Hidden Anomaly Detection in Telecommunication
Networks

Anne Bouillard
ENS / INRIA
45 rue d’Ulm
75230 Paris cedex 05, France
anne.bouillard @ens.fr

Abstract—Nowadays one of the challenges of telecommunica-
tion systems management is to detect in real-time unexpected
or hidden malfunctions in extremely complex environments. In
this article, we present an on-line algorithm that performs a
flow of messages analysis. More precisely, it is able to highlight
hidden abnormal behaviors that existing network management
methods would not detect. Our algorithm uses the notion of
constraint curves, introduced in the Network Calculus theory,
defining successive time windows that bound the flow.

I. INTRODUCTION

The all IP convergence in telecommunication networks and
the fact that operators always add new functionalities and
new services to their network bring a vertical and horizontal
multilayer matrix of data exchanges with an extreme com-
plexity of synchronization and correlation. The emerging of
new technologies that ease the network management and
improve its efficiency, such as autonomous networking [12],
and proactive care concept [15], will not stop this evolution.

The software implications in this matter of fact are the
main factor of issues and malfunctions that affect the network
performance. Errors in nodes or services configuration are the
most frequent causes of malfunction, but errors in the code
of processes also create hidden and unpredictable issues that
we have to take into account with these new technologies. It
is admitted that the industry average error rate is about 15-
50 errors per thousand lines of code (KLOC) of delivered
code [10]; the NASA has a defect density of 0.004 bugs/KLOC
but this at a cost of $850.0/LOC [16]; telecommunication
networks are then subject to hidden bugs in their components
that lead into unpredictable network behavior [1]. Errors like
memory unreleased by a process needing a node restart 3 or 4
times per year to fix the resulting issue, will not be investigated
by the management team.

Our assumption is that hidden anomalies, provided by
missed errors in network process design and coding, cannot be
detected by actual management teams and systems. It clearly
appears that new concepts and their associated algorithms are
essential to manage this evolution. Such algorithms will have
to face strong operational constraints: real-time computation,
multiple context adaptation, trend setting for proactive or

978-3-901882-48-7 (© 2012 IFIP

Aurore Junier
INRIA / IRISA
Campus de Beaulieu
35000 Rennes, France
aurore.junier @inria.fr

Benoit Ronot
Alcatel-Lucent Bell Labs
Villarceaux,

91620 Nozay, France
benoit.ronot@alcatel-lucent.com

predictive technologies. They also have to deliver their results
to both human and machine interfaces.

In this article, we present an algorithm that will meet
such constraints and that can deliver a stability indicator of
the exchanges between the nodes or the processes of the
network. Our algorithm is dedicated to monitor data exchanges
flows between processes to detect anomalies that cannot be
explained by the normal behavior of the network. Each flow
of data based on message exchanges in modern networks is
constrained by the design of its original process. An issue
will then be detected if the flow does not respect this design.
However, process configuration changes or occurring issues
will influence these exchanges and must be taken into account
in such a detection.

Our algorithm uses the Network Calculus theory [3], [8]
to define constraint linear curves on an arrival flow. In the
classical Network Calculus, a flow satisfies some minimal and
maximal constraints that frame the flow at all time and are
usually given as an assumption of the flow. Here we carry out
the other way round and try to find simple curves that bound a
flow. As the flow is analyzed on the fly and then not known in
advance, we allow the constraints to change to fit its variations.
More precisely, the main contribution consists of modeling
and predicting a time-window for the next message of a flow.
If it does not belong to that time-window new constraints
are defined. Issues are then detected when the slope and its
trend present too many variations from the theoretical model.
Once designed, we confront our algorithm to the monitoring
of OSPF flows captured from a virtualized 17 nodes network
testbed. We run several issues scenario to be detected from
basics to malicious cases.

The rest of the paper is organized as follows. In Section II,
we present existing methods for anomaly detection. Section III
defines the technical framework, based on constraint curves, of
our algorithm that is described in Section IV. Finally, we give
some experimental results based on an operational testbed in
Section V, before concluding in Section VI.

II. STATE OF THE ART

Many approaches have been developed to address the prob-
lem of congestion or failure detection. Here we present an

overview of some existing detection techniques.

Methods based on data analysis: Among those meth-
ods, some are based on a set of data from which the detection
of abnormal behavior is computed. The distributed index
management method (MIND), in [9], is a structure made of
two logical components: a set of traffic monitors distributed
and a query system that allows to separate data according to
their anomaly class. Principal Component Analysis (PCA), [7],
[14] is a mathematical process that converts a set of correlated
observations into a set of uncorrelated values named principal
components (PC). The set of PC forms the normal subspace,
which is smaller than the initial one. PCA aims at detecting
network flows anomalies based on that normal subspace. This
method is presented, in [7], as an efficient way to solve this
kind of problem, but [14] shows limitations of PCA application
in anomalies detection: first it can detect a fault that is not one,
then large anomalies can contaminate the normal subspace,
and finally most of the time it is difficult to find the initial
point of failure.

