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1.1 Historique

1.1.1 De l’énumération des courbes complexes

L’énumeration de courbes algébriques, bien qu’alors peu connue sous ce nom, remonte à
l’antiquité. Elle consiste alors à résoudre des problèmes simples comme "Combien de droites
passent par deux points du plan ?", ou bien "Combien de coniques passent par cinq points
du plan ?". De telles questions, auxquelles la réponse est ici facile, peuvent aisément être
généralisées à des questions auxquelles la réponse l’est beaucoup moins. Cela peut se faire
de plusieurs manières : changer la nature des courbes que l’on regarde, changer l’espace
dans lequel elles vivent, et changer la nature des contraintes que l’on impose. La première
des généralisations d’un tel problème, qualifié d’énumératif, se fait à travers la donnée de
plusieurs quantités : un degré d et un genre g. On essaie alors de compter combien de courbes
de degré d et de genre g passent par un certain nombre de points prédéfinis du plan. Dans le
cas du genre 0, le problème prend la forme suivante.

Problem 1.1.1. Combien de courbes rationnelles irréductibles de degré d passent par 3d− 1
points du plan ?

1



2 Chapitre 1. Introduction

Pour les courbes irréductibles de genre plus élevé, le problème est le suivant.

Problem 1.1.2. Combien de courbes de degré d et genre g passent par 3d− 1 + g points du
plan ?

Le nombre 3d − 1 + g de points choisis peut sembler arbitraire. En réalité, il s’agit du
nombre de points à choisir pour obtenir une réponse qui soit un nombre fini différent de 0.

A priori, la réponse à cette question pourrait dépendre de la configuration de points choi-
sie. Toutefois, à condition que l’on travaille sur le corps des nombres complexes C, il n’en est
rien. On note cette réponse Nd dans le cas du genre 0 et Nd,g dans le cas général. L’indé-
pendance vis-à-vis du choix de la configuration de points provient du fait que l’on cherche
ici à calculer le degré de certaines variétés de Séveri. Cela n’a pas empêché la réponse de
demeurer un mystère pendant fort longtemps. Les réponses pour d = 1 ou 2 étaient connues
dans l’antiquité, mais s’écoule presque deux mille ans avant que par exemple la valeur d = 4
ne soit calculée. Il faut attendre les années 90 pour que M. Kontsevich donne une formule
récursive [KM94] qui permet de calculer toutes les valeurs de Nd.

Theorem 1.1.3 (Kontsevich[KM94])
Les Nd satisfont la relation de récurrence

Nd =
∑

d1+d2=d
d1,d2>0

Ç
d2

1d
2
2

Ç
3d− 4
3d1 − 1

å
− d3

1d2

Ç
3d− 4
3d1 − 1

åå
Nd1Nd2 .

Les Nd,g dans toute leur généralité sont quant à eux calculés par la formule de Caporaso-
Harris [CH98], mais la formule est d’une complexité algorithmique qui la rend difficile à utiliser
dans la pratique. De plus, contrairement à la formule de Kontsevich, cette formule ne fait pas
intervenir que les Nd,g : ceux-ci font partie d’une famille d’invariants plus grande, calculés
également par la formule, mais ce qui en rallonge l’application.

Cette première famille de problèmes énumératifs, traitant des courbes de degré d dans le
plan projectif CP 2, peut être généralisée à n’importe quelle surface torique, une famille de
surfaces dont le plan projectif est un exemple particulier. Un autre exemple en est CP 1×CP 1.

1.1.2 Les débuts de la géométrie énumérative tropicale

Bien que les valeurs des Nd,g fussent déjà connues, ne serait-ce qu’à travers la formule de
Kontsevich dans le cas spécifique des Nd, le calcul de leurs valeurs est à nouveau rendu pos-
sible en 2002 par le théorème de correspondance de Mikhalkin [Mik05], utilisant cette fois-ci
des méthodes de la géométrie tropicale. L’article où ce théorème est démontré marque les
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débuts de la géométrie énumérative tropicale et des relations que cette dernière peut entrete-
nir avec la géométrie énumérative classique. La géométrie tropicale peut être vue naïvement
comme la géométrie obtenue en remplaçant les opérations de base ”+” et ”×” par ” max ” et
”+”, qui sont les opérations images par la valuation sur un corps valué. Dès lors, la géométrie
tropicale peut être vue comme la géométrie résiduelle de la géométrie sur un corps qualifié de
non-archimédien. La découverte du théorème de correspondance marque le départ d’un essor
considérable du domaine tropical. La preuve du théorème de correspondance de Mikhalkin
fait appel à une version sophistiquée de la méthode du patchwork de Viro [Vir84], lui aussi
pouvant d’ailleurs être interprété de manière tropicale. Le théorème de correspondance fournit
une manière de reconstruire les courbes d’un degré donné passant par une collection fixée de
points proche de ce que l’on appelle la limite tropicale.

Les résultats de Mikhalkin, valables pour les courbes planes d’un genre quelconque, ont
depuis fait l’objet de nombreuses généralisations et nouvelles preuves dans des cas plus spéci-
fiques. Ceux-ci ont été étendus en dimension plus grande dans le cas du genre 0 par T. Nishinou
et B. Siebert [NS06], et ont également été retrouvés plusieurs fois à travers diverses approches,
comme par E. Shustin [Shu06a], ou par I. Tyomkin [Tyo12] ; [Tyo17].

Le théorème de correspondance de Nishinou et Siebert traite en outre une généralisation
des problèmes énumératifs considérés précédemment dans des variétés toriques de dimension
arbitraire. De ce fait, les contraintes sont également plus générales, ne se restreignant plus
à la simple contrainte de passer par un point. Toutefois, si l’on désire conserver l’approche
tropicale, nous sommes maintenant contraints de nous limiter à des courbes de genre 0, à cause
de l’apparition en genre supérieure de courbes qualifiées de super-abondantes, pour lesquelles
les méthodes des théorèmes de correspondance usuels ne s’appliquent pas.

1.1.3 L’énumération des courbes réelles

Bien que loin d’avoir épuisé les possibilités de l’énumération de courbes sur le corps des
nombres complexes, il est tout à fait naturel de se poser les mêmes problèmes sur le corps
R des réels. Hélas, contrairement au cas complexe, le nombre de courbes algébriques réelles
passant par une configuration de points réels dépend de cette dernière. Cela n’est pas sur-
prenant : en effet, déjà le nombre de racines d’un polynôme complexe générique de degré fixé
est constant, mais celui d’un polynôme réel varie. Dès lors, il est vain d’espérer obtenir des
invariants en comptant naïvement les solutions d’un problème énumératif sur le corps des réels.

Toutefois, J-Y. Welschinger [Wel05b] a montré que dans le cadre des courbes rationnelles
dans une surface de del Pezzo, si celles-ci sont comptées convenablement, la réponse est à
nouveau un nombre indépendant de la configuration de points réels choisis. De plus, en cas
de non nullité, un tel invariant permet de fournir une borne inférieure au nombre de courbes
rationnelles réelles passant par une configuration quelconque de points. Ce résultat se précise
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dans la situation suivante : si les courbes recherchées sont réelles, i.e. invariantes par la
conjugaison complexe, il convient de choisir la configuration de points également invariante
par conjugaison. On parle alors de configuration réelle de points et non plus de configuration
de points réels. Il existe plusieurs manières de choisir une telle configuration : les points de la
configuration peuvent soit être réels, soit venir par paire avec leur conjugué. Dans le cas où
les points sont tous réels, on parle donc de configuration de points réels. Dans le cas du plan
projectif, le résultat de Welschinger affirme que le compte des courbes d’un degré fixé et avec
signe ne dépend que du nombre de points réels et paires de points complexes conjugués, pas
de leur choix. Le signe des courbes est défini comme suit : une courbe rationnelle générique
est nodale, ce qui signifie que ses singularités sont des points doubles non dégénérés. Pour les
courbes réels, ces points doubles peuvent être de trois types :

- les paires de points doubles complexes conjugués,
- les points doubles hyperboliques, qui résultent de l’intersection de deux branches réelles,
localement x2 − y2 = 0,

- les points doubles elliptiques, résultant de l’intersection de deux branches complexes
conjuguées, localement x2 + y2 = 0.

Le signe de Welschinger d’une courbe réelle RC est défini comme étant (−1)m(RC), où
m(RC) désigne le nombre de points doubles elliptiques. Donnons maintenant la définition
des invariants de Welschinger dans le cas particulier du plan projectif. Soient r et s tels que
r + 2s = 3d− 1. Soit P une configuration générique de r points réels de RP 2, et s paires de
points complexes conjugués dans CP 2\RP 2. On pose alors

NR
d (P) =

∑
C⊃P

(−1)m(RC),

où la somme a lieu sur les courbes rationnelles réelles de degré d dans CP 2, qui passent par la
configuration de points P. Le théorème de Welschinger [Wel05b] dans le cas du plan projectif
s’énonce alors comme suit.

Theorem 1.1.4 (Welschinger [Wel05b])
La valeur de NR

d (P) ne dépend que de d et s, pas du choix de la configuration de points P
tant que celle-ci est générique.

La valeur de cet invariant, appelé invariant de Welschinger, est dénotée Wd,s.

Le calcul des invariants de Welschinger est également rendu possible par la géométrie tro-
picale et le théorème de correspondance de Mikhalkin. Les invariants Wd,0, correspondant au
cas où les points sont tous réels, sont calculés dans [Mik05]. Dans le cas où la configuration
comporte aussi des paires de points complexes conjugués, cela est fait par E. Shustin dans
[Shu06b].

Les résultats de Welschinger ont fait l’objet de quelques généralisations en dimension su-
périeure, comme dans [Wel05a]. Sans parler de généralisation, ils ont également fait l’objet de
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nombreux travaux, ne serait-ce que pour les calculer. Ainsi, dans les découvertes qui ont suivi
leur introduction, on peut compter les travaux de I. Itenberg, V. Kharlamov et E. Shustin, qui
ont pu démontrer une formule dans le style de la formule de Caporaso-Harris qui permet de
calculer les invariants de Welschinger de certaines surfaces de del Pezzo [IKS09], et donner des
estimations asymptotiques des invariants [IKS04], prouvant ainsi leur non-nullité. Cependant,
comme remarqué dans [IKS03], le compte des courbes réelles avec signe de Welschinger ne
semble pas fournir d’invariant au delà du genre 0. Les invariants de Welschinger sont encore
un sujet fertile, comme en attestent les travaux d’E. Brugallé [Bru] ; [Bru18], traitant d’une
invariance plus générale des invariants de Welschinger, ou ceux de E. Brugallé et N. Pui-
gnau [BP15]. De plus, suivant une idée de J. Solomon, X. Chen a pu démontrer des formules
récursives [Che18a] ; [Che18b] entre les invariants de Welschinger.

1.1.4 Manipulations tropicales et invariants raffinés

Les méthodes de la géométrie tropicale utilisées dans [Mik05], [Shu06a], [Shu06b] et [NS06]
permettent de ramener le calcul de certains invariants algébriques à divers problèmes combi-
natoires relevant uniquement de la géométrie tropicale. Ces problèmes tropicaux sont souvent
plus simples à appréhender, puisque les difficultés techniques se sont cachées dans le théorème
de correspondance. Cependant, ils sont parfois combinatorialement difficile à résoudre. Ainsi,
on peut se demander s’il est possible de retrouver les preuves de certains résultats à l’aide
de méthodes tropicales. C’est ainsi que les formules de Caporaso-Harris [GM07a] et la for-
mule de Kontsevich [GM08], qui toutes deux permettent le calcul des réponses aux problèmes
évoqués précédemment, ont pu être redémontrées, modulo les théorèmes de correspondance,
de manière purement tropicale. De même, on peut se demander s’il est possible de retrouver
l’invariance des comptes de courbes tropicales autrement qu’en important l’existence d’un
invariant du côté complexe ou réel. Ainsi, l’invariance des comptes tropicaux aboutissant
au calcul de Nd,g, auparavant déduite de leur invariance complexe, a pu être redémontrée
[GM07b] par des méthodes uniquement tropicales. Les preuves tropicales se font parfois au
prix d’un jeu combinatoire compliqué. Par exemple, la preuve tropicale de l’invariance des
invariants de Welschinger dans le cas où la configuration de points comporte des paires de
points complexes conjugués ne s’est faite que de manière détournée à l’aide de l’introduction
des courbes dites broccoli [GMS13].

Au cours de la recherche de telles preuves d’invariance tropicale, il n’est pas rare de trouver
de nouvelles quantités invariantes qui ne proviennent pas de géométrie classique. Par exemple,
en restant sur les problèmes évoqués précédemment, la méthode tropicale de calcul des inva-
riants de Welschinger, qui n’existent que pour les courbes rationnelles, s’applique également
aux courbes tropicales de genre supérieur et fournit un invariant tropical. Dès lors, la mani-
pulation des objets tropicaux permet d’obtenir des familles d’invariants dont la signification
classique n’est pas toujours chose aisée. C’est également le cas des invariants raffinés et des
multiplicités quantiques.
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Pour comprendre l’introduction des invariants dits raffinés, il faut savoir que dans le théo-
rème de correspondance de Mikhalkin, afin de calculer les invariants Nd,g et Wd,0, on compte
les courbes tropicales avec deux multiplicités qui sont chacune un produit sur les sommets de la
courbe tropicale. Dans le premier cas, on tombe sur l’invariant complexe Nd,g, dans le second
cas, si le genre est nul, on retrouve l’invariant de Welschinger Wd,0. Dans [BG16], F. Block et
L. Göttsche proposent de rassembler ces multiplicités en une seule multiplicité polynomiale,
également produit sur les sommets de la courbe. Si cette multiplicité polynomiale est évaluée
en ±1, elle redonne les deux multiplicités précédentes. Cette multiplicité, sortant a priori
d’une manipulation combinatoire, semble apparaître à plusieurs endroits. Dans le problème
des courbes de degré d et genre g passant par 3d − 1 + g points, Itenberg et Mikhalkin ont
montré que le compte des courbes tropicales avec cette multiplicité fournit un invariant [IM13].

Depuis, de nombreux autres problèmes énumératifs tropicaux, jouissant ou non d’un théo-
rème de correspondance les liants à un problème classique, se sont montrés être le théâtre d’un
raffinement, sans que celui-ci ne possède pourtant d’explication par la géométrie classique.
On obtient ainsi dans plusieurs situations un invariant polynomial tropical qui interpole entre
deux invariants connus en géométrie classique : un invariant complexe pour sa valeur en 1,
et un invariant réel en −1. Par exemple, les courbes broccoli ont elles aussi eu droit à leur
raffinement [GS19], obtenant ainsi un invariant polynomial qui interpole entre les invariants
de Welschinger Wd,s avec paires de points complexes et les invariants dits descendants de
genre 0, qui ont également un raffinement [BS19], tout comme les invariants descendants des
courbes elliptiques [SS18].

Parmi les tentatives d’interprétation de ces mystérieux invariants qui ont été faites, plu-
sieurs restent encore conjecturales. De plus, le lien entre ces pour l’instant diverses intérpréta-
tions reste inconnu. La principale conjecture attendue est celle de Göttsche et Shende [GS14].
Celle-ci stipule que le compte des courbes tropicales avec les multiplicités raffinées permet le
calcul de la série génératrice des genre de Hirzebruch de certains schémas de Hilbert relatifs.
En d’autre termes, le raffinement de la multiplicité complexe par la multiplicité raffinée du
côté tropical doit correspondre au raffinement de la caractéristique d’Euler par le genre de
Hirzebruch du côté classique. Certains travaux de J. Nicaise, S. Payne et F. Schroeter [NPS18]
semblent aller dans cette direction. Cependant, cette interprétation n’est pas la seule, et les
invariants raffinés semblent intervenir à d’autres endroits, comme dans le calcul de certains
invariants de Gromov-Witten faisant intervenir des λ-classes [Bou19], ou en présentant cer-
taines ressemblances avec d’autres invariants, comme les invariants de wall-crossing de type
Donaldson-Thomas considérés par M. Kontsevich et Y. Soibelman [KS08].

L’un de ces autres endroits majeurs où les invariants raffinés apparaissent est une situa-
tion spécifique du premier problème considéré plus haut : combien de courbes rationnelles
réelles de degré d passent par 3d − 1 points situés sur les axes de coordonnées ? Bien que la
configuration de points puisse être considérée comme étant assez peu générique, le théorème
de correspondance de [Mik05] s’applique et il est possible de calculer le nombre de solutions
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complexes. De plus, il est possible de définir un indice quantique [Mik17], et le compte des
courbes peut être raffiné en fonction de la valeur de cet indice. En modifiant légèrement le
problème énumératif, en comptant également les courbes passant par les configurations de
points obtenues en symétrisant les points, le résultat de ce compte raffiné s’avère être indé-
pendant du choix des points sur les axes. Le problème est détaillé dans la section suivante.
Enfin, si ceux-ci sont tous réels, il peut être calculé à l’aide du théorème de correspondance
[Mik05], ce qui fait alors curieusement apparaître les multiplicités raffinées.

Ces invariants, dont la définition et les résultats s’étendent aisément à n’importe quelle
surface torique, sont des versions raffinées des problèmes énumératifs considérés par M. Gross,
R. Padharipande et B. Siebert dans [GPS+10]. Dans cet article, on cherche à calculer des
commutateurs dans un groupe appelé le Tropical Vertex Group afin d’effectuer l’équilibrage
de certains objets appelés Scattering Diagrams, ou diagrammes de dispersion. Le calcul des
commutateurs dans ce groupe se fait à travers le compte de courbes tropicales rationnelles
ayant des directions à l’infinies prescrites. Ce problème est l’exacte tropicalisation du pro-
blème considéré plus tard par Mikhalkin dans [Mik17], ce qui signifie qu’ils sont reliés par
un théorème de correspondance. Dans le cas non raffiné, l’existence du théorème de corres-
pondance permettait déjà d’interpréter les invariants tropicaux apparaissant comme certains
comptes de courbes algébriques dans les surfaces toriques. Le raffinement obtenu en calculant
les mêmes commutateurs dans une version déformée du tropical vertex group considérée par
S. Filippini et J. Stoppa [FS15] ainsi que T. Mandel [Man15] peut alors également être inter-
prété du côté algébrique à l’aide d’indices quantiques.

Contrairement à la conjecture de Göttsche et Shende, ces dernières considérations de dia-
grammes de dispersions se généralisent partiellement aux courbes en dimension plus grande.
Cela permet d’obtenir une tentative de raffinement du dénombrement des courbes en dimen-
sion plus grande, où la multiplicité des courbes tropicales donnée par les versions en plus
grande dimension du théorème de correspondance n’est plus nécessairement un produit sur
les sommets de la courbe, ce qui était une condition nécessaire au raffinement des multiplicités
dans le cas planaire.

1.2 Cadre et Motivations

On s’intéresse particulièrement aux résultats exposés par Mikhalkin dans [Mik17], puisque
les résultats exposés dans cette thèse les généralisent, et permettent le calcul de certains des
invariants mentionnés dans ce même article. Afin de garder un cadre familier, on se restreindra
dans cette introduction au cas du plan projectif CP 2, mais les résultats sont valables dans
n’importe quelle surface torique.
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1.2.1 Invariants raffinés dans les surfaces toriques

Commençons par rappeler la définition des invariants introduits par Mikhalkin dans
[Mik17]. Leur définition dans le cas général d’une surface torique est rappelée dans le chapitre
4. Voici brièvement comment ils sont définis dans le cas particulier du plan projectif CP 2. On
considère les courbes rationnelles de degré d dans CP 2, et on choisit trois décompositions de
d comme suit :

d = r1 + 2s1 = r2 + 2s2 = r3 + 2s3,

avec r1 > 1. Sur chacun des trois axes de coordonnées, indexés 1, 2, 3, on choisit respectivement
ri paires de points réels opposés, et si paires opposées de paires de points complexes conjugués,
excepté sur le premier axe, où on choisit seulement r1 − 1 paires de points réels opposés
au lieu de r1. On note P cette configuration de points, dite symétrique. Si l’on ne prend
qu’un point réel dans chacune des paires de points opposés, et une paire de points complexes
conjugués dans chacune des paires opposées de paires, on obtient une configuration de 3d− 1
points. On cherche alors les courbes rationnelles réelles de degré d, c’est à dire possédant une
paramétrisation de la forme

t ∈ CP 1 = C ∪ {∞} 7−→ [X(t) : Y (t) : Z(t)],

avec X, Y et Z trois polynômes de degré d, passant par au moins un point de chaque paire
opposée. Une telle courbe passe donc par un point de chaque paire réelle, et une des deux
paires opposées de points complexes conjugués.

En enlevant les points envoyés sur les axes de coordonnées, on obtient une courbe ra-
tionnelle dans le tore complexe (C∗)2, qui est pourvu d’une application Log : (C∗)2 → R2,
obtenue en prenant le logarithme du module coordonnée par coordonnée. L’image de la courbe
par cette application est appelée amibe de la courbe. Il est possible de calculer l’aire de la
rétrotirette de ω la forme volume de R2 par l’application logarithmique sur l’une des deux
composantes connexes S de CP 1\RP 1. Cela correspond à l’aire signée de l’amibe de la courbe.
Mikhalkin montre que sous réserve que la courbe ait des intersection réelles ou imaginaires
pures avec les axes de coordonnée, cette aire est un multiple demi-entier de π2.

Theorem 1.2.1 (Mikhalkin[Mik17])
Soit ϕ : CP 1 → CP 2 une courbe rationnelle réelle, dont les points d’intersections avec les
diviseurs toriques ont des coordonnées réelles ou imaginaires pures. Alors l’aire logarithmique

ALog(S) =
∫
ϕ(S)

Log∗ω,

est un multiple demi-entier de π2.

Le résultat s’étend aussi à certaines courbes qui ne sont pas rationnelles mais conservent
des intersections réelles ou imaginaires pures avec les axes de coordonnée. Dans le cas où
les points d’intersection complexes avec le bord torique sont imaginaires purs, ce multiple
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s’appelle l’indice quantique de la courbe rationnelle réelle orientée S. Si les intersections ne
sont plus imaginaires pures, l’indice quantique est obtenu à partir de l’aire logarithmique grâce
à un terme correctif dépendant des arguments des points d’intersection avec le bord torique.
Cependant, la définition générale de l’indice quantique, bien que nécessaire pour l’introduction
des invariants raffinés, n’est pas utile pour leur compréhension, ni pour le calcul qui est le
notre puisque les points d’intersection complexes choisis sont imaginaires purs, et l’indice
quantique coïncide donc avec l’aire logarithmique dans ce cas-ci. En comptant les courbes
rationnelles réelles passant par P, avec un signe σ(S) dont la définition est rappelée dans
le chapitre 4, et en fonction de la valeur de cet indice quantique, on obtient un polynôme
Rd(P) :

Rd(P) = 1
4

∑
σ(S)qk(S) ∈ Z[q1/2, q−1/2].

Ce polynôme s’avère ne pas dépendre du choix de la configuration symétrique P mais seule-
ment du nombre de paires de points complexes conjugués sur chacun des axes de coordonnées
dans celle-ci.

Theorem 1.2.2 (Mikhalkin[Mik17])
La valeur de Rd(P) ne dépend pas du choix de la configuration P mais seulement du nombre
de paires de points complexes sur chacun des axes de coordonnée.

On note alors cet invariant dit raffiné Rd,(s1,s2,s3).

1.2.2 Invariants raffinés tropicaux

Du côté tropical, il est également possible de définir un invariant polynomial N∂,trop
d . Pour

cela, donnons brièvement la définition d’une courbe tropicale, les détails plus précis pouvant
être trouvés dans le chapitre 3. Une courbe tropicale dans R2 est un graphe rectiligne dont
les arêtes pondérées, éventuellement non bornées, sont à pente dans Z2, et dont les sommets
vérifient la condition d’équilibre : la somme des pentes sortantes en chaque sommet multipliée
par le poids de l’arête sortante doit faire 0. On peut également définir une notion de courbe
rationnelle pour les courbes tropicales, et une notion de degré, donnée par la famille des pentes
des arêtes non bornées. Les arêtes non bornées sont également appelées arêtes infinies.

On considère un degré de courbe tropicale, c’est à dire une famille de somme nulle ∆ ⊂ N ,
par exemple le degré d : {(−1, 0)d, (0,−1)d, (1, 1)d}, où l’exposant d signifie que l’ensemble
contient d copies de chacun des vecteurs (0,−1), −1, 0) et (1, 1). Pour chacun des vecteurs ne
dans ∆ sauf un, on choisit une droite De de pente ne. On peut chercher les courbes tropicales
rationnelles dont chacune des arêtes infinies e de pente ne est contenue dans la droite De.
On compte les courbes avec les multiplicités raffinées proposées par Block et Göttsche dans
[BG16], rappelée en définition 3.2.14 :

N∂,trop
∆ (D) =

∑
mq

Γ,
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où la somme se fait sur les courbes tropicales rationnelles dont les arêtes infinies sont conte-
nues dans les droites choisies De. Le résultat ne dépend pas du choix des droites De. Ce
résultat, qui est un corollaire du théorème de correspondance, est prouvé de manière pure-
ment tropicale dans la sous-section 5.1.2. Cet invariant tropical est dénoté N∂,trop

∆ . Dans le
cas des courbes de degré d, on le note simplement N∂,trop

d .

Dans [Mik17], grâce au théorème de correspondance, Mikhalkin relie l’invariant raffiné
classique Rd,(0,0,0) à l’invariant raffiné tropical N∂,trop

d .

Theorem 1.2.3 (Mikhalkin[Mik17])
On a la relation

Rd,(0,0,0) = (q1/2 − q−1/2)3d−2N∂,trop
d .

Le résultat s’applique en réalité dans n’importe quelle surface torique pourvu que tous les
points de la configuration symétrique P soient choisis réels.

1.3 Résultats

Les résultats démontrés ici généralisent ceux énoncés dans la section précédente, et ce
dans plusieurs directions.

1.3.1 Calcul des invariants raffinés dans un cadre plus général

La relation entre invariants raffinés toriques et invariants raffinés tropicaux démontrée par
Mikhalkin n’est valable que dans le cas où les points de la configuration symétrique P sont
tous réels. On étend ce résultat au cas de paires de points complexes conjuguées se trouvant
sur un même diviseur torique, ce qui dans le cas du plan projectif revient à supposer que
le triplet (s1, s2, s3) est de la forme (s, 0, 0). Le résultat s’énonce alors comme suit. On note
N∂,trop
d,s l’invariant raffiné tropical associé au degré {(−1, 0)d−2s, (−2, 0)s, (0,−1)d, (1, 1)d}.

Theorem
(4.4.1) On a la relation

Rd,(s,0,0) = 2s (q1/2 − q−1/2)3d−2−s

(q − q−1)s N∂,trop
d,s .

Pour ce faire, on utilise un théorème de correspondance tropical qui permet de compter
effectivement les courbes passant par une configuration de points proche de la limite tropi-
cale, où les points complexes sont choisis imaginaires purs. Dans ce cas particulier, l’indice
quantique est égal à l’aire logarithmique. Toutefois, comme une paire de points imaginaires
purs conjugués est égale à sa paire opposée, le compte raffiné est multiplié par 2s pour obtenir



1.3. Résultats 11

l’invariant raffiné défini dans le cas de points complexes génériques.

Dans le cas général, i.e. où les paires de points complexes ne sont pas toutes sur le même
diviseur, les invariants raffinés de Mikhalkin sont également reliés aux invariants raffinés
tropicaux de degré correspondant. En notant

∆(s) = {(0,−1)r1 , (0,−2)s1 , (−1, 0)r2 , (−2, 0)s2 , (1, 1)r3 , (2, 2)s3},

on a
Rd,(s1,s2,s3) = 2s1+s2+s3 (q1/2 − q−1/2)3d−2−s1−s2−s3

(q − q−1)s N∂,trop
∆(s) .

Cependant, comme le calcul ne peut a priori pas être mené avec des points complexes imagi-
naires purs, le calcul s’en trouve plus subtile, bien que fonctionnant avec les mêmes techniques.
Pour plus de détails, voir [Blo20].

1.3.2 Formule récursive

Le théorème 4.4.1, tout comme celui de Mikhalkin dans le cas où les points sont tous réels,
permet de ramener le calcul des invariants raffinés de [Mik17] à un calcul tropical associé à
un problème énumératif tropical qu’il convient encore de résoudre.

Dans le chapitre 5, on démontre une formule récursive dans le style de la formule de Ca-
poraso et Harris. Cette formule permet un calcul explicite des invariants tropicaux N∂,trop

∆ ,
et mène également à des formules récursives entre les invariants algébriques via le théorème
de correspondance.

L’idée de la preuve de la formule est dans les grandes lignes la même que celle de la preuve
tropicale de la formule de Caporaso et Harris [GM07a] : il s’agit de choisir un ensemble dé-
généré de contraintes, de manière à connaître exactement la forme des courbes tropicales
solutions du problème énumératif et ainsi le résoudre partiellement. Les courbes tropicales
solutions se scindent alors en plusieurs morceaux qui correspondent aux différents termes de
la formule. Dans le cas de la formule de Caporaso-Harris, la configuration est dégénérée car
un point est beaucoup plus bas que tous les autres. Dans le cas de la formule du théorème
5.1.4, les droites sont choisies avec une droite qui passe loin de tous les points d’intersection
entre les autres droites.

Étant donné la définition des invariants raffinés N∂,trop
∆ comme nombre de courbes tro-

picales rationnelles ayant leurs arêtes infinies contenues dans des droites fixées à l’infini, la
dégénération des contraintes, c’est-à-dire ici des droites, est la suivante. On choisit deux des
droites, et on les envoie loin à l’infini. De loin, on a alors l’impression que les autres droites
choisies sont concourantes puisqu’elles passent toutes par 0. (En réalité, 0 n’est pas sur les
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droites mais seulement très proche.) Les courbes tropicales solution du problème se scindent
alors en plusieurs parties : une corde qui relie les deux arêtes infinies appartenant aux deux
droites choisies, et des courbes tropicales d’un degré "plus petit" reliées à la corde par des
arêtes radiales, comme on peut le voir sur les figures 5.7, 5.8 et 5.9.

La formule en elle-même pouvant sembler quelque peu rebutante, au moins autant que
celle de Caporaso-Harris, l’énoncé exact peut être trouvé dans le théorème 5.1.4.

La formule a également une complexité assez importante, ce qui rend assez fastidieuse
l’obtention de résultats grâce à cette dernière. Il est néanmoins possible d’obtenir des valeurs
explicites pour les petits degrés, donnée dans le cas du plan projectif dans la section 5.3.

1.3.3 Courbes en dimension plus grande

Dans le dernier chapitre, on s’intéresse aux possibles généralisations des résultats de
[Mik17] en dimension plus grande. On considère donc naturellement des courbes rationnelles
dans des variétés toriques de dimension arbitraire, donc CPn dans cette introduction. Tout
d’abord, l’hypothèse que les points d’intersection entre la courbe et les diviseurs toriques aient
des coordonnées réelles ou imaginaires pures, nécessaire à la définition de l’indice quantique
dans [Mik17], conduit de la même manière à la définition d’une classe d’homologie quantique
qui permet le calcul de l’aire signée de l’amibe de la courbe pour n’importe quelle 2-forme
ω ∈ Λ2(Rn)∗. Tout comme l’indice quantique de Mikhalkin, cette classe quantique peut être
calculée dans le cas des courbes rationnelles, et des courbes dites de type torique I.

Aux vues de ses hypothèses d’existence, n’importe quel compte de courbes rationnelles
peut a priori être raffiné par la valeur de la classe quantique sous réserve que les points d’in-
tersection des courbes avec les diviseurs toriques soient réels. C’est par exemple le cas des
problèmes énumératifs considérés dans le chapitre 6. Pour autant, le résultat ne conduit pas
forcément à un invariant. On peut toutefois s’attendre à ce que ce soit le cas si le compte près
de la limite tropicale, qui peut-être réalisé à l’aide de théorèmes de correspondance, est lui
invariant. C’est effectivement le cas des problèmes énumératifs tropicaux considérés dans le
chapitre 6.

On considère les courbes tropicales rationnelles d’un degré fixé ∆ ⊂ Zn. On fixe une 2-
forme ω générique sur le réseau Zn, étendue au Rn dans lequel vivent les courbes tropicales.
Pour chaque arête infinie e dirigée par ne, on fixe un hyperplan He affine dirigé par ω(ne,−).
On cherche alors les courbes tropicales rationnelles de degré d telles que chaque arête infinie
e se trouve dans l’hyperplan He. Ces conditions ne sont pas suffisantes pour n’avoir qu’un
nombre fini de courbes tropicales. Pour cela, on ajoute des contraintes additionnelles. Dans
chacun des cas considérés, le compte des courbes avec des multiplicités raffinées adéquates
conduit à l’obtention d’un invariant raffiné tropical. Les résultats traitent des cadres suivants.
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— Courbes tropicales dont l’une des arêtes infinies se trouve dans un plan fixé à l’avance.
— Courbe tropicale rencontrant une autre courbe tropicale fixée à l’avance.

Dans chacun de ces cas, on donne une multiplicité raffinée qui généralise la multiplicité de
Block-Göttsche, et on prouve l’invariance du compte des courbes tropicales avec cette même
multiplicité. Enfin, l’application du théorème de correspondance permet d’obtenir l’invariance
d’un certain compte signé des courbes réelles proche de la limite tropicale.

