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Abstract—Nowadays, telecommunication systems are growing
more and more complex, generating a large amount of alarms
that cannot be effectively managed by human operators. The
problem is to detect significant combinations of alarms describing
an issue in real-time. In this article, we present a powerful
heuristic algorithm that constructs dependency graphs of alarm
patterns. More precisely, it highlights patterns extracted from
an alarm flow obtained from a learning process with a small
footprint on network management system performance. This
algorithm helps to detect issues in real-time by effectively
delivering concise alarm patterns. Furthermore, it allows the
proactive analysis of the functioning of a network by computing
the general trends of this network. We evaluate our algorithm
on an optical network alarm data set of an existing operator.
We find similar results as the expert analysis performed for this
operator by Alcatel-Lucent Customer Services.

I. INTRODUCTION

Network management, especially for issue resolution, has
in the last decade become a very complex task. To face the
increasing network complexity, more and more alarm types
have been defined, and most of them no longer refer to
any critical problem (see [5] for example). Networks can
easily produce billions of alarms a day that can no longer be
effectively managed manually. Furthermore, this huge quantity
of information is highly redundant: a single fault can have
several symptoms, can be propagated, or can persist, which
generates numerous alarms.

The principle of event correlation is to group alarms re-
ferring to the same problem (to reduce redundancies) and
to highlight those referring to probable faults. Many studies
in recent years respond to these challenges, based on event
correlation, or on alarm pattern retrieval algorithms, both
of which are limited (see Section II). Therefore, automatic
techniques that process the large quantity of alarms are now
compulsory to build and operate reliable networks.

In this paper, our aim is to develop an efficient method that
highlights alarms corresponding to root causes of problems
and that can be applied to any kind of network without making
any assumption on its characteristics. Our research is based on
the assumption that the alarms that occur most frequently are
those referring to general information about the network. As
a consequence, we focus our study on the observation of non-
frequent alarms.

The paper is organized as follows. In Section II, we discuss
related works. Section III introduces the method that defines

patterns of non-frequent alarms. Based on these, dependency
graphs are constructed to identify alarms that might lead to
severe faulty behavior (Section IV). Finally, we show the
evaluation and the results of the proposed method in Section V.

II. STATE OF THE ART

Here, we present examples of various approaches. A more
detailed state of the art is presented in [2].

Method based on graph dependency. In [6], Katzela and
Schwartz present a pioneer event correlation heuristic to find
the root cause of anomalies. They first construct a statistical
dependency graph of the network elements (nodes, links) and
build, for each alarm appearing in the system, the set of objects
that might have sent it. Finally, using this graph, they compare
a set of localization algorithms.

Methods based on specific architecture. Many articles de-
sign a correlation engine directly in the network management
system and improve some aspects to reduce the raw flow of
alarms by only sending the most pertinent information. For
example, in [7] Ross and White define an alarm architecture
using the principle of Model-Based Reasoning and a rule-
based approach. Their Alarm Correlation Engine of Northern
Telecom has been implemented in Smalltalk and contains rule
writers to maintain the knowledge of the network (i.e. the set
of rules that defines a specific problem). However rule-based
approaches are limited in their scalability.

Method based on linear algebra. In [3], an alarm is defined
as redundant to another if it occurs close in time to the other
for most of its occurrences (represented by a Gaussian curve
centered on the actual occurrence time). A linear computation
is performed to detect redundancies. However, this approach
does not take into account alarms occurring between the
alarms designated as redundant, which provides additional
important information.

Method based on pattern definition. Another way to
correlate alarms is to create patterns of frequent alarms by per-
forming data mining on the flow of alarms (see Dousson and
Duong, [4]). However, this iterative method is at least O(i5) in
the number of iterations, which remains computationally too
complex to be implemented in practice.

Method based on probabilistic finite state machine.
In [8], Rouvellou and Hart correlate alarms using probabilistic
finite state machines (PFSM) describing faults. A PFSM
represents the succession of alarms that imply a particular



problem. Unfortunately, the set of possible faults (which can
be very large) must be defined in advance.

Method based on correlation coefficient: Yang, in [10],
presents a technique where the alarms are represented by
Gaussian functions and statistics are used to correlate them.
Then, the links between alarms are represented on a colored
map. Unfortunately, this method is off-line which does not
meet our dynamic requirements.

The main difficulty to tackle the correlation problem resides
in the ability to deal with a huge quantity of data to detect
dangerous network behaviors. Here we introduce a generic
method that efficiently creates several dependency graphs of
alarms. It is based on modifications of the sequence of alarms,
which enables a fast study of the event correlation problem.

III. CONSTRUCTION OF RELEVANT PATTERNS

We use the notations from the language theory. Consider
A is a non-empty finite set. Then A∗ (resp. A+) denotes the
set of finite sequences (resp. non-empty finite sequences) with
elements in A. For f ∈ A∗, |f | stands for the length of f and
for a ∈ A, |f |a is the number of occurrences of a in f . The
symbol ‘·’ represents the concatenation (if f1 = a1 · · · ai and
f2 = b1 · · · bj , then f1 · f2 = a1 · · · aib1 · · · bj). Also, P(A)
stands for the set of subsets of A. The support of f ∈ A∗ is
f = {a ∈ A | |f |a ≥ 1} ∈ P(A). With this notations and
A = {a, b, c, d}, f = abcbca ∈ A∗ and f ∈ A+, |f | = 6,
|f |a = 2 and f = {a, b, c}.

We now focus of a flow of alarms. Let A be the set of
alarms names and f be the sequence of those alarms names in
a log file. We assume that some alarms appear very frequently,
while some others only appear a few times, which is what
we observe in the log files studied. Our goal is to search
for a group of non-frequent alarms. To highlight them we
perform several transformations on the flow: a) Identification
of the most frequent alarms; b) Construction of set patterns;
c) Reducing the set patterns in size.

a) Identification of the most frequent alarms: This is
simply done by counting the number of occurrences of each
alarm a ∈ A that appears in f , |f |a, and using a fixed threshold
α. Then, the set of frequent alarms is defined by

M = {a ∈ A | |f |a/|f | ≥ α}.

b) Construction of set patterns: In the sequence of
alarms, some alarms are sent several times. Therefore, if
an alarm a arrives before an alarm b, this does not always
mean that a is the cause of b or that a has been generated
before b. Moreover, we may often find patterns ababa...
in the log files. Furthermore, before being monitored, the
alarms are temporarily buffered. Consequently, the exact order
between the alarms has a weaker impact than for a real-time
monitoring, which is rare and expensive in infrastructure costs.
As a consequence, for alarms that are consecutive or almost
consecutive, we may not have to keep them ordered and short
patterns of f can be considered as sets of alarms instead of
sequences.

Let R = A \M be the set of alarms that are not the most
frequent. Then, there is a unique decomposition of f as f =
m0·r1·m1·r2 · · · r`·m`, where m0,m` ∈M∗ m1, . . . ,m`−1 ∈
M+, and r1, . . . , r` ∈ R+. The sequence of alarms we focus
on is the concatenation of non-frequent set patterns:

sp(f) = r1 · r2 · · · r` ∈ P(R)∗.

Example 1: Due to lack of space we only give an
example to illustrate the construction, from which an
interpretation cannot be made. A more complete example
is described in [2]. Take A = {a, b, c, d, e} and fex =
aabeaabacbabaccaabadbaceacaaceabacbabaacaaddcaeeaa.
We have |fex| = 50, and |fex|a = 24. Then, with
α = 0.4, we find M = {a} and R = {b, c, d, e}. Then,
the sequence of non-frequent set patterns can be computed:
sp(fex) = {b, e}{b}{b, c}{b}{c}{b}{b, d}{c, e}{c} {c, e}{b}
{b, c}{b}{c}{d, c}{e}. We get |sp(fex)| = 17 but the rarest
alarm d appears in only 2 set patterns. A much more
schematic view of the rare alarms is needed.

c) Reducing the set patterns in size: The third step
consists of reducing the length of |sp(f)|. This can be done
by setting transformation rules. For u, v ∈ P(R),

(R1) uvu→ u ∪ v (R2) uv → u if v ⊆ u.

In other words, if sp(f) can be written as z1 ·uvu · z2, then
it can be transformed into z1 · (u ∪ v) · z2 using rule (R1). If
v ⊆ u and sp(f) = z1 · uv · z2, then it can transformed into
z1 · u · z2 using rule (R2).

We recursively apply these rules until no further rule can
be applied. Note that the choice of the order to apply the rule
may slightly affect the result. We arbitrary chose repeatedly
to apply first rule (R1) from left to right and then (R2) until
no rule can be used. We denote by rsp(f) the reduced set
pattern obtained after applying rules (R1) and (R2).

Example 2: After the application of those rules to
sp(fex) of Example 1, rsp(fex) = {b, e}{b, c}{b, d}{c, e}
{b, c}{c, d}{e}: its length is reduced from 17 to 7. The
reduction is not drastic in this example because the number of
alarms is too small. The reduction of the length will be greater
for the sequences considered in Section V.

IV. RELEVANT PATTERNS DETECTION

In this section, we use the heuristic of the previous section
in order to find patterns leading to rare alarms. Rare alarms
only appear a few times in the log files: this corresponds
to alarms that lead to faulty behavior of the system and are
often repaired very soon after the occurrence of the alarm.
Identifying patterns leading to that fault may then allow a
proactive management by detecting the root cause of a problem
before it implies a failure.

In order to handle this, we construct the dependency graph
G = (V,E,w) of the set patterns found with our heuristic:
G is a weighted directed graph with set of vertices V , set of
edges E and weight function w : E → N, where

• V = rsp(f), the set patterns that appear in rsp(f);
• E = {(u, v) | ∃z1, z2 such that sp(f) = z1 · uv · z2;



• w(u, v) = |{(z1, z2) | sp(f) = z1 · uv · z2}|, the number
of occurrences of uv in rsp(f).

Example 3: Figure 1 represents the graph corresponding to
the log file of Example 1. The weights of the edges are all
equal to 1, so they are not represented. We observe that alarm
d always appears with c or b, and is preceded by {b, c}. We
may deduce that there is a correlation between those alarms.

be bc ce

cd

bd

e

Fig. 1. Dependency graph of fex, the log file from Example 1.

A difficulty in analyzing the flow of alarms lies in the
fact that the quantity of alarms to manage is huge and many
pathologies can occur together. Consequently, we divide the
dependency graph in sub-graphs, each focusing on the study
of a small set of rare alarms. Observing these graphs gives
a refined analysis of the rare alarms that provides hypotheses
about the root cause that generated the alarms.

V. EXPERIMENTS AND RESULTS

We evaluate our method using the real network issues of an
operator, a customer of Alcatel-Lucent Customer Services. We
focus our analysis on a network element, NE, of the Optical
Synchronous digital hierarchy (SDH), from a retrieved log file
of 36K alarms over one year. Let us note that its full optical
layer is composed of more than 62K elements that are able
to generate alarms. Currently, each element analyzes the large
amount of information received by a traditional management
method, which is a difficult task.

We focus on a frequent issue: the laser failure of an optical
SDH network element. Table I lists the alarms found in the
log file studied. Several alarms are symptomatic of such an
issue: LOS, AIS, RUP, and RUM. In particular, occurrences
of alarm LOS indicate that the whole signal is unusable: it is
replaced by an AIS consisting in continuously sending binary
1s. This produces occurrences of alarm AIS in every device
downstream the fault (see [9]).

To guide the expert for analyzing the network, we first use
the algorithm proposed in [1] to analyze the global flow of
alarms. This algorithm allows us to detect on-line the strong
deviations of the behavior of the flow. Here, the behavior
means the rate at which the alarms arrive. This arrival rate
is sandwiched between two affine curves with the same slope,
which are automatically updated to fit the variations of the
flow rate.

The flow f we consider is composed of the alarms and
their arrival time. We discard the names of the alarms to
perform the algorithm of [1]. Figure 2 represents the variation
of alarms arrival rates on the global flow f computed with this
algorithm. One can observe that rates computed are low and
last a relatively long time up to 1.0 107 s. Afterwards, the range
of rates progressively becomes wider with amplified variations.
After 1.6 107 s, the fluctuations reach their maximum and
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Fig. 2. Arrival rates of the global flow of alarms f .

remain so until the end of the observation. From this curve,
one can assume that a major problem occurs after 1.0 107 s.

Let us now focus on the behavior of some alarms: RUP
(important for the use-case), but also EBER and FO. For the
sake of simplicity, we denote fa the sub-flow of f containing
only occurrences of alarm a.

Figure 3 depicts computed rates for the sub-flows fRUP and
fEBER. This graphic shows that RUP occurs in f only at the
beginning of the flow, during the first 7.0 106 s. This ensures
the presence of the use-case. Alarm EBER appears all along
the observation. However, one can detect bursts of arrivals:
before 1.0 107 s. and after 2.0 107 s. Processing the same way
with alarm FO indicates three arrival time: a single burst at
5.0 105 s. and at 1.0 107 s and more occurrences appear after
2.2 107 s, as shown in Figure 4. RUP seems correlated with
EBER and FO. One can observe that the instability on the
global flow starts when RUP is not emitted any more. This
might highlight that the use-case we focus on is not the major
problem of this node.
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Fig. 3. Arrival rates of sub-flows fRUP and fEBER.
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Fig. 4. Arrival rates of sub-flows fRUP and fFO .

Let us now focus on the approach described in Section III.
The two columns NEα1

and NEα2
of Table I represent the

partition of the alarms between M and R with parameters α1

and α2.



Acronym full name NEα1 NEα2

AIS Ais R R
CP Cabling problem R R
CSF Communication subsystem failure R R
DS Degraded signal R M
EBER Excessive ber R R
FO Frequency offset R R
HK House keeping R R
LOS Loss of signal M M
LOT Loss of timing sources R R
NI Node isolation R M
RDI Remote defect indication R R
RI Resource isolation R R
RUM Replaceable unit missing R R
RUP Replaceable unit problem R R
SSF Server signal failure R R
U Unequipped M M
UT Unavailable time R R

TABLE I
LIST OF THE ACRONYMS OF THE ALARMS.

Our heuristic algorithm used with α1 = 0.3 identifies
M = {U, LOS}, which represents 97% of the total occur-
rences of alarms. Figure 5 shows the full dependency graph
created that represents the partial ordering of the 7 set patterns
(of non-frequent alarms) detected in f . Note that here, the
graph is so simple that it is acyclic. Group denotes the set
of alarms {DS,NI,CSF,EBER,RDI} and the double slash
bar indicates that the occurrences of the two set patterns are
separated by a long time period. This means that between the
occurrence of these two set patterns only alarms in M appear.
Consequently, alarms relevant to a problem only occur at the
beginning and the end of f .

NI
DS

RUM
CP
HK

DS
FO
SSF
AIS
CSF
EBER

RIRUP RISSF
AIS
FO
LOT
Group

GroupSSF
AIS
UT
FO
RUM
Group

Fig. 5. Set pattern graph with α1= 0.3.

The alarms leading to a repair can be identified as RUP
and RUM. Indeed, those alarms appear less frequently than
the others. From Figure 5, one can deduce the probable fault
leading to RUM or RUP. It is also clear that HK and CP are
related to RUM. As RUP comes in a very large set pattern
(may not be very meaningful), we detail the dashed rectangle
of Figure 5 on Figure 6 by setting α2 = 0.003. This gives
M = {U, LOS, DS, NI} (column NEα2

in Table I). Now
|sp(f)| = 59. The correlation between RUM, HK and CP is
maintained. Also, RUP mainly appears after the occurrence of
SSF and CSF.
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HK

RUP
RUM
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UT
SSF
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Fig. 6. Detail of the set pattern graph with α2 = 0.003 during the
occurrences of RUP and RUM.

To conclude, the observation of EBER and UT in the depen-
dency graph shows that the issue is affecting a demodulator

of the node. This is confirmed by the presence of alarm FO
in a set pattern with UT and EBER. At the end, RUM and
CP show that the element has been changed, as they are
directly followed by HK. Figure 5 indicates that no further
RUP or RUM is emitted after a time, meaning that the problem
has been fixed. Figure 2 shows that a later issue, impacting
more NE than the former one, exists. Figure 5 highlights
that the problem is linked to occurrences of alarms CSF and
SSF (present in almost each set pattern). This indicates that a
problem comes from the optical link of the network element
or from its neighbor connected through this link.

Due to space restriction, a more complex network element
is presented in [2].

VI. CONCLUSION

This article presents a method to correlate events in a
network. Our idea is based on the principle that due to the huge
alarm variety, which progressively increases, most alarms no
longer refer to any critical problem. Consequently, we believe
that a fault is highlighted by non-frequent alarms.

The method developed is realized in two steps. We first use
an earlier work to provide an overview of network functioning.
Then, the new algorithm is used to create a dependency graph
of sequences of alarms (set patterns) from a studied flow. From
this graph, rare alarms (probably referring to critical problems)
are extracted. Finally, we focus on these alarms and small parts
of the graph to express hypotheses about the network state.

Both algorithms used are very light in computational com-
plexity and memory usage. Currently, this method studies one
flow of alarm at a time. Our future work will enhance it by
providing an automatic expertise combining the correlation
results of all flows of alarms from every network element.
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