Method based on alarm and fault correlation: In [4], a
method based on the definition of an alarm-fault causal graph
is presented. For each alarm a;, a probability p; ; is assigned
with respect to each fault F);, which divides alarms into two
classes: significant alarms and candidate alarms. Then if fault
F; happens, the set of significant alarms is found in the emitted
alarms set, and the candidate alarms could be found in the
emitted alarms set. The problem is that this method is not
utterly automated and alarm management is complex, so an
expert has to be involved to manage networks this way.

Specific method for a particular protocol: Many ar-
ticles have been written on synchronization of a particular
protocol. For instance, in [6], the authors focused on the TCP
protocol to evaluate its performance. This work builds a link
utilization rate bound to avoid synchronization.

Methods based on statistical analysis. These set of
methods are mainly based on statistics. Generalized likelihood
Ratio Approach in [17], [18]) is a method developed for
discrete-time linear stochastic systems that are subjected to
abrupt jumps. The objective is to construct an adaptive filtering
that determines changes in the network. To do that, it contains
a Kalmann-Bucy filter to model the dynamic system studied
and then instantiate a secondary system that evaluates the mea-
surements made by the filter. Netscope also uses statistics to
characterize network links from end-to-end path measurement
([5]). It uses a combination of first and second-order moments
plus an end-to-end measurement (classically seen as a system
of linear equation). It collects information about the network
with these computations and then uses them to characterize the
minimum set of links whose loss rates cannot be accurately
computed.

Today, lots of methods exist to detect anomalies in networks.
The main difficulty resides in the capacity of treating a large
set of data to drag bad flows behaviors like congestion or
failure, and to react quickly. Obviously, studying the complete
set of information is not an option. Thus some developed

methods use powerful mathematical tools but remain too
complex for now. Other methods study a particular protocol,
or use statistics. Here, we introduce a reactive method to detect
anomalies in network for all kinds of protocols without using
statistics.

III. FLOWS AND CONSTRAINTS

In this section, we first present data flows. Then, we
introduce the arrival curve functions, that frame the incoming
traffic at a router. The objective is to study the characteristics
of flows arriving at a router. Due to the lack of space, proofs
have been omitted. They can be found in [2].

In today’s protocols, each router transmits information
(topology, routers’ health, etc.) to its neighbors in order to
keep them aware of network changes: we define data flows
as sequences of messages. More formally, a flow is a non-
decreasing sequence (Z,,)nen, Wwhere N = {0,1,...}, 20 =0
by convention and where x,, is the arrival date of the n-th
message of the flow. We assume that lim,,_,, x,, = co.

Graphically, this flow can be represented by the graph
(Pnen € (Ry x N)N where ¥n € N, P, =
(n,m). This graph represents the cumulative number
of incoming messages. An example of such a graph
is represented on Figure 1, where the data flow is
(0,10,20,30,50,70,...) and the corresponding graph is
((0,0),(10,1),(20,2), (30,3), (50,4), (70,5),...).

Arrival curve is a fundamental notion in Network calcu-
lus ([8], [3]), a theory developed to compute deterministic
performance bounds in networks. Arrival curves determine
constraints on flows by bounding the number of packets that
can arrive during any interval of time. We take here the
concept of arrival curve and try to find, given a data flow,
the constraints it satisfies. The definition of a constrained flow
adapted to our framework is the following:

Definition 1 (Constrained flow): Let o, & : Ry — R, be
two non-decreasing functions, m < n be two non-negative
integers. The flow (x,,) is (a, @)-constrained on the interval
[m,n] if Ym <m’ <n' <n,

o a(xy —xp) <n' —m' (the flow is lower-constrained);

o a(Ty — Tpy) >n' —m’ (the flow is upper-constrained).
The flow (x,,) is («, @)-constrained if it is (o, @)-constrained
on the interval [0, +00].

Graphically, a flow (z,)nen iS a-lower constrained (resp.
a-upper constrained) if Vn € N, Vm > n, P, is above « (resp.
below @) drawn from P, (respectively denoted as P, + « and
P, +@.

Example 1: On Figure 1, @ : t = 1+ 0.1t and o : t
max(0.1(¢ — 10), 0) are depicted, as well as P4 + @. It should
be clear that the flow is upper-constrained by @, but not lower-
constrained by «. Indeed, P is below «, and we have 5 —
0 =5 < a(xs — z9) = 6. To conclude, the flow is (a, @)-
constrained on [0,4] but not on [0, 5].

In this article, we aim at finding constraints for the arrival

flows on long intervals, on the fly. Given a data flow (z,,) and
arbitrary curves « and @ such that (z,,) is (a, @)-constrained

'S
+
+

number of messages

21 =10 4 time (s)

Fig. 1. Data flow and constraints.

on [0, n], checking that the n + 1-th messages satisfies those
constraints requires O(n) operations and O(n) space: for each
previous message, one has to check the inequalities with
n’ = n + 1 given in Definition 1. However, if o and @
are well-chosen, this complexity can be drastically reduced,
to a constant number of operations and constant space. As
a consequence, we will focus on two families of simple
functions, that fulfill these requirements: the affine functions
for the upper constraints and the non-negative parts of affine
functions for the lower constraints. More precisely we will use
the following functions and notations: &, , : t — ¢ + pt and
a,r:t— max(p(t—T),0). The parameter p corresponds to
the long term arrival rate of messages, and o represents the
maximal burst, which is the maximum number of messages
can arrive simultaneously. Finally, T" represents the maximal
delay between two messages.