1.4 Plan du manuscrit

Le chapitre 2 pose les notations relatives aux surfaces toriques utilisées dans le reste du
manuscrit, tandis que le chapitre 3 est dévolu aux rappels et notations propres à la géométrie
tropicale. On y définit les notions de courbe tropicale abstraite, paramétrée et réelle. On y
définit également l’espace des modules des courbes tropicales rationnelles, qui permet de les
manipuler de manière plus confortable et de formuler les problèmes énumératifs auxquels on
s’intéresse. De tels problèmes énumératifs permettent d’associer des multiplicités naturelles
aux courbes tropicales. On rappelle leur définition et fournit un algorithme permettant leur
calcul. Enfin, on rappelle les procédés dits de tropicalisation, au coeur des théorèmes de cor-
respondance, qui permettent d’obtenir une courbe tropicale à partir d’une famille de courbes
algébriques classiques.

Le chapitre 4 rappelle la définition des indices quantiques et le dénombrement raffiné ef-
fectué dans [Mik17]. On donne ensuite une méthode de calcul de l’indice quantique dans le
cas des courbes rationnelles, ainsi qu’un théorème de correspondance qui permet le calcul des
invariants raffinés de Mikhalkin dans le cas du théorème 4.4.1.

Le chapitre 5 est un chapitre purement tropical qui fournit un algorithme de calcul pour
les invariants tropicaux N∂,trop

∆ à travers la formule récursive du théorème 5.1.4. Après avoir
donné quelques exemples obtenus par l’application de la formule, on en déduit quelques for-
mules récursives ayant traits aux invariants algébriques.

Enfin, le chapitre 6 traite la généralisation de certains des résultats précédents dans le
cadre des variétés toriques de dimension arbitraire. On y aborde plusieurs variantes d’un
même problème énumératif tropical, ainsi que son analogue classique, auquel il est relié par
un théorème de correspondance. Pour le problème classique, on définit la notion de classe
quantique pour certaines courbes algébriques, et on montre l’invariance proche de la limite
tropicale pour le compte des courbes rationnelles raffiné par la valeur de la classe quantique
dans le cas des problèmes énumératifs considérés.





Chapitre 2

Généralités et notations sur les
variétés toriques

Dans ce chapitre on rappelle la définition des variétés toriques afin de préciser les notations
qui interviennent dans le reste du manuscrit.

Sommaire
2.1 Variétés toriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Courbes paramétrées dans les variétés toriques . . . . . . . . . . . . . 16
2.3 Structure réelle d’une variété torique . . . . . . . . . . . . . . . . . . . 18
2.4 Amibes et Coamibes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Variétés toriques

Toute l’énumération dont il est question dans cette thèse prend place dans les variétés
dites toriques. Pour construire les variétés toriques, on considère un réseau N , appelé réseau
des co-caractères, ou réseau des poids, ainsi que son réseau dual M = Hom(N,Z), appelé
réseau des caractères. Le tore complexe associé au réseau N est N ⊗ C∗, qui est isomorphe
à (C∗)p, où p est le rang commun de M et N . À cause de la structure multiplicative de C∗,
on notera zn plutôt que n ⊗ z ∈ N ⊗ C∗. Dès lors, les éléments de M sont des fonctions
multiplicatives sur le tore complexe N ⊗ C∗. En effet, si m ∈M , on notera χm la fonction

χm(zn) = z〈m,n〉.

La donnée d’un éventail Σ ⊂ NR, dont les directions sont données par des éléments de
N , permet de définir une compactification partielle du tore N ⊗ C∗. Cette compactification
est une vraie compactification si le support de l’éventail est NR tout entier. La construction
de la variété torique associée à l’éventail Σ, détaillée dans [Ful93], s’effectue comme suit. Soit
σ ⊂ Σ un cône de l’éventail. On considère le cône dual σ̂ ⊂MR :

σ̂ = {m ∈MR : ∀n ∈ σ 〈m,n〉 > 0}.

On pose alors Uσ = Spec C[σ̂ ∩M ].

15
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Example 2.1.1. - Si le cône σ est engendré par une base de N , son cône dual l’est égale-
ment, et l’espace Uσ est une copie de l’espace affine Cp.

- Si le cône σ est engendré par une partie e1, . . . , ek d’une base (e1, . . . , ep) de N , alors σ̂
est le cône engendré par (e∗1, . . . , e∗k,±e∗k+1, . . . ,±e∗p). L’ouvert Uσ est alors isomorphe à
Ck × (C∗)p−k. En particulier, si σ = {0}, Uσ est Spec C[M ] ' N ⊗ C∗.

♦

Si ρ est un rayon de l’éventail Σ, l’ouvert Uρ correspondant est isomorphe à C×(C∗)p−1. Il
lui est associé un diviseur torique {0}× (C∗)p−1. Intuitivement, la compactification de N⊗C∗
peut se voir par adjonction de diviseurs à l’infini.

Les Uσ sont ensuite recollés selon les applications suivantes : pour chaque inclusion de
faces τ ⊂ σ, on a une application ouverte Uτ → Uσ. La variété torique associée à l’éventail Σ
est le recollement des Uσ le long de ces applications.

Example 2.1.2. - Si Σ est l’éventail engendré par les rayons dirigés par (1, 1), (0,−1) et
(−1, 0), on obtient le plan projectif CP 2. Ses trois diviseurs toriques sont les axes de
coordonnées donnés dans les coordonnées usuelles par {x = 0}, {y = 0} et {z = 0}.

- Si Σ est l’éventail engendré par les rayons dirigés par (0, 1), (1, 0), (0,−1) et (−1, 0),
on obtient la quadrique CP 1×CP 1. Celle-ci possède quatre diviseurs toriques, qui sont
{0} × CP 1, {∞} × CP 1, CP 1 × {0} et CP 1 × {∞}.

- Soit (ei) la base canonique de Zn. Si Σ est l’éventail engendré par les −ei et
∑n

1 ei, la
variété torique associée est l’espace projectif CPn.

♦

2.2 Courbes paramétrées dans les variétés toriques

On appelle courbe paramétrée dans une variété torique une application rationnelle de la
forme

ϕ : CC 99K N ⊗ C∗,

où CC est une surface de Riemann. Étant donné le choix d’une base de N , une telle applica-
tion consiste en la donnée de p fonctions méromorphes sur CC, où p est le rang de N . Le genre
de la courbe paramétrée est le genre de la surface CC. On dit que la courbe est rationnelle si
elle est de genre 0, i.e. CC = CP 1.

Soit x ∈ CC un point où l’application rationnelle ϕ n’est pas définie. Le point x peut donc
être un zéro ou un pôle de chacun des monômes χm. L’application

m ∈M 7−→ valxϕ∗χm,
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qui associe àm l’ordre du zéro ou du pôle correspondant en x est un morphisme. Il correspond
donc à un élément de N , appelé vecteur de poids de ϕ en x. Le vecteur de poids est nul si
ϕ est définie en x. La famille ∆ des vecteurs de poids non nul est appelée degré de la courbe
paramétrée ϕ. Le théorème des résidus garantit que ∆ est une famille de somme nulle.

Si N = Zp, on dit qu’une courbe est de degré d si les vecteurs de poids sont dans l’une des
directions −ei ou

∑p
1 ei, et que la somme des vecteurs poids dans chacune de ces directions

fait d fois le vecteur en question.

Dans le cas particulier des courbes rationnelles, c’est à dire où la courbe est paramétrée
par la droite projective CP 1, la paramétrisation prend la forme suivante :

ϕ : t 7−→ χ
m∏
i=1

(t− αi)ni ∈ N ⊗ C∗.

Ici, χ désigne un élément de N ⊗ C∗, les αi sont les points de CP 1 où ϕ n’est pas définie, le
vecteur de poids correspondant est ni. Si l’on choisit une base (ej) de N , et que l’on note (e∗j )
la base duale de M , l’application ϕ est simplement donnée en coordonnées par

t 7−→
Ç
χ(e∗j )

m∏
i=1

(t− αi)〈e
∗
j ,ni〉
å
j

∈ (C∗)p.

On peut observer que chacune des coordonnées est bien une fraction rationnelle sur CP 1.

Étant donné une courbe de degré ∆, le degré ∆ permet de définir un éventail Σ∆, qui est
l’éventail dont les rayons sont dirigés par les vecteurs de ∆. Cet éventail n’est évidemment
pas complet, mais il est toujours possible de compléter ce dernier en rajoutant des cônes de
manière à le rendre complet. On obtient alors une variété torique compacte C∆, éventuelle-
ment singulière.

En chaque point x de non définition de ϕ, il est possible de la prolonger en acceptant
qu’elle soit à valeurs dans C∆ plutôt que N ⊗C∗. En effet, le point x est associé à un vecteur
de poids nx de ∆, lui-même associé à un rayon ρ de Σ∆, dirigé par nx. On choisit une base
de ρ̂ de la forme (m1,±m2, . . . ,±mp), où (m2, . . . ,mp) est une base de l’orthogonal ρ⊥, et
m1 la complète en une base de M , choisi tel que 〈m1, nx〉 > 0. En coordonnées, si t est une
coordonnée locale au voisinage de x, ϕ est donc donnée par

t 7−→ (χm1(ϕ(t)), χm2(ϕ(t)), . . . , χmp(ϕ(t))) .

Cette application se prolonge en x par (0, χm2(ϕ(x)), . . . , χmp(ϕ(x))), qui est bien définie car
si i > 2, 〈mi, nx〉 = 0, donc les limites χmi(ϕ(x)) sont bien définies et non nulles, et l’ordre
de ϕ∗χm1 en x est 〈m1, nx〉 > 0, donc la limite est 0. On a ainsi montré que l’application
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rationnelle ϕ se prolonge en une application à valeurs dans la variété torique C∆.

2.3 Structure réelle d’une variété torique

La conjugaison complexe zn 7→ zn est une involution anti-holomorphe de N ⊗ C∗ dans
lui-même. Il est possible de la prolonger à la variété torique C∆. Cela en fait une variété réelle,
dont le lieu fixe est dénoté R∆. Dès lors, une courbe réelle paramétrée est une application
rationnelle

ϕ : CC → N ⊗ C∗,

où CC est une surface de Riemann munie d’une involution anti-holomorphe σ, de telle sorte
que ϕ est équivariante vis-à-vis des involutions : ϕ(σ(x)) = ϕ(x). Dans la pratique, cela veut
dire que les fonctions rationnelles coordonnées sont choisies à coefficients réels. Dans le cas
des courbes rationnelles, où l’on munit CP 1 de sa structure réelle canonique, l’application
rationnelle

ϕ : t ∈ CP 1 7−→ χ
m∏
i=1

(t− αi)ni ,

est réelle si χ est à valeurs dans R∗, les scalaires αi sont réels, ou bien viennent par paire
avec leur conjugué qui a le même vecteur poids. En nommant αi les points réels, et βj , βj les
points complexes, elles obtiennent alors une paramétrisation de la forme suivante :

ϕ : t ∈ CP 1 7−→ χ
r∏
i=1

(t− αi)ni
s∏
j=1

(t2 − 2t<βj + |βj |2)n
′
j .

En d’autres termes, cela signifie que chacune des fractions rationnelles coordonnées sont à
coefficients réels.

2.4 Amibes et Coamibes

Les variétés toriques sont munies des applications naturelles du logarithme et de l’argu-
ment coordonnée par coordonnée, provenant des applications correspondantes pour C∗. Dans
l’écriture N⊗C∗ indépendante du choix des coordonnées, celles-ci prennent la forme suivante :

Log : zn ∈ N ⊗ C∗ 7−→ (Log|z|)n ∈ N ⊗ R = NR,

arg : zn ∈ N ⊗ C∗ 7−→ (arg z)n ∈ N ⊗ (R/πZ).

L’argument est pris ici modulo 2π, mais il est aussi possible de le prendre modulo π. L’image
d’une courbe algébrique par le logarithme s’appelle l’amibe. Cette dernière est au coeur de
nombreux résultats, et a été étudiée par M. Passare et H. Rullgård [PR+04], ainsi que Mi-
khalkin [MR01]. L’image par l’application des arguments s’appelle la coamibe. Bien que tout
aussi naturelle, elle a été moins étudiée. Le lecteur intéressé pourra se reporter à [Joh13],
[FJ14] ou [FJ15].



Chapter 3

Tropical geometry and tropical
curves

Without pretending to make a complete introduction to the wide topic of tropical geome-
try, we give a presentation of the basic notions of tropical curves. For introduction to tropical
geometry, one can refer to [BS14] for a short one, [Bru+15] for a finer one, or [MS15] for an
even finer one with different point of view in the constructions. In the first section, we present
the general definitions relating tropical curves. Secondly, we recall some basics about tropical
enumerative geometry and the moduli spaces of rational tropical curves. Last, we describe
the tropicalization process, that allows one to get tropical curves out of families of classical
curves.
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3.1 Tropical curves

3.1.1 Abstract tropical curves

Let Γ be a finite connected graph without bivalent vertices. Let Γ0
∞ be the set of 1-valent

vertices of Γ, and Γ = Γ\Γ0
∞. If m denotes the cardinal of Γ0

∞, its elements are labeled
with integers from [[1;m]]. We denote by Γ0 the set of vertices of Γ, and by Γ1 the set
of edges of Γ. The non-compact edges resulting from the eviction of 1-valent vertices are
called unbounded ends. The set of unbounded ends is denoted by Γ1

∞, while its complement,
the set of bounded edges, is denoted by Γ1

b . Notice that Γ1
∞ is also labeled by [[1;m]]. Let

l : γ ∈ Γ1
b 7→ |γ| ∈ R∗+ =]0; +∞[ be a function, called length function. It endows Γ with the

structure of a metric graph by decreting that a bounded edge γ is isometric to [0; |γ|], and an
unbounded end is isometric to [0; +∞[.

Definition 3.1.1. Such a metric graph Γ is called an abstract tropical curve.

An isomorphism between two abstract tropical curves Γ and Γ′ is an isometry Γ→ Γ′. In
particular, an automorphism of Γ does not necessarily respect the labeling of the unbounded
ends since it only respects the metric. Therefore, an automorphism of Γ induces a permutation
of the set I = [[1;m]] of unbounded ends.

Definition 3.1.2. Let Γ be an abstract tropical curve. A real structure on Γ is an involutive
isometry σ : Γ→ Γ. A real abstract tropical curve is an abstract tropical curve enhanced with
a real structure.

Since a real structure σ : Γ→ Γ has to preserve the metric, for any bounded edge γ, one
has |γ| = |σ(γ)|. The real structure also induces an involution on the set of ends I = [[1;m]]
of Γ. The fixed ends are called real ends and the pairs of exchanged ends are called the
conjugated ends, or complex ends. The fixed locus of σ is denoted by Fix(σ).

Example 3.1.3. - The trivial real structure σ = idΓ is the most common example, useful
despite its simplicity.

- If Γ is an abstract tropical curve and e, e′ ∈ Γ1
∞ are two unbounded ends adjacent to

the same vertex w, another example is given by permuting the two unbounded ends e
and e′, and leaving the rest of the graph invariant.

♦

In Chapter 6, we also use the following definition.

Definition 3.1.4. Let Γ be a tropical curve. A ribbon structure on Γ is the data of a cyclic
order on the adjacent edges of each vertex of the curve.
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Figure 3.1 – Abstract real tropical curve with its real structure depicted by doubling the
exchanged edges.

3.1.2 Parametrized tropical curves

We now define parametrized tropical curves in an affine space. Let N and M be two
p-dimensional lattices dual from one another, and NR = N ⊗ R. Sometimes, p is assumed to
be equal to 2. Such a situation is also referred as the planar case. We now define parametrized
tropical curves in NR.

Definition 3.1.5. A parametrized tropical curve in NR ' Rp is a pair (Γ, h), where Γ is an
abstract tropical curve and h : Γ→ NR is a map satisfying the following requirements:

- For every edge E ∈ Γ1, the map h|E is affine. If we choose an orientation of E, the
value of the differential of h taken at any interior point of E, evaluated on a tangent
vector of length 1, is called the slope of h alongside E. This slope must lie in N .

- We have the so called balancing condition: at each vertex V ∈ Γ0, if E is an edge
containing V , and uE is the slope of h along E when E is oriented outside V , then∑

E:∂E3V
uE = 0 ∈ N.

Two parametrized curves h : Γ → NR and h′ : Γ′ → NR are isomorphic if there exists an
isomorphism of abstract tropical curves ϕ : Γ→ Γ′ such that h = h′ ◦ ϕ.

Definition 3.1.6. A real parametrized tropical curve is a triplet (Γ, σ, h), where (Γ, h) is a
parametrized tropical curve, σ is a real structure on Γ, and h is σ-invariant: h ◦ σ = h.

Remark 3.1.7. In particular, two vertices that are exchanged by σ have the same image under
h, and two edges that are exchanged by σ have the same slope and the same image. Such
edges are called double edges. If they are unbounded, we call them a double end. Thus, the
image h(Γ) ⊂ NR may not be sufficient to recover the curve Γ used in the parametrization,
and its real structure. For instance, a double end and a simple end with twice the slope have
the same image. �
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Remark 3.1.8. We could assume that M = N = Zp, but the distinction is now useful since
the lattice M is a set of functions on the space NR where the tropical curves live, while N is
the space of the slopes of the edges of a tropical curve. Moreover, notice that we deal with
tropical curves in the affine space NR, identified with its tangent space at 0. �

Let h : Γ→ NR be a parametrized tropical curve. If e ∈ Γ1
∞ is an unbounded end of Γ, let

ne ∈ N be the slope of h alongside e, oriented out of its unique adjacent vertex, i.e. toward
infinity. The multiset

∆ = {ne ∈ N |e ∈ Γ1
∞} ⊂ N,

is called the degree of the parametrized curve. It is a multiset since an element may appear
several times. Using the balancing condition, one can show that

∑
ne∈∆ ne = 0.

We allow some unbounded ends to have slope zero. The image of such an end is contracted
by h and consists in a single point, which is also the image of the unique adjacent vertex.
Such unbounded ends are thus rather called marked points.

Remark 3.1.9. By a slight abuse, we say that two parametrized tropical curves have the same
degree if their degrees differ only by marked points, meaning that the only vector that may
have a different multiplicity on both degrees is 0. �

Example 3.1.10. Some degrees have a specific name. For instance, assume M and N have
rank 2 and let (e1, e2) be a basis of N . We say that a curve is of degree d if ∆ = ∆d =
{(−e1)d, (−e2)d, (e1 + e2)d}. ♦

Definition 3.1.11. - Let Γ be an abstract tropical curve. The genus of Γ is its first Betti
number b1(Γ).

- A curve is rational if it is of genus 0.
- A parametrized tropical curve (Γ, h) is rational if Γ is rational.

Remark 3.1.12. A parametrized tropical curve is then rational if the graph that parametrizes
it is a tree. �

3.1.3 Plane tropical curves

In this subsection, we also assume that M and N have rank 2, restricting ourselves to the
planar case. In that case, classical curves have a description by polynomial equations, since
they coincide with hypersurfaces. This is also the case for tropical curves. To define a plane
tropical curve, we consider a tropical polynomial: for x ∈ NR, put

P (x) = max
u∈P∆

(au + 〈u, x〉),

where P∆ ⊂ M is the set of integer points of a convex lattice polygon, and au ∈ R ∪ {−∞}
are the coefficients of the polynomial, different from −∞ if m ∈ M is a corner of P∆. The
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polygon P∆ is called the Newton polygon of the plane tropical curve. If we choose a basis of
M and N , the tropical polynomial P takes the following form:

P (x, y) = max
(i,j)∈P∆

(aij + ix+ jy).

The tropical polynomial P is then a piecewise affine convex function which is the maximum
of a finite number of affine functions. We assume that P∆ contains more than one point,
otherwise P is an affine function. The tropical polynomial P induces a subdivision of P∆ with
the following rule: u, u′ ∈ P∆ are connected by an edge if {x ∈ NR : P (x) = au + 〈u, x〉 =
au′+〈u′, x〉} 6= ∅. The corner locus C of P , i.e. the set where at least two of the affine functions
realize the maximum, is a rectilinear graph in NR. Equivalently, this is the set of points where
P is not differentiable. The subdivision of P∆ induced by P is dual to the corner locus C
in the sense that there exists natural bijections between the following pairs of sets: edges of
C and edges of the subdivision, vertices of C and polygons of the subdivision, components
where P is smooth equal to one of the affine functions and vertices of the subdivision.

Definition 3.1.13. The plane tropical curve C associated to a tropical polynomial P is the
corner locus of P , enhanced with the following weights on the edges of C: the weight of an
edge is the lattice length of the dual edge in the subdivision of P∆. The polygon P∆ is called
the degree of the curve C.

Plane tropical curves can be characterized as finite weighted graphs (weights on the edges)
with unbounded ends in NR, such that the edges are affine with slope in N , and the vertices
satisfy the following balancing condition: for each edge E of weight wE adjacent to a vertex
V , let uE be a primitive lattice vector directing E oriented outward from V , then, we have∑

E3V
wEuE = 0.

For more details on plane tropical curves, see [BS14].

One can show that the image of a parametrized tropical curve is indeed a plane tropical
curve with this definition. Moreover, the relation between the degree ∆ of the parametrized
tropical curve and the degree P∆ of the plane curve is as follows. Let ω be the determinant
form of N , a generator of Λ2N . It induces an isomorphism ω̂ : n ∈ N 7→ ιnω = ω(n,−) ∈M .
There is a unique way to put on one another the vectors of ∆ such that the convex-hull gives
a convex polygon with positively oriented boundary consisting in the vectors of ∆. The image
of this polygon by ω̂ is P∆.

Conversely, a plane tropical curve can always be parametrized by an abstract tropical
curve if its Newton polygon is non-degenerate, thus leading to a parametrized tropical curve.
If the Newton polygon is degenerate, the plane tropical curve is a union of parallel lines.
Moreover, if C is a plane curve parametrized by h : Γ → NR, the weight of an edge E of C
can be recovered as the sum of the lattice lengths of the slopes of h on the edges γ ∈ Γ which
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project onto E. However, there are often many ways of choosing a parametrization of a plane
tropical curve, by non-isomorphic tropical curves. In fact, even the degree P∆ ⊂M does not
uniquely determine the degree ∆ ⊂ N of a parametrized curve parametrizing C: e.g. if C
has un unbounded end of weight 2, a parametrizing graph Γ could have either an end e with
h|e having slope of lattice length 2, or two ends of primitive slope with the same image by h.

We now define the usual concepts associated to plane classical curves in the case of plane
tropical curves, starting with reducible curves.

Definition 3.1.14. - A plane tropical curve is reducible if it can be represented as the
union of two distinct plane tropical curves.

- A plane tropical curve is irreducible if it is not reducible.

Going on with the definition of the genus, one needs to be careful since it depends on the
chosen parametrization.

Definition 3.1.15. - The genus of a plane tropical curve is the smallest genus among
its possible parametrizations.

- A plane tropical curve is rational if it is irreducible and can be parametrized by a
rational tropical curve.

One can show that if C is a rational plane tropical curve with unbounded ends of weight 1,
it admits a unique rational parametrization. More generally, we have the following statement.

Proposition 3.1.16
[Mik05] Let C be a rational plane tropical curve, and let ue be a directing primitive lattice
vector for each unbounded end e, oriented toward infinity. Let we be the weight of e. Then C
is the image of a unique rational parametrized tropical curve of degree ∆ = {weue}e.

3.1.4 Real parametrizations of a plane tropical curve

In this subsection, we extend Proposition 3.1.16 by describing the possible real rational
parametrizations of a rational plane tropical curve, with unbounded ends of weights 1 or 2.

Let C be a rational plane tropical curve with unbounded ends of weight 1 or 2. Let u1, . . . ,
ur, 2v1, . . . , 2vs be the weighted directing vectors of the unbounded ends of C, with vectors
ui, vj being primitive vectors in N . We assume that r > 1. Let h : Γ → NR be the unique
rational parametrization of C given by Proposition 3.1.16, which is of degree {ui, 2vj}i,j .
We now describe the parametrizations of C by real parametrized rational curves of degree
{ui, v2

j }i,j , which means that now all vectors are primitive, and each unbounded end of weight
2 is replaced with two ends of weight 1.
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We define the subgraph Γeven of Γ as the minimal subgraph satisfying both the following
requirements:

- Every unbounded end of Γ of even weight (i.e. mapped to an end of C directed by 2vj
for some j) is in Γeven.

- If V is a vertex of Γ and all edges adjacent to V but one are in Γeven, then the remaining
adjacent edge also is in Γeven. Following [Shu06b], such a vertex is called an extendable
vertex.

Remark 3.1.17. The subgraph Γeven is the maximal graph on which we can "cut Γ in two" in
order to obtain a new graph Γ′, used to parametrize C, keeping a rational parametrization.
Notice that on all the edges of Γeven, the map h has an even slope. �

As C admits at least one odd unbounded end, each connected component (Γeven)i of Γeven
contains a unique stem, which is a non-extendable vertex. We orient the edges of (Γeven)i
away from the stem. Then we say that a subset of points Ri ⊂ (Γeven)i is admissible if no
point of Ri is joint to another by an oriented path, and for each unbounded end e in (Γeven)i,
there is at least (and thus exactly one) point of Ri on the shortest path between the stem
and e. Let R =

⋃
iRi. We then define a real abstract tropical curve (Γ(R), σ) with a map

hR : Γ(R) → NR that factors through Γ(R) → Γ → NR and makes it a real parametrized
tropical curve.

Let Γfix(R) be the closure of the union of the connected components of Γ−R not containing
any even end. The abstract tropical curve Γ(R) is obtained as the disjoint union of two copies
of Γ, glued along Γfix(R):

Γfix(R) Γ

Γ Γ(R)
.

In other terms, Γ(R) = Γ
∐

Γfix(R) Γ. It means that we have doubled the components of
Γ − R containing the even ends. We denote by π : Γ(R) → Γ the map obtained by gluing
the identity maps of Γ. The complement of Γfix(R) in Γ is called the splitting graph. It is a
subset of Γeven. The splitting graph is maximal if its closure is equal to Γeven. The length
function on Γ(R) is defined as follows: we consider points of R as vertices of Γ, then, the
length of an edge γ of Γ(R) is the length of its image π(γ) if it is an edge of Γfix(R) and twice
the length of π(γ) otherwise. The involution σ is the automorphism of Γ(R) that exchanges
the two antecedents whenever there are two. The parametrized map hR : Γ(R)→ NR is the
composition of π and h.

Remark 3.1.18. The map π really looks like a tropical cover, as defined in [CJM10] and
[BM15]. However, it is not always the case. This is normal since the purpose of the notion of
tropical cover is to mimick ramified covers between complex curves. The map π here plays
the role of the quotient map by a real involution, which is not a ramified cover. �
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Let γ be an edge of Γ(R), and n ∈ N be the slope of π(γ). Then, one can easily check
that the choice of length on Γ(R) ensures that hR has slope n if γ ∈ Fix(σ) and n

2 otherwise.
However, as the edges of Γeven have an even slope, it is still an element of N . One can check
that the balancing condition is still satisfied. Therefore, (Γ(R), hR, σ) is a real parametrized
tropical curve, of image C, and of degree {ui, v2

j }i,j .

Proposition 3.1.19
Let C be a rational plane tropical curve of degree P∆ ⊂M having unbounded ends of weight 1
or 2. Let ∆ ⊂ N be the degree associated to P∆ consisting only of primitive lattice vectors. let
h : Γ → NR be the unique rational parametrization of C given by Proposition 3.1.16. Using
previous notations, every real rational parametrized curve of degree ∆ having the image C is
one of the curves Γ(R).

Proof. The curves (Γ(R), h) provide real rational parametrizations of C. Conversely, if
h : (Γ′, σ) → NR is a real rational parametrization of C of degree {ui, v2

j }, then we have
quotient curve Γ′/σ defined as follows. As a topological space, Γ/σ is the quotient by σ. The
edge lengths are the same for edges in Fix(σ), and the edge length is divided by two for a pair
of exchanged edges. Since h is σ-invariant, we have a quotient map h̃ : Γ′/σ → NR and one
can check that the above choice of edge length makes it into a parametrized tropical curve.
The assumption on the weights of the unbounded ends of C ensures that the conjugated ends
of Γ′ are mapped to the even unbounded ends of C. Their weight is doubled when passing to
the quotient. Thus, we get a rational parametrization of C of degree {ui, 2vj}i,j . Therefore,
it is isomorphic to Γ. Let π : Γ→ Γ/σ be the quotient map.

The primitivity assumption on the degree ensures that near infinity, the points of the even
unbounded ends of Γ have two antecedents by π. The other ends only have one. Let R be
the boundary of Fix(σ).

— First of all, Fix(σ) is connected: if p, q ∈ Fix(σ), there is a unique shortest path in Γ
between p and q, this path is then σ-invariant, thus in Fix(σ).

— Let Ξ be a connected component of Γ\Fix(σ), the boundary of Ξ contains exactly one
point of R: at least one since Ξ 6= Γ, and at most one, otherwise the path between these
points of R would lie in Ξ, and we have proven that such a path lies in Fix(σ). Thus,
Ξ only contains even ends, and the construction of Γeven ensures that the point of R on
the boundary of Ξ is in Γeven.

— Finally, we have proven that Γ is composed of Fix(σ), which is connected and has
boundary R, and components Ξ that are attached to Fix(σ) at those vertices. Thus,
the configuration R is admissible: there is at least one point of R on the shortest path
between the stem and an even end since the stem is in Fix(σ) and the end is not, and
there is at most one since Fix(σ) is connected.

Finally, the set R being admissible, the graph Γ′ is recovered as the curve Γ(R).
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3.2 The moduli of tropical curves and tropical enumerative
geometry

In this section we recall the definition of the moduli space of rational tropical curves, as
described by A. Gathmann, M. Kerber and H. Markwig in [GKM09]. This space enables easy
definitions and computations for the enumerative geometry of tropical curves, which is in our
interest.

3.2.1 Moduli space of rational abstract tropical curves

Let Γ be an abstract tropical curve with m unbounded ends. We say that two tropical
curves have the same combinatorial type if their underlying graphs, i.e. the tropical curves
without their respective metrics, are the same.

Definition 3.2.1. The combinatorial type of a tropical curve is the homeomorphism type of
its underlying labeled graph Γ, i.e. the labeled graph Γ without the metric.

Conversely, to give a graph a tropical structure, one just needs to specify the lengths of
the bounded edges. If the curve is trivalent, meaning that every vertex is adjacent to exactly
3 edges, and has m unbounded ends, there are m−3 bounded edges, otherwise the number of
bounded edges is m−3−ov(Γ), where ov(Γ) is the overvalence of the graph. The overvalence
is given by

∑
V (val(V ) − 3), where V runs over the vertices of Γ, and val(V ) denotes the

valence of the vertex. Therefore, if we choose a labeling of the bounded edges, the set of
curves having the same combinatorial type is in canonical bijection with Rm−3−ov(Γ)

>0 , where
the coordinates are the lengths of the bounded edges. If Γ is an abstract tropical curve, we
denote by Comb(Γ) the set of curves having the same combinatorial type as Γ.

For a given combinatorial type Comb(Γ), the boundary of Rm−3−ov(Γ)
>0 corresponds to

curves for which the length of an edge is zero, and therefore corresponds to a graph having
a different combinatorial type. This graph is obtained by deleting the edge with zero length
and merging its extremities. We can thus glue together all the cones of the finitely many
combinatorial types and obtain the moduli space M0,m of rational tropical curves with m

unbounded ends. Using the result from [SS04], it is a simplicial fan of pure dimension m−3 in

a vector space of dimension
Ç
m

2

å
−m, and the top-dimensional cones correspond to trivalent

curves. The combinatorial types of codimension 1 are called walls. For a more complete
description, see [GKM09].

Definition 3.2.2. The moduli space of rational tropical curves with m unbounded ends is the
simplicial fanM0,m.
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3.2.2 Moduli space of parametrized rational tropical curves

We now turn our focus on the space of rational parametrized tropical curves. Given a
rational abstract tropical curve Γ, if we specify the slope of every unbounded end, and the
position of a vertex, we can define uniquely a parametrized tropical curve h : Γ → NR.
Therefore, if ∆ ⊂ N denotes the fixed set of slopes of the unbounded ends, the moduli space
M0(∆, NR) of parametrized rational tropical curves of degree ∆ isM0,m×NR, where the NR
factor corresponds to the position of the finite vertex adjacent to the first unbounded end.

Definition 3.2.3. The moduli spaceM0(∆, NR) of parametrized rational tropical curves of
degree ∆ in NR is naturally identified withM0,m ×NR.

Remark 3.2.4. Notice that we have two types of unbounded ends: the unbounded ends with
a non-zero slope, which are true unbounded ends, and the unbounded ends which have a zero
slope, which are called marked points. Such ends are sent to a unique point in NR. �

On this moduli space, for each unbounded end i of Γ, we have a well-defined evaluation
map that associates to each parametrized curve (Γ, h) the position of the unbounded end, in
the quotient of NR by its direction. Let ni be the slope of h along the unbounded end ei of
index i ∈ [[1;m]]. The evaluation map is

evi : M0(∆, NR) −→ NR/〈ni〉
(Γ, h) 7−→ h(p) where p ∈ ei

.

If the slope ni is 0, the image by the evaluation map is some point inside NR. For a
marked point, we thus have

evi : M0(∆, NR) −→ NR
(Γ, h) 7−→ h(p) .

Gathering the image of all unbounded ends, we get the total evaluation map:

ev :M0(∆, NR) −→
m∏
i=1

NR/〈ni〉.

This map can be used to impose constraints and find the parametrized tropical curves
satisfying some additional property. For instance, imposing that some marked point belongs
to a chosen tropical curve, or some unbounded end belongs to a chosen hyperplane. This is
the domain of tropical enumerative geometry.

