we will present one such example from the
numerical analysis. Section 5.1 is devoted to the description of a large class of functions for which the
operations can be computed. Details and proofs can be found in [34]. In Section 5.2, we focus on some
special cases of the (min,plus) convolution, that is when concave and convex functions are involved, the
convolution can be computed very efficiently. Then, in Section 5.3, we focus on a new application: the
computation of long-term weak-KAM integrators. The last two sections are the result of a collaboration
with Erwan Faou and Maxime Zavidovique.

5.1 A stable class for the Network calculus operators

Until now, we have mainly dealt with left-continuous, non-negative and non-decreasing functions. For
sake of generality, we consider the larger space of functions defined on the non-negative reals or integers,
with values within Rmin = R∪{−∞,+∞}. The Network Calculus makes use of the following operations:
minimum, addition, convolution, deconvolution, sub-additive closure, maximum and subtraction.

Depending on whether the functions are defined on N or R+ (until now we only dealt with function
defined on R+, we will denote by D the set of all functions from N into Rmin (discrete model) and by F
the set of all functions from R+ into Rmin (fluid model). Let f ∈ D or F , the subset Supp(f) = {t ∈
X | |f(t)| < +∞} is called the support of f . To emphasize this support, we may write f : Supp(f)→ R.

A class of functions is closed under some set of operations if combining members of the class with any
of these operations outputs (if defined) a function which remains in the class. The closure of a class of
functions under some set of operations is the smallest class containing these functions and closed under
these operations.

Asymptotic behaviors. Let f be a function from X into Rmin where X = N or R+, then, with
X∗ = X \ {0}:

• f is affine if ∃σ, ρ ∈ R,∀t ∈ X, f(t) = ρt+ σ or ∀t ∈ X, f(t) = +∞ (resp. −∞).

• f is ultimately affine if ∃T ∈ X, ∃σ, ρ ∈ R, ∀t > T, f(t) = ρt+σ or ∀t > T, f(t) = +∞ (resp. −∞).

• f is pseudo-periodic if ∃(c, d) ∈ R×X∗, ∀t ∈ X, f(t+ d) = f(t) + c.

• f is ultimately pseudo-periodic if ∃T ∈ X, ∃(c, d) ∈ R×X∗, ∀t > T, f(t+ d) = f(t) + c.

• f is ultimately plain if ∃T ∈ X, ∀t > T , f(t) ∈ R, or ∀t > T , f(t) = +∞, or ∀t > T , f(t) = −∞.

• f is plain if it is ultimately plain as above, and ∀ 0 ≤ t < T , f(t) ∈ R, and f(T ) ∈ R or possibly
f(T ) = +∞ (resp. −∞) in case ∀t > T , f(t) = +∞ (resp. −∞).
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Figure 5.1: Stability/instability of some classes of functions.

For affine and ultimately affine functions, ρ is the growth rate. For a pseudo-periodic function f ,
d is called a period of f , c is its associated increment, and the period of f is its smallest period (if
different from 0). For an ultimately affine (resp. ultimately pseudo-periodic) function, we also say that
it is ultimately affine (resp. ultimately pseudo-periodic) from T , and we say that T is a rank of the
function. Being plain is equivalent to have a support equal to [0, T ] or [0, T [ where T ∈ R ∪ {+∞}. A
non-decreasing function is always ultimately plain, and if f(0) ∈ R, it is plain.

Piecewise affine functions. We say that a function f ∈ F is piecewise affine if there exists an
increasing sequence (ai)i∈N which tends to +∞, such that a0 = 0 and ∀i ≥ 0, f is affine on ]ai, ai+1[,
i.e. ∀t ∈]ai, ai+1[, f(t) = +∞ or ∀t ∈]ai, ai+1[, f(t) = −∞ or ∃σi, ρi ∈ R, ∀t ∈]ai, ai+1[, f(t) = σi + ρit.
The (ai)’s are called discontinuities.

Let X ⊆ R+ and Y ⊆ R, we denote by F [X,Y ] the set of all piecewise affine functions in F such
that there exists a sequence (ai)i∈N with the properties above and satisfying ∀i ≥ 0, ai ∈ X and
f(ai), f(ai+), f(ai−) ∈ Y ∪ {−∞,+∞}.

Theorem 10. • The class of plain ultimately pseudo-periodic functions of D is stable under the
Network calculus operations, that is +, −, min, max, ∗, � and the sub-additive closure.

• The class of plain ultimately pseudo-periodic functions of F [Q+,Q] is stable under the Network
Calculus operations +, −, min, max, ∗, � and the sub-additive closure.

Figure 5.1 summarizes the stability of different classes under those operators. The two classes D and
F [Q+,Q] are good candidates for the implementation of the algorithms. Indeed, the functions of these
classes can easily be stored, by chained lists for example: it suffices to store the segments of the transient
and first period part (starting point xi, value at that point f(xi), right limit f(x+

i ) and slope ρi) plus
the period, the increment and the rank from which the periodic behavior starts. The data structure is
depicted of Figure 5.2.

Another view of this problem would have been to search the smallest class of functions that are
stable under those operations and contain some basic functions. The PhD thesis of Laurent Jouhet
[73] answers this problem when the basic functions are the affine functions, and the class of functions

30



T d c

x2 xk

t2t1 ti0 tk

x1 f(x1) y1 f(xi0) f(xk)ρ1 f(x2) y2 ρ2 xi0 yi0 ρi0 yk ρk

pos
ηf

Figure 5.2: A simple data structure to store ultimately pseudo-periodic functions.

that could be reconstructed is the class of ultimately pseudo-periodic piecewise affine functions that
possibly have a single discontinuity at 0. Indeed, all the operators preserve the continuity except the
sub-additive convolution that can created a discontinuity at 0 (for example, if f : t 7→ σ + ρt and σ > 0,
f∗ : 0 7→ 0; t 7→ σ + ρt. The functions δ0 and ε can also be generated. More discontinuities can be
introduced by including the class of δT functions.

5.1.1 Implementations

Some implementations of Network Calculus have been proposed. Some are very general while some
other are valid only for limited classes of functions. Also, they may implement only parts of the network
calculus operators, depending on their final aim.

• The DISCO Network Calculator is a Network Calculus Java library aiming at analyzing feed-
forward networks [69]. Its principles are detailed in [98]. The algorithms are specially designed
for arrival/service curves which are piecewise affine concave and convex functions and performs an
SFA (separated flow analysis, similar to Algorithm 1) or TFA (total flow analysis, an even more
pessimistic computation) for several service policies.

• The Real-Time Calculus Toolbox (RTC) is a Matlab toolbox for performance analysis of distributed
real-time and embedded systems [105, 106]. Its Java kernel implements the main Network Calculus
operations, except the sub-additive closure. It deals with piecewise affine functions defined over R+

which are not necessarily increasing nor positive, but which have a periodic behavior from a point.
Infinite values are also allowed. This class is very close to the classes introduced here where
this asymptotic behavior is called ultimate pseudo-periodicity. Besides correctness, no complexity
analysis has been given as far as we know. They use their algorithms to implement various service
policies and deal with networks modeled as event graphs.

• Another software called CyNC is based on Matlab and Simulink, and implements the Network
Calculus operations, except the sub-additive closure [95, 96]. It only considers input functions
defined over R+ which are staircases up to a point from which they are affine. It seems that it
uses some brute force algorithms, but apparently their correctness and complexity have not been
precisely studied.

• The software COINC [15] was the first to implement the algorithms presented in [34], as a stand
alone version or a Scilab toolbox.

• The second software based on the algorithms of [34] is PEGASE ([36, 40]). It implements the most
general class of functions as well as simpler classes such as concave of convex the have to linear-time
algorithms. This software is also intended to compute worst-case bounds for very large networks,
under various service policies, such as AFDX [39]. Some optimizations concerning the complexity
of stair-case have been implemented, allowing to deal efficiently with packet flows [38].

5.2 Fast convolution by a convex function

In this section we focus on the (min,plus) convolution by a convex function. As we chose to represent
the functions as the list of their successive segments, we assume here that the functions are ultimately
affine. Proof of the results can be found in [16].

An affine segment is a function whose support is an interval and such that the function is affine on
this interval. If g is an affine segment, then its slope is denoted by g′.
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Let f : [a, b] → R ∈ F be a piecewise affine function on R+ with values in Rmin. We assume that
the support of f is a closed interval, but the result holds for open or semi-open intervals. There exists
a0 = a < ai < · · · < an = b and fi : [ai−1, ai] → R affine segments such that f = minni=1 fi. Then,
for i ∈ {1, . . . , n}, f ′i is the slope of f on [ai, ai+1]. Using the distributivity of the convolution over the
minimum ([34, 79]), we have

Lemma 1 (convolution of a convex function by an affine function). Let f : [a, b] → R be a convex
piecewise affine function and g : [c, d]→ R be an affine segment of slope g′. Then f ∗g : [a+c, b+d]→ R
is a convex piecewise affine function defined by

f ∗ g(x) =

 f(x− c) + g(c) if a+ c 6 x 6 α+ c,
f(α) + g(x− α) if α+ c < x 6 α+ d,
f(x− d) + g(d) if α+ d < x 6 b+ d,

where α = min{ai in the decomposition of f | f ′i > g′}.

∗ =

a α b c d a+ c b+ dα+ dα+ c

f g f ∗ g

g1

gc

g2

Figure 5.3: Convolution of a convex function by an affine function and decomposition into three functions.

Figure 5.3 illustrates this lemma. In the rest of the section, we will use a decomposition of such a
convolution into three parts : f ∗g = min(g1, gc, g2), where (i) g1 = f ∗g|[c+a,c+α]; (ii) gc = f ∗g|[c+α,d+α];
(iii) g2 = f ∗ g|[d+α,d+b].

In other words, g1 is composed of the segments of f whose slope are strictly less than that of g, gc

corresponds to the segment g and g2 is composed of the segments of f whose slope are greater than or
equal to that of g. Note that gc is also concave.

5.2.1 Convolution of two convex functions

A direct consequence of this lemma is the following theorem, stated in [79]. A complete proof is presented
in [30].

Theorem 11 (convolution of a convex function by a convex function). If f and g are convex and
piecewise affine, then f ∗ g is obtained by putting end-to-end the different linear pieces of f and g sorted
by increasing slopes.

For sake of completeness, we give below Algorithm 3 for computing the (min,plus)-convolution of two
convex functions defined on N on a finite support.

5.2.2 Convolution of a concave function by a convex function

Now, consider two functions f : [a, b] → R, convex, and g : [c, d] → R, concave on its support, with
respective decompositions in fi : [ai−1, ai] → R, i ∈ {1, . . . , n} and gj : [cj−1, cj ] → R, j ∈ {1, . . . ,m}.
Then g = minmj=1 gj and f ∗ g = minmj f ∗ gj .

The following lemma, that considers two consecutive affine functions of g, leads to an efficient al-
gorithm to compute the convolution of a convex function by a concave function. It is illustrated by
Figure 5.4
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Algorithm 3: Convolution of two convex functions

Data: f : [0, n]→ R a convex function with slopes (ri), g : [0,m]→ R a convex function with
slopes (ρi).

Result: h = f ∗ g
begin1

i← 0; j ← 0; h(0)← f(0) + g(0);2

while i+ j < n+m do3

if i 6= n and (ri < ρj or j = m) then4

h(i+ j + 1)← h(i+ j) + ri; i← i+ 1;5

else6

h(i+ j + 1)← h(i+ j) + ρj ; j ← j + 1;7

end8

Lemma 2. Consider the convolutions f∗gj−1 and f∗gj. Let αj = min{ai in the decomposition of f | f ′i ≥
g′j} and αj−1 = min{ai in the decomposition of f | f ′i ≥ g′j−1}. Then

• ∀x 6 cj + αj , f ∗ gj(x) > f ∗ gj−1(x); • ∀x > cj + αj−1, f ∗ gj−1(x) > f ∗ gj(x).

∗ =

α1 c0 c2c1

g0

g1f f ∗ g1

f ∗ g0

c1 + α1α0 c1 + α0

Figure 5.4: Convolution of a convex function by a concave function.

Another formulation of Lemma 2 is that g1
j ≥ f ∗ gj−1, g2

j−1 ≥ f ∗ gj , and that the two functions

intersect at least once. Hence g1
j and g2

j−1 cannot appear in the minimum of f ∗ gj and f ∗ gj−1. By
transitivity, there is no need to compute entirely the convolution of the convex function by every affine
component of the decomposition of the concave function. If there are more than two segments, successive
applications of this lemma show that only the position of the segments of the concave function must be
computed, except for the extremal segments. As a consequence, the convolution of a concave function
by a convex function can be computed by Algorithm 4.

The following theorem is another consequence of this lemma and is more precise about the shape on
the convolution of a convex function by a concave function.

Theorem 12 (convolution of a convex function by a concave function). The (min,plus)-convolution of
a convex function by a concave function can be decomposed in three (possibly trivial) parts: a convex
function, a concave function and a convex function.

If the concave function is composed of m segments and the convex function of n segments, then the
convolution of those two functions can be computed in time O(n + m logm). The logm term comes
from the fact that one has to compute the minimum of m segments (see [34] for more details). If the
functions are now defined on N, then, as no intersection point has to be computed for the minimum, the
time complexity is O(n+m). The corresponding algorithm is given in Algorithm 4, where without loss
of generality (the (min,plus)-convolution is shift-invariant), the functions f and g are defined on N and
finite between respectively 0 and n, and 0 and m. The slopes of the functions are thus f ′i = f(i)−f(i− 1)
and g′i = g(i)− g(i− 1).
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Algorithm 4: Convolution of a convex function by a concave function

Data: f : [0, n]→ R a convex function with slopes (ri), g : [0,m]→ R a concave function with
slopes (ρi).

Result: h = f ∗ g
begin1

/* Initialization */

k ← 0;2

while k 6 m+ n do h(k)← +∞; k ← k + 1;3

i← 0; j ← 0; h(0)← f(0) + g(0);4

/* First convex part of the convolution */

while f ′i 6 g′0 do5

i← i+ 1; h(i)← f(i) + g(0);6

/* Concave part of the convolution */

j ← j + 1; h(i+ j)← f(i) + g(j);7

while j < m do8

while g′j < f ′i−1 do i← i− 1;9

h(i+ j)← min(h(i+ j), f(i) + g(j));10

h(i+ j + 1)← min(h(i+ j + 1), f(i) + g(j + 1));11

j ← j + 1;12

/* Second convex part of the convolution */

while i < n do13

i← i+ 1; h(i+m)← min(h(i+m), f(i) + g(m));14

end15

Note that the shape of the function is simplified when the functions have infinite supports (b = +∞
or d = +∞). Indeed, either the last slope of f is less that the last slope of g, in which case each slope of
f is smaller that each slope of g and f ∗g = f+g(0) (assuming without loss of generality that a = c = 0).
Or the last slope of g is less than the last slope of f , in which case f ∗ g is composed of a convex function
and a concave function only, as the convolution of f by the last segment of g is ultimately affine with
ultimate rate the slope of the last segment of g. Then the final convex part does not appear.

5.3 Application to fast weak-KAM integrators

Consider the Hamilton-Jacobi equation

∂tu+H(t, x,∇u) = 0, u(0, x) = u0(x), (5.1)

where H(t, x, v) is a Hamiltonian function, periodic in t and x

H : R+ × Rn × Rn → R, (5.2)

and where u0 is a Lipschitz function. We will consider the case where H is separable and convex in p:
H(t, x, p) = 1

2 |p+P |2 +V (t, x), with V a C2(R+×Rn) and bounded function and P ∈ Rn. The solution
of this equation can be written as

u(t, x) = inf
γ(t)=x

u0(γ(0)) +

∫ t

0

L(s, γ(s), γ̇(s))ds, (5.3)

where the infimum is taken over all absolutely continuous curves γ : [0, t]→ Rn such that γ(t) = x, and
where L(t, x, v) is the Lagrangian associated with H:

L(t, x, v) = sup
p∈Rn

(
p · v −H(t, x, p)

)
.

In our case, L(t, x, v) = 1
2 |v|

2 − P · v − V (t, x).
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For periodic Hamiltonians (H is 1-periodic in both t and x), the weak-KAM theorem (see [58, 50])
shows the existence of a constant H such that

1

t
u(t, x)→ H when t→ +∞.

An efficient implementation of a numerical scheme for the Hamilton-Jacobi equation that respects
the long time behavior of the exact solution u(x, t) enables to approximate H.

Using the explicit expression of L, we can approximate the scheme with the following dynamic on
the discrete grid Gε = εZn and for a time step τ :

∀x ∈ Gε, T τt,εu(x) = inf
y∈Gε

(
u(y) +

τ

2

∣∣∣∣x− yτ
∣∣∣∣2 − P · (x− y)

)
− τV (t, x). (5.4)

involving a (min,plus)-convolution of u with a convex function.

For a given integer N , we define

T Nτt,ε u = T τtN−1,ε ◦ · · · ◦ T
τ
t1,ε ◦ T

τ
t0,εu

where ti = t+ iτ .

In case where V (t, x) is periodic, using the weak-KAM theory:

Theorem 13. For any ε = 1
k and τ = 1

` with k, ` ∈ N, there exists a unique constants Hε,τ such that if
u is any bounded initial datum on Gε at t = 0, then we have in L∞

1

Nτ
T Nτ0,ε u −→ Hε,τ , as N → +∞.

if moreover ε, τ and ε/τ are small enough, then there exists a constant M such that∣∣Hε,τ −H∣∣ 6M
( ε
τ

+ τ
)
.

Numerical simulations

Now the computation of T τt,εu(t, x) given in (5.4) is made of two steps:

• (min,plus)-convolution of u and h : x 7→ τK∗(xτ );

• subtract τV (t, x).

Note that the (min,plus)-convolution described above is here defined on functions with an unbounded
support. But in our case, functions are 1-periodic in x and t, and H is convex in p with a global
minimum. Then, it is enough to compute the convolution on a single period only (the (min,plus)
convolution preserves the periodicity), and replace h by its restriction on a support of size 2 centered
on its minimum. If ε = 1/k with the notation of the previous section, then both functions u and h are
defined on grids of size k and 2k respectively.

The convolution of u and h can be efficiently computed following these steps:

1. Decompose u into convex and concave parts. This can be done in linear time: the three first points
determine if a part is concave or convex. Then, this part is extended as much as possible while
preserving the concavity or convexity and so on.

2. For each convex or concave part, perform the convolution with h using Algorithms 3 or 4.

3. Take the minimum of all these convolutions.

The complexity of this Algorithm is then O(ck), where c is the number of components in the decompo-
sition of u into concave/convex parts.
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Implementation issues The main issue with this algorithm is that c - the number of components
in the decomposition of u - can become very large, and then lead to a quadratic time complexity,
which is the complexity of a naive algorithm for computing the convolution. Experimentally, we indeed
obtained decomposition of large size. It is mainly due to the discretization of u: nearly affine parts, after
performing the convolution several times, are fast alternations of convex and concave parts. One solution
to make the computation more efficient is to consider that those parts are convex and use Algorithm 3.

This is done by decomposing u into convex and concave parts with a tolerance parameter; we do not
request for convex parts to have increasing increments, but the increments to have an increase more than
−η. The choice of an optimal tolerance η, as well as the comparison with parallel implementations, will
be the subject of further studies.

Comparison with WENO5 We take the Hamiltonian (5.2) with P = 1 and V (t, x) = 1 − cos(x)
on [−π, π], k = 600 grid points, that is ε = 1.7e − 3, and τ =

√
ε = 0.04. We use the approximated

convolution with a tolerance η = 10 × ε2 = 2.7e − 5. The comparisons are made with the fifth-order
WENO algorithm (WENO5 see [71]) with 100 grid points, which will be considered here as the exact
solution.

We calculate the solution at times t = 1, 2, 5 and 15 with initial value u(0, x) = cos(2x). We see the
very good agreement between the solution given by the WENO5 algorithm. The plot, rescaled such that
u(t,−π) = 0, is shown in Figure 5.5. Note that after the time t = 20, the solution has converged and
remains constant for larger times. The solution observed is thus very close to the weak-KAM solution
u∗(x). The number of convex/concave components c is always of order 10 (and equal to 3 - as expected
from the shape of the solution - when the stationary state is attained), and the CPU time about 4 times
less than the WENO5 algorithm, without any significant deterioration of the accuracy. We show the
result in Figure 5.5.
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Figure 5.5: Solutions with η = 1.7e− 2. CPU = 0.3s at t = 15

We presented in this chapter an application of the (min,plus) convolution algorithm to another domain
than network calculus. Note that this is not the first time that tropical algebras are used to study such
problems. For example, in [2], Akian et al. use finite (max,plus) elements to model problems of optimal
control. Here the approach is different, as the discretization is done in the classical algebra and the
(min,plus) framework is used only in the algorithmic part.
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Chapter 6

Adapting the constraints to a flow

The concept of arrival curves can be adapted to supervise the behavior of a flow. In that case, the
aim is to find an arrival curve that fits the flow. Usually network calculus arrival curves are given as a
characteristic of the flow, or a target constraint for the flow that will then cross a shaper so that it has
the desired constraint ([45, 79]). The problem of finding the arrival constraint for a CAF has received less
attention. It is well-known that given an arrival process A, the best arrival curve α for A is α = A�A. If
time is discretized, it can also be computed on-line the following way: let α(n) be the best arrival curve for
the truncated arrival process A(0), . . . , A(n). Then α(n+1) can be computed from α(n) in O(n). Indeed,
α(n+1)(n+1) = A(n+1)−A(0) and for all j ≤ n, α(n+1)(j) = max[A(n+1)−A(n+1−j), α(n)(j)]. This
formula is not satisfactory. First, the computation might become too costly as n grows. Second, this
formula might not be relevant: if the flow’s behavior changes, then the arrival curve would not reflect
the new behavior and would not be a good representative for the flow.

In this chapter we slightly modify the notion of flow and arrival curve, so they are define to follow the
behavior of a flow. This has been developed during a collaboration with Alcatel-Lucent in the context
supervision of routing protocols. Those protocols are based on the emission of periodic messages that
maintain the connectivity and the good behavior of the network. Variations of the small emission rate
of the flows might not impact immediately the performance of the network, but might have effect at a
longer term. Detecting these variations before a failure occurs is then an important issue.

First flows and constraints are defined in this new context in Section 6.1. The algorithm of detection
of the variations of a flow and a variant is presented in Section 6.2 before presenting some numerical
results in Section 6.3. This work is part of the PhD of Aurore Junier and is part of a collaboration with
Benôıt Ronot, from Alcatel-Lucent. More details can be found in [27] and complete proofs in [28].

6.1 Constraints of a flow

Here a flow is a non-decreasing sequence (xn)n∈N, where x0 = 0 by convention and where xn is the arrival
date of the n-th message of the flow. We assume that limn→∞ xn =∞.

Graphically, this flow can be represented by the graph (Pn)n∈N ∈ (R+ × N)N where ∀n ∈ N, Pn =
(xn, n). This graph represents the cumulative number of incoming messages. An example of such a
graph is represented on Figure 6.1, where the data flow is (0, 10, 20, 30, 50, 70, . . .) and the corresponding
graph is ((0, 0), (10, 1), (20, 2), (30, 3), (50, 4), (70, 5), . . .).

We slightly modify the notion of arrival curve and generalize it to finite intervals.

Definition 5. Let α, α : R+ → R+ be two non-decreasing functions, m < n be two non-negative integers.
The flow (xn) is (α, α)-constrained on the interval [m,n] if ∀m ≤ m′ ≤ n′ ≤ n,

α(xn′ − xm′) ≤ n′ −m′ ≤ α(xn′ − xm′).

The flow (xn) is (α, α)-constrained if it is (α, α)-constrained on the interval [0,+∞[.

Graphically, a flow (xn)n∈N is α-lower constrained (resp. α-upper constrained) if ∀n ∈ N, ∀m > n,
Pm is above α (resp. below α) drawn from Pn (respectively denoted as Pn + α and Pn + α).
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Figure 6.1: Data flow and constraints.

Example 1. On Figure 6.1, α : t 7→ 1 + 0.1t and α : t 7→ 0.1(t− 10)+ are depicted, as well as P4 + α.
It should be clear that the flow is upper-constrained by α, but not lower-constrained by α. Indeed, P5 is
below α, and we have 5 − 0 = 5 ≤ α(x5 − x0) = 6. To conclude, the flow is (α, α)-constrained on [0, 4]
but not on [0, 5].

We aim at finding constraints for the arrival flows on long intervals, on the fly. Given a data flow (xn)
and arbitrary curves α and α such that (xn) is (α, α)-constrained on [0, n], checking that the n + 1-th
messages satisfies those constraints requires O(n) operations and O(n) space. However, when α and α
are respectively chosen affine and rate-latency, this complexity can be drastically reduced to a constant
number of operations and constant space. We will use the following notations: αρ,σ : t 7→ σ + ρt and
αρ,T : t 7→ ρ(t− T )+.

Unless otherwise stated, we will assume that σ and T are fixed, and our goal is to guess ρ such that if
the flow (xn)n∈N is very regular, it is (αρ,T , αρ,σ)-constrained. If the traffic is not regular, our goal is to
find the successive arrival rates of the messages. In the former case, such a rate ρ exists and is unique.

In the latter case, if we are given the first messages, one needs to check, for the next one, if it satisfies
the current constraints and, should the case arise, to compute a new rate. Due to the shape of the
functions, this can be done in constant time. Indeed, to check whether a new message is constrained by
the current arrival curves, it is enough to check the arrival curves inequality from one message for each
curve. We call such a message the (lower and upper) critical message, which is the one that will lead to
the strongest constraint.

Suppose that from message m, the current constraints are α and α and the current slope is ρ. The
first message that breaks the current constraints is called the first outgoing message from n regarding α
and α and defined by

o = min{p ≥ m | (xp) is not (α, α)-constrained on [m, p]}.

The lower critical message can be defined by induction for n ≥ m by:

c(n) =


m if n = m

n if n
ρ − xn >

c(n−1)
ρ − xc(n−1)

c(n− 1) otherwise.

The same formula stands for the upper critical message c(n), replacing > by <.
Figure 6.1 gives an illustration of that: P0 +α is above P4 +α, so P4 gives a strongest constraint than

P0, hence will be called (upper)-critical message. Message 5 is the first outgoing message as it breaks
the lower-constraint.

6.2 Computation of the long-term behavior of a flow

We are now ready to present the algorithm that computes the successive arrival curves for a flow.
Algorithm 5 gives the elementary functions to detect the outgoing message and update the critical
messages using the formulas above.

Algorithm 6 is the algorithm that outputs a list of rates.
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Algorithm 5: Elementary functions

Update Critical(ρ, c, c, n)1

if n < ρ(xn − xc) + c then c← n else if n > ρ(xn − xc) + c then c← n;2

Is Lower Constrained(T , ρ, n, c)3

if n ≥ ρ(xn − xc − T ) + c then True else False4

Is Upper Constrained(σ, ρ, n, c)5

if n ≤ ρ(xn − xc) + σ + c then True else False6

Algorithm 6: Rates computation

Data: T , σ, (xn), ρ0.
Result: list of the rates computed Rates.
begin1

n← 0; c← 0; c← 0; ρ← ρ0;2

while true do3

n← n+ 1;4

if not Is Lower Constrained(T , ρ, n, c) then5

ρ← (n− c)/(xn − xc); c← n; c← n ;6

Rates← Rates::ρ;7

else if not Is Upper Constrained(σ, ρ, n, c) then8

ρ← (n− c)/(xn − xc) ; c← n; c← n;9

Rates← Rates::ρ;10

else11

Update Critical(ρ, c, c, n);12

end13

If a flow is (αρ,T , αρ,σ)-constrained and ρ has been computed by the algorithm, the constraints will
always be satisfied for all the next messages and no new rate will be computed. We say that the algorithm
has converged in finite time. The next paragraph is devoted to study a special case where this algorithm
may converge in finite time, the class of periodic flows..

Periodic flows A flow (xn)n∈N is said N -periodic if ∀n ∈ N, xn+N − xn+1+N = xn − xn+1.

Proposition 4. Let T, σ, ρ ∈ R+. If (xn) is a N -periodic, (αρ,T , αρ,σ)-constrained flow, then Algorithm 6
with input (T, σ, (xn)) either finds a rate ρ in finite time (and the rate will not be updated anymore) or
ultimately has a periodical behavior.

One could expect that Algorithm 6 converges after a finite time to the arrival rate of a periodic flow.
Unfortunately, it is not the case, and increasing σ and T does not help much, as illustrated in Example 2.

Example 2. Let us consider a 9-periodic flow x = (0, 15, 35, 55, 80, 100, 120, 140, 160, 180, . . .). This
flow is constrained with ρ = 0.05, σ = 1 and T = 10. Algorithm 6 alternatively finds ρ1 = 0.067 and
ρ2 = 0.04. This computation is represented in Figure 6.2 (left): the first computed rate is ρ1 = 1/x1.
Then, message 4, arriving at xo1 is the first outgoing message and its upper critical message is message
3 arriving at xc1 . The new rate is then 1/(x4 − x3) = 0.04. The next outgoing message is message 10
and its lower critical message is message 9. The next computed rate is the same as the initial rate (one
period shift).

Figure 6.2 (right) shows the behavior of the algorithm when T increases. For example, if T = 20 (plain
curve), then the first outgoing message is message o20 = 5 and its upper critical message is c20 = 4. The
new constraints are with ρ = 0.05 and the algorithm has converged in finite time. But if T = 60 (dashed
curves), the behavior of the algorithm will again be periodical: the first outgoing message is message
o60 = 13 and its critical message is message c60 = 12. The computed rate is still ρ2 = 0.04 and the
behavior of the algorithm is still periodic.
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Figure 6.2: Example of rates computed with Algorithm 6 (left) and effect on increasing T (right).

Nevertheless, when the rate computed at some point is close enough to the arrival rates of the
messages, Algorithm 6 can converge in finite time.

Theorem 14 (Convergence). Let (xn) be a N -periodic, (αρ,T ′ , αρ,σ′)-constrained flow. There exists ε
such that if Algorithm 6 with inputs (xn), σ > σ′ and T > T ′ can compute r ∈ [ρ− ε, ρ+ ε], it converges
to rate ρ in finite time.

For more regular flows, like balanced flows (i.e. such that ∀n ∈ N, xn = dnρ e), one can show (see [27])
that Algorithm 6 converges.

The multi-layered algorithm Algorithm 6 can be made multi-layered. The aim of this is to make
the algorithm detect periodic or regular behaviors better and detect only the drastic changes in the flow.
The idea is the following.

Layer 0 Perform Algorithm 6 as before but output the sub-flow of the outgoing messages: a new flow is
then obtained made of the messages (φ1(i), xφ1(i)) where φ1 : N \ {0} → N \ {0} is an increasing
function where φ1(i) is the i-th outgoing message.

Layer 1 Perform Algorithm 6 on the sub-flow (φ1(i), xφ1(i)) and outputs a sub-flow (φ2(i), xφ2(i)) for Layer
2.

Layer ` Perform Algorithm 6 on the sub-flow (φ`(i), xφ`(i)) and outputs a sub-flow (φ`+1(i), xφ`+1(i)) for
Layer i+ 1.

Example 3. In the previous example with T = 10 and σ = 1, the first messages of the flow are (4, 55),
(10, 195)... Figure 6.3 shows that the algorithms then converges on Layer 1 and finds the arrival rate
0.005.

time (s)

80

ρ′1 = 0.052

ρ1 = 0.066 ρ2 = 0.04 ρ1 ρ2 ρ1 ρ2

ρ′2 = 0.05

235

375

550 360 415180
Layer 0

Layer 1

Figure 6.3: Example of Algorithm 6 used with two layers.

It is not known actually if for any periodic flow there exists a layer for which the algorithm converges.
Nevertheless, we conjecture it: for any (αρ,T , αρ,σ)-constrained periodic flow, there exists a layer for
which the algorithm with parameters σ′ > σ and T ′ > T converges in finite time. Nevertheless, we
also conjecture that for any ` ∈ N \ {0}, there exists a periodic flow such that the algorithm does not
converges on the ` first layers.
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Implementation choices

• The role of σ and T : in the previous paragraph, we saw that σ and T do not play an important
role: they have no obvious property that make the convergence easier if they are increased (see
Example 2). However, those parameters have to be carefully chosen by the user in order to define the
tolerance to detect the rate variations. Small parameters will allow a very refined detection. Finally,
the choice of these parameters will be made in accordance with the theoretical characteristics of
the flow of interest.

• Rates update: in the core algorithm, we chose to update the rate when the lower constraint is broken
with the upper critical message, and conversely. Another solution would have been to choose the
other way round: update the rate using the lower critical message when the lower constraint is
broken. Doing this, there is no way to ensure the convergence in finite time.

6.3 Application to the supervision of a flow

6.3.1 Flow slowing down

We first apply the algorithm to a randomly generated flow of messages arriving slower and slower.
initially, messages have inter-arrival times uniformly distributed between 1.6 and 2.4 s, and the traffic
progressively slows down so that in the end, messages have an inter-arrival uniformly distributed on
the interval [16, 24]. This simulation could characterize the case where a router is overloaded and then
slowly communicates with its neighbors. Figure 6.4 (left) represents such a data flow on the left and the
rates computed by the multi-layered version of Algorithm 6 respectively for Layer 0 (center) and Layer
3 (right).
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Figure 6.4: Flow of messages arriving slower and slower.

In both cases one can observe the messages slowing down. Due to the fact that the fluctuations are
quite important (40%), the rates computed on Layer 0 change frequently. But, on Layer 3, the noise
induced by the fluctuations is erased and only the global behavior is observed. This illustrates the fact
that the Layer 0 shows many details that are discarded by the next layers.

6.3.2 Flow of a routing protocol

Routing protocols (OSPF - Open Shortest-paths-first, [70] - for example) have been defined to route
packets efficiently in the network and avoid congestion. The role of these routing protocols is to supervise
the network and specially maintaining the connectivity and short paths between each of its components.
One classical solution for preserving those properties is that each router sends periodical messages to its
neighbors and exchange information with them. This way it is possible for each router or component to
maintain the knowledge about the topology of the network. The protocols are usually described in such
a way that small deviations from the ideal behavior will not be detected in order to avoid an overload of
useless warning messages. In most of the cases, the network will be back to its normal behavior naturally.
However, in some cases, the cause of the small deviations is deeper and might result on a major fault
without any prior notice.

We also applied the algorithms presented in the previous section to flows generated by an emulated
real-size network. The flow is composed of the messages that are used by the OSPF protocol to exchange
information about the network (namely the Hello and Link State Advertisement (LSA) messages) under
different settings. Figure 6.5 shows the behavior of this flow when a router periodically reboots.
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Figure 6.5: Data flow between two routers (left) and the rates computed by Algorithm 6 (right).

In this chapter, we presented an approach using the concept of service curve into a new context: the
supervision of a flow. Here, the constraints are not fixed but follow the behavior of a flow, and we gave
a first algorithm to find those constraints. Future work include the generalization of this algorithm to
handle several flow and search correlation between them. There also might be a link with the multimode
network calculus of [91] for analyzing systems whose behavior is periodically changing.
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Chapter 7

Conclusion and perspectives

This document presents the main results I recently obtained in the field of network calculus. First, the
notion of service curves was investigated and a precise picture of their relationship to each other has
been presented, in this document for strict and simple service curves [24]. This shows that there is an
intrinsic difficulty in Network residing in the fact that most of the time several models of service curve
have to be taken into account.

We also presented a new model of curves, the packet curve, that attempts to enable a more precise
study of packet flows, whereas most of the study in the manuscript concerns the fluid model. The target
application of this model of curves was to study networks that contain flows with packets of different sizes
(one packet length could be hundred times the length of other packets), such as wormhole networks. In
those kinds of networks, the buffers have a size less than the size of a packet and consequently a packet
can occupy several buffers simultaneously and block other packets. Accurate delay bounds could be
obtained for toy networks, but, unfortunately, we did not succeed to apply this technique to real-size
networks and get better results than the ones obtained with classical network calculus techniques in
[59, 94]. This question is still a challenge. Nevertheless, for packet service policies (such as round-robin),
we obtained better performance guarantees than with the classical model taking into account only the
smallest and largest packet size.

Second, we presented techniques to compute exact worst-case performance guarantees in feed-forward
networks. The classical methods (computation with (min,plus) operators) lead to upper bounds that
become very loose as the network grows. A new method is presented using linear programming and mixed
integer linear programming, that enables us to compute the exact performance guarantees in two cases:
when the service policy is arbitrary and when the service policy is FIFO. This method can be adapted to
other service policies, such as static priority. The tightness of the bounds is lost, but bounds more precise
than with other methods: in fact, it is possible to combine the different approaches using more linear
constraints and then take the best of them. The main drawback of this method is its computational
complexity: in the case of multiplexing is arbitrary, the problem is NP-hard for general feed-forward
network and the linear program has an exponential number of variables and constraints event for tandem
networks in the case of the FIFO policy and we conjecture that in that case also the problem of finding
the exact worst-case delay is NP-hard. The next step of this study is to mix the classical techniques and
linear programming ones: in real-size networks (such as AFDX in an aircraft) thousands of flows interact,
but those flows generally have a small size, 5 or 6 hops. As a consequence, one could locally apply the
linear programming methods where, the characteristics of this local network are computed using more
classical methods (for example, good results are obtained for studying AFDX network using grouping
techniques [37]). Another open problem concerns the complexity class of obtaining tight performance
bounds. If we were able to find for which classes of network and which service policies it is possible to
derive tight performance bounds in polynomial time, it might give some hints about the approximability
(or non-approximability) of the exact worst-case bounds in more general cases.

Third, we discussed the algorithmic issues for computing (min,plus) operators such as (min,plus)-
convolution, deconvolution and sub-additive closure. Several softwares have been implemented using
these algorithms (the COINC toolbox and RT@W-Pegase). A new algorithm has been recently obtained
concerning the convolution in the special case of concave functions and convex functions, with application
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to the simulation of a numerical scheme: when functions are discrete (defined on N), the time-complexity
is linear. Then, the convolution of a general function by a convex function can be computed by first
decomposing the general function into convex and concave parts. This raises new problems, as the
approximation of nearly linear parts, that alternate very fast between convex and concave parts, that
makes the algorithm slow down, whereas we conjecture that this alternation is the consequence of the
discretization of a smooth function that is nearly linear in this part. We gave partial answers using a
tolerance parameter that enabled us to apply to such curves the algorithm of the convolution of two
convex functions. As a consequence, we did not obtain rigorous results concerning the approximation.
Another solution would be to directly linearize those parts of the function or try to adapt the notion of
container [80].

Finally, we present an application of the arrival curves to supervise a flow and detect abnormal
behaviors. The solution proposed is algorithmically very light and efficient to supervise one flow in a
network. Two extensions of this work can be proposed. First the improvement of the algorithm itself.
Until now, some parameters (the size of the tolerance window) have to be fixed. The use of learning
algorithms might enable to avoid this problem. Moreover, due to the nature of the flows, it should be nice
to give a stochastic dimension to the algorithm, enabling a few outgoing messages without recomputing
a new arrival rate. Second, a network being composed of several routeurs, hence a multitude of flows,
a challenge is to find how to correlate some of these flow through the algorithm presented here. The
final aim is then to forcast failures in the network. In [29], we developed a preliminary model that also
analyzes the occurrences of alarmes in a routeur and their correlation, but the link with the algorithm
presented here has not been clarified enough. This generalized approach must be then extended to the
cae of several routeur.

More perspectives

We presented only results concerning Deterministic network calculus. A first perspective would be to
apply them to the stochastic Network calculus: until now, very few works make use of strict service
curves (mainly, to study service policies that request it, authors use the limited case of guaranteed rate
where the behavior is almost like simple service curves to make the computations valid). For example, in
the book [72], the author defines the presents only one type of stochastic strict service curve when there
are three types for simple service curves, all leading to different results in term of stochastic guarantees.
I believe that it is possible to do better and define a stochastic version of other types of service curves.
Of course, strict service curves are defined using the start of backlogged period, which make things more
delicate, but variable capacity nodes might be a good candidate as its definition is simpler (in term
of server) and this type of service curve is almost the same as the strict service curve. Moreover, the
performance computing aspect of Stochastic Network calculus only makes use of the basic results of
Deterministic Network calculus (i.e. (min,plus)-convolution and deconvolution). It should be possible to
extend the results using mathematical programming to the stochastic case, where the deviation bounds
are constraints or objectives.

A limitation of the work presented here is that, with the notable exception of the packet curves, it
only concerns fluid models. Specially when we compute exact worst-case performance guarantees. Open
problems are the pessimism we introduce by modeling a packet flow by a fluid one, and how it can be
reduced. Linear programming and mathematical programming may not be adapted to that case. In
other domains, like graph theory, problems that can be modeled by a linear program also have another,
more algorithmic solution. Is it the case here? If yes, could that algorithm be used to compute exact
worst case delays for packet flows? A simpler way to improve the bounds is also to adapt the recent
works, like grouping flows, to the linear programming approach.

Network calculus has also recently received some attention in the field of transportation networks [57],
and brings new problematics: it is an example of network with cyclic dependences between the flows and
with backward control (roads have a limited capacity). Many problems are still open in that field, and
in particular how to find residual service curves for one flow of vehicles under a specific service policy. It
could also be a good context to try to extend the work [20] about the optimization of a flow in a network
to this context.

44



Bibliography

[1] R. Agrawal, R.L. Cruz, C.M. Okino, and R. Rajan. A framework for adaptive service guarantees.
In Proceedings of Allerton Conf, pages 693–702, 1998.

[2] M. Akian, S. Gaubert, and A. Lakhoua. The max-plus finite element method for solving deter-
ministic optimal control problems: basic properties and convergence analysis. SIAM J. Control
Optim., 47(2):817–848, 2008.

[3] K. Altisen and M. Moy. Arrival curves for real-time calculus: the causality problem and its
solutions. In TACAS, pages 358–372, 2010.

[4] K. Altisen and M. Moy. Causality closure for a new class of curves in real-time calculus. In
WCTT’11, pages 3–10, 2011.

[5] F. Baccelli and B. Blaszczyszyn. Stochastic Geometry and Wireless Networks, Volume I - Theory.
Foundations and Trends in Networking Vol. 3: No 3-4, pp 249-449. NoW Publishers, 2009.

[6] F. Baccelli and B. Blaszczyszyn. Stochastic Geometry and Wireless Networks, Volume II - Ap-
plications. Foundations and Trends in Networking: Vol. 4: No 1-2, pp 1-312. NoW Publishers,
2009.

[7] F. Baccelli, G. Cohen, G.Y. Olsder, and J.-P. Quadrat. Synchronization and linearity. Wiley, 1992.

[8] F. Baccelli, D.R. McDonald, and J. Reynier. A mean-field model for multiple TCP connections
through a buffer implementing RED. Performance Evaluation, 49(14):77 – 97, 2002.
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[94] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay bounds for best-effort communication
in wormhole networks on chip. In NoCS 2009, pages 44–53, 2009.

[95] H. Schioler, J.J. Jessen, J. Dalsgaard, and K.G. Larsen. Network calculus for real time analysis of
embedded systems with cyclic task dependencies. In Proc. of Computers and Their Applications,
2005.

[96] H. Schioler, H.-P. Schwefel, and M.B. Hansen. CyNC: a MATLAB/Simulink toolbox for network
calculus. In Valuetools’07, 2007.

[97] J.B. Schmitt, N. Gollan, S. Bondorf, and I. Martinovic. Pay Bursts Only Once Holds for (Some)
Non-FIFO Systems. In INFOCOM’11, 2011.

[98] J.B. Schmitt and F.A. Zdarsky. The DISCO network calculator: a toolbox for worst case analysis.
In Valuetools’06, 2006.

[99] J.B. Schmitt, F.A. Zdarsky, and M. Fidler. Delay Bounds under Arbitrary Multiplexing: When
Network Calculus Leaves You in the Lurch ... In INFOCOM’08, 2008.

[100] J.B. Schmitt, F.A. Zdarsky, and I Martinovic. Improving performance bounds in feed-forward
networks by paying multiplexing only once. In Proc. of MMB’2008, 2008.

[101] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

[102] W.M. Sofack and M. Boyer. Non preemptive static priority with network calculus. In ETFA, pages
1–8, 2011.

[103] W.M. Sofack and M. Boyer. Non preemptive static priority with network calculus: Enhancement.
In MMB/DFT, pages 258–272, 2012.

49



[104] L. Thiele and N. Stoimenov. Modular performance analysis of cyclic dataflow graphs. In Proceedings
of the seventh ACM international conference on Embedded software, pages 127–136. ACM, 2009.

[105] E. Wandeler. Modular Performance Analysis and Interface-Based Design for Embedded Real-Time
Systems. PhD thesis, ETH Zurich, September 2006.

[106] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[107] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System architecture evaluation using modular
performance analysis - a case study. Software Tools for Technology Transfer, 8(6):649–667, 2006.

50





Abstract

This document presents some results obtained in the field of network calculus, a theory
based on the (min,plus) algebra and whose aim is to compute worst-case performance
bounds in communication networks. This theory models flows circulating in a network
and the service offered by the network elements by cumulative functions and those func-
tions are abstracted by enveloped on which the computations are performed. Several
aspects are addressed.

A first part is devoted to the clarification and the improvements of the performance
bounds computed using this theory: the different types of service curves and the relation
between them are clarified; a new operator of packet curves introduced, in order to
describe the packet sizes the same way as the flows; and we improve the way of computing
worst-case performance bounds, that is classically based on the (min,plus) operators, by
introducing linear programs that compute the exact worst-case performances in some
cases and improve the bounds in the other cases.

The second part presents some examples other application of the results first developed
for networks calculus: algorithms of convolution of (min,plus) functions have received a
lot of attention by the network calculus community in order to compute bounds efficiently.
We show here an example of use for approximating the numerical solution of the Hamilton-
Jacobi equation. Another example is to use the concept of arrival curve to supervise a
flow. This is done with simple algorithm that can follow the evolution of the behavior of
a flow.

Résumé

Ce mémoire présente quelques résultats obtenus dans la domaine du Network calculus, une
théorie basée sur l’algèbre (min,plus) et dont le but est de calculer des bornes supérieures
des performances dans des réseaux de communication. Les flots de données circulant dans
un réseaux ainsi que les éléments de réseaux sont modélisés par des functions cumulées,
elles-mêmes abstraites par des enveloppes sur lesquelles les calculs sont effectivement
effectués. Plusieurs problèmes sont abordés.

Une première partie est dédiée à la clarification de certains concepts et à l’amélioration
des bornes calculées : différents types de courbes de service sont identifés et les relations
entre eux clarifiés ; un nouvel opérateur pour décrire les paquets est introduit, simi-
laire aux courbes d’arrivées (décrivant les flots de données) ; une modélisation par pro-
grammation linéaire est introduite pour améliorer les bornes obtenues via des opérateurs
(min,plus) et obtenir des bornes exactes dans certains cas.

La seconde partie présente des exemples d’utilisation de résultats d’abord développés
pour le network calculus pour d’autre domaines : l’utilisation de la convolution (min,plus)
pour approximer numériquement les solutions de l’équation de Hamilton-Jacobi et l’uti-
lisation du concept de courbe d’arrivée pour la supervision d’un flot de données, à l’aide
d’un algorithme simple qui permet de suivre l’évolution d’un flot de données.