Throughout the article, we will assume that o and T are
fixed, and our goal is to guess p such that if the flow (z,,)nen
is very regular, it is (a, r, @),)-constrained. If the traffic is
not regular, our goal is to find the successive arrival rates of the
messages. In the former case, Lemma 1 ensures the existence
and uniqueness of p. In the latter case, if we are given the n
first messages, one need to check, for the next one, if it satisfies
the current constraints and, should the case arise, to compute
a new rate. Due to the shape of the functions we chose, this
can be done in constant time. To do this, we introduce the
notions of first outgoing message and critical messages.

Lemma 1 (Uniqueness): Let (2,,)nen be a data flow. Then

o cither there exists no p for which there exist ¢ and T

such that () is (@, 7, @),)-constrained;

« or there exists a unique p, there exist o, T such that (z,)

is (a p7T,6p,g)—constrained. Moreover, for every o’ > o
and 7" > T, (zy) is (a, 7/, Q) o)-constrained.

When constraints are defined from the n-th message, one
need to check whether the following messages still satisfy
the constraint or what is the first message that breaks the
constraints. In order to compute this, we introduce some new
definitions. The first outgoing message is the first message
to break the current constraints, and the critical messages are
messages that give the strongest constraints. Due to the special
shape of the functions we consider (affine functions), only one
critical message for each curve must be taken into account:
graphically, if P; + @ is above P; + & at some point, then it

will remain above. Figure 1 gives an illustration of that: Py+a
is above P, + @, so P, gives a strongest constraint than Py,
hence will be called (upper)-critical. More formally, we have
the following definitions.

Definition 2 (First outgoing message): Let (x,,) be a data
flow, o and @ be lower and upper constraints curves and n €
N. The first outgoing message from n regarding o and @ is

o=min{p > n | (z,,) is not (o, @)-constrained on [n, p|}.

Definition 3 (Critical messages): Let (x,,) be a data flow,
p,Tyo € Ry and m < n € N. Suppose that (z,) is
(@, 1, @p,o)-constrained on [m,n].

The respective lower and upper critical messages of flow
(zy,) for message n from m regarding o, 1 are

™ =min{p € [m,n] | max (g —Z4) = L_ zp} and
q€lp,n] P
eo™ =min{p € [m,n] | max (x4 — g) =z, —]3}.
q€[p,n] P P

We will note these points: P, = (zgm,c™) and P2™ =
(@zeom, ch™). Note that these critical messages only depend
on p and not on T and o.

Example 2: Consider again Figure 1. Message 5 is the first
outgoing message as it breaks the lower-constraint. For ¢ €
{0,1,2,3}, 2y — 2 =0 <2y — % = 10. Then x is the upper
critical message for ¢ < 3 from 0 and z4 is the upper critical
message for 4 from 0. Graphically, this means that Py 4+ @ is
below o. We write 62'1’0 =4.

Proposition 1: Given a data flow (z,)ncn and p € R, the
lower and upper critical messages from m can be recursively
computed by the following formula:

m ifn=m
(,p,ml
oM __ e n Ch—
¢ = n if i Ty > —&Tepm
m .
™ otherwise.

The same formula stands for ¢2'™, replacing > by <.

Now, given a flow that is (a,@)-constrained on [m,n],
checking that it is constrained on [m,n + 1], only requires
testing that a(zp11 — zom) <n+1—ch™ and @(2p41 —
Tgom) <41 — Ef;"f. Lemma 2 gives a simple relation
between critical and first outgoing messages.

Lemma 2: Consider o and @ lower and upper constraint
curves with rate p. Let o be the first outgoing message from
m. If the lower constraint is broken, then €5 = o and if the
upper constraint is broken, then ¢£™ = o.

Algorithm 1 describes elementary functions that test that
the current message (P) satisfies the current constraints
(IsLowerConstrained and IsUpperConstrained)
and update the critical messages (CriticalUpdate). These
functions will be used in Algorithm 2. The notations are the
following: P = (x,n) is the current message (on which the
constraints are checked), P = (7., c) and P = (z,¢) are the
respective current lower and upper critical messages.

Algorithm 1: Elementary functions

Algorithm 2: Rates computation

1 CriticalUpdate(p, P, %P)

2 if n < p(z —2z) + ¢ then P+ P;

3 else if n > p(x — x.) + ¢ then P« P;

4 IsLowerConstrained(T, p, P, P)

5 if n > p(x — . — T') + ¢ then True else False

6 IsUpperConstrained(o, p, P, P)
7 if n < p(z — xz) + 0 + ¢ then True else False

IV. LONG TERM BEHAVIOR COMPUTATION

In this section, we present our core algorithm, that finds
successive curves that constrain a data flow and its multi-
layered version. The first algorithm detects the messages
that break the constraints (outgoing messages) as they arrive
and computes a new rate. There might be frequent outgoing
messages, for minor variations of the rate. The multi-layered
version of the algorithm discards those minor variations of the
rates and rather computes global behavior and only detects
strong variations.

A. The core algorithm

Let us first focus on the core algorithm (Algorithm 2), that
computes arrival rates of the messages of a flow. We use the
same notations as in Algorithm 1. The parameters o and 7" are
fixed (this will be discussed in IV-C) and a flow (inputFlow) is
analyzed. Each time a new message is received, the loop (lines
22-25) is executed, except for the initialization: the initial rate
p is defined as the inverse of the first inter-arrival time, with
the convention that message O arrives at time 0.

In line 22, the coordinates of the new message are set
(basically, we count the messages as they arrive). Line 23
calls function RateUpdate (lines 1-15) that checks that the
current constraints (a, p and @,) are satisfied (lines 2 and 9).
If not, then a new rate is computed using the current message
and upper critical message if the lower constraint is broken
(lines 3-4) or the lower critical message if the upper constraint
is broken (lines 10-11). Lines 6-7 and 13-14 are some marginal
improvements: if the last two messages do not satisfy the
new constraints, then the rate is updated with those last two
messages (the intuition is that the variation in the arrival rate
is potentially sharp). Lines 5, 8, 12, 15 will be useful for
the multi-layered version and we will comment on these in
the Section IV-B. Finally, line 24 calls CriticalUpdate
to maintain the critical messages.

Note that if a flow is (a, 7, @,)-constrained and p has
been computed by the algorithm, the constraints will always
be satisfied for all the next messages and no new rate will be
computed. We say that the algorithm has converged in finite
time. The remaining of this section is devoted to study cases
where this algorithm converges in finite time. The class of
periodic flows can be easily studied and we focus our study
on that class.

Data: T', o, inputFlow.

Result: RatesList, outputFlow.

RateUpdate(T, o, p, P, P, P,, P)

if not IsLowerConstrained(7, p, P, P) then

p (n—2)/(z — z2);

P« P, P+ P,

outputFlow <« outputFlow :: P;

if not IsLowerConstrained(T, p, P, P,) then

L p (n—np)/(x —xp);
s | write(RatesList, (p, x));

N A N R W N -

9 else if not IsUpperConstrained(o, p, P, P) then
0 | pe(n—o)f(@—a) ;

11 P« P; P+ P;

12 outputFlow < outputFlow :: P;

13 if not IsUpperConstrained((o, p, P, P,) then
14 L p = (n—np)/(x—xp);

15 write(RatesList, (p, z));

16 begin

17 P « (receiveDate(inputFlow), 1) ;
18 p<1/x;

19 n<+<2;

20 P, + P;

21 while zrue do

22 P <+ (receiveDate(inputFlow), n);

23 RateUpdate(T, o, p, P, P, P,, P);
2 CriticalUpdate(p, P, P, P);

25 P, P;n<+n+1,;

26 end

Periodic flows: In order to get a more precise idea of
the behavior of Algorithm 2, let us first focus on the class of
the periodic flows.

Definition 4 (periodic flow): The
periodic if Yn € N

flow (zp)neny is N-

Ln+N — Tn+l1+N = Tn — Tp+l-

Proposition 2: Let (z,,)nen be an N-periodic flow. There
exist p, T, 0 € Ry such that (z,,) is (o, r, @), -)-constrained.

Proposition 3: Let T,o0,p € Ry. If (z,) is a N-periodic,
(@, 7,0y o)-constrained flow, then Algorithm 2 with input
(T,o,(x,)) either finds a rate p in finite time (and the rate
will not be updated anymore) or ultimately has a periodical
behavior.

One could expect that Algorithm 2 converges after a finite
time to the arrival rate of a periodic flow. Unfortunately, it is
not the case, and increasing o and 7" does not help much, as
illustrated in Example 3.

Example 3: Let us consider a period with 9 messages
lasting 180 seconds such that: 1 = 15s, 2 = 35s, 3 = 558,
xy = 80s, x5 = 100s, g = 120s, x7 = 140s, xg = 160s,
x9 = 180s. This flow is constrained with p = 0.05, ¢ = 1

and 7" = 10. Algorithm 2 alternatively finds p; = 0.067 and
p2 = 0.04. This computation is represented in Figure 2: the
first computed rate is p; = 1/x;1. Then, message 4, arriving
at x,, is the first outgoing message and its upper critical
message is message 3 arriving at x.,. The new rate is then
1/(z4—23) = 0.04. The next outgoing message is message 10
and its lower critical message is message 9. The next computed
rate is the same as the initial rate (one period shift).

Figure 3 shows the behavior of the algorithm when T
increases. For example, if 7' = 20 (plain curve), then the first
outgoing message is message 0?° = 5 and its upper critical
message is ¢?® = 4. The new constraints are with p = 0.05
and the algorithm has converged in finite time. But if 7' = 60
(dashed curves), the behavior of the algorithm will again be
periodical: the first outgoing message is message 0°0 = 13
and its critical message is message c%0 = 12. The computed
rate is still po = 0.04 and the behavior is still periodic.

number of messages

0 ﬁ/ |
i T, Foy "lr'g Loy
010 180

Fig. 2. Example of rates computed with Algorithm 2.

number of messages

Fig. 3. Effect of increasing 7" on Algorithm 2.

Nevertheless, when the rate computed at some point is close
enough to the arrival rates of the messages, Algorithm 2 can
converge in finite time.

Theorem 1 (Convergence): Let (x,) be a N-periodic,
(@, 1/, 0p,0)-constrained flow. There exists € such that if
Algorithm 2 with inputs (x,), ¢ > ¢ and T > T’ can
compute © € [p — €,p + €], it converges to rate p in finite
time.

For more regular flows, like balanced flows (i.e. such that
vneN, z, = [%1) one can show (see [2]) that Algorithm 2
converges.

B. The multi-layered algorithm

In this section we present an adaptation of our algorithm
that provides a better analysis of the flows. Algorithm 2
computes short term arrival rates of a flow: as said before,
minor variations of the arrival rates of the messages may be
detected, whereas longer term arrival rate could be preferred.

To be able to offer such levels of details, we modify our
algorithm into a multi-layered architecture. Then the ground

layer (or layer 0) provides interesting quantity of details; its
objective is to detect small variations in the arrival rate of
messages. Finally, the last layer of the algorithm returns long
term arrival rates of messages. So if the flow is quite regular,
the algorithm will find the mean arrival rate. By contrast, if the
arrivals are erratic, the important variations of the flow will still
be detected by the successive layers, with fewer details, thus
pointing out critical variations (see Section V for examples).

To do this we now have to explain lines 5 and 12 of
Algorithm 2. An output flow of messages is built using the
First outgoing messages defined in Definition 2. This is a sub-
flow of the initial flow, keeping the original numbering of the
messages. Then, it is possible to run Algorithm 2 on this output
flow (outputFlow). Instead of reading messages from an input
flow, the algorithm uses the messages of outputFlow (lines 17
and 22 are modified accordingly).

Figure 4 gives an example of the structure of the multi-
layered algorithm with three layers: first, an input flow is
given to Algorithm 2 to compute arrival rates as explained
in Section IV-A) - this is our layer O (or ground layer). Then,
Algorithm 2 is run using outputFlow of layer O - this builds
layer 1 and produces a new output flow, and so on.

Input Flow

Layer 0
using Algorithm 2 R

ates computed

output flow of layer 0 Correlation of results

Layer 1
using Algorithm 2
output flow of layer 1

Layer 2
using Algorithm 2 R

output flow of layer 2

Rates computed to define

abnormal behavior

ates computed

Fig. 4. Example of Algorithm 2 used with several layers.

Example 4: Previously, in Example 3, we showed that
Algorithm 2 may not always converge to the arrival rate for
periodic flows. Figure 5 represents the rates computed with
the multi-layered algorithm with 2 layers for the input flow
and the parameters of Example 3. The first (resp. second)
time line represents the rates computed on layer O (resp. layer
1). The dates correspond to rate updates in the corresponding
layer. For example, for layer 0O, the current rate is p; = 0.066
between time ¢ = 0 and ¢t = 55 seconds. Note that the arrow
of layer 1 starts at ¢ = 80 seconds: it corresponds to the
first time a rate can be computed on this layer, that is when
two messages have broken the current constraints in layer 0.
Then, on this example, the multi-layered algorithm converges
to the arrival rate. Up to our knowledge, this is still an open
question whether there exists a layer for which this algorithm
will converge for a periodic flow of messages.

time (s)

0 55 180 235 360 415
| | I
f

Overlay 0 I t t t t
p1 = 0.066 p2 = 0.04 P P2 P P2
80 375
Overlay 1 } }
ph = 0.052 Py =0.05
Fig. 5. Example of algorithm computation with 2 overlays.

C. Discussion about the algorithm

Several points of the algorithm need some discussion: the
choice of the parameters o and 7T, the choices that were
made for the implementation and the solutions that could be
implemented to guaranty the convergence of our algorithm.

a) The role of o and T': In the previous paragraph, we
saw that 0 and T do not play an important role: they have
no obvious property that make the convergence easier if they
are increased (see Example 3). Concerning this matter, the
multi-layered version of the algorithm is far more efficient.

However, those parameters have to be carefully chosen by
the user in order to define the tolerance to detect the rate
variations, particularly in the ground layer. Small parameters
will allow a very refined detection. Finally, the choice of these
parameters will be made in accordance with the theoretical
characteristics of the flow of interest. For example we will see
in Section V that it can be useful to take small values for the
first layers and larger values for the last layers to respectively
emphasize the precision and the long term computation.

b) Implementation choices: In our algorithm, we chose
to update the rate when the lower constraint is broken with the
upper critical message, and conversely. Another solution would
have been to choose the other way round: update the rate using
the lower critical message when the lower constraint is broken.
Doing this, there is no way to ensure the convergence in finite
time, in view of Lemma 2.

c) Convergence of the algorithm: Several solutions can
be proposed for the convergence of our algorithm for regular
flows (data flow respecting some (a, 7, @, s)-constraints).

Linear Regression of least squares approach: This method
is a well-known technique to approximate a set of points with
a linear function. In our study, this method can be efficient to
compute the mean rate on the last overlay. Furthermore, it is
an interesting technique to raise the problem of convergence
for periodic flows. We did not find any example showing that
the multi-layered algorithm does not converge, but for a given
layer, it is quite sure that this case may happen. One solution
to get the mean arrival rate would be to compute a linear
regression on the last layer to obtain a rate close to p. Thus
Theorem 1 proves that the last overlay converges to p after a
finite number of computation.

Correlation between the layers: The idea of this approach
is to correlate results from the lower and the upper layers of
the algorithm: even in the case of non-convergence of the last
layer, the rate computed will converge to p, as only sub-flows
are considered. Then, injecting the rate computed by the last
layer to the first layer will eventually ensure the convergence
in view of Theorem 1.

Mix the implementations: Even in the single-layered algo-
rithm the convergence can be improved: it suffices to randomly
run Algorithm 2 and its adaptation in the previous paragraph.

V. EXPERIMENTAL RESULTS

In this section, we perform Algorithm 2 on two kinds of data
flows. First, a flow whose messages arrive slower and slower,
and then we show some numerical results based on the OSPF

protocol. As said in the previous section, the parameters are
o =1 for layers 0 and 1, o = 5 for the next ones, and 7" = 10
s for every layer.

A. Slowing down data flow

We consider here a data flow generated the following
way: initially, messages have inter-arrival times uniformly
distributed between 1.6 and 2.4 s, and the traffic progressively
slows down so that in the end, messages have an inter-arrival
uniformly distributed on the interval [16,24]. This simulation
could characterize the case where a router is overloaded and
then slowly communicates with its neighbors. Figure 6 repre-
sents such a data flow and Figure 7 shows the rates computed
by the multi-layered version of Algorithm?2 respectively for
the ground layer and the third layer.

Fig. 6. Data flow where messages arrive slower and slower.

On both figures, one can observe the messages slowing
down. Due to the fact that the fluctuations are quite important
(40%), the rate computed on layer O frequently changes. But,
concerning layer 3, the noise induced by the fluctuations is
erased and only the global behavior is observed. This clearly
illustrates the fact that the ground layer shows many details
that are discarded by the next layers.

ol % 1 005 q

time(s) time(s)

Layer 0 and 3 of Algorithm 2 for a slowing down data flow.

Fig. 7.

B. OSPF communication link

Here, we perform Algorithm 2 on an OSPF flow monitoring
on a telecommunication network whose topology is based on
the German main cities. Each node is set from an Ubuntu
Linux that hosts a running instance of the well-known Quagga
Routing Software Suite [13]. We obtain a testbed that will act
as a real network and that can be monitored with traditional
network management tools.

Fig. 8.

Topology of the OSPF network studied.

We then define several scenarii to perform on the network:
first, a normal and stable network with a fluid OSPF traffic,
our reference behavior; second, a cyclic and malicious OSPF
protocol stack router failure; and at last, a multiple competitive
router start that provides many OSPF convergence perturba-
tions. For each scenario we monitor all exchanged messages in
the testbed as in an operational context. Afterwards the records
are given to Algorithm 2 with multiple layers. Experimentally,
in our context, 3 layers are enough. Finally the resulting rates
obtained allow us to prove its operational interest.

1) The Open Shortest Path First protocol: The Open Short-
est Path First (OSPF) protocol ([11]) is a link state protocol
that makes intern IP routing. To do so, routers exchange
network’s information such as topology, metrics, alive routers,
etc. These exchanges of data are made using different kind
of messages: Hello and Link State Advertisement (LSA) mes-
sages. Hello messages are sent every 10 seconds. The LSA ones
describe the evolution of the routes of the network. Typically,
they are sent every 30 minutes. At this moment routers send
the information they hold about the network topology. LSA
sendings stop when all routers get the same information.

The OSPF protocol is an emblematic protocol of the net-
working domain. Furthermore, it has the great advantage to be
well-known and accessible, so that the relation between algo-
rithm results and the network behavior is clear and immediate.

2) OSPF fluid trafficc We study here an OSPF flow of
messages when there is no perturbation in the network. More
precisely, we look at the data flow from router 1?;; to router
Rs. Figure 9 represents this data flow between time 0 and 8000
s. The box on the bottom right is a zoom on that flow between
time 1500 and 2500 s. The flow seems to be globally linear.
This corresponds to the sending of Hello messages. But, when
having a closer look (zoom), one can observe that the linear
behavior is perturbed between 1900 and 2250 s: the amount
of arrivals intensifies. This scheme periodically happens (every
1800 s), corresponding to an LSA refresh.

A simple and natural approach to detect those perturbations
would have been to use the moving average method (MAM).
This method can be used to analyze a data flow: it can suppress
instantaneous fluctuations and then study long term behaviors.
For each messages, it computes the average inter-arrival time
in a window composed of this message and the N —1 previous
messages, where IV is a fixed parameter. For message n, the
inter-arrival is L

Tp—Tp—1"

Number of message
g

Fig. 9. Flow of messages from R11 to Rg during 8000 s with a detailed
period (between 1500 and 2500 s) at the bottom right.

In this paragraph, we compare the results given by Algo-

rithm 2 and the MAM. Figure 10 shows the results for the
ground layer (plain curve) and MAM with N = 2 (dotted
curve). One can observe that these two curves are really close
and both composed of a periodical scheme. Indeed, there are
two kinds of behavior on the rates computed: there are stable
periods during which rates are mostly equal to 0.1 during 1500
s and perturbed periods, lasting at most 400 s, with much
higher rates. For each of these periods, our algorithm computes
at most three rates in the stable phase and around four rates in
the perturbed phase, whereas MAM always computes a linear
number or rates in the number of messages.

1000 T T T T T T T 10

100

10 H

£ ool
o[

001 0001

Alg
MAM u

0.001

L L L 00001 L L L L !
0 1000 2000 3000 4000 5000 00 8000 0 1000 2000 3000 4000 500
time(s) time(s)

7000 8000

Fig. 10. Rates computation using Algorithm 2 on layer 0 and MAM with
N = 2 on the left, and on layer 3 and MAM with N = 100 on the right
when the traffic is fluid.

Figure 10 also compares the results of the third layer
of our algorithm (plain curve) and the ones of MAM with
N = 100 (dotted curve). One can notice that the two behaviors
are still detected with the two methods. However the rates
computed are now really different. Indeed, our algorithm
represents each behavior by only one slope that represents
the average messages arrival on the period. When only Hello
messages are sent the slope is around 0.11 and when both
LSA and Hello messages are sent the slope is around 0.14.
MAM also detects the two behaviors, but the perturbed period
last too long (around 1000 s). Furthermore it still outputs
a linear number of rates: 68 output points for Algorithm 2
versus 850 points for MAM over the whole emulation. So our
method presents here two advantages compared to the MAM:
it requires less resources (time and space computation), and
it is more accurate, as it detects the times at which changes
occur in the data flow.

Moreover, the quality of the results of the MAM is highly
sensitive to N, whereas our algorithm only considers the
constraints of the flows. Other methods using sliding windows
exist, like the exponential moving average, but they did not
lead to any conclusive results. In a nutshell, Algorithm 2 has
effectively reached the theoretical rates of the two trends on
arrival for the OSPF protocol on the flow from R;; to Rg.

3) Periodic failure of a router: We study here a flow of
OSPF messages when a failure occurs in router Rg every
6 min and lasts 3 min. This corresponds to a bug in the
implementation that forces Rg to reboot frequently. We still
look at the data flow from router Rg to router R;. Figure 11
represents the data flow on this link between time 0 and
4000 s.Initially, messages arrive regularly, which corresponds
to Hello messages arrival. Then, between time 310 and 490 s,
no message arrives. This is the period during which router Rg
cannot send messages because it is restarting. Afterwards, at
time 500 s, messages are received again: more frequently first,

as initially then. Here, Rg first floods LSAs when restarting and
sends Hello messages again, until it crashes.

E wof
50 - { 4

0 I I I I I I L

0 500 1000 1500 2000 2500 3000 3500 4000

time(s)

Fig. 11. Data flow from Rg to R during 4000 seconds.
Figure 12 shows the result of layers 0 and 3 of Algorithm 2
on the flow of interest. Most of the time, the slope computed
is p = 0.1, which corresponds to the sending of Hello
messages. But, each time Rg restarts, there is a sudden high
rate computed - between 10 and 400 - with a mean slope value

that equals 30.

0 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
time(s) time(s)

Fig. 12. Rates computed on layer O and 3 by Algorithm 2 on the data flow
from Rg to Ri1.

H .ok

‘ * oot

001 f

o001

0.0001

0.001

Concerning layer 3, the resulting rates are smoother than
the ones of layer 0. Here, rates do not exceed 1 when it
could be 400 on layer 0. Furthermore, the number of abrupt
rate change is reduced on layer 3. Unfortunately, it does not
establish additional knowledge on this flow. In this case, a
smoother study does not bring additional value and layer O
exactly represents what happens: each reboot of router Rg is
detected by an abrupt rate change.

4) OSPF convergence perturbations: In this experiment,
each node is started the one after the other and the full run of
the current node must be established to start the next one.
The start order is: Rq, Rig, R11,...,R17,Ra,..., Ryg. This
experiment simulates the conditions for observing a classical
problem when several routers have to face multiple changes at
the same time. Figure 13 presents an OSPF flow of message
exchanges from router R;; to router Rg between time 0 and
1600 s in this context. From 30 to 100 s Hello messages
are sent regularly by R;; to Rg. But router Rg has not
started yet, and thus does not answer to R11. This implies that
between 100 and 140 s R;; reduces its Hello sending speed.
Afterwards, as Rg has still not started, Ry; stops flooding
messages until Rg starts (at time 190 s). Now the connection
is made, a few Hello messages are sent (between time 190
and 230 s) before routers could exchange their database in a
LSA operation process. This operation is clearly observable
with the burst of messages between time 230 and 271 s.
Afterwards, Hello messages are sent. During this period, there
are lost messages (at time 285, 335, and 445 s), because Rg is

still struggling in LSA exchange operations. Finally, one can
observe a second perturbation between time 1200 and 1300 s
during which Rg does not answer to Hello messages from R
because it is busy on synchronizing with Rg. Note that this
perturbation arises quite long after Rg starts running because
in the topology Ry is far from Rs.

L L L L L
600 800 1000 1200 1400 1600

time(s)

Fig. 13. Data flow from R1; to Rg during 1600 seconds.

Figure 14 shows the ground layer and first layer of our al-
gorithm on the studied flow. One can immediately observe the
two perturbations discussed above: the beginning of messages
broadcast from R;; to Rg between time 0 and 450 s and the
busy period of router Rg due to its synchronization with Rg
between time 1200 and 1300 s.

1 T T T T T T T 1

ol ol |
< H 2

001

L L L L L L L 001 L L L
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600

time(s) time(s)

800 1000 1200 1400

Fig. 14. Rates computed on layer O and 1 by Algorithm 2 on the data flow
from Ri; to Rsg.

Concerning the first layer, one can observe an improvement
compared to the ground layer as the two perturbations are still
present but with less details, which is what we are looking
for. This conclude that our algorithm clearly points out the
abnormal behaviors of the flows of messages.

VI. CONCLUSION

This article presents a method to study flows of messages
arrivals in networks. This work aims at detecting hidden
abnormal behaviors.

The algorithm introduced here is very light in computing
complexity and in memory usage. Thus, it works on the fly
to detect bad behavior immediately. Furthermore, no expert
is needed to interpret the results and the method proposed
has the great advantage to return flow behavior and thus it
cannot statue on false problem. When compared to the Moving
Average Method, we have shown that our algorithm supply a
really better understanding of the studied flows.

This work will be deepened with other network management
contexts studies, such as network security with the detection
of DoS/DDoS attacks and network alarms management by
detecting abnormal trends in the huge flow generated by a
telecommunication network.

[1]

[2]
[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

Z. Ben Houidi, M. Meulle, and R. Teixeira. Understanding slow BGP
routing table transfers. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, pages 350-355, 2009.
A. Bouillard, A. Junier, and B. Ronot. Hidden anomaly detection in
telecommunication networks. Technical report, RR-INRIA, 2012.

C. S. Chang. Performance Guarantees in Communication Networks.
TNCS, Springer-Verlag, 2000.

C. S. Chao, D. L. Yang, and A. C. Liu. An automated fault diagnosis
system using hierarchical reasoning and alarm correlation. Journal of
Network and Systems Management, 9:183-202, 2001.

D. Ghita, Hung Nguyen, M. Kurant, K. Argyraki, and P. Thiran.
Netscope: Practical network loss tomography. In INFOCOM, 2010
Proceedings IEEE, pages 1 -9, march 2010.

H. Han, C.V. Hollot, D. Towsley, and Y. Chait. Synchronization of tcp
flows in networks with small droptail buffers. In 44th IEEE CDC-ECC,
pages 6762 — 6767, 2005.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic
anomalies. SIGCOMM Comput. Commun. Rev., 34:219-230, 2004.
J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, volume LNCS 2050.
Springer-Verlag, 2001. revised version 4, May 10, 2004.

X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and
G. Iannaccone. MIND: A distributed multi-dimensional indexing system
for network diagnosis. In In IEEE INFOCOM, 2006.

S. McConnell. Code Complete, Second Edition. Microsoft Press, 2004.
J. Moy. RFC 2328 OSPF v2. Technical report, 1998.

The UNIVERSELF Project. Univerself, realizing autonomics for future
networks, http://www.univerself-project.eu/.

Quagga. A routing software package for tcp/ip networks,
http://www.nongnu.org/quagga/.

H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sensitivity of pca for
traffic anomaly detection. SIGMETRICS Perform. Eval. Rev., 35:109—
120, June 2007.

P. Singh. Alcatel-lucent helps telcos to track, fix network prob-
lems, http://www.duwire.com/news/alcatel-lucent-helps-telcos-to-track-
fix-network-problems-2011-08-23-160017/, 2011.

B. Swaminathan. Agile methodologies overview.
http://www.slideshare.net/Siddhi/intro-to-agile, 2007.

A. Willsky and H. Jones. A generalized likelihood ratio approach to the
detection and estimation of jumps in linear systems. /EEE Transactions
on Automatic Control, 21(1):108 — 112, 1976.

A. S. Willsky and H. L. Jones. A generalized likelihood ratio approach
to state estimation in linear systems subjects to abrupt changes. In /3th
IEEE Conference on Decision and Control, pages 846 —853, 1974.