3.2.3 Tropical enumerative geometry and complex multiplicities

We now focus on a specific family of tropical enumerative problems, by looking at rational
tropical curves that meet a bunch of constraints. To do that, we consider parametrized
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rational tropical curves of degree ∆ in NR. Their moduli space is M0(∆, NR). We allow
vectors of ∆ to be 0, so that the unbounded ends associated to these vectors are marked
points on the curves. For each unbounded end i, let Li be a primitive sublattice of N/〈ni〉,
and let li be its corank. We denote by LR

i = Li⊗R. Notice that if i corresponds to a marked
point, Li is a sublattice of N . Let Li be a generic affine space in NR/〈ni〉 with slope LR

i . This
amounts to the choice of a point λi in NR/

(
〈ni〉 ⊕ LR

i

)
. We consider the composition f of

the evaluation map with the quotient maps by the LR
i :

f :M0(∆, NR)→
∏
i

NR/
Ä
〈ni〉 ⊕ LR

i

ä
.

The map f is called the composed evaluation map. Recall tat M and N have rank p. Assume
that

∑
i li = |∆| + p − 3, so that the spaces have the same dimension. We can look for the

parametrized tropical curves such that f(Γ, h) = (λi), i.e. such that evi(Γ, h) ∈ Li. In other
terms, we look for the tropical curves of degree ∆ that meet each one of the affine subspaces
Li.

Remark 3.2.5. The linear constraints Li could easily be replaced by tropical cycles Ξi of the
same dimension, but we do not want to bother here with the definition of tropical cycles, so
we restrict to these constraints. For more details, see [AR10]. �

As the spaces have the same dimension, we expect a finite number of solutions if the affine
spaces Li, i.e. the λi, are chosen generically. This is indeed the case.

Proposition 3.2.6
If the affine subspaces Li are chosen generically, there is a finite number of parametrized
tropical curves (Γ, h) such that evi(Γ, h) ∈ Li. Moreover, these curves are trivalent.

Remark 3.2.7. Another way to formulate the problem is to consider the image ofM0(∆, NR)
by the evaluation map ev, living inside

∏
iNR/〈ni〉, and intersect it with

∏
i Li ⊂

∏
iNi/〈ni〉.

These two spaces have complementary dimensions, thus, we expect a finite number of inter-
section points, which correspond to the desired solutions. This approach is the one of tropical
intersection theory, and can be seen in [AR10] and [GKM09]. �

Proof. There is a finite number of cones in the moduli spaceM0(∆, NR). Moreover, on each
cone, i.e. each combinatorial type, f is linear. If the restriction of f to this cone is injective,
the combinatorial type contributes at most one solution.

The point (λi) can always be chosen outside the image of the non top-dimensional cones,
since these images are included in proper subspaces of

∏
iNR/(〈ni〉 ⊕ LR

i ). For a combina-
torial type of top-dimension, as by assumption its dimension is equal to the dimension of∏
iNR/(〈ni〉 ⊕ LR

i ), if f is not injective, it is not surjective either, and its image is thus con-
tained in a proper subspace. Finally, a generic choice of (λi) is chosen outside the image of
the non top-dimensional cones and the cones where f is not injective.
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For such a choice of (λi), there is a finite number of solutions, and the corresponding
curves are trivalent since they belong to top dimensional cones ofM0(∆, NR).

Now that we have a finite number of solutions, we can count these solutions with a suitable
multiplicity so that we obtain a result independent of the choice of the affine subspaces
Li. One such choice is provided both by intersection theory [GKM09], and by the complex
multiplicities that intervene in correspondence theorem [Mik05]; [NS06]; [GM07a]. It is the
determinant of the composed evaluation map f . Let h : Γ→ NR be a parametrized rational
tropical curve, with Γ a trivalent graph. Then, the restriction of f to the cone Comb(Γ)×NR '
Rm−3
>0 ×NR is the restriction of a linear map between two vector spaces of the same dimension.

Therefore, we can define the complex multiplicity of (Γ, h) to be the determinant of this linear
map if we specify the basis that we choose on each side of the map. On the domain, we choose
the canonical basis of Rm−3, and a basis of N . On the image, we choose a basis of each lattice
N/(〈ni〉 ⊕ LR

i ). The determinant is then well-defined up to sign.

Definition 3.2.8. The complex multiplicity of (Γ, h) is

mC
Γ = |det f |Comb(Γ)|,

that is the determinant of the restriction of f to the orthant corresponding to the combina-
torial type of Γ, when domain and codomain are endowed with the specified basis.

Now, let (λi) be chosen generically. We set

N∆(L1, . . . ,Lm) =
∑

f(Γ,h)=(λi)
mC

Γ .

Notice that if the subspaces Li are chosen generically, there is no curve with zero mul-
tiplicity that contributes to the sum, otherwise f is not injective nor surjective on the cone
corresponding to the combinatorial type of the curve, and thus (λi) has been chosen out of
its image.

Proposition 3.2.9
The value of N∆(L1, . . . ,Lm) only depends on the slopes Li of the affine subspaces and not
their specific choice as long as it is generic.

This invariant is thus denoted by N∆(L1, . . . , Lm).

Proof. As many proofs of tropical invariance, the proof goes by the study of local invariance
at the walls of the tropical moduli space. The proof is similar to Proposition 4.4 in [GM08].
We proceed in two steps: first, we show that the sum of the determinants of the composed
evaluation maps around a wall is zero, and then we show that the sign of these determinants
characterizes the existence of solutions, thus proving the local invariance.
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• We consider the wall associated to a quadrivalent vertex in the tropical curve. Let the
adjacent edges be denoted by the indices 1, 2, 3, 4. The three adjacent combinatorial
types are determined by the splitting of the quadrivalent vertex into two trivalent ver-
tices. These possibilities are denoted by 12//34, 13//24 and 14//23. The cone in the
moduli spaceM0(NR,∆) corresponding to each combinatorial type is the quadrant of
the vector space NR × Rm−4 × R, consisting of the points with positive coordinates on
the R entries, where the NR factor corresponds to the vertex V adjacent to the edge 1,
the Rm−4 has canonical basis indexed by the edges of the curve with the quadrivalent
vertex, which are common to all curves in the adjacent combinatorial types, and the R
factor corresponds to the length of the edge resulting from the splitting of the quadri-
valent vertex.

Let vj be a directing vector of the edge j, oriented outward the quadrivalent vertex. For
each marked point or unbounded end i, associated to a constraint Li, letmi1, . . . ,miri be
linear forms defining the sublattice Li: Li =

⋂ri
j=1 kermij . Then, for the combinatorial

type 12//34, the matrix of the composed evaluation map f takes the following form:

12//34 NR Rm−8 1 2 3 4 R
behind 1 mij 0 or 〈mij , v〉 〈mij , v1〉 0 0 0 0
behind 2 mij 0 or 〈mij , v〉 0 〈mij , v2〉 0 0 0
behind 3 mij 0 or 〈mij , v〉 0 0 〈mij , v3〉 0 〈mij , v1 + v2〉
behind 4 mij 0 or 〈mij , v〉 0 0 0 〈mij , v4〉 〈mij , v1 + v2〉

.

The columns are separated according to the decomposition of the moduli space as
NR×Rm−4×R. Moreover, we separate the coordinates corresponding to the lengths of
the edges 1, 2, 3, 4, assuming they are bounded edges. The rows are separated according
to whether which of the four edges 1, 2, 3, 4 is on the shortest path between the vertex
V and the unbounded end or marked point i. For each unbounded end or marked point
i, we evaluate the linear forms (mij)j . For each edge e directed by v, the evaluation for
the unbounded end or marked point i is 〈mij , v〉 if the edge e is part of the shortest path
between V and unbounded end or marked point i, otherwise it is 0. This fact allows
us to complete the middle entries of the matrix. The same rule apply for the entries
of the last columns. The matrices for the combinatorial types 13//24 and 14//23 are
respectively

13//24 NR Rm−8 1 2 3 4 R
behind 1 mij 0 or 〈mij , v〉 〈mij , v1〉 0 0 0 0
behind 2 mij 0 or 〈mij , v〉 0 〈mij , v2〉 0 0 〈mij , v1 + v3〉
behind 3 mij 0 or 〈mij , v〉 0 0 〈mij , v3〉 0 0
behind 4 mij 0 or 〈mij , v〉 0 0 0 〈mij , v4〉 〈mij , v1 + v3〉

,
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14//23 NR Rm−8 1 2 3 4 R
behind 1 mij 0 or 〈mij , v〉 〈mij , v1〉 0 0 0 0
behind 2 mij 0 or 〈mij , v〉 0 〈mij , v2〉 0 0 〈mij , v1 + v4〉
behind 3 mij 0 or 〈mij , v〉 0 0 〈mij , v3〉 0 〈mij , v1 + v4〉
behind 4 mij 0 or 〈mij , v〉 0 0 0 〈mij , v4〉 0

.

We make the sum of the three determinants for the three adjacent combinatorial types,
and use the linearity with respect to the last column, since all the other columns are
equal. We get

NR Rm−8 1 2 3 4 R
behind 1 mij 0 or 〈mij , v〉 〈mij , v1〉 0 0 0 0
behind 2 mij 0 or 〈mij , v〉 0 〈mij , v2〉 0 0 〈mij , 2v1 + v3 + v4〉
behind 3 mij 0 or 〈mij , v〉 0 0 〈mij , v3〉 0 〈mij , 2v1 + v2 + v4〉
behind 4 mij 0 or 〈mij , v〉 0 0 0 〈mij , v4〉 〈mij , 2v1 + v2 + v3〉

.

Using a combination of the columns corresponding to NR applied to v1, and the bal-
ancing condition v1 + v2 + v3 + v4 = 0, we get

NR Rm−8 1 2 3 4 R
behind 1 mij 0 or 〈mij , v〉 〈mij , v1〉 0 0 0 〈mij , v1〉
behind 2 mij 0 or 〈mij , v〉 0 〈mij , v2〉 0 0 〈mij , v2〉
behind 3 mij 0 or 〈mij , v〉 0 0 〈mij , v3〉 0 〈mij , v3〉
behind 4 mij 0 or 〈mij , v〉 0 0 0 〈mij , v4〉 〈mij , v4〉

.

Now, we see that the last column is the sum of the columns indexed 1, 2, 3, 4. Thus,
the sum of the determinants is 0. If some of the edges 1, 2, 3, 4 was unbounded, the
columns with the corresponding indices would not appear, but for the linear forms mij

that would be evaluated on the corresponding unbounded end, one would already have
〈mij , vi〉 = 0 and the result is unchanged. Finally, one has

detA12//34 + detA13//24 + detA14//23 = 0.

• We now use the previous statement to prove the invariance of the count. We denote
by L the tuple (L1, . . . ,Lm). Let L(t) be a generic path between two generic configu-
rations L(0) and L(1), i.e. a path in

∏
iNR/(〈ni〉 ⊕ LR

i ). Outside a finite set of values
of t, the configuration L(t) is generic and N∆(L(t)) is given by a sum over some com-
binatorial types with non-zero multiplicity. More precisely, on each combinatorial type
with non-zero multiplicity, the composed evaluation map f is a linear map associated
with a matrix A. If the coordinates on the combinatorial type are denoted by (V, l),
the equation can be formally solved: (V, l) = A−1L, and this provide a true solution of
f(Γ, h) = L if the coordinates of l are non-negative.
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As the multiplicity only depends on the combinatorial type, the value of N∆(L(t)) is
locally constant at generic L(t), thus, we only need to show invariance around the special
values t where L(t) is not generic. Let t∗ be such a value. At least one of the curves
of f−1(t∗) has a quadrivalent vertex, and it deforms into the adjacent combinatorial
types when t moves slightly around t∗. Let A12//34, A13//24 and A14//23 be the matrices
of f on the three adjacent combinatorial types. On each combinatorial type, we can
solve uniquely A?(V, l) = L(t): (V, l) = A−1

? λ(t), where ? is one of the three adjacent
combinatorial types, and we get a true solution if all the coordinates of l are non-
negative. This is the case for all the edges except the edge that appears with the
splitting of the quadrivalent vertex. Using Cramer’s rule to solve A?(V, l) = L(t), the
length of the new edge is equal to det Ã?

detA? , where Ã? is the matrix A? with the last
column (the one that corresponds to the length of the new edge) being replaced with
L ∈

∏
iNR/(〈ni〉⊕LR

i ). As the matrices A12//34, A13//24 and A14//23 only differ in their
last column, the numerators are all equal, and the sign of the length of the new edge is
thus determined by the sign of detA?. Finally, the sign of the determinant determines
which combinatorial type provide a true solution, and the local invariance follows from
the relation

detA12//34 + detA13//24 + detA14//23 = 0.

Remark 3.2.10. The invariance also results from general results of tropical intersection theory
[AR10]. Had we worked with more general tropical cycles Ξi, the proof with intersection
theory would also work, but in that case, we would have more walls to study. These walls
correspond to the cases where the parametrized tropical curves do not intersect the cycles Ξi
in their top-dimensional faces. The invariance would then result from the balancing condition
for the cycles Ξi. �

3.2.4 Computation of the multiplicity

We now try to compute the multiplicity mC
Γ of a parametrized tropical curve, defined

as the determinant of the composed evaluation map. More precisely, the multiplicity can
be computed in the hereby described fancy way. To keep a general setting, we consider
tropical curves (Γ, h) that are not necessarily trivalent. Nevertheless, for such a curve and an
evaluation map

f :M0(∆, NR)→
∏
i

NR/(〈ni〉 ⊕ LR
i ),

we can define a complex multiplicity as the determinant of f provided that the cone of the
combinatorial type of Γ has the same dimension as the target space. We assume it is the case.

For each primitive sublattice L ⊂ N of corank l, there is an orthogonal dual primitive
sublattice L⊥ ⊂ M of rank l, and an associated Plücker vector ρ ∈ ΛlM defined up to sign.
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This polyvector is defined as follows: let m1, . . . ,ml be a basis of L⊥. Then, one has

ρ = m1 ∧ · · · ∧ml ∈ ΛlM.

This polyvector does not depend on the chosen basis up to sign.

Given a parametrized rational tropical curve h : Γ→ NR, one has a polyvector ρi associ-
ated to each of the unbounded ends of the curve.

- If i is a true unbounded end, ρi is the Plücker vector associated to the primitive sublattice
spanned by ni and Li.

- If i corresponds to a marked point, ρi is the Plücker vector associated to Li.
We choose one vertex of Γ to be the sink of the curve and orient every edge toward it.

We then cut the tropical curve, which is a tree, with the following rule: let V be a vertex
different from the sink, with incoming unbounded edges directed by n1, . . . , ns, and respective
polyvectors ρ1, . . . , ρs, and a unique outgoing bounded edge, thus directed by n1 + · · · + ns.
The polyvector associated to the outgoing edge of V is

ρ = ιn1+···+ns(ρ1 ∧ · · · ∧ ρs).

Recall that ιn, for n ∈ N , denotes the interior product by n. In our case, all the vertices are
trivalent, so that there are only two incoming edges.

Geometrically, the polyvector associated to an edge and to an unbounded end is a multiple
of the Plücker vector associated to the space described by the edge when it moves. This means
the following:

- For a true unbounded end i associated to a constraint Li, the space described by the
unbounded end when evi(Γ, h) is in Li is an affine space with direction 〈ni〉 ⊕ LR

i .
- At a vertex V with incoming edges having respective polyvectors ρ1, . . . , ρs. Assume by
induction that the incoming edges move in an affine space directed by a vector subspace
whose Plücker vector is ρi respectively. Then, the vertex moves in the intersection of
all these subspaces. Therefore, the affine subspace has Plücker vector ρ1 ∧ · · · ∧ ρs.

- Finally, for the outgoing edge of V , it moves in an affine space equal to the affine space
where V lives, enlarged by the direction of the edge: n1 + · · ·+ns. Hence, the polyvector
is obtained by making the interior product with n1 + · · ·+ ns.

At the sink, let ρ1, . . . , ρs be the polyvectors associated to the incoming adjacent edges.
Because of the assumption on dimensions, we have

ρ1 ∧ · · · ∧ ρs ∈ ΛpM ' Z.

Thus, it is an integer multiple of a generator of ΛpM . The absolute value of the constant,
obtained by evaluating on a basis of N , is the desired determinant.

Lemma 3.2.11
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The value of the multiple does not depend on the chosen sink.

Proof. We prove that the obtained value does not change if we replace the sink V by one
of its neighbors. Let V be a vertex, W one of its neighbors, and E the edge between them,
directed by n. Let ρ1, . . . , ρs be the polyvectors of the edges adjacent to V different from E,
and ρ′1, . . . , ρ′s′ the polyvectors associated to the edges adjacent to W different from E. The
computation leads to the two following results:

— If V is the sink, we get
ρ1 ∧ · · · ∧ ρs ∧ ιn(ρ′1 ∧ · · · ∧ ρ′s′).

— If W is the sink, we get

ιn(ρ1 ∧ · · · ∧ ρs) ∧ ρ′1 ∧ · · · ∧ ρ′s′ .

Therefore, the equality (up to sign) comes from the fact that ρ1 ∧ · · · ∧ ρs ∧ ρ′1 ∧ · · · ∧ ρ′s′ is 0
since it is in Λp+1M = {0}, and that ιn is a derivation on Λ•M .

Theorem 3.2.12
The value obtained by the preceding algorithm is equal to the complex multiplicity mC

Γ.

Proof. We make an induction on the number of vertices of the curve Γ, and cut the branches
one by one.

- If the curve has just one vertex, let ρi = mi1 ∧ · · · ∧miri be the polyvectors associated
to the lattices Li for the s unbounded edges of the curve. The evaluation matrix of f ,
denoted by [f ], has the following form:

[f ] =

à
m11
...

m1r1
...

msrs

í
.

Therefore, we have

det f = m11 ∧ · · · ∧m1r1 ∧ · · · ∧msrs = ρ1 ∧ · · · ∧ ρs.

- If Γ has more than one vertex, let V be a vertex adjacent to only unbounded ends
associated to polyvectors ρ1, . . . , ρs, and one unique neighbor vertex W . We keep the
same notations ρi = mi1 ∧ · · · ∧miri . We choose a basis of the cone associated to the
combinatorial type of Γ consisting of the canonical basis of Rm−3−ov(Γ)

>0 , and the NR
factor corresponding to the position of W . Then, the matrix of f has the following
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form:

[f ] =



∗ · · · ∗ ∗ · · · ∗ 0
... . . . ...

... . . . ...
...

∗ · · · ∗ ∗ · · · ∗ 0
m11 0 · · · 0 〈m11, n〉
...

... . . . ...
...

msrs 0 · · · 0 〈msrs , n〉


,

where the first columns correspond to the evaluation of the vertex W , the last column
to the evaluation corresponding to the edge between V andW . We make a development
with respect to the last column. We get the following result:

det f =
s∑
i=1

ri∑
j=1

(−1)•〈mij , n〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ · · · ∗ ∗ · · · ∗
... . . . ...

... . . . ...
∗ · · · ∗ ∗ · · · ∗

m11 0 · · · 0
...

... . . . ...
m̂ij 0 · · · 0
...

... . . . ...
msrs 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Each determinant in the sum is the determinant of the evaluation matrix f for a tropical
curve where the vertex V is deleted and the edge between V and W replaced by an
unbounded end, associated with a constraint having polyvector (−1)•〈mij , n〉m11∧· · ·∧
m̂ij ∧· · ·∧msrs . The sum of these vectors is precisely ιn(ρ1∧· · ·∧ρs). Hence, the result
follows by induction.

If we restrict to the planar case, i.e. p = 2, and assume that all sublattices Li are {0}, the
multiplicities of the enumerative problem considered in subsection 3.2.3 take a very simple
form, as a product over the vertices of the curve. Let ω denote the determinant, which is a
generator of Λ2M . For a trivalent parametrized tropical curve h : Γ → NR, the multiplicity
of a vertex V is the integer mV = |ω(aV , bV )|, for aV , bV the slope of h on two edges adjacent
to V . This multiplicity does not depend on the chosen adjacent edges.

Proposition 3.2.13
If M and N have rank 2, the complex multiplicity of a trivalent parametrized tropical curve
h : Γ→ NR satisfies

mC
Γ =

∏
V

mV ,

where the product is over the trivalent vertices of Γ.

Proof. Let ω ∈ Λ2M be the determinant. As each Li is 0, the polyvector associated to any
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true unbounded end i is ιniω, while the polyvector associated to any marked point i is ω.
The result then follows from the following identities on the cutting algorithm:

ιn1+n2(ιn1ω ∧ ιn2ω) = ω(n1, n2)ιn1+n2ω,

ιn1+n2(ιn1ω ∧ 1) = ω(n1, n2)1,

ιn(ω ∧ 1) = ιnω.

The complex multiplicity has a natural definition, and provides an invariance for the
count of the solutions. They are not the only possible choice. One of our goals is to find
other multiplicities that provide an invariant. Such an example is provided by the refined
multiplicity of Block-Göttsche [BG16], as defined below. However, the complex multiplicity
keeps a strong role since its nullity prevents the existence of solutions, and its invariance
governs the repartition of the solutions around a wall of the moduli space.

Definition 3.2.14. The refined multiplicity of a simple nodal tropical curve is

mq
Γ =

∏
V

[mC
V ]q,

where [a]q = qa/2−q−a/2
q1/2−q−1/2 is the q-analog of a.

This refined multiplicity is sometimes called the Block-Göttsche multiplicity and inter-
venes in the definition of the invariant N∂,trop

∆ in section 5.1. Notice that the multiplicity is
the same for every curve inside a given combinatorial type. We give generalization of this
refined multiplicity in higher dimension in Chapter 6.

3.2.5 Moment of an unbounded end and tropical Menelaus theorem

Assume thatM andN have rank 2, and let ω be a generator of Λ2M , i.e. a non-degenerate
2-form on N . It defines to a volume form on NR ' R2. Let e ∈ Γ1

∞ be an unbounded end
oriented toward infinity, directed by ne. Then the moment of e is the scalar

µe = ω(ne, p) ∈ R,

where p ∈ e is any point on the edge e. Remember that we identify the affine space NR
with its tangent space at 0, allowing us to plug in ω a tangent vector ne and a point p. We
similarly define the moment of a bounded edge if we specify its orientation. The moment of
a bounded edge is reversed when its orientation is reversed.

Intuitively, the moment of an unbounded end is just a way of measuring its position
alongside a transversal axis. Thus, fixing the moment of an unbounded end amounts to
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imposing on the curve that it goes through some point at infinity. In a way, this allows us to
do toric geometry in a compactification of NR but staying in NR. It provides a coordinate on
the components of the toric boundary without even having to introduce the concept of toric
boundary in the tropical world. Following this observation, the moment has also a definition
in complex toric geometry, where it corresponds to the coordinate of the intersection point of
the curve with the toric divisor. Let

ϕ : CP 1 99K Hom(M,C∗) ' (C∗)2

t 7→ χ
∏r

1(t− αj)nj .

be a parametrized rational curve. Given a dual basis (e1, e2) of N , and its dual basis (e∗1, e∗2) of
M , the parametrized curve given in coordinates is as follows. Let ni = aie1 + bie2, a = χ(e∗1)
and b = χ(e∗2), then

ϕ(t) =
Ç
a

r∏
1

(t− αi)ai , b
r∏
1

(t− αi)bi
å
∈ (C∗)2.

This is a curve of degree ∆ = (nj) ⊂ N . The degree ∆ defines a fan Σ∆ and a toric surface
C∆ to which the map ϕ naturally extends. The toric divisors Dk of C∆ are in bijection with
the rays of the fan, which are directed by the vectors nj . Several vectors nj may direct the
same ray. Moreover, the map ϕ extends to the points αj by sending αj to a point on the
toric divisor Dk corresponding to the ray directed by nj . A coordinate on D is a primitive
monomial χm ∈ M in the lattice of characters such that 〈m,nj〉 = 0. This latter equality
ensures that the monomial χm extends on the divisor Dk. If nj is primitive, ιnjω ∈ M is
such a monomial, and then the complex moment is the evaluation of the monomial at the
corresponding point on the divisor:

µj = (ϕ∗χιnjω) (αj).

The Weil reciprocity law gives us the following relation between the moments:

m∏
i=1

µi = (−1)m.

We could also prove the relation using Viète formula. In the tropical world we have an analog
called the tropical Menelaus theorem, which gives a relation between the moments of the
unbounded ends of a parametrized tropical curve.

Proposition 3.2.15 (Tropical Menelaus Theorem [Mik17])
For a parametrized tropical curve of degree ∆, we have∑

ne∈∆
µe = 0.

In the tropical case as well as in the complex case, a configuration of m points on the toric
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divisors is said to satisfy the Menelaus condition if this relation is satisfied.

If we do not assume the lattices to have rank 2 anymore, we can still choose a 2-form ω

in Λ2M and set the same definition. By composing the evaluation map with ιnω = ω(n,−)
for any unbounded end directed by n, we get the moment map:

mom : M0(∆, NR) −→ R|∆|
(Γ, h) 7−→ µ = (µi)16i6m

.

For the marked points, i.e. the unbounded ends with zero slope, we do not take the moment
into account since it is equal to 0. By the tropical Menelaus theorem, the moment µ1 is equal
to the opposite of the sum of the other moments, hence one could omit it in the map.

Notice that the moment map is the composed evaluation map if we choose the lattices
Li to be kerω(ni,−). Furthermore, in the planar case, both spaces have the same dimension
|∆| − 1. Thus, if Γ is a trivalent curve, the moment map mom on Comb(Γ) × NR defines a
complex multiplicity of the curve, which factors into the following product over the vertices
of Γ:

mC
Γ =

∏
V

mC
V .

This multiplicity is the one that appears in the correspondence theorem of Mikhalkin [Mik05].
Thus, in the planar case, we have a well-defined invariant given by the moment map. This
invariant is denoted by N∂,trop

∆ (1). This notation emphasizes the fact that the count of
solutions with the refined multipliciy of Block-Göttsche also leads to an invariant, as proven
in chapter 5. This refined invariant, which is a polynomial, is denoted by N∂,trop

∆ .

3.3 Tropicalization

We briefly recall how to obtain an abstract tropical curve and a parametrized tropical
curve from a non-archimedean parametrized curve given by a rational map f : (C,q) →
Hom(M,C((t))∗), where (C,q) is a curve with marked points. For more details, see [Tyo12].

3.3.1 Tropicalization of a marked curve

Let (C,q) be a smooth marked curve over C((t)). Let C(t) → SpecC[[t]] be the stable
model of (C,q), defined over C[[t]]. The marked points qi provide sections SpecC[[t]]→ C(t).
We have the special fiber C(0), which is a stable nodal curve, meaning that each irreducible
component of genus zero has at least three marked points or nodes, and each irreducible
component of genus 1 has at least one marked point or a node. Let Γ be the dual graph in
the following sense: we have one finite vertex per irreducible component of the special fiber,
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one infinite vertex per marked point, an infinite vertex is joined to the finite vertex of the
component where the point specializes, and two finite vertices are joined by an edge if they
share a node. We make Γ into an abstract tropical curve by declaring the length of such an
edge to be l if the node is locally given by xy = tl in an etale neighborhood of the node.
Remark 3.3.1. Intuitively, if our curve is rational, C(t) is just CP 1 with points depending
on a small complex parameter t on it, i.e. points given by locally convergent Laurent series
in C((t)). If we take naively the special fiber t = 0, some marked points may collide, i.e.
specialize on the same point, other may go to infinity, ... Taking the stable model means that
we prevent that. For instance, assume a bunch of points specialize to 0. This means that
they are given by formal series of the form tkx(t) with k > 0. We then blow-up this point
and get two copies of CP 1 sharing a node. All the points previously specializing to 0 now
specialize to at least two different points on the exceptional divisor. The length of the edge
between the two copies is the smallest k for all the points specializing on it. Concretely, the
blow-up amounts to changing the coordinate z on CP 1 by t−kz. We then repeat as long as
necessary. �

If the curve (C,q) is a real curve, with a real configuration of points q, the involution
restricted to the special fiber induces a real structure on Γ.

3.3.2 Tropicalization of a parametrized curve

Now assume given a rational map f : (C,q) 99K Hom(M,C((t))∗). There is a tropical
curve Γ associated to (C,q). The rational map f extends to a rational map on the stable
model C(t) of (C,q). In order to make Γ into a parametrized tropical curve, we define a map
h : Γ→ NR in the following way:

— If w ∈ Γ0 is a vertex dual to a component Cw of C(0), then h(w) is the element of N
defined as follows:

h(w)(m) = ordCw(f∗χm),

where ordCw stands for the multiplicity of Cw in the divisor of f∗χm.
— Then h maps a bounded edge to the line segment linking its extremities.
— If qi is a marked point, then the slope of the associated unbounded end is ordqi(f∗χm),

where ordqi stands for the multiplicity of qi in the divisor of f∗χm.
Remark 3.3.2. The slope of the unbounded end associated to a given marked point qi is given
both by the order of vanishing of f∗χm at qi, and by the multiplicity of the section defined
by qi in the divisor of f∗χm in the stable model C(t). This is normal since the marked points
provide divisors in C(t) which are transverse to the special fiber. Concretely, in the rational
case, if y is a coordinate on C and f is given by

f : y 7−→ χ
r∏
i=1

(y − y(qi))ni ∈ Hom(M,C((t))∗),

with χ ∈ Hom(M,C((t))∗), then the slope of the edge associated to the marked point qi is ni.
�
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Remark 3.3.3. The special fiber is given by the equation t = 0. Therefore h(w)(m) =
ordCw(f∗χm) is the valuation in t of the function evaluated at the generic point of Cw.
Concretely, in the rational case, let y be a coordinate on C specializing to a coordinate on
Cw, which is a copy of CP 1, such that no point specializes to ∞. Assume f is given by

f : y 7−→ χ
r∏
i=1

(y − y(qi))ni ∈ Hom(M,C((t))∗),

where χ ∈ Hom(M,C((t))∗). Then h(w)(m) = val(χ(m)). �

The fact that (Γ, h) is indeed a parametrized tropical curve is proved in [Tyo12]. One
essentially needs to check the balancing condition, and the fact that if γ is an edge with
extremities v and w, the slope of h(γ) lies in N , and the length of h(w) − h(v) coincide
with the length |γ| in Γ. Finally, we can refine the tropicalization in the following way that
is useful to compute quantum indices: on each Cw the rational map f specializes to give a
parametrized complex rational curve fw : Cw ' CP 1 99K Hom(M,C∗). Concretely, this is
the curve we would obtain by taking the naive limit of f in a coordinate specializing to a
coordinate of Cw. Therefore, we have a tropical curve and a complex curve associated to
every vertex.

Remark 3.3.4. All our curves are taken with coefficients in C((t)), which is not algebraically
closed, and has a discrete valuation. Thus, every tropicalization data has coefficients in Z.
Instead we could take the algebraic closure, which is the field of Puiseux series C{{t}} =⋃
k>1 C((t

1
k )), but as we are using only a finite number of coefficients, all belong to C((t

1
k ))

for some k, and by taking u = t
1
k we reduce it to the previous case. Therefore, we can assume

that everything is defined in C((t)), up to a change of base. �

3.3.3 Tropicalization of a plane curve

We finish by describing the tropicalization of a plane curve. This tropicalization is more
elementary than the tropicalization of a parametrized curve. Moreover, the tropicalization of
a parametrized curve gives a parametrization of the tropicalization of its image plane curve.
Let C be a plane curve, defined by a polynomial Pt ∈ C((t))[M ] with coefficients in C((t)).
We look for the points of the curve over the Puiseux series, i.e. in N ⊗ C{{t}}∗. In a basis
of M , the polynomial is given in coordinates by

Pt(x, y) =
∑

(i,j)∈P∆

ai,j(t)xiyj .

We assume that the coefficients in the corners of P∆ are non-zero. Then, we have the associ-
ated tropical polynomial

Trop(Pt)(x, y) = max
(i,j)∈P∆

(val(ai,j(t)) + ix+ jy) ,
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along with a valuation map, also called tropicalization map:

Val : χ ∈ Hom(M,C{{t}}∗) 7−→ val ◦ χ ∈ Hom(M,R) = NR.

In coordinates, Val is given by the coordinatewise valuation:

Val : (x, y) ∈ (C{{t}}∗)2 7−→ (val(x), val(y)) ∈ R2.

The Kapranov theorem [BS14] then ensures that the closure of the image of the vanishing
locus of Pt in (C{{t}}∗)2 under the valuation map is equal to the tropical curve defined by
Trop(Pt).

Theorem 3.3.5 (Kapranov)
Let Ctrop be the tropical curve defined by Trop(Pt). Then, one has

Val(C) = Ctrop.

Let αi,j = val(ai,j(t)), and ai,j(t) = tαi,ja0
i,j(t). The function (i, j) 7→ αi,j induces a convex

subdivision of P∆, which is dual to Ctrop. As in the tropicalization of a parametrized curve,
one can recover complex curves, by specializing the polynomial Pt to one of the polygons of
the subdivision. Let $ be one of the polygons of the subdivision of P∆. Then, the curve
associated to $ is given by P$(x, y) =

∑
(i,j)∈$ a

0
i,j(0)xiyj = 0, defined over C.

One can show that if ϕ : C → N ⊗ C{{t}}∗ is a parametrized curve tropicalizing to
h : Γ → NR, then the image h(Γ) and the tropicalization of the image Val(ϕ(C)) are the
same. Moreover, the local parametrized curves fw : Cw 99K N ⊗ C∗ resulting from the
tropicalization as parametrized curve, are precisely the irreducible components of the curves
defined by P$ = 0.



Chapter 4

Computation of some refined
invariants in toric surfaces

In this chapter we adress the computation of the refined toric enumerative invariants in-
troduced by Mikhalkin in [Mik17]. In his approach, he counts oriented real rational curves
in a toric surface, and the refinement is provided by the value of a so-called quantum index.
The definition of the quantum index is recalled in section 4.1.

Mikhalkin then considers an enumerative problem and counts its solutions according to
the value of their quantum index. The enumerative problem is as follows. Let ∆ ⊂ N be a
degree, and C∆ be the associated toric surface. Let P be a symmetric configuration of real
and complex conjugated points located on the toric boundary, with some assumption on their
number (see section 4.2 for more details). Any oriented rational curve of degree ∆ passing
through the point configuration has a well-defined quantum index, which coincide with the
logarithmic area if the complex points are purely imaginary. Thus, we make a signed count
of the oriented rational curves that pass through the point configuration, according to the
value of their quantum index. Mikhalkin proved that the result only depends on the number
of purely imaginary points on each toric divisor.

Furthermore, Mikhalkin proved that, if all the points are real, the hereby defined invari-
ants coincide up to constant factor with the tropical invariants N∂,trop

∆ , previously defined,
but studied and computed in chapter 5. In this chapter, we recover this result and generalize
it to the case where there are some pairs of complex conjugated points which are located on
common toric divisor.

In the first section, we recall the definition of the quantum index of Mikhalkin, and give
a way to compute it for every real rational curve. This is an improvement since Mikhalkin
restricts himself to the case of toric type I real curves (see Definition 6.1.16). In the rational
case, such curves only have real intersection points. Then, we recall the enumerative problem
considered by Mikhalkin in [Mik17], leading to the definition of his refined invariants. This
enumerative problem is naturally associated to the tropical enumerative problem from section
5.1, meaning that it can be solved using a suitable correspondence theorem. Last, we give a
proof of a correspondence theorem, inspired by I. Tyomkin [Tyo17], that allows us to compute
Mikhalkin’s refined invariants in some cases, including the one of complex points on a common

43
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divisor.
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4.1 Quantum indices of real rational curves

We start this section by recalling the theorem about quantum indices by Mikhalkin
[Mik17], restricting ourselves to the case of rational curves. We then compute the quan-
tum indices in some specific cases and provide a general result for the computation of the
quantum index of an oriented rational curve.

4.1.1 The quantum index of a real rational curve

Let
ϕ : t ∈ C 7−→ χ

r∏
1

(t− αi)ni
s∏
1

(t− βj)nj (t− βj)nj ∈ N ⊗ C∗

be a parametrized real rational curve, with αi ∈ R, βj ∈ C\R some scalars, and χ ∈ N ⊗C∗ a
co-character. Recall that the moment of the parametrized curve (CP 1, ϕ) at a complex point
βj0 ∈ C ⊂ CP 1 is the quantity

ϕ∗χ
ιnj0

ω|βj0 = χ(ιnj0ω)
r∏
1

(βj0 − αi)ω(nj0 ,ni)
s∏
1

(βj0 − βj)ω(nj0 ,nj)(βj0 − βj)ω(nj0 ,nj) ∈ C∗.
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Recall that ω denotes a generator of Λ2N , i.e. the determinant.

Definition 4.1.1. In the above notations, we say that the rational curve has real or purely
imaginary intersection points if ϕ∗χιnj0ω|βj0 ∈ iR for every j0.

Remark 4.1.2. At the real points αi, the moment is real since the function ϕ is real, that is
why we only check non-real points for the purely imaginary value. Geometrically, it means
that the coordinates of the intersection points of the curve with the toric boundary are either
real or purely imaginary. In both cases their square is real. �

Recall that we have the logarithmic map

Log : n⊗ z ∈ N ⊗ C∗ 7−→ n⊗ Log|z| ∈ NR.

In a basis of N , it is the logarithm of the absolute value coordinate by coordinate. Similarly
we define the argument map, taken modulo π rather than 2π:

2 arg : n⊗ z ∈ N ⊗ C∗ 7−→ n⊗ 2 arg(z) ∈ N ⊗ R/πZ.

As the parametrized real rational curve ϕ : CP 1 → N ⊗C∗ is of type I, let S be a connected
component of CP 1\RP 1, inducing a complex orientation of RP 1. By pulling back the volume
form ω on NR to N ⊗ C∗, we can define the logarithmic area of S:

ALog(S) =
∫
ϕ(S)

Log∗ω.

Respectively, the 2-form ω defines a 2-form ωθ on N ⊗R/πZ. We can pull it back to N ⊗C∗
and define the area of the co-amoeba of S:

Aarg(S) =
∫
ϕ(S)

(2 arg)∗ω.

Assume ω is given in coordinates by ω = dx1∧dx2. Then we have coordinates z1 = ex1+iθ1

and z2 = ex2+iθ2 on N ⊗ C∗, where xi ∈ R and θi ∈ R/2πZ. We consider the following
meromorphic 2-form:

dz1
z1
∧ dz2
z2

= (dx1 + idθ1) ∧ (dx2 + idθ2)

= dx1 ∧ dx2 − dθ1 ∧ dθ2 + i(· · · ).

Notice that dx1∧dx2 and dθ1∧dθ2 are the respective pull-backs of ω⊗R by Log and ω⊗R/πZ
by 2 arg, thus their integrals on S are precisely ALog(S) and Aarg(S). Due to the vanishing
of the meromorphic 2-form on S, one has ALog(S) = Aarg(S).

Theorem 4.1.3 (Mikhalkin[Mik17])
Let ϕ : CP 1 99K N ⊗ C∗ be a real parametrized rational curve with real or purely imagi-
nary intersection points, enhanced with the choice of a connected component S of CP 1\RP 1,



46 Chapter 4. Computation of some refined invariants in toric surfaces

inducing a complex orientation of RP 1. Then there exists a half-integer k(S, ϕ), called the
quantum index of the oriented curve (S, ϕ), such that

Aarg(S) = ALog(S) = k(S, ϕ)π2.

Remark 4.1.4. It is straightforward to generalize the theorem and definitions for a general
oriented type I real curve which has real or purely intersection points with the toric boundary,
but the computation of the quantum index can be more complicated. �

Remark 4.1.5. For curves whose intersection points with the toric boundary are not purely
imaginary, the quantum index is defined as a suitable shift of the logarithmic area. However,
this extended definition is not needed for our case, where we assume the complex points to
be purely imaginary. �

4.1.2 The quantum index near the tropical limit

In [Mik17], Mikhalkin proved the following result, that computes the quantum index of
curves in a family near the tropical limit.

Proposition 4.1.6
[Mik17] Let C(t) =

(
ft : CP 1 → Hom(M,C∗)

)
be a family of type I real parametrized rational

curves, having real or purely imaginary intersection points, enhanced with a family of con-
nected components of the complex locus S(t), inducing complex orientations of the curves. We
assume that the family tropicalizes, in the sense of 3.3, to a parametrized real tropical curve
h : Γ→ NR, such that the components S(t) specialize to components Sw of Cw for every vertex
w ∈ Fix(σ), thus inducing complex orientations of the curves Cw. Then, for t large enough,

k(S(t), ft) =
∑
w

k(Sw, fw),

where the sum is indexed over the fixed vertices of Γ.

Remark 4.1.7. In particular, and this is useful in the proof of the correspondence theorem,
for one to know the quantum index of curves near the tropical limit, one only needs to know
the quantum indices of the curves associated to the vertices of the tropical curve, and the
way they are glued together along the edges. This means that the quantum index may be
computed in the patchworking construction. �

If one was only interested in the computation of Mikhalkin’s refined invariants, using the
tropical geometry approach, the computation of the quantum index near the tropical limit
would allow one to reduce the computation to the following cases:

- a real rational curve with three real intersection points with the toric boundary,
- a real rational curve with four intersection points with the toric boundary: two real and
two complex conjugated,

- a real rational curve with five intersection points with the toric boundary: one real and
two pairs of complex conjugated ones.
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Moreover, these computations, carried out in the next subsection, can be reduced to the
computation of the log-area (area of the amoeba) for a line, a parabola and a conic, using
the following statement. It turns out that these computation are also enough to compute the
quantum index of an oriented rational curve in the general case.

We prove that the quantum index is well-behaved under the monomial maps, which are
covering maps from the complex torus to itself.

Lemma 4.1.8
Let ϕ : CC 99K Hom(M,C∗) be a type I real curve with a choice of a connected component
S ⊂ CC\RC, inducing a complex orientation, and let α : Hom(M,C∗) → Hom(M ′,C∗) be a
monomial map, associated to a morphism AT : M ′ →M . We consider the composition

ψ : CC ϕ−→ Hom(M,C∗) α−→ Hom(M ′,C∗).

Let ω and ω′ be the volume forms on respectively N and N ′, dual lattices of M and M ′, so
that we have A∗ω′ = (detA)ω. Then, we have∫

ψ(S)
Log∗ω = detA

∫
ϕ(S)

Log∗ω and
∫
ψ(S)

(2 arg)∗ωθ = detA
∫
ϕ(S)

(2 arg)∗ωθ.

Remark 4.1.9. The proposition deals with the computation of log-area in the general case of
a real curve. This log-area is a quantum index only if the curve has real or purely imaginary
intersection points with the toric boundary. We use this proposition to reduce the computation
of a quantum index to a log-area of a curve which does not necessarily have a quantum index,
but whose log-area is easier to compute. �

Remark 4.1.10. Notice that the different notations Hom(M,C∗) and Hom(M ′,C∗) prevent
any mistakes in the direction of the various involved maps. �

Proof. Let N and N ′ be the dual lattices of M and M ′, so that we have linear maps

AT : M ′ →M,

A : N → N ′.

Then, we have the following commutative diagrams:

CC

N ⊗ C∗ N ′ ⊗ C∗

NR N ′R

ψ
ϕ

Log

α

Log

A

and

CC

N ⊗ C∗ N ′ ⊗ C∗

N ⊗ R/2πZ N ′ ⊗ R/2πZ

ψ
ϕ

arg

α

arg

A

.
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We denote by ω, ω′ the volume forms of the lattices N and N ′ used to compute the log-areas.
Then, we have ∫

ψ(S)
Log∗ω′ =

∫
S

(Log ◦ ψ)∗ω′

=
∫
S

(A ◦ Log ◦ ϕ)∗ω′

=
∫
S

(Log ◦ ϕ)∗(A∗ω′)

= detA
∫
S

(Log ◦ ϕ)∗ω since A∗ω′ = (detA)ω,

= detA
∫
ϕ(S)

Log∗ω.

The proof is completely similar for the argument maps.

4.1.3 Local computations

In this section, we compute the quantum indices of some specific rational curves. This
includes a complex curve, a real line, a parabola whose intersection points with the abscissa
axis are complex conjugated, and a conic whose intersection points with two of the axis are
complex conjugated, and which is tangent to the last axis.

4.1.3.1 Log-area of a complex curve

We begin by proving that the log-area of a complex curve is zero. This proves that the
non-fixed vertices of the tropical curve have no contribution to the quantum index, and thus
justifies the fact that the quantum index near the tropical limit is obtained as a sum over the
fixed vertices, and not the pairs of exchanged vertices. The following statement is not specific
to rational curves or real curves.

Lemma 4.1.11
Let ϕ : CC 99K N ⊗C∗ be a complex parametrized curve, with CC a smooth Riemann surface.
Then ∫

CC
Log∗ω =

∫
CC

(2 arg)∗ωθ = 0.

Proof. The two integrals are known to be equal by the vanishing of the meromorphic 2-
form given in coordinates by dz1

z1
∧ dz2

z2
. Let CCo be the open set of CC where ϕ is defined.

We consider the map Log ◦ ϕ : CCo → NR. This is a proper map between smooth ori-
ented manifolds. Therefore, it has a well-defined degree, which corresponds both to the
number of antecedents counted with signs over a generic point, and to the linear map
R = H2

c (NR) (Log◦ϕ)∗−→ H2
c (CCo) = R between compactly supported cohomology groups. Since
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the map is not surjective, its degree is zero. Hence, if ω̃ is a compactly supported 2-form on
NR, then

∫
CCo(Log◦ϕ)∗ω̃ = 0. Thus, by writing ω as a (infinite) sum of compactly supported

2-forms using partitions of unity, we get the result.

4.1.3.2 Log-area of a real line

Using a monomial map and Lemma 6.3.6, the computation of the log-area of a real line
allows one to compute the quantum index of every oriented type I real curve having three
intersection points with the toric boundary. This was dealt with in [Mik17].

Lemma 4.1.12
Let ∆ ⊂ N be a family of three vectors of total sum 0, and let P∆ ⊂ M be the associated
triangle, of lattice area m∆. Let ϕ : CP 1 99K N ⊗C∗ be a real parametrized rational curve of
degree ∆, thus having a unique real intersection point with maximal tangency with each toric
divisor. Then, the quantum index of the curve is ±m∆

2 according to the choice of complex
orientation.

Proof. The assumption implies that the curve is the image of a real line by a monomial map
of determinant m∆. Hence, its quantum index is the log-area of a real line, equal to ±1

2 ,
times the determinant of the monomial map which is the lattice area of the triangle.

Remark 4.1.13. The log-area of a line can be also easily computed by hand, either using the
log point of view, or using the argument point of view. �

4.1.3.3 Log-area of a parabola

We now consider the case of a rational curve having two real punctures, and two conjugated
ones. In a suitable choice of coordinates, the curve has a degree of the following form. In a
basis (e1, e2) of N , for m1,m2,m3 ∈ N∗, let us take

∆(m1,m2,m3) = {(m1, 2m2); (0,m3 −m2)2; (−m1,−2m3)}.

The degree of a planar curve which is parametrized by a curve of degree ∆(m1,m2,m3) is
the lattice polygon in M given by

P∆(m1,m2,m3) = Conv ((0,m1), (2m2, 0), (2m3, 0)) .

This polygon is drawn in Figure 4.1. Up to an automorphism of the lattice, every triangle in
M having a side of even length is one of the polygons P∆(m1,m2,m3). Let Ei be the side
opposite to the i-th vertex in P∆(m1,m2,m3), i.e.

E1 = [(2m2, 0), (2m3, 0)] , E2 = [(2m3, 0), (0,m1)] , E3 = [(2m2, 0), (0,m1)] .
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(0,m1)

(2m2, 0)

E3

(2m3, 0)E1

E2

Figure 4.1 – The polygon P∆(m1,m2,m3).

We denote by CEi the associated toric divisor inside the toric surface C∆(m1,m2,m3).

Such a curve has a parametrization of the form

ψ(t) =
(
a(t− c)m1 , b(t− c)2m2(t2 + 1)m3−m2

)
∈ (C∗)2,

where c is some real number corresponding to the coordinate of the intersection point with
CE3, and a, b ∈ R∗. The intersection point with CE2 corresponds to the coordinate t taking
the infinite value. Under a suitable monomial map, the curve is the image of a parabola
having an equation of the form y = λx2 + µx+ ν, but we rather take coordinates where the
equation is of the form y = λx+ µ+ ν

x . Thus, we are left to compute the log-area of a curve
whose parametrization is the following one:

ϕ(t) =
Å
t− c, t

2 + 1
t− c

ã
.

Lemma 4.1.14
Let H denotes the Poincaré half-plane {=t > 0}, i.e. the complex numbers with a positive
imaginary part, inducing a complex orientation of RP 1. Then, the log-area of (H, ϕ) satisfies∫

ϕ(H)
Log∗ω =

∫
ϕ(H)

(2 arg)∗ωθ = 2π arctan(c).

Proof. We compute the area of the coamoeba. According to [FJ15], the coamoeba with its
order map is as on Figure 4.2. The order map has value 1 on the blue triangles, and −1 on
the red ones. The center point has coordinates (0, 0), the square has side length 2π. The
two vertical lines have respective abscissa ± arg(i − c) = ±arccot(−c). This is the whole
co-amoeba, which might fold itself, and we want to compute the area of half the co-amoeba,
i.e. the part corresponding to H. As arg(t−c) ∈]0;π[ if and only if t ∈ H, we obtain argϕ(H)
by restricting to the right half-square. Therefore, the area is obtained by taking the blue area
minus the red area (because it comes with a minus sign). Let l = arccot(−c) the abscissa of
the right vertical line. Then, we have

Aarg = l2 − (π − l)2 = 2πl − π2 = 2π
(

arccot(−c)− π

2

)
.
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Figure 4.2 – Co-amoeba of ϕk with order map: −1 for red (triangles with left vertical side),
+1 for blue (triangles with right vertical side).

This result might be simplified by noticing that:

arccot(−c)− π

2 = arctan(c).

Remark 4.1.15. It is easy to find the order map of the co-amoeba of a curve, which corresponds
to the number of antecedents counted with sign. This function is constant on the complement
of the shell, which is a union of geodesics in the torus, directed by the vectors of the degree
∆ of the curve. Moreover, the value of the order map changes by one when passing through
one of the geodesics of the shell. This defines the order map up to a shift. The shift is fixed
by the fact that the whole signed area is zero, as proved in Lemma 4.1.11. One might then
expect that adding the areas of some components of the complement of the shell would give
the area of half the co-amoeba, i.e. argϕ(H) instead of argϕ(CC). In general it is not the
case: the order maps takes into account the antecedents on both connected components of
CC\RC, and it is not possible to draw them apart. However it is possible here since one of the
monomials provides a coordinate on the curve, here x. Thus, we get argϕ(H) by restricting
to half the argument torus, here the right-half square. �

To get the quantum index of an oriented real type I rational curve of degree ∆(m1,m2,m3),
one needs to multiply by the determinant of the monomial map, whose value is m1(m3−m2).

4.1.3.4 Log-area of a conic

Last, we consider the case of a conic having complex intersection points with the x and y-
axis in CP 2, and which is tangent to the z-axis. This computation is needed for the quantum
index of rational curve with five punctures : two pairs of conjugated ones and one real one.



52 Chapter 4. Computation of some refined invariants in toric surfaces

Such a conic has a parametrization of the following form:

ϕ : t ∈ C 7−→ (a(t2 + 1), b((t− r)2 + s2)),

where t is a coordinate chosen such that the coordinate of the intersection point with the
x-axis are ±i, and with the z-axis is∞. The coordinates of the intersection point with the
y-axis are r ± is, with s > 0. The logarithmic map is then

t = x+iy ∈ H 7−→
Å1

2 log
Ä(

(x2 − y2 + 1
)2 + 4y2x2

ä
,
1
2 log

Ä(
(x− r)2 − y2 + s2)2 + 4y2(x− r)2

äã
.

To compute the log-area, one needs to integrate the determinant of its differential on H. The
Jacobian matrix is equal to( 2x(x2+y2+1)

(x2−y2+1)2+4x2y2
2y(y2−x2−1)

(x2−y2+1)2+4x2y2

2(x−r)((x−r)2+y2+s2)
((x−r)2−y2+s2)2+4(x−r)2y2

2y(y2−(x−r)2−1)
((x−r)2−y2+s2)2+4(x−r)2y2

)
,

and its determinant is the following rational function:

f(x, y) = 4xy(x2 + y2 + 1)(y2 − (x− r)2 − 1)− 4(x− r)y(y2 − x2 − 1)((x− r)2 + y2 + s2)
((x2 − y2 + 1)2 + 4x2y2) (((x− r)2 − y2 + s2)2 + 4(x− r)2y2) .

The denominator is easily factored since it comes from the parametrization of ϕ, which is
factored: the first term factors in

((x+ i(y + 1)) ((x− i(y + 1)) ((x+ i(y − 1)) ((x− i(y − 1)) ,

and the second factors in

((x− r + i(y + s)) ((x− r − i(y + s)) ((x− r + i(y − s)) ((x− r − i(y − s)) .

Lemma 4.1.16
The log-area of (H, ϕ) satisfies

ALog(H, ϕ) = 4π arctan
Å

r

s+ 1

ã
.

Proof. It is a painful computation. One needs to compute the integral of the rational function
f on R×]0; +∞[. The integral over x ∈ R can be taken care of using the residue formula,
which is possible since the denominator is factored. The resulting integral over ]0; +∞[ is
again the integral of a rational function. The decomposition in simple elements is doable but
long since there are 4 residues to compute, and one needs to make a disjunction according to
s < 1 or s > 1, and the position of y relative to s and 1 to know which ones are in the upper
half-plane H. Using a computer, one gets the result.

Remark 4.1.17. For a homogeneized version, one could use that if the coordinates of the
intersection points with the x and y-axis are r± is and r′ ± is′ in a coordinate such that the
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intersection point with the z-axis has value ∞, and s, s′ are chosen positive, the log-area is

ALog(H, ϕ) = 4π arctan
Å
r′ − r
s′ + s

ã
.

�

Finally, using Lemma 4.1.8, this allows the computation of the quantum index of an
oriented type I real rational curve having five intersection points with the toric divisors: one
real and two pairs of complex conjugated ones.

4.1.4 The quantum index of an oriented real rational curve

We are now ready to compute the log-area, and thus the quantum index, of an oriented
real rational curve in the general setting, provided it has at least one real point. Let

ϕ : t 7−→ χ
r−1∏
i=1

(t− αi)ni
s∏
j=1

(t2 − 2t<βj + |βj |2)n
′
j ∈ N ⊗ C∗,

be such a curve, with αr be the infinite point, and βj chosen in the upper half-plane H. One
has the following theorem.

Theorem 4.1.18
The log-area of (H, ϕ) takes the following value:

ALog(H, ϕ) =

∑
i<i′ ω(ni, ni′)π2

+
∑
i,j 2πω(ni, n′j) arctan

Ä
αi−<βj
=βj

ä
+

∑
j<j′ 4πω(n′j , n′j′) arctan

(<βj′−<βj
=βj′+=βj

) .

Proof. We use a version of Lemma 4.1.8 in a higher dimensional setting. The map ϕ : CP 1 99K
N ⊗ C∗ can be factored through the following monomial map α : (C∗)r+s−1 → N ⊗ C∗,
associated to the lattice map Zr+s−1 → N that sends the first r − 1 basis vectors ei to ni,
and the last s basis vectors e′j to n′j . We denote this lattice map by A : Zr+s−1 → N , and by
α the associated monomial map A⊗ C∗. Let

ψ : t 7−→ ρ
r∏
i=1

(t− αi)ei
s∏
j=1

(t2 − 2t<βj + |βj |2)e
′
j ∈ (C∗)r+s−1,
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with ρ a co-character such that α(ρ) = χ, so that ϕ = α ◦ ψ. Then, we have

ALog(H, ϕ) =
∫
ϕ(H)

Log∗ω

=
∫
α◦ψ(H)

Log∗ω

=
∫
ψ(H)

α∗Log∗ω

=
∫
ψ(H)

(Log ◦ α)∗ω

=
∫
ψ(H)

(A ◦ Log)∗ω

=
∫
ψ(H)

Log∗A∗ω.

The pull-back 2-form A∗ω on Zr+s−1 decomposes in the dual basis as the sum

A∗ω =
∑
i<i′

ω(ni, ni′)e∗i ∧ e∗i′ +
∑
i<j

ω(ni, n′j)e∗i ∧ e
′∗
j +

∑
j<j′

ω(n′j , n′j′)e
′∗
j ∧ e

′∗
j′ .

Each of the 2-form e∗i ∧ e∗i′ (resp. e∗i ∧ e
′∗
j , e

′∗
j ∧ e

′∗
j′ ) intervening in the decomposition is

the pull-back of the canonical 2-form on Z2 by the projection x 7→ (xi, xi′) (resp. (xi, x′j),
(x′j , x′j′)), and its integral can be computed as the integral of the log-area of a line (resp.
parabola, conic) by using once again the technique from Lemma 4.1.8. Using the previous
computations of the log-area of a line, parabola and conic, one gets the result.

Remark 4.1.19. In particular, if the moments of the points are real or purely imaginary, the
log-area is a half-integer multiple of π2, although the formula does not emphasizes it. �

4.2 Refined curve counting in a toric surface

Let ∆ ⊂ N be a family of m primitive lattice vectors, with total sum 0. As described
in the introduction, there is an associated lattice polygon P∆ having m lattice points on
its boundary. The toric surface obtained from ∆ is denoted by C∆. Let E1, . . . , Ep denote
the sides of the polygon P∆ and let n1, . . . , np ∈ N be their normal primitive vectors. Let
si 6

l(Ei)
2 be an integer, ri = l(Ei) − 2si, so that we have

∑p
1 ri + 2si = m. We denote by s

the tuple (s1, . . . , sp), and |s| the sum
∑p
i=1 si. Let

∆(s) = {nr11 , (2n1)s1 , nr22 , (2n2)s2 , . . . , nrpp , (2np)sp}.

Let P be a configuration of m points on the toric boundary ∂C∆ such that:
- each toric divisor associated to a side Ei of P∆ contains exactly ri real points and si
pairs of complex conjugated points,
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- the configuration satisfies the Menelaus condition.
Let S(P) be the set of oriented real rational curves such that for every p ∈ P, the curve

passes through p or −p. Such a curve is said to pass through the symmetric configuration P.
As the curves are oriented, each real curve is counted twice: once with each of its orientations.
Notice that if a curve passes through one of the points of a pair of non-real points, it also
passes through its conjugate since the curve is real. We denote by Sk(P) the subset of S(P)
formed by oriented curves with quantum index k.

Let ϕ : CP 1 → C∆ be an oriented real parametrized rational curve, denoted by (S, ϕ).
The logarithmic Gauss map sends a point p ∈ RP 1 to the tangent direction to Logϕ(RP 1)
inside NR. We get a map

γ : RP 1 → P1(NR).

The first space RP 1 is oriented since the curve is oriented, while P1(NR) is oriented by ω. The
degree of this map is denoted by RotLog(S, ϕ) ∈ Z. If the curve has transverse intersections
with the divisors, it has the same parity as the number of boundary points m. We then set

σ(S, ϕ) = (−1)
m−RotLog(S,ϕ)

2 ∈ {±1}.

Now let
R∆,k(P) =

∑
(S,ϕ)∈Sk(P)

σ(S, ϕ),

and
R∆(P) = 1

4
∑
k

R∆,k(P)qk ∈ Z[q±
1
2 ].

The coefficient 1
4 is here to account for the deck transformation: if {f(x, y) = 0} is a curve in

S(P), then {f(x,−y) = 0}, {f(−x, y) = 0}, {f(−x,−y) = 0} are in S(P) too.
Remark 4.2.1. The shift by m to the logarithmic rotation number is only to keep track of its
residue mod 2, while we are interested in its residue mod 4, one could also choose another
convention. For instance the logarithmic rotation number of a maximal curve. �

Theorem 4.2.2
(Mikhalkin [Mik17]) As long as r =

∑p
1 ri > 1, the value of R∆(P) is independent of the

configuration P as long as it is generic. It only depends on ∆ and s.

The obtained polynomial, independent of P, is denoted by R∆,s.
Remark 4.2.3. Although this theorem is not stated in these terms in [Mik17] because the only
case considered is the one of purely imaginary points where the quantum index coincides with
the log-area, the proof does not use this specific assumption, and thus applies also in this
setting. �

Remark 4.2.4. Here, generic means that the configuration of points P needs to be a regular
value of the evaluation map that associates to a parametrized curve the coordinates of its
intersection points with the toric boundary. �
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4.3 Realization and correspondence theorem in the real case

In this section we prove a correspondence theorem, by refining the realization theorem of
Tyomkin [Tyo17] in the case of real curves. The proof follows the same steps as in [Tyo17]
and presents similar calculations. We start by giving a bunch of notations which might seem a
little heavy, but are useful to deal with real tropical curves having a non-trivial real structure.

4.3.1 Notations

Let Γ be a real rational abstract tropical curve withm ends. We denote by σ the involution
on Γ, and Γ/σ the quotient graph. When needed, we denote by π : Γ → Γ/σ the quotient
map. Let I denote the set of ends of Γ, endowed with an action of the involution, embodied
in the following decomposition:

I = {x1, . . . , xr, z
±
1 , . . . , z

±
s },

where the ends xi are fixed ends (real ends) and z±i are exchanged with one another (complex
ends). Following this notation, we denote the set of ends of Γ/σ by:

I/σ = {x1, . . . , xr, z1, . . . , zs}.

We assume that r > 1, and orient the edges of both Γ and Γ/σ away from xr, which makes
them rooted trees. This orientation induces a partial order ≺ on the curve. For w and w′

vertices or ends, we have w ≺ w′ if and only if the shortest path from w to w′ agrees with
the orientation of the graph. We endow the set I/σ with a total order, different from ≺, for
which xr is the smallest element.

If w ∈ Γ0 is a vertex of Γ, let I∞w be the set of ends of Γ which are greater than w for the
order ≺. We take a similar notation (I/σ)∞w for w ∈ (Γ/σ)0. Notice that if w ∈ Fix(σ), then
I∞w is stable by σ, and if w /∈ Fix(σ), then at most one element of each pair {z±j } belongs to I∞w .

If γ ∈ Γ1 is a bounded edge of γ (same for Γ/σ), let t(γ) and h(γ) be the tail and the head
of γ. Notice that as the order goes from a real end to every other ends, including all complex
ends, h(γ) /∈ Fix(σ) if and only if γ /∈ Fix(σ).

If γσ ∈ (Γ/σ)1 is an edge of Γ/σ, let ι(γσ) be the smallest element of (I/σ)∞h(γσ). It is
the smallest end among those accessible by h(γσ). The order on I/σ along with this map ι
induces an order on the edges of Γ/σ having the same tail. We thus can speak about the
smallest and biggest edge leaving a vertex π(w) of Γ/σ. We can then lift these local orders
on Γ/σ to Γ:
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- If w ∈ Fix(σ), then we have three cases for the lift of an edge γσ such that t(γσ) = π(w):
? (RR) the edge γσ = {γ} lifts to a fixed edge γ of Γ, and ι(γσ) = {xj} is a real
marking. (The (RR) stands for "Real edge Real marking".) We then set ι(γ) = xj .

? (RC) the edge γσ = {γ} lifts to a fixed edge γ of Γ but ι(γσ) = {z±j } is a complex
marking. It means that the curve Γ splits at some point on the path from w

to ι(γσ), but not right away in γ. (The (RC) stands for "Real edge Complex
marking".)

? (CC) the edge γσ = {γ+, γ−} lifts to a pair of exchanged edges in Γ. If ι(γσ) =
{z±j }, we have up to a relabeling of γ± that z+

j (resp. z−j ) is accessible via γ+

(resp. γ−). (The (CC) stands for "Complex edge Complex marking".)
- If w /∈ Fix(σ), then π : {γ ∈ Γ1 : t(γ) = w} → {γσ : t(γσ) = π(w)} is a bijection,
therefore we have a total order on {γ ∈ Γ1 : t(γ) = w}, and for every edge γ such that
t(γ) = w we have a unique complex end ι(γ) ∈ ι(γσ) accessible by w. Notice that in
this case, every edge γσ such that t(γσ) = π(w) is of type (CC). Moreover, we also
have an induced order between the edges emanating from w.

We denote by vR (resp. vC) the number of fixed vertices (resp. pairs of exchanged vertices),
and by eR (resp. eC) the number of fixed bounded edges (resp. pairs of exchanged bounded
edges).

4.3.2 Space of rational curves with given tropicalization

Let Γ be an abstract tropical curve withm ends. Let (C(t), x1, . . . , xr, z
±
1 , . . . , z

±
s ) be a real

smooth rational curve with a real configuration (x, z±) = (x1, . . . , xr, z
±
1 , . . . , z

±
s ) of marked

points, tropicalizing on Γ. We assume that C(0) is the special fiber of the stable model of
C(t), so that Γ is the dual graph of C(0). We assume that r > 1 and we also denote by σ the
real structure on C(t).

Remark 4.3.1. By taking a coordinate, the marked curve (C(t),x, z±) can be seen as P1 (C((t))) '
C((t)) ∪ {∞}, the projective line over the field of Laurent series, along with r + 2s Laurent
series which are the marked points, taken up to a change of coordinate in GL2

(
R((t))

)
. The

first r Laurent series are in R((t)), and the last s are taken in C((t))\R((t)) along with their
conjugate. �

We associate to each vertex w ∈ Γ0 a coordinate yw on C(t), taking into account the real
structure, i.e. the coordinate yw is real if w ∈ Fix(σ) and yσ(w) = yw ◦ σ otherwise. Moreover,
the coordinate yw specializes to a coordinate on the irreducible component of C(0) associated
to w.

- If w ∈ Fix(σ), the set I∞w is stable by σ, but has no order induced by I/σ since for
each complex marking, both are accessible. Still, let γσa and γσb be the smallest and
biggest edges emanating from π(w) in Γ/σ. We make a disjunction according to the
type (RR), (RC), (CC) of each edge:
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(RR/RR) If γσa and γσb are both of type (RR), they lift to edges γa and γb of Γ, which have
well-defined real marking xa = ι(γa) and xb = ι(γb). Then we take yw such that
yw(xr) = ∞, yw(xa) = 0, yw(xb) = 1. This is a real coordinate since yw coincide
with yw ◦ σ at three points.

(RR/RC) If γσa is of type (RR) and γσb of type (RC), then they lift up to edges γa, γb ∈ Fix(σ),
and we have ι(γa) = xa, and ι(γb) = z±b . Then Rez±b is a well-defined real Laurent
series whose specialization on the component associated to w is different from the
one of xa. Then we can take yw such that yw(xr) =∞, yw(xa) = 0, yw(Rez±b ) = 1.

(RC/RR) We do the same with Rez±a and xb.
(RC/RC) If γσa and γσb are both of type (RC) we do the same with Rez±a and Rez±b .

(CC/−) If γσa is of type (CC), then γσa lifts to a pair of exchanged edges {γ±a } both ema-
nating from w. They both have a well-defined ι(γ±a ) = z±a . Then we take yw such
that yw(xr) =∞, yw(z±a ) = ±i, which also is a real coordinate.

(−/CC) If γσa is of type (RR) or (RC) and γσb is of type (CC), we do the same with z±b .
- If w /∈ Fix(σ), then I∞w consists only of complex markings, all edges emanating from w

are of type (CC) and we have a well-defined ι(γ) for each of them. Let a and b be the
smallest and biggest elements in I∞w . We take yw such that yw(xr) = ∞, yw(a) = 0,
yw(b) = 1. This choice ensures that yσ(w) = yw ◦ σ.

The functions yw are all coordinates on C sending xr to ∞, therefore we can pass from
one to another by a real affine function which we now describe.

Proposition 4.3.2
Let γ ∈ Γ1 be a bounded edge.

- If γ /∈ Fix(σ), let zεa and zηb be the smallest and biggest elements in I∞h(γ), then

yh(γ) =
yt(γ) − yt(γ)(zεa)

yt(γ)(z
η
b )− yt(γ)(zεa)

and |γ| = val(yt(γ)(z
η
b )− yt(γ)(zεa)).

- If γ ∈ Fix(σ), we make a disjunction according to the type of h(γ):

(RR/RR) yh(γ) = yt(γ)−yt(γ)(xa)
yt(γ)(xb)−yt(γ)(xa) and |γ| = val(yt(γ)(xb)− yt(γ)(xa)).

(RR/RC) yh(γ) = yt(γ)−yt(γ)(xa)
Reyt(γ)(z±b )−yt(γ)(xa) and |γ| = val(Reyt(γ)(z±b )− yt(γ)(xa)).

(RC/RR) yh(γ) = yt(γ)−Reyt(γ)(xa)
yt(γ)(xb)−Reyt(γ)(z±a ) and |γ| = val(yt(γ)(xb)−Reyt(γ)(z±a )).

(RC/RC) yh(γ) = yt(γ)−Reyt(γ)(z±a )
Reyt(γ)(z±b )−Reyt(γ)(z±a ) and |γ| = val(Reyt(γ)(z±b )−Reyt(γ)(z±a )).

(CC/−) yh(γ) = yt(γ)−Reyt(γ)(z±a )
Imyt(γ)(z+

a ) and |γ| = val
(
Imyt(γ)(z+

a )
)
.

(−/CC) same with a switched by b.

Proof. In each case we check that the right-hand term, which is a coordinate since it is
obtained by an affine change from another coordinate, coincides with yh(γ) at the three points
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used to define it. As it is so, they are equal. The equality with the length of γ is the definition
of the latter since yh(γ) and yt(γ) are coordinates on the irreducible component associated with
h(γ) and t(γ).

For every edge we now define αγ ∈ C[[t]]× and βγ ∈ C[[t]] which will be the coordinates on
the space of real marked curves tropicalizing on Γ. Once again, the definition goes through
the distinction of the type of edges emanating from h(γ). Let γ ∈ Γ1

b be a bounded edge:

(RR/RR) αγ = t−|γ|
(
yt(γ)(xb)− yt(γ)(xa)

)
,

(RR/RC) αγ = t−|γ|
(
Reyt(γ)(z±b )− yt(γ)(xa)

)
,

(RC/RR) αγ = t−|γ|
(
yt(γ)(xb)−Reyt(γ)(z±a )

)
,

(RC/RC) αγ = t−|γ|
(
Reyt(γ)(z±b )−Reyt(γ)(z±a )

)
,

(CC/−) αγ = t−|γ|Imyt(γ)(z+
a ),

(−/CC) αγ = t−|γ|Imyt(γ)(z+
b ).

Let γ ∈ Γ1 be a non-necessarily bounded edge:

? If γ /∈ Fix(σ) is of type (CC) then βγ = yt(γ)(zει(γ)) where z
ε
ι(γ) is the lift of zι(γ) accessible

by γ.

? If γ ∈ Fix(σ) is of type (RR) then βγ = yt(γ)(xι(γ)).

? If γ ∈ Fix(σ) is of type (RC) then βγ = Reyt(γ)(z±ι(γ)).

We now can define the function

Ψγ(y) = βγ + t|γ|αγy,

which allows an easy description of the relations between the yw.

Proposition 4.3.3
The Laurent series αγ and βγ satisfy the following properties.

(i) If γ is an edge, one has αγ ∈ C[[t]]×. Moreover, if γ 6= γ′ are two different edges with
the same tail t(γ) = t(γ′), then βγ − βγ′ ∈ C[[t]]×.

(ii) They are real: ασ(γ) = αγ, βσ(γ) = βγ. In particular αγ , βγ ∈ R[[t]] if γ ∈ Fix(σ).

(iii) For each edge γ, one has yt(γ) = Ψγ(yh(γ)). In particular, for any marked point q, one
has

yt(γ) − yt(γ)(q) = t|γ|αγ
(
yh(γ) − yh(γ)(q)

)
.

Moreover Ψγ is real in the sense that Ψσ(γ)(y) = Ψγ(y).

(iv) Let w,w′ be two vertices, and γ1, . . . , γd the geodesic path from w to w′. If the orientation
of γi in Γ agree with its orientaton in the geodesic path, let εi = +1, otherwise let
εi = −1. Then

yw = Ψε1
γ1 ◦ · · · ◦Ψεd

γd
(yw′),
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and in particular for any marked point q:

yw − yw(q) = t
∑d

1 εi|γi|

(
d∏
1
αεiγi

)
(yw′ − yw′(q)) .

(v) Let q be a marked point associated with an unbounded end e ∈ Γ1
∞, w be a vertex, and

γ1, . . . , γd, e be the geodesic path from w to q. Then

yw(q) = Ψε1
γ1 ◦ · · · ◦Ψεd

γd
(βe),

and in particular for every marked point q associated with the unbounded end e, if vr is
the vertex adjacent to the unbounded end associated to xr,

yvr(q) = βγ1 + t|γ1|αγ1

Ä
· · · (βγd + t|γd|αγdβe

ä
.

(vi) For every marked point qi and vertex w ∈ Γ0, val(yw(q)) > 0⇔ q is accessible by w.
(vii) For every edge γ ∈ Γ1 and every marked point q ∈ I∞t(γ)\I

∞
h(γ), we have val(yt(γ)(q)−βγ) =

0.

Proof. It suffices to check every statement:
- (i) and (ii) follow from the definition of α and β,
- (iii) comes from the definition of Ψγ and from the fact that α and β are real,
- (iv) and (v) are just iterations from (iii),
- (vi) comes from (v) and,(vii) follows from (i) and (v).

Remark 4.3.4. Formally speaking, this proposition is the direct translation of Proposition 4.3
in [Tyo17], in the setting of curves with a real structure. Although the formulas seem quite
repulsive at the first look, the meaning of each object must be clear. The formal series αγ
and βγ allow one to recover the coordinates of the marked points, following the formula (v)
of Proposition 4.3.3. The formal series αγ are the "phase length" of the edge γ, in contrast
to t|γ| which could be called "valuation length", while the formal series βγ are the directions
one needs to follow at each w in order to get to the points of I∞h(γ). In other terms, α and
β provide the necessary coefficients to find the coordinates of the marked points. One could
say that the abstract tropical curve Γ only remembers the valuation information, while the
formal series α and β encode the phase information. �

Let v = vr be the vertex adjacent to the end xr, the uplet

(yv(x1), . . . , yv(xr−1), yv(z+
1 ), . . . , yv(z+

s )) ∈ R((t))r−1 × C((t))s

provides a system of coordinates on the moduli space of real rational marked curves, that
we can restrict on the moduli space of curves tropicalizing on Γ. Notice that the choice of
yv fixes the value of some members of the uplet. The definition of α, β along with a quick
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induction ensures that they can be written in terms of
(
yv(q)

)
q
. Conversely, the formula from

Proposition 4.3.3(v) allows to recover
(
yv(q)

)
q
from α and β. Therefore, they also provide

a system of coordinates. Moreover, Proposition 4.3.3 describes the set of possible values of
α, β, since the formula from Proposition 4.3.3(v) gives the values of the points to choose on
P1 (C((t))), in order to make it into a marked curve with the right tropicalization and the
right formal series α, β.

We denote by A the space (R[[t]]×)eR × (C[[t]]×)eC of possible values of α. We denote by
B the space of possible values of β satisfying the conditions of Proposition 4.3.3.

4.3.3 Space of morphisms with given tropicalization

Let h : Γ→ NR be a real rational parametrized tropical curve of degree ∆. In this subsec-
tion we give an explicit description of morphisms f : (C,x, z±)→ Hom(M,C((t))∗) of degree
∆ tropicalizing to it, and for which (C,x, z±) is a smooth connected marked rational curve.

Let f : C → Hom(M,C((t))∗) be a real morphism that tropicalizes to h. By assumption,
in the coordinate yw, the morphism f takes the following form:

f(yw) = th(w)χw
∏
i∈I∞w

(yw − yw(qi))ni
∏
i/∈I∞w

Å
yw

yw(qi)
− 1
ãni
∈ Hom(M,C((t))∗).

Remark 4.3.5. Notice that th(w) denotes the morphism m 7→ th(w)(m) ∈ C((t))∗. The choice
of normalization in the product ensures that χw : M → C((t))∗ has value in C[[t]]×. Finally,
both products are indexed by the ends of Γ, and although the writing does not emphasize this
aspect, there are real ends and complex ends. Furthermore, there is a constant term (−1) in
the second product, corresponding to the root xr, for which yw(xr) =∞ for any w. �

We now relate the expression of f in two different vertices. We assume that they are
connected by an edge γ. Let

φγ =
∏

i∈I∞
t(γ)\I

∞
h(γ)

(
yt(γ)(qi)− βγ

)ni ∏
i/∈I∞

t(γ)

Ç
1− βγ

yt(γ)(qi)

åni
∈ Hom(M,C((t))∗.

Notice that φγ depends only on the value of α, β, and is thus a function φγ(α, β).

Proposition 4.3.6
We have the following properties of χw and φγ:

(i) The χw are real: χσ(w) = χw. In particular, if w ∈ Fix(σ), χw takes values in R[[t]]×.

(ii) The co-characters φγ are real: φσ(γ) = φγ. In particular, if γ ∈ Fix(σ) is a fixed edge,
the co-character φγ takes values in R[[t]]×.



62 Chapter 4. Computation of some refined invariants in toric surfaces

(iii) For any edge γ, let nγ denote the slope of h on γ. One has

φγ ·
χt(γ)
χh(γ)

· αnγγ = 1 ∈ Hom(M,C((t))∗).

Proof. The first two points are immediate to check and follow from the definition of φγ along
with the fact that f is real. For the last point, we start by making the quotient of the two
expressions of f in the coordinates yt(γ) and yh(γ), and use Proposition 4.3.3 that ensures that
yt(γ) − yt(γ)(qi) = t|γ|αγ(yh(γ) − yh(γ)(qi)). Hence,

th(t(γ))

th(h(γ)) ·
χt(γ)
χh(γ)

·

∏
i/∈I∞

h(γ)
yh(γ)(qi)ni∏

i/∈I∞
t(γ)

yt(γ)(qi)ni
·
Ä
t|γ|αγ

ä∑
i
ni = 1 ∈ Hom(M,C((t))∗).

Since h(h(γ))− h(t(γ)) = |γ|nγ , and
∑
i ni = 0 by balancing condition, we get

t−|γ|nγ

∏
i/∈I∞

h(γ)
yh(γ)(qi)ni∏

i/∈I∞
t(γ)

yt(γ)(qi)ni
·
χt(γ)
χh(γ)

= 1 ∈ Hom(M,C((t))∗).

Finally, using that yh(γ)(qi) = yt(γ)(qi)−βγ
t|γ|αγ

, we get that

∏
i/∈I∞

h(γ)
yh(γ)(qi)ni∏

i/∈I∞
t(γ)

yt(γ)(qi)ni
= (t|γ|αγ)

−
∑

i/∈I∞
h(γ)

ni

∏
i/∈I∞

h(γ)
(yt(γ)(qi)− βγ)ni∏

i/∈I∞
t(γ)

yt(γ)(qi)ni
.

Since by adding the balancing condition at the vertices not accessible via γ we get
∑
i/∈I∞

h(γ)
ni =

−nγ , and as {I∞t(γ) ⊂ {I
∞
h(γ), we get that∏

i/∈I∞
h(γ)

yh(γ)(qi)ni∏
i/∈I∞

t(γ)
yt(γ)(qi)ni

= t|γ|nγ · αnγγ · φγ ,

which results in the desired formula.

Remark 4.3.7. There is a slight misnomer in the proof: because yw(xr) =∞, the intermediate
steps of computation are not well-defined. However, the computation remains true, either
by allowing a finite value to yw(xr) and then making it ∞, or by putting it apart in the
computation, which complicates the explanation. �

Conversely, if we are given a real family χw : M → C[[t]]× such that Proposition 4.3.6
holds for any γ, then the maps defined by the formulas

f(yw) = th(w)χw
∏
i∈I∞w

(yw − yw(qi))ni
∏
i/∈I∞w

Å
yw

yw(qi)
− 1
ãni

agree and define a real morphism f tropicalizing to h : Γ→ NR.
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If G is an abelian group, let NG = N ⊗G. Let X = NvR
R[[t]]× ×N

vC
C[[t]]× be the space where

the tuple χ is chosen. Then, the space of morphisms f : (C,x, z±)→ N⊗C((t))∗ tropicalizing
to h : Γ→ NR is the subset of X ×A× B given by the following equations:

∀γ ∈ Γ1
b : φγ(α, β) ·

χt(γ)
χh(γ)

· αnγγ = 1 ∈ Hom(M,C((t))∗).

The tuples α, β deal with the tropicalization of the curve, and the tuple χ with the tropical-
ization of the morphism.

4.3.4 Evaluation map

We now use the previous description to write down the conditions that a curve having
fixed moments must satisfy. For each nj ∈ ∆, let mj = ιnjω be the monomial used to measure
the moment of the corresponding end qj .

Let qj be a real or complex marked point, and vj be the adjacent vertex of the associated
unbounded end ej . In the coordinate yvj , the expression of the moment of the marked point
qj takes the following form:

f∗χmj |qj = th(vj)(mj)χvj (mj)
∏
i∈I∞vj

(
βej − yvj (qi)

)ω(nj ,ni) ∏
i/∈I∞vj

Ç
βej

yvj (qi)
− 1
åω(nj ,ni)

.

We then put

ϕj =
∏
i∈I∞vj

(
βej − yvj (qi)

)ω(nj ,ni) ∏
i/∈I∞vj

Ç
βej

yvj (qi)
− 1
åω(nj ,ni)

∈ C[[t]]×,

which, according to Proposition 4.3.3, is an invertible formal series only depending on α, β.
The series is invertible since the only terms of the product having positive valuation are taken
with a zero exponent.

Proposition 4.3.8
The formal series ϕj are real: ϕσ(j) = ϕj for every end ej, and in particular, if xj is a real
marked point, then ϕj ∈ R[[t]]×. Moreover, ϕ is a function of α, β, i.e. it does not depend on
χ.

Proof. It follows from the fact that all the quantities that intervene in the definition of ϕj are
real. The second part is obvious.

Thus, with this new notation, the evaluation map takes the following form:
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f∗χmj |qj = th(vj)(mj)χvj (mj)ϕj .

4.3.5 Correspondence theorem

Now we look at the following map:

Θ : X ×A× B −→
Ä
N eR

R[[t]]× ×N
eC
C[[t]]×

ä
× R[[t]]×r−1 × C[[t]]×s

(χ, α, β) 7−→
Å(
φγ ·

χt(γ)
χh(γ)

· αnγγ
)
γ∈Γ1

b

,
(
χvj (mj)ϕj

)
j

ã
.

This map is the same as in [Tyo17] but for a curve endowed with a non-trivial real involution.
That is why we take every real vertex or real edge with real coefficients, and only one of every
pair of complex vertices or complex edges with complex coefficients.

One can check that the dimensions of the source and target spaces are the same:
- Since N has rank 2, the target space has dimension 2eR + 4eC + r − 1 + 2s.
- The space A has dimension eR + 2eC since one chooses a real formal series for each real
edge, and a complex one for each pair of conjugated edges.

- The space X has dimension 2(vR + 2vC) since N has rank 2.
- The dimension of B is precisely ov(Γ) since we choose a real or complex coefficient for
each edge γ for which t(γ) is not trivalent.

We thus have to check that

2eR + 4eC + r + 2s− 1 = eR + 2eC + 2(vR + 2vC) + ov(Γ),

which is equivalent to

ov(Γ)− (r + 2s) = eR + 2eC − 2(vR + 2vC)− 1.

Since Γ is a tree, the Euler characteristic gives the following relation:

1 + eR + 2eC = vR + 2vC.

The count of the valencies of the vertices gives also:

r + 2s+ 2eR + 4eC = 3(vR + 2vC) + ov(Γ).

These relations lead to

ov(Γ)− (r + 2s) = 2eR + 4eC − 3vR − 6vC
= eR + 2eC − 2(vR + 2vC)− 1.
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Thus, the dimensions are equal.

Let ζ ∈ R((t))∗r−1×iR((t))∗s be a generic family of moments, defining a real configuration
of points P0, and thus a symmetric configuration of points P in C∆ when considering possible
changes of signs. Let µj = valζj ∈ R be their respective "tropical" moments, which we also
assume to be generic. We denote by ζΓ

j = ζjt
−µj ∈ C[[t]]× the moments normalized to have a

zero valuation. Any classical curve passing through the symmetric configuration P tropical-
izes to a real parametrized tropical curve h : Γ→ NR satisfying ev(Γ) = µ, and specializes to
a tuple (χ, α, β) in X × A × B, satisfying Θ(χ, α, β) = (1, ζΓ). Moreover, the plane tropical
curve image h(Γ) has a unique parametrization as a parametrized tropical curve of degree
∆(s). Notice that the space X × A × B depends on the choice of the parametrized tropical
curve (Γ, h).

Conversely, for each real parametrized tropical curve (Γ, h) with ev(Γ) = µ, we need to
find the classical curves tropicalizing to (Γ, h) and passing through the symmetric configura-
tion P. Such a curve corresponds to a point in the moduli space X × A × B. Finding the
curves passing through the symmetric configuration P and tropicalizing on Γ thus amounts
to solve for (χ, α, β) the equation Θ(χ, α, β) = (1, ζΓ), for any possible sign of ζΓ. Recall that
the complex moments are purely imaginary.

Given a parametrized tropical curve h0 : Γ0 → NR of degree ∆(s) with ev(Γ0) = µ, and
a real parametrized curve h : Γ → NR having the same image Ctrop = h(Γ) = h(Γ0), we say
that (χ0, α0, β0) is a first order solution if Θ(χ0, α0, β0) = (1, ζΓ) mod t. Notice that, as µ is
generic, the image tropical curve Ctrop is a nodal curve. The real rational curves with image
Ctrop are described in Lemma 3.1.19.

Theorem 4.3.9
For each real parametrized tropical curve (Γ, h) of degree ∆, obtained from a parametrized
tropical curve of degree ∆(s) passing through µ, and each first order solution (χ0, α0, β0),
such that the Jacobian of Θ at (χ0, α0, β0) is invertible at first order, there is a unique lift of
(χ0, α0, β0) to a true solution (χ, α, β) in X ×A× B.

Remark 4.3.10. In the next section, we prove that Theorem 4.3.9 applies under the assumption
that all pairs of complex conjugated points sit on the same toric divisor. The Theorem does
not apply in the general setting for the following reason: the Jacobian matrix may not be
invertible at first order anymore. Thus, in order to find lifts of first order solutions, one would
need to find solutions at a higher order, that requires more refined computations. �

Proof. As one only needs to solve Θ(χ, α, β) in X × A × B, the Theorem is an immediate
application of the Hensel’s Lemma in several variables.
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4.4 Statement of result and proof

4.4.1 Statement of result and plan for the proof

Using Theorem 4.3.9, we now can relate R∆,s and N∂,trop
∆(s) in the case s = (s1, 0, . . . ). From

now on, we assume that only s1 might be non-zero.

Moreover, from now on, the complex points in the configuration are purely imaginary. To
do such an assumption, one needs to prove the existence of regular values of the evaluation
maps that sends a parametrized curve to the coordinates of its intersection points with the
boundary. This transversality condition is needed in the proof of invariance in [Mik17]. The
existence of regular purely imaginary values is proven close to the tropical limit along with
the correspondence theorem, when we check the invertibility of the Jacobian matrix. As the
complex points are now purely imaginary, the quantum index is equal to the log-area, and
the refined count only needs to be multiplied by 2s1 in order to take into account that the
opposite pair of a purely imaginary pair of conjugated points is the same pair.

Let Pt be a symmetric configuration of points depending on a parameter t, chosen as in
section 4.2, but with purely imaginary points. This means that one is given a collection of
series ±ζi(t) ∈ R((t))∗ ∪ iR((t))∗ corresponding to the coordinates of the points ±pi(t) of
Pt on the toric divisors. Let µ be the tropicalization of the point configuration, i.e. for a
pair of points ±pi(t), we have µi = val ζi(t). The correspondence theorem, proven in the
previous section, provides for t large enough a correspondence between the curves of S(Pt),
which are real parametrized curves of degree ∆, and the parametrized tropical curves (Γ0, h0)
of degree ∆(s) such that mom(Γ0, h0) = µ. This is done by enhancing (h0,Γ0) to a real
parametrized tropical curve of degree ∆ admitting first order solutions, and showing that one
can lift every first order solution to a true solution. By counting the first order solutions,
we assign a multiplicity to each curve of mom−1(µ), so that the count of mom−1(µ) with
these multiplicities gives the invariant R∆,s. This multiplicity happens to be proportional to
the refined multiplicity of Block-Göttsche, thus leading to the relation stated in Theorem 4.4.1.

Theorem 4.4.1
One has

R∆,(s1,0,...,0) = 2s1 (q
1
2 − q−

1
2 )m−2−s1

(q − q−1)s1 N∂,trop
∆(s) = 2s1 (q

1
2 − q−

1
2 )m−2−2s

(q
1
2 + q−

1
2 )s

N∂,trop
∆(s)

Being given a parametrized tropical curve h0 : Γ0 → NR of degree ∆(s) with mom(Γ0, h0) =
µ, the task of computing its multiplicity amounts to two things. The first is to find the
parametrized real tropical curves of degree ∆ having the same image. The second task con-
sists in finding the first order solutions to Θ(χ, α, β) = (1, ζΓ). Being given a parametrized
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tropical curve h0 : Γ0 → NR of degree ∆(s) such that mom(Γ0, h0) = µ, here is the list of
results we need to show before getting to the proof of Theorem 4.4.1:

- Show that the real parametrized tropical curves with image h0(Γ0) having a first order
lift have no flat vertex and thus find the real parametrized tropical curves h : Γ → NR
admitting first order solutions. This is done in subsection 4.4.2.

- Show that for each first order lifts, the Jacobian of Θ is invertible at first order, so that
Theorem 4.3.9 applies. This is done in subsection 4.4.3.

- Before getting to the count of first order solutions, solve the enumerative problem for
parabola, done in subsection 4.4.4.

- Count the first order solutions and finally prove Theorem 4.4.1. See subsection 4.4.5.

We also give a sketch for an alternative proof in subsection 4.4.6 using the approach of
Mikhalkin [Mik05] or Shustin [Shu06a]; [Shu06b].

4.4.2 The look for tropical solutions

Let h0 : Γ0 → NR be a parametrized rational tropical curve of degree ∆(s) such that
mom(Γ0, h0) = µ. Let Ctrop = h0(Γ0) be its image, which is a plane tropical curve. We need
to find the real parametrized tropical curves (Γ, h) of degree ∆ parametrizing the plane curve
Ctrop and admitting a first order solution. The different possible real structures are described
in Proposition 3.1.19. As all the pairs of complex points sit on the same toric divisor, the
graph Γeven only consists of the even unbounded ends. The only real structures described
by Proposition 3.1.19 are the presence of quadrivalent vertices at the unique vertex of these
unbounded ends, or a flat vertex. This latter case is forbidden by the following lemma.

Lemma 4.4.2
The parametrized real tropical curves with a trivalent flat vertex cannot be the tropicalization
of a family of parametrized real rational curves passing through Pt.

Proof. Assume that h : Γ → NR has a trivalent flat vertex w, in direction nj0 , with two
outgoing unbounded ends exchanged by the involution. Let ft : CP 1 99K N ⊗ C((t))∗ be a
parametrized real rational curve tropicalizing to (Γ, h). Then, in the real coordinate y such
that the two conjugated points have coordinate ±i and some real point has coordinate ∞,
the morphism takes the following form:

f(y) = χwt
h(w)(y2 + 1)nj0

∏
j

Å
y

y(qj)
− 1
ãnj
∈ Hom(M,C((t))∗),

where qj are the other boundary points of the curve, and χw ∈ N ⊗R((t))∗. The moment at
±i is obtained by evaluating at ιnj0ω ∈M , then at ±i. At the first order, the moments of the
exchanged unbounded ends are real: the big product takes value 1, the coefficient χw(ιnj0ω)
is real, and (y2 + 1)nj0 is evaluated with 0 exponent. This is absurd since it is supposed to
be purely imaginary. Hence, we cannot have any flat vertex.
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Lemma 4.4.3
Among the real parametrized tropical curves h : Γ → NR of degree ∆ with image Ctrop, at
most one may be the tropicalization of a family of parametrized real rational curves passing
through Pt. Moreover, this real tropical curve is the tropical curve obtained from Γ0 with the
maximal splitting graph.

Proof. There is an infinite number of parametrized curves with image Ctrop, obtained by
splitting the graph of even edges and described in Proposition 3.1.19. All the unbounded
ends of Ctrop associated to the complex markings are double edges near infinity since they
correspond to two distinct marked points. Thus they belong to Γeven. Since all the complex
markings are on the same divisor, they have the same direction and they cannot meet at a
common vertex. Therefore, there are no extendable vertex and the graph Γeven only consists
of the even unbounded ends. The only possibility is that the double ends separates itself
at a trivalent flat vertex, sent somewhere on the unbounded end of Ctrop. However, this is
forbidden by the previous lemma. Therefore, all the double ends maximally split and there
is a unique possibility.

We have proven that for Ctrop, there is a unique real parametrized tropical curve h : Γ→
NR of degree ∆ with image Ctrop that can be the tropicalization of a family of parametrized
real rational curves.

4.4.3 Invertibility of the Jacobian

We now prove that for each real parametrized tropical curve obtained in subsection 4.4.2,
Theorem 4.3.9 applies and one can lift any first order solution of Θ(χ, α, β) = (1, ζΓ) to a
true solution.

Lemma 4.4.4
Let h : Γ → NR be a real parametrized tropical curve given by Lemma 4.4.3 and (χ0, α0, β0)
any first order solution to the equation Θ = (1, ζΓ). The Jacobian of Θ is invertible at
(χ0, α0, β0).

Proof. Let h : Γ→ NR be one of the real parametrized tropical curves given by 4.4.3, meaning
that h(Γ) is a plane tropical curve such that its parametrization h0 : Γ0 → NR as a curve of
degree ∆(s) satisfies mom(Γ0) = µ, and that (Γ, h) has no flat vertex. Let (χ0, α0, β0) be a
first order solution. We show by induction that the Jacobian matrix is invertible. For sim-
plicity, and because of the multiplicative nature of the map Θ, we use logarithmic coordinates
for every variable except β. It means that we look at log Θ, depending on the new variables
(logχ, logα, β). Each time, the logarithm is taken coordinate by coordinate.

Notice that if γ is an edge, logαγ and βγ are scalars, while if w is a real vertex, logχw :
M → R is an element of NR.
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To compute the Jacobian relative to coordinates (logχ, logα, β) at t = 0, we can first put
t = 0. Thus, we get for every bounded edge γ ∈ Γ1

b :

φγ |t=0 =
∏
γ′ 6=γ

t(γ′)=t(γ)

(βγ′ |t=0 − βγ |t=0)nγ′ ∈ N ⊗ R∗,

and for every unbounded end ej :

ϕj |t=0 = ±
∏
γ′ 6=ej

t(γ′)=vj

(βej |t=0 − βγ′ |t=0)ω(nj ,nγ′ ) ∈ C∗.

Notice that at the first order, φγ depends only on β and not α. For convenience of notation, all
the following computations are taken at the first order, and we drop ”|t=0” out of the notation.

The description of Γ implies that it has only real vertices and real bounded edges. For a
bounded edge γ ∈ Γ1

b , let Nγ = φγ ·
χt(γ)
χh(γ)

· αnγγ ∈ NR[[t]]× . Similarly, let Xj = χvj (mj)ϕj ∈
R[[t]]× for a real end xj , and Zj = χvj (mj)ϕj ∈ C[[t]]× for a complex end z±j . The variables
Nγ , Xj and Zj index the lines of the Jacobian matrix ∂ log Θ

∂(logχ,logα,β) . We now compute these
lines.

- For a general bounded edge γ ∈ Γ1
b , one has at the first order

logNγ =
∑
γ′ 6=γ

t(γ′)=t(γ)

nγ′ log(βγ′ − βγ) + logχt(γ) − logχh(γ) + nγ logαγ ∈ Hom(M,R).

Therefore, one has the following partial Jacobian matrices,

∂ logNγ

∂ logχt(γ)
= I2,

∂ logNγ

∂ logχh(γ)
= −I2,

∂ logNγ

∂ logαγ
= nγ .

Concerning the β variables, the only cases when Nγ depends on a βγ′ parameter at first
order is when the tail t(γ) of γ is one of the quadrivalent vertices. In that case, the
intervening coordinate is precisely βγ . Then one has

∂ logNγ

∂βγ
= 2βγ
β2
γ + 1nγ

′ ,

where nγ′ ∈ N is the vector directing the complex ends adjacents to t(γ).
- For a real end xj , corresponding to an end ej , directed by nj and adjacent to a vertex
vj , one has at the first order

logXj =
∑
γ′ 6=ej

t(γ′)=vj

ω(nj , nγ′) log(βej − βγ′) + logχvj (mj) ∈ R.
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The Jacobian relative to logχ ∈ N ⊗ R is the Jacobian of the evaluation at mj , which
is linear with respect to logχ. Thus, one has

∂ logXj

∂ logχvj
= mj = ιnjω.

Now, the only case where logXj depends on a β parameter is when vj is a quadrivalent
vertex. In that case, the parameter is βej . Let nγ′ be the vector directing the complex
ends adjacent to vj . Then, one has

∂ logXj

∂βej
= ω(nj , nγ′)

2βej
β2
ej + 1 .

- For the case of Zj , the computations are similar, only this time the target space is C
instead of R. The unbounded end ej is adjacent to a quadrivalent vertex. Let γ be the
real edge such that t(γ) = vj . This edge might be unbounded. Then, one has

logZj =
∑
γ′ 6=ej

t(γ′)=vj

ω(nj , nγ′) log(βej − βγ′) + logχvj (mj) ∈ C.

Thus, we once again have

∂ logZj
∂ logχvj

= mj = ιnjω ∈MR ⊂MC,

and this time

∂ logZj
∂βγ

= ω(nγ , nj)
∂ log(i− βγ)

∂βγ
= ω(nγ , nj)

β2
γ + 1

Ç
βγ
1

å
= ω(nγ , nj)

β2
γ + 1 (βγ + i) ∈ C.

Now that all the terms of the Jacobian matrix ∂ log Θ
∂(logχ,logα,β) are known, we make an induction

on the number of vertices to prove that it is invertible. The initialization is done within the
induction step, by removing the column indexed by αγ , and the remaining rows and columns
which are not drawn on the array. Let V be a vertex of Γ which is adjacent to two real
unbounded ends, or one real and two complex unbounded ends, as depicted on Figure 4.3.

- Let γ be the edge with h(γ) = V . We assume that γ is a bounded edge. In the first
case, the matrix has the following form
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V : χV

γ : αγ

0

n0

1

n1

V : χV

γ : αγ

0

n0

1

n1 : β1

(a) (b)

Figure 4.3 – Vertices adjacent to two real ends (a) or a real end and two complex ends (b).

JacΘ =

χV αγ
0 0 0

∗
...

...
...

0 0 0

Nγ
∗ · · · ∗ −1 0

n0 + n1∗ · · · ∗ 0 −1
C0 0 · · · 0 m0 0
C1 0 · · · 0 m1 0

.

By developing with respect to the last two rows, since (m0,m1) are free, we are left
with the following determinant:

αγ
0

∗
...
0

Nγ
∗ · · · ∗

nγ∗ · · · ∗

.

If γ was an unbounded end, we would be left with the empty matrix and we would
have proven invertibleness. Otherwise, the last two rows correspond to a copy of NR,
and are thus given by two elements of MR, the dual of NR. Up to a change of basis,
one can assume that one of these elements of MR is ω(nγ ,−), which takes 0 value on
nγ . Thus, by making a development with respect to the column, we are reduced to
the determinant matrix where the bounded edge γ is replaced with an unbounded real
end, directed by nγ , and Nγ is replaced by the evaluation of the moment of this new
unbounded end. Thus, the matrix is invertible by induction.

- If the vertex V is adjacent to two complex unbounded ends (directed by n0), and to a
real unbounded end (directed by n1), let β1 be the β coordinate associated to the real
end. Let γ be the edge with h(γ) = V , thus directed by 2n0 + n1. The determinant
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takes the following form:

JacΘ =

χV αγ β1
0 0 0 0

∗
...

...
...

...
0 0 0 0

Nγ
∗ · · · ∗ −1 0

nγ
0

∗ · · · ∗ 0 −1 0

C0
0 · · · 0 m0 0 β1
0 · · · 0 0 0 0 1

C1 0 · · · 0 m1 0 2β1

.

Notice that we dropped out the constant factor ω(2n0,n1)
β2

1+1 in the last column. Similarly
to the previous case, one can make a development with respect to the penultimate row,
and then the second resulting last rows. We recover the same determinant as in the
case of a trivalent real vertex, which is also the empty determinant if γ is an unbounded
end. Hence, the conclusion follows, reducing once again to a graph with one vertex less.

We have now proven that for our choice of s, Theorem 4.3.9 applies for any first order
solution, which we now need to count.

4.4.4 Local resolution at the quadrivalent vertices

In this subsection, we solve the enumerative problem for curves of degree ∆(m1,m2,m3),
tracing back to subsubsection 4.1.3.3. This resolution is necessary for the counting of first
order sollution at quadrivalent vertices, i.e. that have two incoming adjacent fixed edges, and
two exchanged adjacent unbounded edges.

Continuing in the setting of subsubsection 4.1.3.3, we deal with real rational curves in the
toric surface C∆(m1,m2,m3). We choose a real point on CE3 and two purely imaginary con-
jugated points on CE1, and look for real rational curves of degree ∆(m1,m2,m3), maximally
tangent to each toric divisor at the given points. The Menelaus theorem ensures that there
exists a unique point on CE2 such that each curve passing through the three chosen points
also pass through the point on CE2. Such a curve has a parametrization of the form

ϕ(t) =
(
a(t− c)m1 , b(t− c)2m2(t2 + 1)m3−m2

)
∈ (C∗)2,

where c is some real number corresponding to the coordinate of the intersection point with
CE3, and a, b ∈ R∗. The intersection point with CE2 corresponds to the coordinate t taking
the infinite value. The condition to pass through the specific points are given by the following
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equations:

a(i− c)m1 = iλ ∈ iR∗ and b
m1
δ

a
2m2
d

(c2 + 1)
m1
δ

(m3−m2) = µ ∈ R∗,

where δ = m1∧(2m2) is the integer length of E3. The first equation solves for c and a, and the
second equation solves for b with a unique solution if m1

δ is odd, and 0 or 2 solution according
to the sign of µ when it is even. Let us do this resolution. The first equation implies that
(i− c)m1 ∈ iR and thus we can write it i− c = re

iπ 2k+1
2m1 with k ∈ Z and r ∈ R. Therefore, we

have i− reiπ
2k+1
2m1 = c ∈ R. Hence,

Im
(
i− reiπ

2k+1
2m1

)
= 1− r sin

Ä
π 2k+1

2m1

ä
= 0 ⇒ r = 1

sin
(
π 2k+1

2m1

)
⇒ c = r cos

Ä
π 2k+1

2m1

ä
= cot

Ä
π 2k+1

2m1

ä
= ck.

We have proven that c can only take a finite number of values ck = cot
Ä
π 2k+1

2m1

ä
, for k ∈

[[0;m1 − 1]]. For each value of ck we find a unique a, and then solve for b eventually. Thus,
we have proven that up to the action of the real torus (R∗)2, every real curve having purely
imaginary intersection with CE1, and real intersection with both CE2 and CE3 is one of the
curves

ψk : t 7−→
(
(t− ck)m1 , (t− ck)2m2(t2 + 1)m3−m2

)
.

These parametrized curves are the respective images of the curves

ϕk : t 7−→
Å
t− ck,

t2 + 1
t− ck

ã
,

by the monomial map α : (z, w) 7→ (zm1 , zm3+m2wm3−m2). Their quantum indices have been
computed in subsubsection 4.1.3.3.

Lemma 4.4.5
For any k ∈ [[0;m1 − 1]], the log-area of (H, ϕk) is∫

ϕk(H)
Log∗ω =

∫
ϕk(H)

arg∗ ωθ =
Å2k + 1

m1
− 1
ã
π2.

In particular, the quantum index of ψk is

k(H, ψk) = (m3 −m2)(2k + 1−m1).

Proof. This follows immediatly from subsubsection 4.1.3.3.

In particular, given two purely imaginary points on CE1 and one real point on CE3, we
have proven that

- If m1 is odd, there exists precisely m1 curves maximally tangent to the divisors and
passing through the chosen points. Moreover, according to the two choices of orientation
for each of them, there are two curves of each quantum index (m3 −m2)(2k+ 1−m1),
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for k ∈ [[0;m1 − 1]], i.e. all the even multiples of m3 −m2 of absolute value < m1. This
set is stable by one of the deck transformations. Thus, we get 2m1 oriented curves, two
of each quantum index. If we also consider curves passing through the symmetric real
point, we get 4m1 real oriented curves.

- If m1 is even, we might still be in the previous case (if m1
δ is odd), or there might be

2m1 or 0 solutions according to the sign of µ (when m1
δ is even). Thus, there are 4m1

or 0 oriented curves passing through the points.

We have thus proven the following lemma.

Lemma 4.4.6
In C∆(m1,m2,m3), being given a pair of purely imaginary points on CE1 and a pair of oppo-
site real points on CE3, there are 4m1 oriented real rational curves of degree ∆(m1,m2,m3)
passing through the symmetric real configuration, and their refined count is

4
∑

06k<m1

q(m3−m2)(2k+1−m1) = 4q
m1(m3−m2) − q−m1(m3−m2)

qm3−m2 − q−(m3−m2) .

Proof. We already have proven that there are 4m1 oriented real rational curve satisfying
the conditions and computed their quantum index. Moreover, one can easily see that their
logarithmic rotation number is 0. The result follows.

4.4.5 The search for the first order solutions and proof of the Theorem

Using the previous subsections, we are now ready to count the first order solutions to
Θ(χ, α, β) = (1, ζΓ) for a fixed real parametrized rational curve (Γ, h) obtained from a
parametrized rational curve (Γ0, h0) with mom(Γ0, h0) = µ.

Proposition 4.4.7
Let Pt be a symmetric real configuration of points as previously chosen, tropicalizing to a
family of moments µ. Let h0 : Γ0 → NR be a parametrized tropical curve of degree ∆(s) having
moments µ, and let h : Γ→ NR be the associated real parametrized tropical curve without flat
vertex such that mom(Γ) = µ. Vertices of Γ and Γ0 are canonically identified. Let W1, . . . ,Ws

be the quadrivalent vertices of Γ, adjacent to the complex unbounded ends, let mWi denotes
their complex multiplicity as a trivalent vertex of Γ0. Then there are precisely 2m−2s ∏

mWi

oriented real curves passing through the symmetric configuration Pt and tropicalizing to (Γ, h).
Their refined count according to the quantum index and sign σ is given by

m′Γ = 4
s∏
1

q
mWi

2 − q−
mWi

2

q − q−1

∏
V 6=Wi

(q
mV

2 − q−
mV

2 ).

Before proving this proposition, we can now prove Theorem 4.4.1.
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Proof of Theorem 4.4.1. This is a consequence of Theorem 4.3.9 that states that each of
the first order solutions given by Proposition 4.4.7 lifts to a unique solution, and an easy
computation between the multiplicities: we obtain R∆,s by counting curves with multiplicities
1
4m
′
Γ. The multiplicity 1

4m
′
Γ is obtained frommq

Γ by clearing the denominators of them−2−s
vertices and dividing by the terms of the s quadrivalent vertices:

1
4m
′
Γ = (q

1
2 − q−

1
2 )m−2−s

(q − q−1)s mq
Γ.

Therefore, one has

R∆,s = 2s (q
1
2 − q−

1
2 )m−2−s

(q − q−1)s N∂,trop
∆(s) .

Using the identity q − q−1 = (q
1
2 − q−

1
2 )(q

1
2 + q−

1
2 ), we get that

R∆,s = 2s (q
1
2 − q−

1
2 )m−2−2s

(q
1
2 + q−

1
2 )s

N∂,trop
∆(s) .

In [GS19] L. Göttsche and F. Schroeter proposed a refined way to count so-called refined
Broccoli curves having fixed ends, and passing through a fixed configuration of "real and
complex" points. In the case where there are only marked ends and no marked points, this
count coincides with the count of plane tropical curves passing through the configuration with
usual Block-Göttsche multiplicities from [GS14] up to a multiplication by a constant term
depending on the degree and easily computed. More precisely, provided there are no marked
points, the refined Broccoli multiplicity is just the refined multiplicity from [GS14] enhanced
by a product over the ends of weight higher than 2, coinciding with this aformentionned
constant term. In our case, since the only multiple edges are marked and of weight 2 (only
one real unbounded end is unmarked and of weight one), this factor is q+q−1

q1/2+q−1/2 for each of
the s ends. If we denote by BG∆(s)(q) the refined invariant obtained in [GS19], then we have
the relation

R∆,s(q) = 2s (q
1
2 − q−

1
2 )m−2−2s

(q + q−1)s BG∆(s)(q).

We now prove Proposition 4.4.7.

Proof of Proposition 4.4.7. The proof is made with an induction on the number of vertices of
the curve Γ. Exceptionally, to suit the induction, a vector nj of N directing an unbounded
end ej may not be primitive. In that case, we denote by mj = ω

Ä
nj
l(nj) ,−

ä
the dual vector,

but still of lattice length 1. Let V be a vertex adjacent to two real ends, or one real end and
two complex ends. Let γ be the edge, maybe unbounded, with h(γ) = V .

- If V is a real vertex adjacent to two real unbounded ends indexed by 0 and 1, then we
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have to solve for χV : M → R∗ the following system:®
χV (m0) = ±ζΓ

0 ∈ R∗
χV (m1) = ±ζΓ

1 ∈ R∗ .

Recall that the vectors n0 and n1 might not be primitive, but m0 and m1 are. This
system leads to 4 solutions: if (e∗1, e∗2) is a basis of M , the absolute value of χV (e∗1)
and χV (e∗2) is uniquely determined, while the sign may be chosen arbitrarily. Notice
that some choices of signs for the right-hand side of the system may provide several
solutions, while other provide none. Let mγ be the primitive vector dual to nγ . Let
m̃γ be such that (mγ , m̃γ) is a basis of M . These 4 solutions separate themselves into
two groups of 2, according to the sign of χV (mγ). If γ is unbounded, this closes the proof.

Now, if γ is bounded, we have the equation

φγ ·
χt(γ)
χV
· αnγγ = 1 ∈ N ⊗ R∗.

We evaluate at mγ , leading to

φγ(mγ)χt(γ)(mγ) = χV (mγ) ∈ R∗.

Recall that according to the choice of signs of ±ζj , the sign of χV (mγ) may change. Let
replace the bounded edge γ by an unbounded end with direction nγ , leading to a new
parametrized tropical curve (Γ′, h′). The above equation is the equation associated to
this new unbounded end in Γ′, in the corresponding system Θ(χ, α, β) = (1, ζΓ). Thus,
we can proceed by induction. Let 4R denote the refined signed count of oriented curves
lifting Γ′. These 4R curves separate themselves into four groups of R according to the
value of the signs the function φγ · χt(γ) takes on the basis (mγ , m̃γ).

Last, we need to solve for αγ . By evaluating at m̃γ , we get

α〈nγ ,m̃γ〉γ = χV (m̃γ)
φγ(m̃γ) · χt(γ)(m̃γ) .

The solving as well as the number of solutions depends on the sign of the right-hand
side.
? If nγ has odd integer length, then we solve uniquely for αγ for each possible sign of
χV (m̃γ). The sign of χV (mγ) is already determined since we have φγ(mγ)χt(γ)(mγ) =
χV (mγ). Thus, each of the oriented curves in each of the groups have two possible
solutions for χV . This corresponds to the gluing of two possible curves, one in-
creasing the logarithmic rotation number by one, the other decreasing it by one. In
each case, the orientation of the curve propagates, and the signed count becomes

4× (qmV /2 − q−mV /2)R.

? If nγ has even integer length, then the sign of χV (mγ) is still determined, and the
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sign of χV (m̃γ) is forced in order to have at least one solution for αγ . In that case,
we have two. The two possible choices of αγ correspond to the two ways of gluing a
curve over V to one of the 4R curves, when such a gluing is possible. One of these
choices decreases the logarithmic rotation number by one while the other increases
it by one. The signed count then becomes again

4× (qmV /2 − q−mV /2)R.

- If V is adjacent to two complex ends and a real end, respectively indexed by 0 and 1,
we then have to solve for β1 and χV the system®

χV (m1)(β2
1 + 1)〈n0,m1〉 = ζΓ

0 ∈ iR∗
χV (m0)(i− β1)〈n1,m0〉 = ±ζΓ

1 ∈ R∗ .

This system was already solved in section 4.1.3. Assume that the degree {n0, 2n1,−n0−
2n1} is equivalent to ∆(m0,m1,m2) as in section 4.1.3, ignoring the temporary conflict
of notation mi. (They are integers in ∆(m0,m1,m2) and co-characters in χV (mi)) The
logarithmic rotation number of the solutions is equal to 0, so each solution is counted
with a positive sign. The refined count of the solutions from section 4.1.3 is equal to
0, 1 or 2 times the following sum, which covers all the possible values of the quantum
index:

m1−1∑
k=0

q(m3−m2)(2k+1−m1) = q(m3−m2)m1−q−(m3−m2)m1

qm3−m2 − q−(m3−m2) = q
mW

2 − q−
mW

2

q − q−1 ,

since m3−m2 = 1, and the complex multiplicity mW satisfies mW = 2m1, which is the
multiplicity of the vertex. Accounting for both possible orientations, and both choices
of signs for the ζi, this closes the proof if γ is an unbounded end. Otherwise, we then
use the equation

φγ ·
χt(γ)
χV
· αnγγ = 1 ∈ N ⊗ R∗,

just as in the previous step. We solve for the other unknowns inductively, then for αγ .
The same disjunction provides the new signed count

4q
mV /2 − q−mV /2

q − q−1 R.

4.4.6 Alternative proof

So far, we have proven a correspondence theorem using the approach of Tyomkin in
[Tyo12]. One could also carry a proof of Theorem 4.4.1 using the approach of Mikhalkin
[Mik05]; [Mik17], or Shustin [Shu06b]. Both adopt a description of plane curves by polyno-
mial equations rather than a parametrization.
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Briefly, given a real parametrized tropical curve, this method consists in finding a collec-
tion of plane curves indexed by the vertices of the tropical curves, and a way of gluing them
along the edges of the curve. We refer the reader to [Mik05]; [Mik17]; [Shu06b] for details
and proofs. Here, we recover the multiplicity m′Γ by counting the possible families of curves
indexed by the vertices, and the number of gluings. Using the aforementioned approach to
the correspondence theorem, this computation reproves Theorem 4.4.1 through a new proof
of Proposition 4.4.7.

Alternative Proof of Proposition 4.4.7. We make an induction on the number of vertices.
Thus, we initialize with curves Γ having a unique vertex, trivalent or quadrivalent.

Following [Mik05], to compute the multiplicity, one needs to count (in a suitable way) the
local curves over the vertices of Γ, and the number of ways to glue them together. In this
proof, we do not assume the vectors of ∆ to be primitive.

- If there is only one trivalent vertex V in Γ, then we are looking for curves maximally
tangent to the toric divisors and passing through two pairs of opposite real points.
There are 4 such curves, which are exchanged by the action of the deck transformation
group {±1}2 on the associated toric surface. Notice that if we specify the points in
the pairs the number of curves may vary, but if we consider both points in the pair,
the number remains the same. These 4 curves lead to 8 oriented curves. Half of them
have logarithmic Gauss degree 1 and the other half has degree −1, leading to signs
σ(RC) = 1 or −1. Therefore the signed contribution is 4(q

mV
2 − q−

mV
2 ).

- If there is only one quadrivalent vertexW , we look for curves passing through one pair of
conjugated imaginary points on one divisor, and a pair of opposite real points. Assume
that the degree of the vertex is ∆(m1,m2,m3). Then, as the unbounded non-real ends
are of weight 2, we have m3 −m2 = 1, and the complex multiplicity is mW = 2m1. We
have seen that there are always 2m1 curves passing through the configuration: either
m1 for each of the real points in the pair, or 2m1 and 0. Therefore, there are 4m1
oriented curves going through the pair. Moreover, their quantum index is known. The
logarithmic rotation number RotLog can be computed thanks to the same monomial
map that allowed us to compute their quantum index: if A denotes the matrix of the
monomial map, then

RotLog(ψk) = detA× RotLog(ϕk).

As the logarithmic rotation number of ϕk is 0, all the curves have logarithmic rotation
number zero and therefore σ(−→C ) = 1. When accounting for both orientations, the
desired count is

4
m1−1∑
k=0

q(m3−m2)(2k+1−m1) = 4q
(m3−m2)m1−q−(m3−m2)m1

qm3−m2 − q−(m3−m2) = 4q
mW

2 − q−
mW

2

q − q−1 ,
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since m3−m2 = 1, and the complex multiplicity mW satisfies mW = 2m1, which is the
lattice area of the dual triangle.

Now that the initialization is done, assume that Γ has more than one vertex. Let V be
a vertex adjacent to two unbounded real ends, or one real end and two complex ends. The
last edge adjacent to V , which is bounded, is denoted by γ. Let Γ′ be the parametrized
tropical curve obtained by deleting this vertex and replacing the edge γ heading to V by an
unbounded end with same direction. The Menelaus rule allows us to define a pair of real
opposite moments associated to the new unbounded end. This moment is defined by the con-
dition that the symmetric configuration composed by the pairs of points of the edges adjacent
to V satisfies the Menelaus condition. We get a new symmetric configuration of points P ′t,
indexed by the ends of Γ′.

Let 4R be the refined count of oriented curves tropicalizing on Γ′, passing through the
symmetric configuration P ′t. We now have to glue together the oriented curves above Γ′, and
the curves over the vertex V . According to [Mik05], such a gluing is possible only if the phases
agree, and if the edge has weight two, there are two ways to do it. Recall that the phase of
the curve CV above V with respect to the edge γ is defined as follows: the edge γ corresponds
to an intersection point p of CV with the toric boundary, the phase is the (set of) quadrants
of (R∗)2 in which the curve sits in a neighborhood of this intersection point. This means the
following: the set of quadrants is identified with F2

2, and

- If the vector nγ , which directs γ has odd lattice length, then the curve passes through
the corresponding toric divisor and changes of quadrant at p. The phase is the element
of F2

2/〈nγ〉 that corresponds to these quadrants.

- If the vector nγ has even lattice length, the curve stays on the same side of the toric
divisor, thus in the same quadrant. In that case, the phase is an element of F2

2.

In each case we inquire for the refined count over the global tropical curve Γ. We make
a disjunction over the type of V , which can either be a trivalent one, or a quadrivalent one
(i.e. one of the vertices Wi), and γ can be an odd or an even edge. According to [Mik05], if
the edge is even, we have two ways of gluing the curves together when the phases agree. We
use the action of the deck transformation group {±1}2.

• Assume that V is trivalent, and the bounded edge adjacent to V is odd. Then, there
are two real opposite points, corresponding to the two distinct phases that the edge can
have, where the gluing can happen, and they are exchanged by the deck transformation
group {±1}2. Therefore, over Γ′, there are 2R oriented curves for each of the phases
(both add up to the total 4R oriented curves). There are 4 curves above the vertex V ,
two over each real phase. If a pair with compatible phases is chosen, we have a unique
way of gluing. Moreover, for any possible gluing of an oriented curve and a curve, the
orientation of the oriented curve extends to the new global curve. The curves above
V thus get an orientation. The two oriented curves obtained this way have opposite
quantum indices, and one increases by one the logarithmic rotation number while the
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other decreases it by one. Finally, the total contribution is

(q
mV

2 − q−
mV

2 )2R+ (q
mV

2 − q−
mV

2 )2R = 4(q
mV

2 − q−
mV

2 )R.

• Assume that V is trivalent, and γ is an even edge. We have 4 possible phases, exchanged
by the deck transformation group. For each of these phases, there are R oriented curves
over Γ′, and just one curve over V . Each time, there are two ways of gluing the curves:
one that increases the logarithmic rotation number, and one that decreases it. We thus
get

(q
mV

2 −q−
mV

2 )R+(q
mV

2 −q−
mV

2 )R+(q
mV

2 −q−
mV

2 )R+(q
mV

2 −q−
mV

2 )R = 4(q
mV

2 −q−
mV

2 )R.

• Assume that V = W is a quadrivalent vertex, and that γ is an odd edge. Assume that
the dual triangle is equivalent to ∆(m1,m2,m3). There are two possible phases. Over
Γ′, there are 2R oriented curves for each of the phases, while there are m1 curves over
W for each of the phases. In each case the gluing is unique and we getÇ

q
mW

2 − q−
mW

2

q − q−1

å
2R+

Ç
q
mW

2 − q−
mW

2

q − q−1

å
2R = 4

Ç
q
mW

2 − q−
mW

2

q − q−1

å
R.

• Finally, if V = W is a quadrivalent vertex and γ is an even edge, there are four phases
to consider, each one with R oriented curves over Γ′. This time m1 is even, and the
distribution of the phases for the curves above the vertex might be a little trickier. We
have seen that if the boundary points are fixed, there are either 2m1 curves above W
for one of the points and zero for the other, or m1 for each of them. In each case this
does not give the complete phase at the intersection point. Anyway, for each of these
curves there are R oriented curves that we can glue, and this can happen in two ways.
Thus, we still get

2× 2
Ç
q
mW

2 − q−
mW

2

q − q−1

å
×R = 4

Ç
q
mW

2 − q−
mW

2

q − q−1

å
R.

Finally, we recover the formula for m′Γ.



Chapter 5

Recursive formula for tropical
refined invariants

This chapter is devoted to the computation of the refined tropical invariants. Briefly, the
invariants considered here are obtained by counting rational plane tropical curves satisfying
boundary constraints using the refined multiplicity from Block-Göttsche. This multiplicity
was proposed by F. Block and L. Göttsche in [BG16] to refine the complex multiplicity of plane
tropical curves into a polynomial one. Recall the Definition 3.2.14 of this refined multiplicity:

Definition. The refined multiplicity of a simple nodal tropical curve h : Γ→ NR ' R2 is

mq
Γ =

∏
V

[mC
V ]q,

where [a]q = qa/2−q−a/2
q1/2−q−1/2 is the q-analog of a, mC

V is the complex multiplicity of a trivalent
vertex (the determinant of the slopes of h on two among the three adjacent edges), and the
product is indexed by the vertices of Γ, which are trivalent.

Just as the complex and the real multiplicities, the refined multiplicity is a product over
the trivalent vertices of the tropical curve. Moreover, it specializes to the complex multiplicity
of the tropical curve at q = 1, and the real multiplicity at q = −1. Therefore, the refined
count of tropical curves evaluated at ±1 gives an invariant in many situations. For instance,
the refined count of genus g and degree ∆ ⊂ N tropical curves passing through a general
configuration of |∆| − 1 + g points in NR and evaluated at ±1 is independent of the choice
of the point configuration. Furthermore, I. Itenberg and G. Mikhalkin proved in [IM13] that
the refined count of the tropical curves solution to this specific tropical enumerative problem
is indeed an invariant, and not only its evaluation at ±1.

Since, refinements of tropical enumerative invariants have been found in many situations.
Without giving an exhaustive list, here are a few examples:

- refined invariants that interpolate between descendants invariants for rational curves
and Welschinger invariants with pairs of complex conjugated points have been given by
L. Blechman and E. Shustin in [BS19],

- refined invariants for counting Broccoli curves have been given by L. Göttsche and
F. Schroeter in [GS19], and generalized by F. Schroeter and E. Shustin for elliptic
curves in [SS18],

81
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- refinement for rational curves in higher dimension in the context of scattering diagrams
have been given by S-A. Filippini and J. Stoppa [FS15], also by T. Mandel [Man15],
following the ideas of M. Gross, R. Padharipande and B. Siebert in [GPS+10].

While these refined invariants bear similarities with other known invariants such as re-
finements of Donaldson-Thomas invariants considered by M. Kontsevich and Y. Soibelman
[KS08], their meaning remains quite mysterious. In particular, many of the aforementioned
papers dealing ith refinements prove tropical invariance statements without giving an inter-
pretation of the refined invariants in classical geometry, often because such an interpretation is
unknown. Conjecturally, the refinement of Block and Göttsche coincides with the refinement
of Severi degrees by the χ−y-genus, as proposed by L. Göttsche and V. Shende in [GS14].
Since, other interpretations have been given. For instance, P. Bousseau [Bou19] related refined
invariants to some Gromov-Witten invariants involving λ-classes, and G. Mikhalkin [Mik17]
proved that in toric surfaces, the refined tropical invariants compute some signed number
of real rational curves passing through a configuration of real points on the toric boundary,
according to the value of some quantum index, see Chapter 4 for more details.

In this chapter, we first give a proper definition of the refined invariants N∂,trop
∆ and

provide a proof of their invariance, slightly different from the proof of [IM13], and which
generalizes to higher dimension. Such a proof is needed in Chapter 6. Then, we give and
prove a recursive formula that leads to an algorithm for their computation. Finally, we give a
few values of these invariants, enlighting the functioning of the formula, and close the chapter
with some recursive formulas dealing with the algebraic invariants related to N∂,trop

∆ through
the use of correspondence theorems.
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5.1 Definition of the invariants and recursive formula

5.1.1 Tropical enumerative problem

We now turn our focus into the tropical enumerative problem that provides the refined
tropical invariants N∂,trop

∆ used in [Mik17]. This family of enumerative problems depends on
the choice of the degree ∆, and the recursive formula proven in the chapter gives a relation
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between all these invariants.

Let ∆ = {v1, . . . , vm} ⊂ N be a tropical degree. We do not assume the vectors vi to be
primitive since the recursive formula almost always makes appear degrees with non-primitive
vectors. For each vi ∈ ∆ we choose some scalar µi ∈ R. Because of the tropical Menelaus
theorem, the sum of the moments of all the unbounded ends of a tropical curve is zero, so a
necessary condition for the scalars µi to be the moments of some tropical curve is

∑m
1 µi = 0.

We now look at the set S(µ) of parametrized rational tropical curves of degree ∆ that have
µ = (µi) as family of moments, i.e. mom(Γ) = µ. The invariance amounts to prove that the
count of parametrized rational curves with appropriate multiplicity does not depend on µ.
This tropical enumerative problem is called the ∆-problem.

Notice that due to the linear character of the moment map restricted to any combinatorial
type, each type contributes at most one solution unless the map is non-injective. Let Comb(Γ)
be a top-dimensional combinatorial type, for which the moment map is not injective. Since
Comb(Γ) and Rm−1 have the same dimension, the moment map is not surjective either.
Similarly, the restriction of the evaluation map to non top-dimensional combinatorial types
fails to be surjective for dimensional reasons. A family of moments µ is said to be generic if it is
chosen outside the image of the moment map restricted to non top-dimensional combinatorial
types, and top-dimensional types with non-injective moment map. Thus, if the configuration
of moments µ is chosen generically, the set of solutions S(µ) is finite, and the rational curves
of S(µ) solution to the problem are simple, and they have a well-defined refined tropical
multiplicity mq

Γ. Then, we set

N∂,trop
∆ (q, µ) =

∑
Γ∈S(µ)

mq
Γ.

Remark 5.1.1. Let Comb(Γ) be a combinatorial type, and A the linear map associated to the
restriction momComb(Γ) of mom to Comb(Γ). Let (l, V ) denotes the coordinates on Comb(Γ)
given by the length of the edges and the position of a specified vertex. To see if Comb(Γ)
contributes a solution, one just needs to solve the system A(l, V ) = µ, leading to a formal
solution (l, V ) = A−1(µ) ∈ Rm−3 ×NR, and check that all its first m− 3 coordinates, which
correspond to the length of the bounded edges, are non-negative. �

Theorem 5.1.2
The value of N∂,trop

∆ (q, µ) does not depend on µ as long as µ is generic.

A proof can be found in the next subsection.
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5.1.2 Proof of tropical invariance

The proof of invariance goes in the same way as many tropical proofs of invariance by
showing that we have a local invariance of the count around the walls of the tropical moduli
space.

Proof of Theorem 5.1.2. We choose two generic configurations µ(0) and µ(1), and choose a
generic path µ(t) between them. Due to the genericity, we know that the set F of values
of t where µ(t) meets the non-generic configurations is finite, and N∂,trop

∆ (q, µ(t)) is constant
on the connected components of the complement of this exceptional set F . We now need to
check that the value is constant around these special values.

Let t∗ be such a special value. Thanks to the genericity of the path, it means that at
least one of the curves of S(µ(t∗)) has a unique four-valent vertex V . There are three ways
to deform this curve into a trivalent one by choosing a splitting of the quadrivalent vertex,
meaning there are three maximal cones adjacent to the wall. In some cases, one of the defor-
mation leads to a flat vertex, i.e. a non-injective combinatorial type. Let E1, E2, E3, E4 be
the adjacent edges directed by a1, a2, a3, a4, with ingoing orientations. Their index i is taken
in Z/4Z. The splittings are denoted by 12//34, 13//24 and 14//23 according to the pairing
of vertices. Around a wall, one curve solution may be divided into two solutions, or the other
way around two solutions may merge into one solution.

We first assume that there are no parallel edges among the edges Ei. Let us prove that
up to a relabeling we can assume :

- for each i we have ω(ai, ai+1) > 0,
- we have ω(a2, a3) > ω(a1, a2).

The first point essentially consists in finding some cyclic counterclockwise order on the outgo-
ing vectors ai. Let us take such a cyclic order and prove that it satisfies these conditions : if we
had ω(a4, a1) < 0 (same for ω(a1, a2) < 0 and other values), then because of the counterclock-
wise cyclic order all the vectors ai are in a half-plane and their sum would not be zero, which
is absurd. So we have ω(ai, ai+1) > 0. For the second point, the assumption that there are
no parallel vectors ensures that ω(ai, ai+1 + ai−1) 6= 0 for any i, thus there are no consecutive
equal values. Hence we can assume that ω(a2, a3) > ω(a1, a2) up to a cyclic shift of the indices.

Let us notice that

ω(a4, a1) = ω(−a1 − a2 − a3, a1) = ω(a1, a2 + a3) > 0,

and ω(a3, a4) = ω(a3,−a1 − a2 − a3) = ω(a1 + a2, a3) > 0.

To prove the local invariance, we need to know the repartition of the combinatorial types
around the wall, that is, the adjacent combinatorial types providing a solution when µ(t)
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moves slightly. Using the correspondence theorem of Mikhalkin [Mik05] or the tropical proof
of invariance of the count with complex multiplicities given by A. Gathmann-H. Markwig in
[GM07b], this repartition is known to match the equality given between complex multiplic-
ities mΓ =

∏
V m

C
V > 0. All the vertices in the respective products for the three adjacent

combinatorial types are the same, except the two vertices resulting from the splitting of the
quadri-valent vertex. The desired relation is then

ω(a1, a2)ω(a1 + a2, a3) + ω(a1, a3)ω(a2, a1 + a3) + ω(a2, a3)ω(a2 + a3, a1) = 0,
for 12//34 for 13//24 for 14//23

and the repartition of combinatorial types around the wall is given by the sign of each term.
It means up to sign that one is positive and is on one side of the wall, and the two other ones
are negative, on the other side of the wall. Hence, we just need to study the signs of each term
to know which curve is on which side. We know that ω(a1, a2) and ω(a1 +a2, a3) are positive,
therefore their product, which is the term of 12//34, is also positive. We know that ω(a2, a3) is
positive, but ω(a2+a3, a1) is negative, therefore their product is negative and 14//23 is on the
other side of the wall. It means that the combinatorial types 12//34 and 14//23 are on oppo-
site sides of the wall. We need to determine on which side the type 13//24 is, and that is given
by the sign of the middle term. As by assumption ω(a2, a1 + a3) = ω(a2, a3)− ω(a1, a2) > 0,
it is determined by the sign of ω(a1, a3).

— If ω(a1, a3) > 0, then 12//34 and 13//24 are on the same side, and the invariance for
refined multiplicities is dealt with the identity

(qω(a2,a3) − q−ω(a2,a3))(qω(a1,a2+a3) − q−ω(a1,a2+a3))
=(qω(a1,a2) − q−ω(a1,a2))(qω(a1+a2,a3) − q−ω(a1+a2,a3))
+(qω(a1,a3) − q−ω(a1,a3))(qω(a2,a1+a3) − q−ω(a2,a1+a3)),

— and if ω(a1, a3) < 0, then 14//23 and 13//24 are on the same side and then the invari-
ance for refined multiplicities is true since

(qω(a2,a3) − q−ω(a2,a3))(qω(a1,a2+a3) − q−ω(a1,a2+a3))
+(qω(a3,a1) − q−ω(a3,a1))(qω(a2,a1+a3) − q−ω(a2,a1+a3))
=(qω(a1,a2) − q−ω(a1,a2))(qω(a1+a2,a3) − q−ω(a1+a2,a3)).

If we have some edges parallel among the vectors ai, either two consecutives vectors
are parallel, and then the invariance is straightforward, since there are only two adjacent
combinatorial types with equal non-zero multiplicity, or we can choose a cyclic labeling such
that a1 and a3 are parallel. We then have ω(a1, a3) = 0. It means that one of the determinant
multiplicities is zero, which is normal since the associated combinatorial type would have a
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flat vertex. Thus,

ω(a1, a2)ω(a1 + a2, a3) + ω(a2, a3)ω(a2 + a3, a1) = 0.
for 12//34 for 14//23

It means that the two terms are of opposite sign. Assume the first one is positive, and thus
ω(a1, a2) and ω(a1 + a2, a3) = ω(a2, a3) have the same sign. The refined multiplicity is then

(qω(a1,a2) − q−ω(a1,a2))(qω(a2,a3) − q−ω(a2,a3)).

The second term being negative, it means that ω(a2, a3) and ω(a1, a2+a3) = ω(a1, a2) have the
same sign. The refined multiplicity is the the same and we have the desired local invariance.
It is the same if the first term is negative.

Remark 5.1.3. The technicalities in the proof are just needed to find the repartition of the
combinatorial types around the wall. This repartition could also be found by looking at the
subdivisions of the Newton polygon, which are dual to the tropical curves. The quadrilateral
dual to the quadrivalent vertex has three subdivisions (resp. two in the case of a flat vertex)
matching the three splittings of the vertex: one using the big diagonal, one using the small
diagonal, and one by using a parallelogram. Then, we can show that the repartition is given
by putting the subdivision using the big diagonal alone on one side of the wall. See [IM13].

�

5.1.3 Recursive formula

Before stating the formula we need to introduce some notations. Let ∆ = {v1, v2, . . . , vm} ⊂
N ' Z2 be a degree for plane curves, i.e. a family of vectors whose sum is zero. Let µ ∈ Rm be
a family of moments satisfying the tropical Menelaus condition, and let Γ be a parametrized
tropical curve in S(µ). Notice that for a generic choice of µ, such tropical curves are trivalent.
As Γ is a tree, there is a unique shortest path between the edges directed by v1 and vm, which
we call a chord. The chord has a natural orientation from the end v1 to the end vm. Once
we remove the chord, the curve Γ disconnects into several components Γ1, . . . ,Γp, indexed in
the order in which they meet the chord. Let Ei be the edge in Γi adjacent to the chord, and
Vi the vertex in which both meet. All these notations along with the ones which are about
to follow are depicted on Figture 5.1.

There are two possibilities for Γi :

- either Ei is an unbounded edge, directed by some vi ∈ ∆, and we set ui = −vi,

- or Ei is bounded and Γi contains more than one unbounded edge of Γ. We then denote
by ∆̃i ⊂ ∆ the set of directing vectors of unbounded ends of Γ that belong to Γi. Let
ui = −

∑
v∈›∆i

v be the directing vector of Ei going toward the chord, and ∆i = ∆̃it{ui}
be the degree of the curve Γ′i obtained by letting Ei going to infinity instead of stopping
when meeting the chord in Vi.
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V1
V2

Vi
Vi+1Vi−1 Vp

w1 w2 w3
wi wi+1

Γ1

Γ2 Γi−1

Γi

Γi+1 Γp

wp+1 = v|∆|

E1, u1

E2, u2 Ei−1, ui−1

Ei, ui

Ep, up

Figure 5.1 – skeleton of the curve Γ with every notation. The chord is in fat.

Finally, let wi be the vector directing the edge of the chord between Vi−1 and Vi. This means
that w1 = −v1 and wi+1 = wi + ui. Let also σi = ω(wi, wi+1) be the signed multiplicity of
the vertex Vi. We can now derive a recursive formula from this description.

Theorem 5.1.4
With the above notation, we have

N∂,trop
∆ (q) =

∑
∗

p∏
i=1

[σi]qN∂,trop
∆i

(q),

where the sum ∗ is over the ordered partitions of ∆− {v1, vm} into

∆− {v1, vm} =
p⊔
i=1

∆̃i, ui = −
∑
v∈›∆i

v,

such that ®
σi > 0⇒ |∆̃i| = 1
ω(σiui, σi+1ui+1) > 0,

and up to a reordering of consecutive indices i having respective colinear vectors ui.

Remark 5.1.5. The term "ordered partition" means that the set is subdivided into several
subsets, but we keep track of their order by labeling them. Ordered partitions in p subsets
are thus in bijection with the surjections to [[1; p]]. The reordering means that orders that
differ by a sequence of permutations of consecutive indices i and i+ 1 such that ui and ui+1
are colinear, are counted only once. �

5.2 Proof of the recursive formula

To prove the recursive formula, we find a way to describe the curves solution to the prob-
lem for a specific value of µ. The idea is to choose an idealistic configuration of constraints
and then a 1-parameter family µ(t) of moments getting closer and closer to this idealistic but
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unreachable configuration. Such a 1-parameter family µ(t) is called a deformation. Then,
we describe the specific combinatorial types that continue to provide a solution through the
deformation process toward this ideal configuration.

Remark 5.2.1. The same idea drives the tropical proof of the Caporaso-Harris formula in
[GM07a] : one deforms the constraints by making one of the marked points going to infinity
on the left. The only combinatorial types that "survive" the deformation (see definition below)
are those that either have the corresponding marked point on a horizontal edge of the curve,
or that split into a floor containing the marked point and a curve of lower degree, joined to
the floor by horizontal edges. We implement this ideology in our setting to provide a way of
computing the invariants N∂,trop

∆ . �

First, recall the moment map mom : M0(∆, NR) → Rm−1. If µ ∈ Rm−1 is a family of
moments for the last m − 1 ends of the curves, we say that a parametrized tropical curve is
solution to the ∆-problem with value µ if mom(Γ) = µ. In some cases we see µ as a function
∆− {v1} → R that assigns to any unbounded end its moment. If Ξ̃ ⊂ ∆− {v1} is a subset,
then

Ξ = {−
∑
v∈Ξ̃

v} t Ξ̃

is still a tropical degree and this notation allows us to consider the Ξ-problem with value µ|Ξ̃.

Definition 5.2.2. We call a deformation vector a lattice vector δ ∈ Zm−1 ⊂ Rm−1. The
associated deformation of an element µ ∈ Rm−1 is the half-line µ + R>0δ, parametrized by
t 7→ µ+ tδ.

Definition 5.2.3. Let Γ be a tropical curve with non-zero multiplicity. On the orthant
Comb(Γ)×NR of curves having the same combinatorial type, the moment map is linear with
matrix A in the canonical basis :

A = mom|Comb(Γ)×NR : Rm−3
>0 ×NR → Rm−1.

If δ is a deformation vector, we say that the combinatorial type of Γ survives the deformation
if the first m− 3 coordinates of A−1δ are non-negative.

Remark 5.2.4. As the multiplicity of the curve is non-zero, the matrix A is invertible. Hence,
any small deformation of the image can be pullback by the moment map to a small defor-
mation of the curve, which means a variation of the length of the bounded edges and maybe
a translation. The assumption that the first coordinates are non-negative means that go-
ing along the deformation δ, the length of the edges are non-decreasing, and the half-line
mom|−1

Comb(Γ)×NR
(µ) + R>0A

−1δ does not meet the boundary of the orthant, place where the
deformation of the curve cannot go on since some edge has length going to zero and so a
quadri-valent vertex appears. �

Let Γ be a tropical curve solution to the ∆-problem with value µ, with non-zero-multiplicity,
and δ a deformation vector. Let f be some affine function defined on the orthant of the com-
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binatorial type of Γ, with linear part f . Then we write

df
dt = f(A−1δ),

for the variation of f along the deformation. The functions of interest are the position of a
vertex V , the length of a bounded edge E, and the moment of some edge E.

Example 5.2.5. If f = V : Comb(Γ)×NR → NR is the position of a vertex of Γ, then dV
dt is the

direction in which V moves when the curve is deformed by making mom(Γ) go in direction
δ. ♦

From now on, we consider the deformation vector δ = (0, . . . , 0,−1), which means that the
moment of the edge directed by vm goes to −∞, and thus the moment of the edge directed
by v1 goes to +∞. We look for combinatorial types that survive this deformation.

Proposition 5.2.6
For t large enough, the only combinatorial types that contribute a solution to N∂,trop

∆ (q, µ+ tδ)
are surviving combinatorial types.

Proof. Each combinatorial type Comb(Γ) of tropical curves provides a formal solution to the
problem, meaning that we can solve mom|Comb(Γ)×NR(l, V )) = µ formally and find the lengths
of the edges, but some of them might be negative. The formal solution is a true solution if
the length of each edge is non-negative. If Comb(Γ) is not a surviving combinatorial type,
the length of some edge strictly decreases when t increases, and it becomes negative if t is
large enough, therefore the combinatorial type no longer provides a solution.

Remark 5.2.7. As the length of some edges might be constant through the deformation,
the survival property is not enough to ensure a combinatorial type ultimately provide a
true solution. More precisely, among the combinatorial types differing from one another
by a permutation of consecutive indices i having colinear directing vectors ui, exactly one
ultimately provides a true solution. This is the place where the reordering appears. �

Using the balancing condition, we see that the moment µEi of Ei is constant equal to
minus the sum of coordinates of µ|›∆i

. This means that the edge Ei is contained in a fixed
line. The vertices of Γi are fixed because the moment of two of their incident edges are con-
stant. Thus, if we change the moment of v1 and vm, the only way the edges Ei can move
is by varying their lengths while the edges in each Γi different from Ei are fixed. Moreover,
only their extremity Vi in which Γi meets the chord can move, and these vertices move on the
lines that respectively contain Ei.

For the combinatorial type of Γ to survive the deformation, we need to check that neither
the length of the edges of the chord nor the length of the bounded edges Ei go to 0. Recall
σi = ω(wi, wi+1) the signed multiplicity of the vertex Vi. If σi < 0, that means that at Vi, the
chord turns right, as we can see on Figure 5.2, and if σi > 0, it means that the chord turns
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wi wi+1

ui

Figure 5.2 – Vertex that turns right, i.e. σi < 0.

wi

wi+1

ui

Figure 5.3 – Vertex that turns left, i.e. σi > 0.

left, as we can see on Figure 5.3.

Let τi = ω(wi, Vi) = ω(wi, Vi−1) be the moment of the edge directed by wi. The balancing
condition ensures that

τi+1 = τi + µEi ,

hence all the moments τi only differ from one another by a constant, and thus all go to −∞
through the deformation process, since τp+1 is the moment of the edge directed by vm that
goes to −∞ with velocity −1 by assumption. We then have dτi

dt = −1.

We now write down some equations whose derivation allows us to obtain the variations of
the lengths of the bounded edges of the curve. We separate the case of edges which are adja-
cent to the chord from the edges which are part of the chord. We denote by a dependence on
t the fact that the functions (position of a vertex, moment of an edge, length of an edge) are
taken on the curve of Comb(Γ)×NR whose evaluation is µ+ tδ, in case the orthant provides
a true solution. As t = 0 provides a true solution, the formal solutions are true solutions at
least for small values of t. The formal solution is true for any t if the combinatorial type is a
surviving one.

— First, let Pi be a fixed point on Ei, which is the other extremity if Ei is bounded and
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Vi−1wi−1

wi

I

ui−1

Vi

ui

wi+1

Figure 5.4 – Deformation of an edge of the chord.

any point otherwise. We have

Vi(t) = Pi + li(t)ui = Pi + li(t)(wi+1 − wi),

where li(t) is the length of the edge between Vi and Pi. Hence,

τi = ω(wi, Vi(t)) = ω(wi, Pi) + li(t)ω(wi, wi+1 − wi)
= ω(wi, Pi) + li(t)σi.

Thus, by derivating, we get −1 = dτi
dt = σi

dli
dt . This means that :

— If at Vi the chord turns left (σi > 0), then li decreases as t goes to +∞, the vertex
Vi goes up the edge Ei and will meet a vertex if there is one, which is the case if
and only if Ei is bounded.

— If at Vi the chord turns right (σi < 0), then li increases as t goes to +∞.

— We consider the edge between the vertices Vi−1 and Vi. Let λi be its length so that we
have

Vi(t)− Vi−1(t) = λi(t)wi.

By derivating with respect to t and using previous notations, we get

dli
dt (wi+1 − wi)−

dli−1
dt (wi − wi−1) = dλi

dt wi,
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which is equivalent to

−wi+1 − wi
σi

+ wi − wi−1
σi−1

= dλi
dt wi

since dli
dt = − 1

σi
. Multiplying by σiσi−1 we get

σi−1(wi+1 − wi)− σi(wi − wi−1) = −σiσi−1
dλi
dt wi.

At this point we can check that σi−1wi+1 + σiwi−1 is indeed colinear to wi :

ω(wi, σi−1wi+1 + σiwi−1) = σi−1ω(wi, wi+1) + σiω(wi, wi−1)
= σi−1σi − σiσi−1

= 0.

In order to check the sign of dλi
dt , we can evaluate any linear form on this vector equation,

for instance ω(wi−1,−), which gives us

σ2
i−1σi

dλi
dt = σ2

i−1 + σiσi−1 − σi−1ω(wi−1, wi+1).

By noticing that

ω(ui−1, ui) = ω(wi − wi−1, wi+1 − wi)
= σi + σi−1 − ω(wi−1, wi+1),

after dividing by σi−1, we are left with

σi−1σi
dλi
dt = ω(ui−1, ui).

Hence, dλi
dt is non-negative if and only if ω(σi−1ui−1, σiui) is non-negative.

We now can describe the conditions for a combinatorial type to survive our deformation.

Proposition 5.2.8
Let Γ be a parametrized tropical curve. In the above notations, the combinatorial type of Γ
survives the deformation t→ +∞ if and only if

- the edge Ei is an unbounded edge whenever σi > 0;
- for each i, we have ω(σi−1ui−1, σiui) > 0.

Proof. The statement follows from the previous description: a combinatorial type survives
the deformation if and only if the lengths of the bounded edges are non-decreasing along the
deformation. All the cases have previously been studied:



5.2. Proof of the recursive formula 93

- The length of the bounded edges of the chord is non-decreasing, hence for each i we
have ω(σi−1ui−1, σiui) > 0.

- The bounded edges inside some Γi but different from Ei are constant.
- The edges Ei have a non-decreasing length unless σi > 0, and then we need the edge to
be unbounded.

We can now prove the recursive formula.

Proof of Theorem 5.1.4. Let µ ∈ Rm−1 be any value. Thanks to the previous proposition, up
to a change of µ by µ + tδ for a very large t, we can assume that the combinatorial types
of the solutions to the ∆-problem with the value µ are surviving combinatorial types for our
deformation. However, as noticed, the subtlety is that not all surviving combinatorial types
provide a true solution. Nevertheless, each of the curves Γ′i is solution to the ∆i-problem with
value µ|›∆i

. We use this to construct the solutions.

Let Γ be a solution to the ∆-problem with value µ+ tδ for t large enough. By assumption
it has a surviving combinatorial type. Moreover, the Γ′i provide solutions to the underlyings
∆i-problems with values µ|›∆i

, and the multiplicity of Γ factors in the following way :

mq
Γ =

p∏
1

[σi]qmq
Γi .

Conversely, any combinatorial type can be described by the ordered partition ∆−{v1, vm} =⊔
∆i along with the combinatorial type of the curves Γi. Let (Γi) be a family of solutions to

the respective ∆i-problems with respective values µ|›∆i
, and we try to glue them into a global

solution, for t large enough. The gluing is given by the order of the partition in which we glue
Γ1, . . . ,Γp on the chord linking the unbounded end 1 to the unbounded end m. We have a
formal solution obtained by resolving the length of the edges on the combinatorial type, and
need to check that they indeed provide a true solution.

The lengths of the bounded edges inside the graphs Γi are constant. The only orders that
have non-decreasing lengths for the edges of the chords and the edges Ei when t goes to +∞
are the orders considered in the formula. If the length of some of these edges is negative but
increases through the deformation, it becomes positive for t large enough. Conversely, if the
order is not one of the considered, some edge length decreases along the deformation process
and is ultimately negative, so the combinatorial type ceases to provide a solution. Finally,
if the length of some edge of the chord is constant through the deformation, meaning that
consecutive incidents vectors to the chord are colinear, there is a unique order between them
that matches the order of their moments, i.e. the order in which a transversal oriented line
would meet them, and provides positive lengths for these edges, hence the consideration of
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the order on Γ1, . . . ,Γp up to a reordering of consecutive colinear vectors ui.

Finally, by putting together the contribution of the different possibilities of Γi, we get

∑
Γi∈S(µ|∆̃i )

p∏
1

[σi]qmq
Γi =

p∏
1

[σi]qN∂,trop
∆i

,

and thus the desired formula.

Provided that the deformation is big enough, the moments of all the unbounded edges
except v1 and vm are really small regarding these two specific moments. It means that when
we look at a solution to the ∆-problem with our value of µ, all the edges adjacent to the
chord seem to go through the origin of R2 (Although they do not, but they are not far from
it if we look at them from far far away) while the chord goes around the origin, changing its
direction when meeting an adjacent edge in the right order.

This decomposition can be compared with the usual floor decomposition of tropical curves
with an h-transverse degree coming from the tropical Caporaso-Harris formula of [GM07a].
However, here the floors have a more complicated shape. For instance, even for degree d
curves, and the two edges whose moments vary are directed by (−1, 0) and (0,−1), the chord
may not be a usual floor and can make a loop around the origin as we can see on Figure 5.5.
The figure shows a quartic curve, with two unbounded ends going to infinity. The movement
of these ends is depicted with an arrow. The region colored in grey is the zone through which
the curve travels through the deformation. We have a similar situation for a cubic depicted
on Figure 5.6.

Finally, the recursive formula involves every N∂,trop
∆ , associated with different toric sur-

faces, contrarily to the usual Caporaso-Harris formula for curves in CP 2, which restricts
to specific degrees. Furthermore, the formula applies for curves of any degree, while the
Caporaso-Harris formula restricts to h-transverse polygons.

5.3 Computations

We now provide a few values N∂,trop
∆ for various families ∆ ⊂ N , computed using the

recursive formula. Because of the exponential complexity of the algorithm, we only manage
to make computations for small degrees. Concerning curves of degree d in CP 2, computations
can be done by hand up to degree 5 or 6. Degree 7 seems to be out of reach without computer
assistance.

Let d > 1 be an integer, and let λ ` d be a partition of d. We denote by N∂,trop
d (λ) the

polynomial N∂,trop
∆ when ∆ = {(−e1)d, (e1 + e2)d,−λ1e2,−λ2e2, . . .}. These are the degrees
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Figure 5.5 – Image of a quartic curve during the deformation.

Figure 5.6 – Image of a cubic curve during the deformation.
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that appear in the proof of the Caporaso-Harris formula in [GM07a].

Proposition 5.3.1
We have :

- N∂,trop
1 (1) = N∂,trop

2 (12) = 1,
- N∂,trop

2 (2) = q1/2 + q−1/2,
- N∂,trop

3 (13) = q + 7 + q−1,
N∂,trop

3 (2, 1) = q3/2 + 6q1/2 + 6q−1/2 + q−3/2,
N∂,trop

3 (3) = q2 + 5q + 6 + 5q−1 + q−2,
- N∂,trop

4 (14) = q3 + 10q2 + 55q + 172 + 55q−1 + 10q−2 + q−3,
N∂,trop

4 (2, 12) = q7/2 + 9q5/2 + 45q3/2 + 133q1/2 + 133q−1/2 + 45q−3/2 + 9q−5/2 + q−7/2,
N∂,trop

4 (3, 1) = q4 + 8q3 + 36q2 + 96q + 117 + 96q−1 + 36q−2 + 8q−3 + q−4,
N∂,trop

4 (4) = q9/2 + 7q7/2 + 28q5/2 + 68q3/2 + 88q1/2 + 88q−1/2 + 68q−3/2 + 28q−5/2 +
7q−7/2 + q−9/2,
N∂,trop

4 (22) = q4 + 8q3 + 36q2 + 104q + 150 + 104q−1 + 36q−2 + 8q−3 + q−4,
- N∂,trop

5 (15) = q6 + 13q5 + 91q4 + 455q3 + 1695q2 + 5023q+ 11185 + 5023q−1 + 1695q−2 +
455q−3 + 91q−4 + 13q−5 + q−6.

The proof is a straightforward computation. For each degree ∆ one chooses two specific
vectors and makes the associated unbounded edges going to infinity, reducing the computation
of N∂,trop

∆ to the computations of invariants with families of smaller size. We here show some
of the computations for degree d curves, choosing unbounded ends directed by (−1, 0) and
(1, 1). We explain only the main features, and draw the tropical curves resulting from the
deformation. The shape of the tropical curves illustrates some of the involved phenomena.

Very low degrees. The values of N∂,trop
1 (1), N∂,trop

2 (12) and N∂,trop
2 (2) are easy to find

since for each choice of boundary conditions, there is only one tropical curve matching the
constraints. The only curve for N2(2) has a vertex of complex multiplicity 2, leading to the
value N∂,trop

2 (2) = q1/2 + q−1/2.

For curves of degree 3, the choice of unbounded edges going to infinity leads to tropical
curves having a floor decomposition in the sense of [GM07a], and the computation is reduced
to the value of N∂,trop

1 , N∂,trop
2 (12) and N∂,trop

2 (2), which we already know. The appearance
of a floor means that the chord degenerates into a toric divisor, which is the coordinate axis
y = 0 of CP 2 in our case. The computation leads to the value q + 7 + q−1.

Curves of degree 4 and 5. For curves of degree 4, we still get a contribution of the curves
having a floor in the sense of [GM07a]. Their contribution is

N∂,trop
4 (14) = q3 + 10q2 + 55q + 172 + 55q−1 + 10q−2 + q−3.
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Figure 5.7 – Quartic curve with a loop

Figure 5.8 – Quintics degenerating to a loop and a line

However, it would be wrong to assume that all the contributing curves are of this form. There
are in fact 6 additional curves having the shape of Figure 5.7, where the chord makes a loop
around the origin. This means that the chord degenerates to the union of all toric divisors,
rather than going to only one, as it would happen if it degenerated on a floor. The six curves
come from the six possible repartitions of the bottom unbounded ends in two groups of two.

For curves of degree 5, the chord can yet again degenerate into a floor, or just as in the
degree 4, degenerate into a loop. Only this time, contrarily to the degree 4 case, there might
still be unbounded ends leftover, leading to a line attached to the loop, as we can see on
Figure 5.8.

Degree 6 and higher. Up to degree 5, thanks to the particular choice of unbounded edges
going to infinity, the computations were reduced only to values of the form N∂,trop

d (λ) for some
λ, as in the classical Caporaso-Harris formula. Once again, it would be wrong to assume that
these values are sufficient to compute N∂,trop

d (λ), in the sense that some smart choice of for-
mula reduces the computation of N∂,trop

d (λ) to the computation of some N∂,trop
l (µ) for l < d.

Starting from d = 6, the curves resulting from the eviction of the chord (i.e. the curves Γi)
may not be of degree l, meaning that the degree of the plane curve is not a standard triangle
of size l, as we can see on Figure 5.9: the remaining curves might be of degree 1 or 2 as it
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(a) (b)

(c) (d)

Figure 5.9 – Different examples of sextics with a loop : in (a) and (b) the degree of the
remaining curve is not a standard triangle, in (c) it is a degree 2 curve, in (d) it is two lines.

is the case in (c) and (d), but can also have a more complicated shape, as we can see on (a)
and (b).

For degree 7, the situation becomes even more complicated since the growing number of
unbounded edges increases the number of possible degrees for the curves Γi, and the chord
can now make two loops. The number of loops that the chord can make goes higher with the
degree.

5.4 Recursive formulas for algebraic invariants

The use of correspondence theorems allows one to get relations between the tropical refined
invariants N∂,trop

∆ (q) and some known algebraic invariants. This approach leads to recursive
formulas between these same algebraic invariants using the formula from Theorem 5.1.4.
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— The first corollary deals with the number of complex rational curves of degree ∆ pass-
ing through a fixed generic configuration of |∆| points located on the toric boundary
and subject to the Menelaus condition. Indeed, such a number can be computed using
the correspondence theorem and the usual complex multiplicities, to which the refined
multiplicity specializes at 1.

Let ∆ ⊂ N be a degree for complex curves in N ⊗ C∗, and let P ⊂ ∂C∆ be a generic
configuration of points subject to the Menelaus condition. The number of complex
rational curves of degree ∆ passing through P and not containing any toric divisor
as an irreducible component is denoted by N∂

∆(P). This number can be proved to be
independent of the choice of P.

Corollary 5.4.1
One has

N∂
∆ =

∑
∗

p∏
i=1
|σi|N∂

∆i
.

Proof. The value of N∂
∆ can be computed close to the tropical limit using the corre-

spondence theorem of [Mik05] and the complex multiplicities of the tropical curves. The
complex multiplicity satisfies mC

Γ = mh
Γ(1). Thus, one also has N∂

∆ = N∂,trop
∆ (1) and

the recursive formula follows.

— The search for a recursive formula between refined tropical invariants was motivated
by their relation to the refined invariants of Mikhalkin in [Mik17]. Unsurprisingly, the
recursive relation thus translates to a recursive formula between the refined invariants
R∆ from section 4.2.

Recall that in case ∆ ⊂ N consists only of primitive vectors, the invariant R∆ counts
real oriented rational curves passing through a symmetric configuration of real points
located on the toric boundary of the associated toric surface. This count is independent
of the chosen point configuration. We enlarge the notation to the case where ∆ contains
non-primitive vectors, but the result of the count is only invariant close to the tropical
limit.

Corollary 5.4.2
One has

R∆ =
∑
∗

p∏
i=1

(q|σi| − q−|σi|)R∆i
.

Proof. The formula directly comes from Theorem 7 in [Mik17], which relates the value
of R∆ to the value of N∂,trop

∆ :

R∆ = (q1/2 − q−1/2)|∆|−2N∂,trop
∆ (q).
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— Finally, using Theorem 4.4.1, the refined tropical invariants are also related to the
refined invariant from [Mik17] in case the symmetric configuration has pairs of complex
points located on a common toric divisor.



Chapter 6

Curves in higher dimension

We now try to generalize the refined count of real rational curves introduced by Mikhalkin
in [Mik17] to a higher dimensional setting. Here, we define a quantum class whose definition
generalizes the definition of Mikhalkin for curves in a general toric variety. We provide a way
to compute it for real rational curves and toric type I curves. This computation allows us to
define a higher dimensional analog of Harnack curves. Finally, we give a classical enumerative
problem and its tropical counterpart, for which we prove several results of invariance.
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6.1 Quantum class of type I real curve

6.1.1 Setting, notations, and definition

We consider curves in a toric variety, which this time is not assumed to be a surface any-
more. Let M and N be two lattices, dual from each other. We denote by m their common
rank. Let ∆ ⊂ N be a multiset of total sum 0. This allows us to consider tropical curves in
NR = N ⊗R, as well as classical curves in N ⊗C∗, both of degree ∆. The degree ∆ defines a
fan Σ∆ in NR = N⊗R, consisting of the rays directed by the vectors of ∆. From this fan, one
can obtain a non-compact toric variety C∆, whose toric divisors are in bijection with the rays
of the fan Σ∆. The variety is smooth, but non-compact since the fan Σ∆ has not NR as its
support. Nevertheless, it is possible to extend Σ∆ in a complete fan, therefore compactifying
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the toric variety C∆.

The standard conjugation coordinate by coordinate, i.e. the map id⊗ conj from N ⊗ C∗
to itself, extends to an anti-holomorphic involution of C∆. This involution, also called con-
jugation, makes C∆ into a real variety. The fixed locus, also called the real locus, is denoted
by R∆. A curve is a real curve if it is invariant by conjugation.

The square map from N ⊗C∗ to itself also extends to a morphism Sq from C∆ into itself.
Similarly to the planar case, we say that a point is real or purely imaginary if its image under
the square map is in the fixed locus R∆. This can be seen in coordinates: let p ∈ C∆ be a
point. Then p is real or purely imaginary if every monomial χm defined at p, for m ∈ M ,
takes a real or purely imaginary value. Recall that the condition for χm being defined at p is
empty if p is not on a toric divisor, and if p sits on a toric divisor D associated to a ray of
Σ∆ directed by n ∈ N , the condition of χm being defined at p is equivalent to 〈m,n〉 = 0.

Definition 6.1.1. A real curve CC ⊂ C∆ has real or purely imaginary intersection points
with the toric boundary if Sq(CC) ∩ ∂C∆ ⊂ R∆. Such a curve is said to have ropip (real or
purely imaginary intersection points).

We now consider a real parametrized curve ϕ : CC → C∆, of type I and degree ∆, with
ropip. Let S be a connected component of CC\RC. We denote by So the open half-curve S
minus the intersection points between the curve and the toric boundary. We then consider
the image of S under the following composition of maps:

So
ϕ−→ N ⊗ C∗ 2 arg−−−→ N ⊗ (R/πZ)→ (N ⊗ (R/πZ)) /{±id}.

- The first map is the parametrization, that sends So into the complex torus N ⊗ C∗.

- The second map is the argument map coordinate by coordinate, taken mod π instead of
2π. For this map, the real points are sent to 0, and purely imaginary points to non-zero
2-torsion points of N ⊗ (R/πZ), i.e. points whose coordinates are 0 or π

2 . The target
space is called the argument torus, and is topologically a torus of dimension m = rkN .

- The action of the conjugation on N ⊗ C∗ induces an action on the argument torus
N ⊗ (R/πZ). The action is −id. The last map is the quotient by this action. We denote
its target space (N ⊗ (R/πZ)) /{±id} by KN .

Remark 6.1.2. Notice that the choice of the other component S of CC\RC would lead to the
same image in KN . �

The homology groups of KN can be computed using a cellular decomposition. We denote
by Km the space (R/πZ)m/{±id}, i.e. KZm .

Example 6.1.3. - If N has rank 2, we have a homeomorphism between KN and K2, which
is a pillowcase. The morphism induced by the complex conjugation on N ⊗ (R/πZ), i.e.
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−id, has 4 fixed points, which are the 4 singular points of the orbifold. Topologically,
K2 is homeomorphic to the sphere S2.

- IfN has rank 4,KN is homeomorphic to the Kummer surface. There are 16 singularities,
corresponding to the 16 fixed points of −id. It is simply connected. Its homology groups
are

H2(K4,Z) ' Z6 and H2(K4,Z) ' Z6 ⊕ (Z/2Z)5.

- In the general case, Kn has 2n singular points.

♦

We claim that due to ropip hypothesis, the image of So under these maps is a cycle in
KN , i.e. it has no boundary. Therefore, S defines a homology class in H2(KN ,Z), the second
homology group of the quotient of the argument torus. Moreover, this homology class allows
one to compute the area of the coamoeba for any choice of constant 2-form on NR.

Proposition 6.1.4
The image of So in KN has no boundary, and thus defines a homology class h(S). Moreover,
one has h(S) = −h(S).

Proof. We consider Ŝ, which is the real oriented blow-up of S ∪ RC at the boundary points
of C. This means the following: the surface Ŝ is a compact surface with boundary, and the
boundary consists in several components:

- one circle for each complex boundary point, i.e. each point of S − So,
- one circle for each connected component of RC. Moreover, these components are divided
in segments which correspond to real boundary points and connected components of
RC − (RC ∩ ∂R∆).

This blow-up enables us to extend the map 2arg, previously undefined at the boundary
point, on the blown-up surface Ŝ. The map is already defined on RC − (RC ∩ ∂R∆).

- Let p ∈ S − So be a complex boundary point, with ϕ(p) sitting on a toric divisor D,
and let n ∈ N be the corresponding vector in ∆. This means that n is the linear form
m ∈ M 7→ valp(ϕ∗χm) ∈ Z. We take U ⊂ C a complex chart of S with coordinate z
such that the coordinate of p is 0. Let χm be a monomial. By definition of n we can
write ϕ∗χm(z) = z〈m,n〉ψ(z) where ψ(0) 6= 0. Now we have for ε > 0,

2arg ϕ∗χm(εeiθ) = 2arg
(
ε〈m,n〉ei〈m,n〉θψ(εeiθ)

)
= 〈m,n〉θ + 2arg ψ(εeiθ) −→

ε→0
〈m,n〉θ + 2argψ(0).

Therefore, as the quantity has a limit when ε→ 0 with fixed θ, the map may be extended
to the oriented blow-up of S at p. And we see that the image of the circle resulting
from the blow-up is a geodesic going in the direction n, when θ goes from 0 to 2π.

- The same computation works for the real boundary points, except that this time θ will
only go from 0 to π. It still closes itself since we look the arguments in R/πZ rather
than R/2πZ.
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We now use the ropip assumption. This means that the geodesics pass through one of
the fixed points of the involution. However, their orientation is changed by the involution, so
that the boundary disappears when going to the quotient KN , because each geodesics folds
itself. Therefore, the image of Ŝ inside KN has no boundary and defines a cycle.

The statement h(S) = −h(S) easily follows from the fact that the conjugation induces
−id on H2(CP 1).

Remark 6.1.5. Notice that in the case of a point p ∈ S−So, the argument map extends itself
to the classic blow-up and not only the oriented blow-up. However, the non-oriented blow-up
of S is not oriented anymore, and does not allow us to define a homology class.

This remark shows that already in the argument torus, the image of S has no boundary in
a neighborhood of the geodesic image of p, but the neighborhood of the geodesic is a Moebius
strip, and thus is non-orientable. When considering the oriented blow-up, the geodesic appears
twice in the boundary: as θ goes from 0 to 2π, the geodesic is traveled twice, but in the same
direction. One needs to go to the quotient KN for the boundary to fold itself and cancel.

�

The ropip assumption is the keypoint to ensure that the image cycle has no boundary in
KN , and thus So realizes a homology class in the group H2(KN ,Z). If the assumption is not
satisfied, the boundary circles of complex boundary points may fail to pass through a fixed
point of the involution −id and cancel themselves when passing to the quotient.

Definition 6.1.6. The homology class in H2(KN ,Z) defined by S is called quantum class
and denoted by h(S, ϕ), or just h(S) if there is no possible confusion.

6.1.2 First properties

Due to its definition as a homology class, the quantum class is well-behaved under mono-
mial maps between toric varieties. Let A : N ′ → N be a map between two lattices, and
α : N ′ ⊗ C∗ → N ⊗ C∗ be the monomial map between the associated complex torus. Let
ϕ : CC 99K N ′ ⊗ C∗ be a type I real parametrized curve with ropip. Then, the parametrized
curve α ◦ ϕ : CC 99K N ⊗ C∗ has also ropip. Moreover, one has the following property.

Proposition 6.1.7
One has

h(S, α ◦ ϕ) = α̃∗h(S, ϕ) ∈ H2(KN ,Z).

Proof. One has the following commutative diagram:



6.1. Quantum class of type I real curve 105

S N ′ ⊗ (R/πZ) KN ′

N ⊗ (R/πZ) KN

2 arg ◦ϕ

α

p′

∃α̃
p

.

The map between the real tori is induced by the lattice map A. It is in fact equal to A⊗id, but
also denoted by α. The composition p◦α takes the same value on two opposite elements, since
p commutes to −id, therefore, it can be factored through p′, leading to a map α̃ : KN ′ → KN .
Thus, one gets the desired property by taking the induced maps at the homology level.

Finally, due to the additive properties of the homology class, the quantum class can be
computed close to the tropical limit, similarly to the computation of the quantum index of
[Mik17] close to the tropical limit.

Proposition 6.1.8
Let ft : CC(t) 99K N ⊗ C((t))∗ be a family of type I real curves with ropip. We assume that
the family admits a tropical limit h : Γ→ NR, with a curve fw : CCw 99K N ⊗C∗ assigned to
each vertex of Γ. We assume that each curve CC(t) is endowed with a choice of a connected
component S(t) of CC(t)\RC(t) such that S(t) converges. Then:

- for each fixed vertex w of Γ, the component S(t) specializes to a component Sw of
CCw\RCw,

- for each pair {w, σ(w)} of exchanged vertices of Γ, the component S(t) specializes to one
of the curves CCw or CCσ(w) corresponding to the vertices, we assume this curve to be
CCw,

- each curve fw : CCw 99K N ⊗ C∗ has ropip,
- close to the tropical limit, one has

h(S(t), ft) =
∑

w∈Fix(σ)
h(Sw, fw) +

∑
w/∈Fix(σ)

h(CCw, fw).

Proof. The first two points are immediate, and the third point is a consequence of the balanc-
ing condition for the phases of the curves assigned to the vertices. The last point is obtained
as in [Mik17].

Remark 6.1.9. We recover the result of Mikhalkin in [Mik17]. However, the non-fixed vertices
of the tropical curve Γ may have a contribution through some torsion element. �

6.1.3 Area of the amoeba and the coamoeba

We are now concerned with giving an interpretation to the previously defined quantum
class. The quantum class allows one to measure the area of the amoeba of a real type I curve
with ropip. Let ω be a 2-form on NR and let CC ϕ−→ C∆ be a type I real curve. For now,
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we do not assume the curve to be ropip. Let S be a connected component of CC\RC. By
definition, the area of the amoeba measured by ω is

AωLog(S) =
∫
S
ϕ∗Log∗ω =

∫
ϕ(S)

Log∗ω.

The area is a signed area since we consider the pull-back of the form by the logarithm Log :
N ⊗ C∗ → NR. This area is computed only on S because the area

∫
CC ϕ

∗Log∗ω is equal to
0. The 2-form ω can be used to define as well a constant 2-form ωθ on the argument torus
N ⊗ (R/πZ), that also allows a measurement of the area of the coamoeba:

Aωarg(S) =
∫
ϕ(S)

(2 arg)∗ωθ.

We also compute the area on a half-curve for the same reasons. These two areas are in fact
equal.

Proposition 6.1.10
One has Aωarg(S) = AωLog(S).

Proof. To see that, let zj = exjeiθj be coordinates on N ⊗ C∗, so that the logarithm is
(zj) 7→ (xj), and the argument map (zj) 7→ (θj). Then, ω and ωθ are given in coordinates by

ω =
∑
i<j

aijdxi ∧ dxj and ωθ =
∑
i<j

aijdθi ∧ dθj .

We then consider the following holomorphic 2-form

ϕ =
∑

aij
dzi
zi
∧ dzj
zj

=
∑

aij(dxi ∧ dxj − dθi ∧ dθj) + i(· · · )

= log∗ ω − (2 arg)∗ωθ + i(· · · ),

where zi = xie
iθi . This holomorphic 2-form vanishes on the curve CC and thus, the area of

the amoeba measured by ω, which the integral of the pull-back of ω on S, is equal to the
value of the integral of the pull-back of ωθ, which is the area of the coamoeba.

We now assume that the curve real C has ropip. The 2-form ωθ on N ⊗ (R/πZ) realizes
a cohomology class in H2(N ⊗ (R/πZ),R). As the 2-form is invariant by the antipodal map,
it descends to a 2-form on KN , where it realizes some cohomology class in H2(KN ,R). We
thus can evaluate the obtained cohomology class on h(S) to get a number kω(S) := 〈ω, h(S)〉
called the quantum index. Therefore, we see that the area of the amoeba with respect to ω is
just the evaluation of cohomology class realized by ωθ on the quantum class h(S). Hence, it
can only take a discrete set of values if ω is integer valued.
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Proposition 6.1.11
One has

AωLog(S) = Aωarg(S) = 〈ω, h(S)〉.

Remark 6.1.12. The torsion part of the quantum class disappears when we evaluate some
cohomology class, since the coefficients are now chosen to be in R instead of Z. Therefore,
the quantum class carries more information than the given areas for every 2-form ω. �

Remark 6.1.13. The quantum index kω(S, ϕ) is linear in ω. �

Using Proposition 6.1.7, one easily proves the following statement.

Proposition 6.1.14
Let A : N ′ → N be a lattice map, α : N ′ ⊗ C∗ → N ⊗ C∗ be the associated monomial map, ω
a 2-form on NR, and ϕ : CC 99K N ′⊗C∗ be a type I real curve with ropip and S a connected
component of CC\RC. Then, one has

kω(S, α ◦ ϕ) = kA∗ω(S, ϕ).

Proof. One has

kω(S, α ◦ ϕ) = 〈ω, h(S, α ◦ ϕ)〉
= 〈ω, α̃∗h(S, ϕ)〉
= 〈A∗ω, h(S, ϕ)〉 .

Remark 6.1.15. Notice that since the ropip hypothesis is used only to ensure that the area
is indeed a quantum index, this functoriality property might also be used more generally to
compute log-area, as in Lemma 4.1.8. �

6.1.4 Computation of the quantum class for toric type I real curves

Let ϕ : CC 99K N ⊗ C∗ be a type I real parametrized curve. Let S be a connected
component of CC\RC, inducing a complex orientation of RC. The map ϕ induces a morphism

ϕ∗ : π1(So)→ π1(N ⊗ C∗) = H1(N ⊗ C∗,Z) ' N.

Definition 6.1.16. A type I real curve ϕ : CC 99K N ⊗ C∗ with S a connected component
of CC\RC is of toric type I if ϕ∗π1(So) = {0} ⊂ H1(N ⊗ C∗,Z).

Lemma 6.1.17
The intersection points of a toric type I real curve with the toric boundary are real. Therefore,
the curve has ropip.
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Proof. Let p ∈ CC be a point such that ϕ(p) ∈ D, where D is a toric divisor associated
to a ray directed by n ∈ N . Then, a small loop around p is sent to the a multiple of
n ∈ N ' H1(N ⊗ C∗,Z) by ϕ∗. More precisely, this multiple is the cocharacter associated
to the map m 7→ valpϕ∗χm. Therefore, all the intersection points of a toric type I real curve
with the toric boundary are real, hence the ropip property.

Lemma 6.1.18
Let ϕ : CC 99K N ⊗ C∗ be a toric type I real curve. Let RCi be a connected component of
the real locus. Let p1, . . . , pm ∈ RCi be its intersection points with the toric boundary, and let
nj ∈ N be the co-character associated to ϕ at pj. Then one has∑

j

nj = 0.

Proof. Let γ be a loop in So that is a small shift of the boundary component RCi. By
assumption, the image of this loop by ϕ∗ is 0. However, this loop is homologous to the
boundary component in the oriented blow-up Ŝ of S introduced in the proof of Proposition
6.1.4. Moreover, this proof showed that the image of a half-loop around an intersection point
between ϕ(RCi) and the toric boundary realizes the class n in H1(N ⊗ (R/πZ),Z) ' N .
Therefore, the image of ϕ∗(γ) is also equal to

∑
j nj . Hence,

∑
j nj = 0.

As all the intersection points of a toric type I real curve with the toric boundary are real,
we have a well-defined quantum class. We now compute the quantum class in H2(KN ,Q) of
a toric type I real curve.

Proposition 6.1.19
Let ϕ : CC 99K N ⊗ C∗ be a toric type I real curve. Let S be a connected component of
CC\RC, inducing a complex orientation of the real part. Let RC1, . . . ,RCr be the connected
components of the real locus, oriented as the boundary of S. For each component RCi, let
pi1, . . . , pimi be its intersection points with the toric boundary, cyclically ordered, and let nij
be the co-character associated to ϕ at pij. Then, one has

h(S, ϕ) =
∑
RCi

∑
16j<k6mi

nij ∧ nik ∈ H2(KN ,Q).

Remark 6.1.20. Notice that, as
∑
j nij = 0 for each i, the second sum does not depend on

which point is the first, as long as the cyclic order is respected. �

Proof. The assumption that the curve is of toric type I ensures that the map α : Ŝ →
N ⊗ (R/πZ) can be lifted to the universal cover NR of the argument torus. We then consider
a lift α̃ : Ŝ → NR. The image of Ŝ under this lift is a surface with a boundary consisting
of polygonal loops in bijection with the real components RCi of CC. Let ω be a constant
2-form on N ⊗ (R/πZ). The knowing of

∫
S ϕ
∗(2 arg)∗ω is enough to compute the quantum

class h(S, ϕ) ∈ H2(KN ,R) with real coefficients. The form ω lifts to a 2-form on NR. Let
p : NR → N(R/πZ) be the projection, so that we have p ◦ α̃ = α. The area we want to
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compute is equal to ∫
α(S)

ω =
∫
α̃(S)

p∗ω.

On NR, the form p∗ω is exact, so the value of the integral is independent of the surface α̃(S)
provided that the boundary is the same.

The polygonal line γi bounding α̃(S) corresponding to the component RCi is formed by
the vectors (nij)j on top of one another, in their cyclic order. The Lemma 6.1.18 ensures that
it is indeed a polygonal loop. To compute the area, we change the surface α̃(S) by considering
instead of α̃(Ŝ) a triangulation of each polygonal loop γi, by drawing a segment between one
preferred vertex of the polygonal line, and every other vertex. The area is then given by

ω(ni1, ni2)
+ω(ni1 + ni2, ni3)
+ω(ni1 + ni2 + ni3, ni4)
+ · · ·

=
∑
j<k

ω(nij , nik)

=
〈
ω,

∑
j<k

nij ∧ nik

〉
.

We then just need to add up the contributions of the various components RCi to get the
result.

Remark 6.1.21. In particular, if ϕ;CP 1 99K N ⊗ C∗ is type I real rational curve with real
intersection points with the toric boundary, it is of toric type I, and its quantum class is given
by

h(H, ϕ) =
∑

16i<j6m
ni ∧ nj .

�

6.1.5 Computation of the quantum class for rational curves

We conclude this first section about quantum class by giving a way of computing the
quantum class with real coefficients for a real oriented rational curve with ropip. To do so, we
use the fact that for any lattice map N ′ → N whose image contains ∆ ⊂ N , any parametrized
curve CP 1 99K N ⊗ C∗ of degree ∆ might be lifted to N ′ ⊗ C∗.

Let ∆ ⊂ N be a multiset of total sum 0. Let ϕ : CP 1 → N ⊗ C∗ be a real rational of
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degree ∆. If t is a coordinate on CP 1, ϕ takes the following form:

ϕ : t 7−→ χ
r∏
i=1

(t− αi)ni
s∏
j=1

(t2 − 2<(βj)t+ |βj |2)n
′
j ∈ N ⊗ C∗,

where χ is a co-character with real values, and αi, βj are the coordinates of the intersection
points with the toric boundary. We can always assume that =βj > 0. We assume r > 1, and
that the point αr does not appear in the product, i.e. αr =∞ in the coordinate t. Let H be
the component of CP 1\RP 1 consisting of points with =t > 0. Then we consider the lattice
Zr+s−1, with basis (e1, . . . , er−1, f1, . . . , fs). Let er be such that

∑r
1 ei+2

∑s
1 fj = 0. We then

have a map A : Zr+s−1 → N such that Aei = ni, and Afj = n′j . This map is associated to a
monomial map α(C∗)r+s−1 → N ⊗C∗, and the map ϕ factors through α by the map defined
as follows:

ψ : t 7−→ ρ
r∏
i=1

(t− αi)ei
s∏
j=1

(t2 − 2<(βj)t+ |βj |2)fj ∈ (C∗)r+s−1,

where ρ is a co-character such that α(ρ) = χ. Moreover, we can pull-pack any 2-form ω on
N and obtain a 2-form A∗ω on Zr+s−1. It satisfies the following relations:

A∗ω(ei, ei′) = ω(ni, ni′),
A∗ω(fj , fj′) = ω(n′j , n′j′),
A∗ω(ei, fj) = ω(ni, n′j).

The Proposition 6.1.14 along with Remark 6.1.15 allows us to compute the quantum index
in N ⊗ C∗ as a log-area in (C∗)r+s−1:

kω(H, ϕ) = kω(H, α ◦ ψ)
= kA∗ω(H, ψ).

Now, we use the linearity of the quantum index with respect to the 2-form, and the
decomposition

A∗ω =
∑
i<i′

ω(ni, ni′)e∗i ∧ e∗i′ +
∑
j<j′

ω(n′j , n′j′)f∗j ∧ f∗j′ +
∑
i,j

ω(ni, n′j)e∗i ∧ f∗j .

We are left with the computation of the quantum index for each of the 2-forms appearing in
the decomposition. Fortunately, those forms have a big kernel, and they can be expressed as
the pull-back of a 2-form on a 2-dimensional lattice, and we get back to the planar case. We
are lead to compute the log-area for the curves

φii′ : t 7−→ (t− αi, t− αi′),
φjj′ : t 7−→ (t2 − 2<(βj) + |βj |2, t2 − 2<(βj′) + |βj′ |2),
φij : t 7−→ (t− αi, t2 − 2<(βj) + |βj |2).

All these curves are in (C∗)2. Let ω0 be the canonical 2-form of the subjacent lattice of
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co-characters. Then, one has
kω0(H, φii′) = π2,

kω0(H, φjj′) = 4π arctan
(<βj′−<βj
=βj′+=βj

)
,

kω0(H, φij) = 2π arctan
Ä
αi−<βj
=βj

ä
.

Thus, we get
kω(H, ϕ) =

∑
i<i′ ω(ni, ni′)

+
∑
j<j′ 4π arctan

(<βj′−<βj
=βj′+=βj

)
ω(n′j , n′j′)

+
∑
i<j 2π arctan

Ä
αi−<βj
=βj

ä
ω(ni, n′j).

Finally, we have proven the following theorem:

Theorem 6.1.22
The quantum class of a real rational parametrized curve

ϕ : t 7−→ χ
r∏
i=1

(t− αi)ni
s∏
j=1

(t2 − 2<(βj)t+ |βj |2)n
′
j ∈ N ⊗ C∗,

is equal to ∑
i<i′ ni ∧ ni′

h(H, ϕ) = +
∑
j<j′ 4π arctan

(<βj′−<βj
=βj′+=βj

)
n′j ∧ n′j′ ∈ H2(KN ,R) ' N.

+
∑
i<j 2π arctan

Ä
αi−<βj
=βj

ä
ni ∧ n′j

Proof. We have computed the value of the quantum class on every cohomology class, which
is sufficient to characterize it with coefficients chosen in R.

6.2 Harnack curves in higher dimension

We now turn our focus on the set of homology classes realizable as the quantum class of
some type I real curve with ropip.

Proposition 6.2.1
For a fixed degree ∆ ⊂ N , there is a finite number of homology classes achievable as the
quantum class of some type I real curve.

Proof. We only need to show that for each 2-form ω, the set of quantum indices is finite. As
any 2-form decomposes as a sum of 2-form of the form α∧ β, we can assume that ω = α∧ β,
for some linear form α, β on N .

Then, ω is the pull-back of some 2-form on N/(kerα ∩ kerβ), which is a rank 2 lattice,
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since the quotient has no torsion. We denote this form by ω0, so that α ∧ β = p∗ω0. Let p
be the projection N → N/(kerα ∩ kerβ), and π : N ⊗ C∗ → N/(kerα ∩ kerβ)⊗ C∗ the map
between the associated complex torus, so that we have ω = α ∧ β = p∗ω0. Therefore, for any
oriented type I real curve ϕ : S ⊂ CC 99K N ⊗ C∗, using Proposition 6.1.14, one has

kα∧β(S, ϕ) = kω0(S, π ◦ ϕ).

According to Mikhalkin [Mik17], the quantum index of an oriented plane curve is bounded
by a constant depending on the degree, so kα∧β only takes a finite number of values if the
degree is fixed.

In the planar case, Mikhalkin proved in [Mik17] that among curves of a fixed degree,
curves that maximize the quantum index are the Harnack curves, defined as follows. Let ∆
be a degree, associated to a polygon P∆, whose sides are labeled E1, . . . , Ep, in the cyclic
order induced as the boundary of P∆.

Definition 6.2.2. A curve of degree ∆ and genus g is a Harnack curve if:

— It is a M -curve: it has the maximal number of real components g + 1.

— There are g real components non-intersecting the toric divisors, and the last component
intersects each toric divisor CEi in l(Ei) points, and does it in their cyclic order, meaning
that the parameters of the intersection points are ordered as follows:

a1
1 < · · · < a1

l(E1) < a2
1 < · · · < ap1 < · · · < apl(Ep) < a1

1.

This follows from the majoration of the quantum index by the degree, and results of
[MR01].

Let ω be a 2-form on N . It induces a linear form on H2(KN ,Z). We can try to find the
curves that maximize this linear form, extending the definition of Harnack curves in higher
dimension.

Theorem 6.2.3
Let ∆ ⊂ N be a degree, and ω be a generic 2-form. The toric type I real curve having a
unique real component that intersects the toric divisors in an order prescribed by ω maximize
the quantum index among the toric type I real curves.

Proof. If ϕ : S ⊂ CC 99K N⊗C∗ is an oriented toric type I real curve, we have proven that its
quantum index only depends on the order in which each of its real component intersects the
toric divisors. We proceed in three times: first, we show that the order leads to a maximization
of the quantum index only if each real component intersects cyclically the divisors, then we
show that among the curves satisfying these conditions, the curves with the intersection points
on the same component have a bigger quantum index, and finally we show that such curves
exist.
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- Let ϕ : S ⊂ CC 99K N ⊗ C∗ be an oriented toric type I real curve. We know the
quantum index kω(S, ϕ) is the sum over the real components of RC of the cyclic sums∑
i<j ω(vi, vj), where the vectors vi are the vectors from ∆ corresponding to the toric

divisors that the real component intersects. Let {na1
1 , . . . , n

ar
r } be the multiset of these

vectors for a chosen component of RC. Using Lemma 6.1.18, we know that
∑
aini =

0. We now write these vectors with respect to the order given by the oriented real
component, emphasizing the role of n1. We get

nt11 , w1, n
t2
1 , w2, . . . , n

tp
1 , wp,

with the following notations: the integer ti correspond to n1 being present several times
in the sequence, and the vectors wi are the elements of {na1

1 , . . . , n
ar
r } different from n1.

Therefore, we have p =
∑r

2 ai, the integers ti might take the value 0, and
∑p

1 ti = a1.
The contribution of the real component to the quantum index is equal to∑

16i<j6p
ω(wi, wj) + tiω(n1, wj) + tjω(wi, n1).

As this sum is an affine function of the tuple (ti), that belongs to the integer points of
the simplex defined by {ti > 0}∩ {

∑
ti = a1}, its maximum is reached at its corner: all

the integers ti but one are zero. Therefore, we obtain a greater value if all the copies of
n1 are together. By iterating this argument, we have proven that the quantum index
is maximized when the real component intersects cylically the divisors, provided that
such a curve exists.

- The previous step guarantees that each real component intersects cyclically the toric
divisors. Let vi1, . . . , vimi be the vectors associated to the divisors that the real compo-
nent RCi intersects. The quantum index is equal to the quantum index of a curve that
has only one real component intersecting the diviors in the following order:

v11, . . . , v1m1 , v21, . . . , v2m2 , . . .

Then, we reapply the previous step to get a cyclic intersection.
- We have proven that the quantum index of a toric type I real oriented curve is always
smaller that the quantum index of some hypothetical toric type I real curve having a
unique real component intersecting cyclically the toric divisors. We still need to prove
that such a curve exists. If we choose an order on the divisors, there exists an oriented
real rational curve that meets them in the desired order. In fact, let α1 < · · · < αm,
then the rational curve

ϕ : t 7−→
r∏
1

(t− αi)ni ∈ N ⊗ C∗,

meets the divisors associated to the rays directid by the vectors ni in the order prescribed
by the scalars αi.

Finally, if ∆ = {na1
1 , . . . , n

ar
r }, the cyclic orders that maximize the quantum indices are the

orders maximizing the value of
∑
i<j aσ(i)aσ(j)ω(nσ(i), nσ(j)) for σ ∈ Sr.
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Remark 6.2.4. We have proven that the maximal quantum indices among toric type I real
curves are realized by curves with a cyclic intersection with the divisors, not that they are
the only curves. There might be some problem for instance when ∆ splits in two subdegrees
∆1 t∆2 such that for each n1 ∈ ∆1 and n2 ∈ ∆2, ω(n1, n2) = 0. �

Remark 6.2.5. We have proven that curves intersecting cyclically the toric divisors in some
specific order depending on the chosen 2-form maximize the quantum index for toric type I
real curves. In the planar case, these curves are called Harnack curves and have been the
subject of many studies. Following the ideas of [Mik00] and [MR01], the next questions should
be: do they indeed maximize the quantum index among all curves ? are they the only one to
maximize the quantum index ? are maximizing curves M-curves ? �

6.3 Enumerative problem

6.3.1 Tropical moment problem

Recall that we consider tropical curves in NR, which is an m-dimensional vector space.
Let ω be a 2-form on N , and ∆ ⊂ N be a multiset of total sum 0. We consider the moduli
space M0(NR,∆) of rational tropical curves of degree ∆ in NR. We assume that vectors of
∆ do not belong to kerω. In fact, we could even mod out by kerω. For each unbounded end
e directed by ne, we have evaluation map, that associates to a parametrized rational tropical
curve the position of the unbounded end:

eve :M0(NR,∆)→ NR/〈ne〉.

This map might be composed by any linear form on NR/〈ne〉, such as ω(ne,−), thus getting
the moment of the unbounded end. This linear form is non-zero since ne is assumed not to
belong to kerω. Hence, we get the following moment map:

mom : (Γ, h) ∈M0(NR,∆) 7−→ (µe) ∈ R∆.

The tropical Menelaus relation ensures that the image of this evaluation map lives in the
hyperplane {

∑
µe = 0}. The domain has dimension m + |∆| − 3, and the target space has

dimension |∆| − 1. Therefore, they have the same dimension only if N has rank 2. Other-
wise, one needs an additional constraint of the suitable dimension to obtain an interesting
enumerative problem. There are several ways to do that.

- One way is to consider the moment map, enlarged by the position of some unbounded
end, assumed to be the first unbounded end:

mom× ev1 :M0(NR,∆) −→ R|∆|−1 ×NR/〈n1〉.

Then, we look for parametrized curves (Γ, h) with fixed moments such that ev1(Γ, h)
belongs to some chosen tropical 1-cycle in NR/〈n1〉. For instance, one could choose a line
D with rational slope δ. This cycle needs to be transversal to the hyperplane {ω(n1,−) =
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µ1}. We show that the count of the solutions with suitable refined multiplicities does
not depend on the choice of the moments and the choice of the cycle. We expect it to
neither depend on the chosen unbounded end with an additional constraint.

- Another way, quite similar, is to consider one additional marked point on the curve:

mom× ev0 :M0,1(NR,∆) −→ R|∆|−1 ×NR,

and then look for curves with fixed moments such that the additional marked point
belongs to a fixed tropical 1-cycle. Once again, the count of solutions with suitable
refined multiplicities is independent of the choice of µ, and expected to be independent
on the choice of this cycle.

- Yet another way would be to add several conditions on various unbounded ends, or mix
it up with conditions of points inside the main strata NR, such that the constraints have
the right dimension, but we do not know if it gives refined invariants.

We define the refined multiplicity of a rational tropical curve, that appears in the curve
count of the solutions to the previous enumerative problems.

Definition 6.3.1. Let h : Γ → NR be a trivalent rational parametrized tropical curve. Let
v be a vertex of Γ, and av, bv the slopes of h on two outgoing edges of v, chosen so that
ω(av, bv) > 0. Then, we set

mh
Γ =

∏
v

(qav∧bv − qbv∧av) ∈ Z[Λ2N ],

where the products is over the vertices of Γ.

Remark 6.3.2. This refined multiplicity using a wedge product rather than the evaluation of
some 2-form is inspired by Shustin [Shu18]. �

The h in exponent stands for homology, because under suitable hypothesis, the refinement
gives the quantum classes, which are homology classes. We can easily check that the vertex
multiplicity qav∧bv − qbv∧av does indeed not depend on the two chosen outgoing edges av and
bv. This is due to the antisymmetric property of the wedge product.

6.3.2 Invariance

In this section we state and prove the invariance statements in the announced cases:

- Additional constraint on the first unbounded end (constraint at infinity),

- Additional constraint on an additional marked point (constraint in the main strata).
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6.3.2.1 Constraints at infinity

Let µ ∈ R|∆|−1 and D ⊂ NR/〈n1〉 be a line with slope δ ∈ N/〈n1〉 chosen generically
among the lines with that slope. We assume ω(n1, δ) 6= 0.

Lemma 6.3.3
There is a finite number of parametrized tropical curves h : Γ→ NR with mom(Γ, h) = µ and
ev1(Γ, h) ∈ D. Moreover, these curves are trivalent.

Proof. There is only a finite number of combinatorial types of parametrized curves, hence a
finite number of top-dimensional cones inM0(NR,∆). The dimension of these cones is equal
to the dimension of R|∆|−1×NR/〈n1, δ〉, i.e. |∆|+m− 3. Therefore, the statement follows if
D and µ are chosen outside the image of the cones where mom× ev1 is not surjective. That
includes some top-dimensional cones and the not top-dimensional cones.

Remark 6.3.4. This statement also follows from intersection theory: the image ofM0(NR,∆)
under mom × ev1 is a polyhedral complex, and {µ} × D is also a polyhedral complex of
complementary dimension. Thus, if chosen generically, their finite number of intersection
points belong to the relative interior of their top-dimensional faces. Hence, we recover the
result. �

The complex multiplicity of the solutions, defined as the determinant of the composed
evaluation map, is easily computed using the approach from 3.2.12.

Lemma 6.3.5
Let h : Γ→ NR be a parametrized tropical curve with mom(Γ, h) = µ and ev1(Γ, h) ∈ D. The
tropical curve is trivalent. Then, its complex multiplicity is

mC
Γ =

∣∣∣∣∣ω(n1, δ)
∏
v

ω(av, bv)
∣∣∣∣∣ ,

where the product is over the vertices of Γ, and for each vertex v, av and bv denote the slope
of h on two edges adjacent to the vertex v.

Proof. Notice that if n and n′ are co-characters, one has

ιn+n′(ιnω ∧ ιn′ω) = ιn+n′ιnω ∧ ιn′ω − ιnω ∧ ιn+n′ιn′ω

= ω(n, n′)ιn′ω − ω(n′, n)ιnω
= ω(n, n′)ιn+n′ω.

Therefore, the multiplicity is equal to the product of the vertex multiplicities, times a constant
term, computed on the first unbounded end. This contribution is equal to ω(n1, δ).
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As the complex multiplicity is a product over the trivalent vertices, we refine this multi-
plicity using Definition 6.3.1. For a trivalent curve solution to the enumerative problem, we
set

N trop,1
∆ (µ,D) = |ω(n1, δ)|

∑
mom(Γ)=µ
ev1(Γ)∈D

mh
Γ ∈ Z[Λ2N ],

where the 1 in exponent emphasizes the fact that the additional constraint is put on the first
unbounded end.

If instead of D we fix a degree Θ ⊂ N/〈n1〉 and choose a generic tropical 1-cycle Ξ of
degree Θ, we have a similar statement.

Lemma 6.3.6
If µ and Ξ are chosen generically, there is a finite number of parametrized tropical curves
h : Γ→ NR with mom(Γ, h) = µ and ev1(Γ, h) ∈ Ξ. Moreover, these curves are trivalent and
intersect Ξ at an edge.

Proof. The proof is similar to proof of Lemma 6.3.3, given by intersection theory: the poly-
hedral complexes mom × ev1(M0(NR,∆) and {µ} × Ξ are of complementary dimension in
R|∆|−1 ×NR/〈n1〉. Thus, if the second polyhedral complex is chosen generically, they have a
finite number of intersection points and their intersection points belong to the relative interior
of top-dimensional faces. Therefore, the curves solutions are trivalent, and the intersection
point with Ξ belongs to the relative interior of some edge of Ξ.

Similarly, one can compute the complex multiplicity. The result is the same if we replace
the slope δ of D by the slope of Ξ. Let h : Γ → NR be a parametrized tropical curve such
that ev1(Γ, h) ∈ Ξ, and v ∈ N/〈n1〉 is the slope of Ξ at ev1(Γ, h), we denote by h(Γ) · Ξ the
integer |ω(n1, v)|. Then, the complex multiplicity satisfies

mC
Γ = (h(Γ) · Ξ)

∏
v

|ω(av, bv)|,

with obvious notations. We now refine the multiplicity using Definition 6.3.1.

N trop,1
∆ (µ,Ξ) =

∑
mom(Γ)=µ
ev1(Γ)∈Ξ

(h(Γ) · Ξ)mh
Γ ∈ Z[Λ2N ].

Notice that this definition generalizes the previous one when the line D is considered as a
tropical cycle, since in that case the intersection index h(Γ) ·D is always equal to |ω(δ, n1)|.

We can now state our first invariance statements.

Theorem 6.3.7
We have the following results of invariance:
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- The value of N trop,1
∆ (µ,D) does not depend on the generic choice of µ and choice of D

among the lines of slope δ.

- The value of N trop,1
∆ (µ,Ξ) does not depend on the generic choice of µ and choice of Ξ

among the cycles of degree Θ.

Proof. In both cases, using Proposition 3.2.9, we know that the count of solutions with com-
plex multiplicity leads to an invariant. This means that the repartition of the solutions around
a wall matches the invariance of the count with complex multiplicities. Therefore, we need
to check for each wall that the count with refined multiplicities is also invariant.

For the first invariance statement, there is only one wall to check: the wall corresponding
to a quadrivalent vertex of the tropical curve. Let a1, a2, a3, a4 be the slopes of the outer
edges, with index taken in Z/4Z. Up to a relabeling, we assume that ω(ai, ai+1) > 0 for
every i. If some value is equal to 0, the proof remains unchanged. Moreover, we assume that
ω(a2, a3) > ω(a1, a2). The invariance of the complex count amounts to the following relation:

ω(a1, a2)ω(a1 + a2, a3) + ω(a1, a3)ω(a2, a1 + a3) + ω(a2, a3)ω(a2 + a3, a1) = 0,
for 12//34 for 13//24 for 14//23

and the repartition of combinatorial types around the wall is given by the sign of each term.
It means up to sign that one is positive and is on one side of the wall, and the two other ones
are negative, on the other side of the wall. Hence, we just need to study the signs of each term
to know which curve is on which side. We know that ω(a1, a2) and ω(a1 + a2, a3) = ω(a3, a4)
are positive. Therefore, their product, which is the term of 12//34, is also positive. We
know that ω(a2, a3) is positive, but ω(a2 + a3, a1) = −ω(a4, a1) is negative. Therefore, their
product is negative and 14//23 is on the other side of the wall. It means that the combi-
natorial types 12//34 and 14//23 are on opposite sides of the wall. We need to determine
on which side the type 13//24 is, and that is given by the sign of the middle term. As by
assumption ω(a2, a1 +a3) = ω(a2, a3)−ω(a1, a2) > 0, it is determined by the sign of ω(a1, a3).

— If ω(a1, a3) > 0, then 12//34 and 13//24 are on the same side, and the invariance for
refined multiplicities is dealt with the identity

(qa2∧a3) − qa3∧a2)(qa1∧(a2+a3) − q(a2+a3)∧a1)
=(qa1∧a2 − qa2∧a1)(q(a1+a2)∧a3 − qa3∧(a1+a2))
+(qa1∧a3 − qa3∧a1)(qa2∧(a1+a3) − q(a1+a3)∧a2),

— and if ω(a1, a3) < 0, then 14//23 and 13//24 are on the same side and then the invari-
ance for refined multiplicities is true since
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(qa2∧a3 − qa3∧a2)(qa1∧(a2+a3) − q(a2+a3)∧a1)
+(qa3∧a1 − qa1∧a3)(qa2∧(a1+a3) − q(a1+a3)∧a2)
=(qa1∧a2 − qa2∧a1)(q(a1+a2)∧a3 − qa3∧(a1+a2)).

If we have some edges parallel among the vectors ai, either two consecutives vectors
are parallel, and then the invariance is straightforward, since there are only two adjacent
combinatorial types with equal non-zero multiplicity, or we can choose a cyclic labeling such
that a1 and a3 are parallel. We then have ω(a1, a3) = 0. It means that one of the determinant
multiplicities is zero, which is normal since the associated combinatorial type would have a
flat vertex. Thus,

ω(a1, a2)ω(a1 + a2, a3) + ω(a2, a3)ω(a2 + a3, a1) = 0.
for 12//34 for 14//23

It means that the two terms are of opposite sign. Assume the first one is positive, and thus
ω(a1, a2) and ω(a1 + a2, a3) = ω(a2, a3) have the same sign. The refined multiplicity is then

(qa1∧a2 − qa2∧a1)(qa2∧a3 − qa3∧a2).

The second term being negative, it means that ω(a2, a3) and ω(a1, a2+a3) = ω(a1, a2) have the
same sign. The refined multiplicity is the the same and we have the desired local invariance.
It is the same if the first term is negative. This closes the proof of invariance in case of
N trop,1

∆ (µ,D). In case of N trop,1
∆ (µ,Ξ), we have one more wall to study, which corresponds

to the tropical curve passing through a vertex of Ξ. Let v1, . . . , vk be the slopes of Ξ at this
vertex. Then, the invariance of complex multiplicities amounts to the following relation:

ω(n1, v1) + · · ·+ ω(n1, vk) = 0,

which comes from the balancing condition of Ξ. This relation is preserved in the refined
multiplicities. