Some Synchronization Issues in OSPF Routing

Anne Bouillard', Claude Jard® and Aurore Junier

3

VENS/INRIA, Paris, France
2LINA, University of Nantes, France

3INRIA, Rennes, France
Anne.Bouillard@ens.fr, Claude.JJard@univ-nantes.fr, Aurore.Junier@inria.fr

Keywords:
OSPF ROUTING; SYNCHRONIZATION; SIMULATION; TIME PETRI NETS

Abstract:
A routing protocol such as OSPF has a cyclic behavior to regularly update its view of the network
topology. Its behavior is divided into periods. Each period produces a flood of network information
messages. We observe a regular activity in terms of messages exchanges and filling of receive buffers
in routers. This article examines the consequences of possible overlap of activity between periods,
leading to a buffer overflow. OSPF allows “out of sync” flows by considering an initial delay
(phase). We study the optimum calculation of these offsets to reduce the load, while maintaining a
short period to ensure a protocol reactive to topology changes. Such studies are conducted using a
simulated Petri net model. A heuristic for determining initial delays is proposed. A core network

in Germany serves as illustration.

1 INTRODUCTION

Routing protocols generally work in a dynamic
environment where they have to constantly mon-
itor changes. This function is implemented lo-
cally in routers by a programming loop that gener-
ates regular behaviors. Open Shortest Path First
(OSPF) protocol (Moy, 1998) is an interesting ex-
ample, widely used in networks. OSPF is a link-
state protocol that performs internal IP routing.
This protocol regularly fills the network with mes-
sages “hello” to monitor the changes of network
topology and messages “link state advertisements”
(LSA) to update the table of shortest paths in
each router.

A lot of work (Francois et al., 2005; Basu and
Riecke, 2001) has been devoted to stability issues.
The stability is required if there is a change in
the network state (e.g., a link goes down), all the
nodes in the network are guaranteed to converge
to the new network topology in finite time (in the
absence of any other events). The question is dif-
ficult when the change is determined as a result of
a bottleneck in a router (as possible in the OPSF-
TE (Katz et al., 2003)). If the response to a con-
gestion is the exchange of additional messages, the
situation may become critical. But it has been
proved (Basu and Riecke, 2001) that OSPF-TE is

rather robust in that matter.

In this article we look at a related problem
which is to focus on the possibilities of congestion
of the input buffers of routers due to LSA traffic.
Indeed, we believe that there are situations where
the cyclical behavior of routers may cause harmful
timings in which incoming messages collide in a
very short time in front of routers.

In current implementations, the refresh cycle is
very slow and congestion is unlikely in view of the
response time routers. Nevertheless, we address
the question to increase the refresh rate to en-
sure better responsiveness to changes. This arti-
cle shows a possibility of divergence, and discusses
the possibilities of avoiding harmful synchroniza-
tion by adjusting the phase shift of cyclical behav-
ior.

The approach is as follows. We modeled LSAs
exchanges using Time Petri Nets (in a fairly ab-
stract representation). This model was simulated
for a topology of 17 nodes representing the heart
of an existing network in Germany (data provided
by Alcatel). We then demonstrated the possibil-
ity of accumulation of messages for well-chosen
parameter values. Accumulation is due to a possi-
ble overlap of refresh phases in terms of messages.
To validate this model, and thus the reality of
the observed phenomenon, we reproduced it on a

network emulator available from Alcatel. Curves
could indeed be replicated. Parameter values were
different, but it was difficult to believe that the
model scaled with respect to the rough abstrac-
tion performed. Once the problem identified, the
question is then to try to solve it by computing
optimum initial delays. Such a computation can
be performed using linear integer programming on
a simplified graphical model. We will show using
simulation that the computed values are relevant
to avoid message accumulation in front of routers.
The rest of the paper is organized as follows:
we first present in section 2 the modeling of the
LSA flooding process and its validation. In sec-
tion 3, simulation shows a possible overload of
buffers depending on the refresh period. Then, in
section 4, we study a possible adjustment of the
initial delays, which aims at minimizing the over-
load. We show how to compute these delays. The
impact is then demonstrated using simulation.

2 TPN MODELING OF THE
LSA FLOODING PROCESS

2.1 LSA flooding process

The network is represented by a directed graph
G = (V,E), where V is a finite set of n vertices
(the routers) and E is a binary relation on V to
represent the links. The " router is denoted by
R;. The set V(R;) denotes the set of neighbors of
R;, of cardinality |V(R;)|.

The LSA flooding occurs periodically every T,
seconds (30 minutes in the standard). Thus, the
LSA flooding process starts at time k7,, Vk € N.

The LSA of a router R; records the content of
its database. Then, R; shares this LSA (denoted
LSA;) with its neighbors to communicate its view
of the network at the beginning of each period.
The router R; sends LSA; after an initial delay d;.
More precisely, R; sends LSA; at d; + kT,, Vk € N.
Suppose that a router R; receives LSA; and that
it starts processing it at time #. Then, R; ended
the processing of LSA; at time ¢+ T,, where T}, is
the time needed by any router to process an LSA
or an acknowledgment (Ack). During this pro-
cessing, R; updates its database and sends a new
LSA to its other neighbors if some new informa-
tion is learned. Consequently, R; could send a new
LSA at time t +T,, and its neighbors will receive
it at time ¢ + T, +T;, where T; represents the time
to send a message.

Note that any information received by R; can
be taken into account if some properties are sat-
isfied. The most important one is the age of the

LSA. An LSA that is too old is simply ignored.
In all cases, at time t 47, R; sends an Ack to R;.
The objective is to inform R; that LSA; has been
correctly received. In parallel, R; waits for an Ack
from all of its neighbors before a given time. If an
Ack is not received before the end of this time, R;
sends LSA; again until an Ack is properly received.
The LSA flooding process ends when every
router has synchronized to the same database.

2.2 The simulation model

Time Petri Net (TPN) (Jard and Roux, 2010) is
an efficient tool to model discrete-event systems
and to capture the inherent concurrency of com-
plex systems. In the classical definition, transi-
tions are fired over an interval of time. Here, tran-
sitions are fired at a fixed time. This assumption
is justified by observations of actual OSPF traces
whose data processing time does not vary that
much. In our case, the formal definition of TPN
is the following;:

Definition 2.1 (Time Petri Net). A Time Petri
Net (TPN) is a tuple (P,T,B,F,My,p) where
e P is a finite non-empty set of places;
e T is a finite non-empty set of transitions;
e B:PxT — N is the backward incidence func-
tion;
e F:T xP — N is the forward incidence func-
tion;
o My : P— N is the initial marking function,

e ¢: T — N is the temporal mapping of transi-
tions.

The remainder of this part is devoted to the
construction of the TPN that models message ex-
changes of the LSA flooding process. The objec-
tive is to model and observe the dynamic behavior
of a given network.

Router modeling The TPN that models the
behavior of the LSA flooding process in a router
R; needs three timers: d;, T, and 7,. Their func-
tions are: creating LSA;, managing a message re-
ceived and retransmitting a received LSA when
needed. Messages are processed one by one. The
following paragraphs present each functional part
of the TPN that models a router.

e Place Processor Initially this place con-
tains one token, representing the processing re-
source of a router that is used to process LSAs
and Acks. This place mimics the queuing mecha-
nism of R; and guaranties that only one message is
processed at once. For each different kind of mes-
sages (LSA; and Ack) the processing mechanism is

ACKrecy_s;

- - — - ACKs arrivals from a neighbor

LSArecy_,;

LSAs arrivals from a neighbor

ACKsend;_. .
_ __ = Acks sendings to the sender

Destruction

Retransmission

Processor

LSAsend; ;

\O’LLSA’SC;LJF%

,,,,,,,,,,,,,,,,,,,,,,,,,,,

5 Retransmission

Destruction

|
|
|
|
|
l
Q* -~ = Acks sendings to the sender :
|
|
|
|
|
|
|

Ksend;_,
LSArec; i
LSAs arrivals from a neighbor
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
< - - — - ACK:s arrivals from a neighbor
ACKrecj i

Figure 2: TPN of a router R; that has two neighbors, R; and Ry.

Processor

LSAsend; . ;

LSAsend;_j,

T 13 78]

p3 ps

Figure 1: Part of TPN that creates the LSA of a router
R;.

the following: an instantaneous transition is fired,
to reserve the resource of R;. Note that it can only
be fired if a message is waiting. Then the successor
transition with timing 7, can be fired, modeling
the processing time of the router, and Processor
becomes marked again, enabling the processing of
a new message.

e Creation of LSA Figure 1 represents the
part of the TPN that creates LSA;s at time d; + kT,
for k € N in router R;. Initially Start; contains one
token, #; fires at time d; and a token appears in p;
at time d; for the first time. Afterward, the cycle
D2,t, p3,t3 generates a token in py at times d; +
kT, k € N. Those token will be processed using the
mechanism described above, generating tokens in
places LSAsend;_.j, Rj € V(R;).

e Reception of an Ack (dotted rectangles on
Figure 2) A token in ACKrec;_,; represents this

event. It is processed using the mechanism de-
scribed above and does not generate any new mes-
sage.

e Reception of an LSA from a neighbor (dashed
rectangles in Figure 2). A token in place
LSArec;_,; represents this event. It is processed
using the mechanism described above and gen-
erate an Ack, that is sent to the sender. It can
also possibly generate an LSA message that will
be retransmitted to its other neighbors (transi-
tion Retransmission). Otherwise, the token is de-
stroyed (transition Destruction). In the flooding
mechanism, an LSA; is retransmitted only if it is
received for the first time during one flooding pe-
riod. That way, the LSA flooding process ensures
that every router converges to the same database
before the end of every period. To model this, we
bound the number of retransmissions per period
(for R;, the number of retransmissions of an LSA
received from R; is b;, that is modeled by placing
b; tokens in each place bound of R; at the begin-
ning of each period). The tokens are inserted in
these places by weighted arcs between #, and each
place bound.

e Global TPN Figure 2 represents the be-
havior for one router. Such a net is built for
each router. Finally, place LSAsend;_; (resp.
ACKsend;_,;) is connected to place LSArec;,;

(resp. ACKrec;_,;) by inserting a transition LSA;,;
(resp. ACK;_,;) with firing time 7; between them.

2.3 Model validation

We performed our experimentations on the 17-
node German telecommunication network repre-
sented in Figure 3. This article focuses on the
study of router Rg that has the largest number of
neighbors (|V(Rg)| = 6).

2P eLE

R3

Figure 3: German telecommunication network.

The arrivals of LSAs and Acks in the actual
network are captured by an emulation using the
Quagga Routing Software Suite (Ishiguro, 2012),
where each node is set from an Ubuntu Linux ma-
chine that hosts a running instance of the Quagga
Routing Software Suite. Figure 4 represents the
arrival of messages in Ry by the emulation of
the LSA flooding on the German topology dur-
ing 8000s with 7, = 1800s.

350

300 r B
250 ’,

200 -] i

150 |- ' ¢ i

100 + @ i

-50*[’, B
0 I I I I I I I

0 1000 2000 3000 4000 5000 6000 7000 8000
time(s)

umber of messages arrived

Figure 4: Emulation of the arrivals to Rg.

During the emulation, the processors of routers
are parametrized with a 900 MHz CPU, and the
mean size of an LSA (resp. an Ack) is 96 bytes
(resp. 63 bytes). The processing time of an LSA
(resp. an Ack) is approximately 0.8 us (resp. 0.5
us). The transmission time of an LSA (resp. an
Ack) in 96 ms (resp. 64 ms).

Unfortunately, these parameters can not be
used directly to parametrize the TPN, as the TPN
only represents the behavior of the LSA flooding
process. However, an actual router is much more
loaded. Thus, T, and 7; must be adjusted to in-
clude the whole load of the router.

The simulations presented in this article are
produced by the software Renew (see (Kummer
et al., 2003)) which can simulate Time Petri Nets.

Note that the TPN are automatically generated
(the TPN that models the German Telecommu-
nication network is not represented here due to
its size). Figure 5 represents the simulation of
message arrivals using the TPN where 7, = 1800s,
T, = 15s, T, = 30s. To correspond to the send-
ings emulated in Figure 4 the number of LSAs
retransmitted per neighbour during a period is

L)
bi = [qwmy -

350
300 - 4
250 | 4
200 | / E
.

150 [/ E
100 - / B

. -

50 -

Number of messages arrived

0 I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000

time(s)

Figure 5: Message arrivals to Rg with 7, = 1800s.

One can observe that Figure 4 and 5 are quite
similar: the parameters chosen as above are de-
fined to represent the actual behavior of an LSA
flooding process. The two curves are both com-
posed of periods that last 1800s. They show on
each period a burst of message arrivals that lasts
approximately 800s, then message arrivals stop
until the next period. We therefore conclude that
our abstract model correctly captures the phe-
nomenon of LSA flooding.

From now on we fix the parameters
((bi)ieq1,..ny> Tps T and T,) as defined above.

3 STUDY OF PERIOD
LENGTH

We study here the effect of the period length
T, on both message arrivals and queue length. We
first discuss the normal case where T, = 1800s.
Then, we present a congested case where T, =
514s. Finally, we observe a limit case where
T, = 1000s.

3.1 Low traffic case

Figure 6 represents the simulated queue length of
Rg during 10°s (approx. 1 day), where T, = 1800s.
One can observe a lot of fluctuations. At the be-
ginning of each period Rg receives and processes
messages. However, the number of messages that
are received is much larger than those which are
processed. Consequently, the queue length in-
creases. Afterward, the sendings stop, and R;

Queue length

0 l I I
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
time(s)

Figure 6: Buffer length of Rg with 7, = 1800s.

keeps processing messages. The queue length de-
creases.

3.2 Congested case

Figure 7 represents the message arrivals in Rg dur-
ing 8000s, and Figure 8 the queue length of Rg dur-
ing 10%s, where T, = 514s. One can observe that
messages arrive continuously on router Rg. Then,
Rg is never idle and never empties its queue. Con-
sequently the queue length permanently increases.

1000

900
800
700 -
600
500
400
300

Number of messages arrived

200
100

0 1000 2000 3000 4000 5000 6000 7000 8000

time(s)

Figure 7: Message arrivals to Rg with 7, = 514s.

6000

5000

4000 -

3000 -

Queue length

2000 -

1000 - -

0 I I I I I I I I I
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
time(s)

Figure 8: Buffer size of Rg with 7, = 514s.

3.3 Limit case

Figure 9 represents the message arrivals in Rg dur-
ing 8000s, and Figure 10 shows the queue length
of router Ry during 10%s, where T, = 1000s. This
time, the sendings of a period are not merged with

the sendings of the next period. Then, each pe-
riod is long enough so that Rg can process mes-
sages from its queue before the beginning of the
next one. Figure 10 shows the fluctuations of the
queue length that correspond to this. However
the queue length is not empty at the end of each
period. Consequently, the stability of this router
is not ensured.

500

T

150 | . / 4
400 - / B
350 | /‘ - E
300 "

250 - / B
200 , ./ 4
150 - B
100 / ‘ / g
0 e

0 I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000

time(s)

s arrived

Number of mess

Figure 9: Message arrivals to Rg with 7, = 1000s.

s

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
time(s)

Figure 10: Buffer length of Rg with 7, = 1000s.

Queue length

0

3.4 Sufficient condition for
congestion

Suppose being in the worst case where each router
learns some new information from each router and
let us now focus on the quantity of messages re-
ceived during a period.

Theorem 3.1. Let n(j) be the number of mes-
sages received by a router R; during a flooding pe-

riod T,. Then
n(j) =2 n(|V(R;)]).

Proof. Let us first focus on the case of networks
with a tree topology. In this case, we show that
the above inequality is in fact an equality. Two
kinds of messages can be received: LSAs and
Acks. Let us first count the number of messages
received by router R; concerning the flooding from
router R;. Consider R; as the root of the tree, R;
can receive LSA; from its father only: R; will re-
ceive one and only once LSA;. Afterward R; sends

LSA; to its children and will receive an Ack (as
illustrated in Figure 11). As a consequence, the
number of messages received for the flooding of
LSA; is the number of neighbors of R;. Consider
the flooding of LSA ;. The router R; sends the LSA
to its neighbors and will receive an Ack from them.
Globally, R; will then receive exactly n(|¥(R;)|)
messages.

j
— —> LSA,; sent at step j

©+ > ack sent in response to LSA; received

Figure 11: Flooding of LSA;: LSA and ACKs trans-
missions in a tree topology.

For networks with a general topology, one can
observe that the flooding of LSA; defines a span-
ning tree of the graph: (R;,Ry) is an edge of the
spanning tree if Ry first received LSA; from R;.
Then for the flooding of LSA;, R; receives at least
the messages it would received if the topology
were the spanning tree, which gives the desired
inequality. O

The number of messages processed by router
R; during a flooding period is 1+n(j): it processes
the received messages plus LSA;. Define N(j) the
number of messages processed during a flooding
period by R;, we have

N(G) = n(V(R +1.

If a router can not process every message of its
buffer before the end of each period a congestion
occurs. Also, given the minimal bound of Theo-
rem 3.1 the congestion is ensured by the following
threshold on T,.

Lemma 3.2. If T, < T,N(j) then the queue length
of R; tends to infinity.

Proof. The proof is straightforward from Theo-
rem 3.1. O

Consider the tree topology network of Fig-
ure 11. Theorem 3.1 ensures that the number of
messages received by R; (|V(R;)| =4) is N(j) =
9x4+1=37. Therefore, if T, is set to 15 s in
the TPN, if T, < 15 x 37 =555 s the network is

Queue lengoh—

Example 3.3 (Simulation of TPN by Renew software).

80 T T T T T T T

70

N

50 - [LELLASIN
Ll
Lol

60 - ‘

30 -
20

10 1\

L1 “m | | | | | |
0
0 50000 100000 150000 200000 250000 300000 350000 400000
time(s)
Figure 12: Queue length of R3 with T, = 554s of tree
topology.

congested. Simulation of the TPN, representing
this topology, with T, = 15s, T, = 5545, T; = 30s
has been made during 4.10° s to illustrate this re-
sult. The evolution of the queue length of router
R; is shown in Figure 12. The queue length of
R; clearly increases during the simulation, show-
ing that the network is congested. Finally, as the
simulation has been made with the largest period
length that emsures congestion, during each pe-
riod, R; has enough time to process many mes-
sages from his queue. Consequently, one can ob-
serve that the queue length varies a lot.

4 COMPUTING OPTIMUM
INITIAL DELAYS

In Section 2.2, we emulated the flooding phe-
nomenon of the OSFP protocol using Time Petri
nets. The initial idea was to consider initial de-
lays for each router as parameters. The question
is then to infer constraints on these parameters
that ensure a minimum size of the input buffers.
Even if this kind of question can be theoretically
solved using symbolic model-checking (Lime et al.,
2009), the computation complexity is high. The
state of the art of the current existing tools did not
allow us to automatically produce such symbolic
constraints.

In order to compute initial delays, we adopt
the following method. We only take into account
the message contributing to the flooding mecha-
nism: when an LSA message concerning router R;
is received at router R;, it is forwarded only if it
is received for the first time. Then, we will model
neither the LSA messages that are not the first to
be received at a node, nor the Acknowledgments.

4.1 Constraints modeling

Our goal is to perform the floodings as closed
as possible while interacting as little as possible.
We say that two floodings do not interact if, for
each router, the first LSA received from those two
floodings in that router are not queued at the
same time.

More formally, we consider a graph G = (V,E),
where V = {Ry,...,R,} is the set of routers and
E CV xV is the set of links between the routers.
If (Ri,R;j) € E, then T;; denotes the transmission
time between R; and Rj, and Ti,j = if (Ri,RJ') ¢
E. The sojourn time of a message in R;, between
its reception and its forwarding, belongs to the
interval [8;,A;[. This time also holds for the source
of messages.

Let us first compute the intervals of time /; ;
when the first LSA originating from R; is received
in R; if the flooding starts at time 0. If i = j, then
I;; =[0,0], and otherwise, we have I; ; = [o; , B j
where o j = minge;) Ok + 8 +Tpj and By j =
minge oy Bik + Ak + Ty

The quantities o;x + & and B;x + Ax respec-
tively represent the minimal and the maximal de-
parture times from Ry.

For the computation of both o, ; and B;;, we
recognize the computation of a shortest path in a
graph with respective edge lengths (8;+1; ;) and
(Ai+7ij). Let o= (o ;) and B = (B;;) the ma-
trices of the shortest-paths. They can, for exam-
ple, be computed using the Floyd-Warshall algo-
rithm. Now, the messages originating from R; are
present in R; during an interval of time included
in [(xi7j, Bi,j+Aj [: [ai,j,'Yi,jL We denote by Dw‘ this
interval and D the matrix of these intervals.

Example 4.1 (Sojourn times in the routers).
81,41 [=[1,2] [82,A2[= [1,3]

[837A3[: [172[[84,A4[: [2/3[
Figure 13: Example of a toy topology.

Figure 13 represents a toy topology with 4 ver-
tices. Matriz D is then:

Now, if the flooding from server R; starts at
time d;, its first LSA received by R; is present
in that server at most in the interval d; + D; ; =
[di + 04 j,di +ij]-

Then, in order to have no interference between
the floodings in router R;, the family of intervals
(di+Di j)ieq1,...ny must be two-by-two disjoint, and
to have no interference at all, the following condi-
tion must hold:

Vi, j,ke{l,...,n}, i#k:>d,’+Diﬁjﬁdk+Dk’j =0,
that is,

di+vj <di+oy; or

Vi, j,ke{l,....n}, ’#k:{ di+Ye; < di+0y.

For each triple (i, j,k), the two constraints above
are exclusive: as ¥;; > o ;, if one holds, necessar-
ily, the other one does not hold.

Now, if we don’t consider the first flooding
from each router only, we have to study the in-
terferences between the first and second flooding
from each router (if there is no interference be-
tween those two sets of flooding, then there will
be no interference at all).

If the flooding period is T, then the constraints
must then be transform in
di+Yij < di+ 0y or
A+ < di+ 0 and
di+vwj<di+T+o;; and
di+Yij <de +T + 0y

(1)

The two cases are illustrated on Figure 14.
Note that, depending on which of the two first
constraint is satisfied, one of the two last inequal-
ities is trivially satisfied.

Vi,j.ke{l,....n},

dk+Dk/' dk+T+Dk’j
L1 [r1 I
T — T [—
d,'+D,'7j d,'+T+D,'1j

dy+ Dy ; dp+T+Dy

ool 1 g e

R R I |

dl(+D; ; dl{ +T+D;;

Figure 14: Different possibilities for the constraints.
In the first case, d; + D; ; is before dy + Dy j and in the
second case, dj 4+ Dy j is before d + D j, but in both
cases, di+ Dy j is before d;i+T +D;; and d;+D;; is
before dy + T + Dy ;

The problem we want to solve is then to find
(di)ie(1,...n) such that all the constraints are satis-
fied and T is minimized.

Theorem 4.2. Given (0)i je{1,...m} s
(Yij)ijef1,..ny and T, the problem of finding
(di)ie1,..ny satisfying the constraints of Equa-
tion (1) is NP-complete.

Proof. The problem is trivially in NP as for any
assignment of (d;) and period T, it is possible to
check in polynomial time if the constraints are
satisfied (there are O(n®) constraints).

Now, to show that the problem is NP-hard,
we reduce the salesman problem with triangular
inequality to that problem.

Suppose a complete weighted graph, with posi-
tive weights of the edges w(u,v), satisfying the tri-
angular inequality: for all vertices u,v,x, w(u,x)+
w(x,v) <w(u,v). Set Vi = maxge(y,. »yw(k,i) and
i, j = Ye,j = w(isk).

This assignment of the variables is made in
such a way that if for some j, d; —di > Vi, — i j,
then this holds for all j, as ¥ j — O j = wi.

Now, let (d;) and T be a solution of our prob-
lem. There is a Hamiltonian cycle of weight W <T
in the graph: suppose, without loss of generality
that di < dp <--- < d,.

Then, w(1,2)+w(2,3)+---+w(n,1) <
(da—d))+(ds—dy))+--+(d—dy+T)=T.

Conversely, suppose that there is a Hamilto-
nian cycle of weight W, corresponding without loss
of generality to the cycle 1,2,...,n. Set d; =0 and
di=di—1 +w(i—1,i). We have for all i,j d; every
constraint is satisfied and 7' =W is a possible pe-
riod: if k> i, dy—di=w(i,i+1)+---+wlk—1,k) >
w(i, k). Moreover, (di+W)—dy=w(k,k+1)+---+
w(n, i)+ +w(i—1,i) > w(k,i).

Hence, we have a Hamiltonian path of length
at most T if and only if we can find a solution to
our problem with period at most T: the problem
is NP-hard. [

4.2 Exact solution with linear
programming

This problem can be solved with a linear program
using both integer and non-integer variables. The
trick is to encode the constraints

di+Yix <dig+0y; or
de+Y < di+oy

into a linear program, and this is why we intro-
duce integer variables.
First, this set of constraints can be rewritten
in
di—d; > by jordi—di > by ;
with bi,kﬁj ="Yi,j — Ok, j- Set B = max; ; b,',kJ'.

Lemma 4.3. There is a solution of this problem
where for alli € {1,...,n}, d; € [0,nB].

Proof. The assignment d; = (i — 1)B is a solution
of the problem. Indeed, Vi <k, Vj € {l,...,n},
dy—di = (k—i)B> B > b j. Moreover, Vik,j,
dk—dl:(n—k—Fl)Bszb,’kj L]

Lemma 4.4. The following sets of constraints are
equivalent.

(Z) di,dy € [O,IIB] and (dkfd,' > b,‘,kJ or di —di >
b j)

(i1) di,dy € [0,nB], q € {0,1} and dy —d; + (1 —
q)nB > by j and di —di+qnB > by ;.

Proof. Suppose that the constraints (i) are sat-
isfied. Either dy —d; > b; jx and the constraints
in (if) with ¢ =1 are satisfied (we have the two
constraints dy —d; > b; jx and d; —dy+nB > nB >
by, j); or di —dy > by;; and similarly, the con-
straints in (ii) with ¢ =0 are satisfied.

Suppose now that the constraints (ii) are sat-
isfied. If ¢ = 1, then, trivially, di —d; > b; jx and
if =0, then d; —d; > by O]

Consequently, the linear program is

Minimize T under the constraints
Vi,jke{l,....n}, i #k,
0<d;<nB

ik €10,1}

dy—di+ (1 —qi jx)nB > bjy

di —di +qi jnB > by j

di—d; < T —maxjen, b i,j

Example 4.5. The toy example above gives T =
28, with dy =0, dy =21, d3 =14 and dy =5.

Computing this exact solution is possible but
has two drawbacks. First, as the problem is NP-
complete, computing the initial delays in larger
networks may be untractable. Second, this solu-
tion does not exhibit monotony properties. For
example, if the linear program lead to a period T
and the target period is T/ > T, it might be bet-
ter to stretch the values d; —di to (d; —dy)T'/T.
It is unfortunately not ensured with the solution
found. In the next paragraph, we show how to
compute a solution complying with this additional
constraint.

4.3 Heuristic using a greedy
algorithm

To simplify the problem we only use strongest con-

straints: with ¢; = maxien, bik,;,

Cik Sdp—di <T—cr; or cp;i<di—dpy<T—cjj.
(2)

Lemma 4.6. If (di)ie{L) s a solution to the

constraints of Eq. (2) with a period T, then for
T'">T, (TTIdi) is a solution for the same con-
straints with period T'.

Proof. If c;x < dy—d; <T —cy, then as T% > 1,
T (dy —di) > di —d; > cig. Second, T(dy —dy) =
TTI(T —cpi) =T — TT/Ck.i <T'—cig.

O

Solving these constraints is still a NP-complete
problem. In fact the proof of Theorem 4.2 is valid
in this case.

Now, in order to assign the values, we can use
the greedy algorithm presented in Algorithm 1.
At each step, the algorithm assigns one initial de-
lay, that is chosen to be the smallest as possible,
given the initial delays already assigned, while sat-
isfying the constraints set by them.

Algorithm 1: Initial delays computation.

Data: Cij-

Result: d,,...,d,, T.
1 begin

2 D<+0,;

3 S%{l,...,n};

4 foreach i € S do d; + 0;

5 while S # 0 do

6 § < Argmin;c¢d;;

7 S+ S\ {s};

8 foreach i € S do

d; < max(d;,ds+cs;);

9 foreach i € D do

T < max(7T,d; —d; +cs,);
10 D+ DU{s};

11 end

Lemma 4.7. At each step of the algorithm, the
constraints (2) such that i,k € D are satisfied.

Proof. We show the result by induction. When
D=0 or |D| =1, then this is obviously true as no
constraints are involved. Suppose this is true for
D and let s the next element that is added to D
in the algorithm. From line 8, we know that ds >
max;epd; + Cis- Then, for all i € D, dg—d; > Cigs-
Now, from line 9, for all i € D, T > d; — d; + ¢y,
so dy—d; <T —cy,;. So, the constraints involving
s are satisfied. Now, if the constraints between
i and j, i,j € D are satisfied at one step of the
algorithm, they will remain satisfied during the
following steps, as T can only increase. O

Example 4.8 (Application of Algorithm 1). With
our toy example, we have

0 8 11 14
6 0 9 12
C=@i)=19 7 0o 7
14 12 9 0

If 1 is chosen first (d; =0 Vi€ {1,2,3,4}), the val-
ues are updates to dj =0, dy = max(0,d) +c12) =
8, dy=11 and dy =14; T =0. Then, 2 is chosen
and we get d3 =max(ds,dy+c23) = 17 and dy =20;
T =max(T,dy —d; +c¢21) = 14. Finally, we have
dy=0,d>=8, dy =17, dy =24 and T = 38.

Note that this problem could also have been
solved using a linear program (with integer vari-
ables), by replacing the variables g, j in the linear
program of the previous paragraph by g;: forget-
ting the parameter j, exactly leads to the same
constraints of Equation (2). In this case, we find
T =36, with di =0, d» =30, d3 =11 and ds = 18.
Our heuristic is near this optimal.

In the next lemma, we assume that our target
period is T/ < T, that is, we are not able to find
a solution so that there is at most one message in
the queues of the routers. We assume here that
the sojourn time of a message does not depend on
the queue length.

Lemma 4.9. Let (d;) be a solution for the initial
delays with period T. The same assignment with
period T' < T ensures that in each router, there are

never more than f%l messages simultaneously.

Proof. Set (%] =g. We number the messages:
m] is the j-th message originating from router i.
For ¢ € {0,...,q— 1}, in each server, simultane-
ously, there cannot be several messages among
(quM)keN,ieNn, because g7’ > T. As a conse-
quence, there cannot be more than g messages in

a router. O

4.4 Simulation results with initial
delays

In this section, we present simulations of the TPN
modeling the German telecommunication network
with initial delays defined by Algorithm 1 in the
stable case (7, = 1800s).

We first need to define the transmission and
sojourn times used by the algorithm:

e the transmission time has already been defined
to T;; = T; = 30s, for all the links of the network;

e for each router R;, the sojourn time is at least

equal to the processing time §; = T), = 15s, the
time to process the message where the queue
is empty. The maximum sojourn time is ex-
tracted from the simulation of the TPN of Sec-
tion 2 (with no initial delays). During the sim-
ulation, the maximum queue length is Q; in
router R;. Then we take A; = Q;T).
Note that doing this enables to take into ac-
count all the messages from the LSA flooding
mechanism, and not only the first LSA mes-
sage in each router.

The maximal queue length of each router is
extracted from a simulation of the TPN dur-
ing approximately 3.5 days (3.10%s). Here is
the list of each maximal queue length: Q =

(7,8,13,2,2,17,8,37,4,5,13,2,2,3,13,6,2). Then,
Algorithm 1 returns the following initial delays:

d = (0,105,1200,810,75,255,420, 1335, 1035,
1080, 1155, 1530, 630,330, 780,330, 1680).

Furthermore, Algorithm 1 computes Ty =
16695 s.

25

20 - -

15 - -

10 - -

Queue length

5 -

0

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

time(s)

Figure 15: Buffer length of Ry with 7, = 1800s and
initial delays.

Figure 15 represents the result of the TPN
simulation with initial delays listed above when
T, = 1800s. The maximum queue length for router
Rg is now Maxg = 25, which gives a significant im-
provement: it was Maxg = 37 without the com-
putation of initial delays. Moreover, the queue
length is most of the time below 10.

5 CONCLUSION

This article presents a method usable for the
OSPF protocol and cyclic protocols that use de-
lay parameters. This method aims at increasing
the reactivity of the network to topology changes,
and at minimizing the queue length of routers.
Algorithm 1 provides an efficient way to spread
messages over the whole period. Furthermore, it
shows to be a good tool to reduce queue lengths.

REFERENCES

Basu, A. and Riecke, J. (2001). Stability issues in
ospf routing. In Proceedings of the 2001 con-
ference on Applications, technologies, architec-
tures, and protocols for computer communica-
tions, SIGCOMM ’01, pages 225-236, New York,
NY, USA. ACM.

Francois, P., Filsfils, C., Evans, J., and Bonaventure,
0. (2005). Achieving sub-second igp convergence
in large ip networks. SIGCOMM Comput. Com-
mun. Rev., 35(3):35—-44.

Ishiguro, K. (2012). Quagga, a
software package for tcp/ip
http://www.nongnu.org/quagga/.

routing
networks,

10

Jard, C. and Roux, O. H. (2010). Communicating
Embedded Systems, Sofware and Design, Formal
Methods. iSTE and Wiley.

Katz, D., Kompella, K., and Yeung, D. (2003). Traffic
Engineering (TE) Extensions to OSPF Version 2.
Updated by RFC 4203.

Kummer, O., Wienberg, F., Duvigneau, M., Kohler,
M., Moldt, D., and Rolke, H. (2003). Renew the
reference net workshop. In mi.

Lime, D., Roux, O. H., Seidner, C., and Traonouez,
L.-M. (2009). Romeo: A parametric model-
checker for petri nets with stopwatches. In
Kowalewski, S. and Philippou, A., editors,
TACAS, volume 5505 of Lecture Notes in Com-
puter Science, pages 54-57, York, United King-
dom. Springer.

Moy, J. (1998). RFC 2328 OSPF v2. Technical report.

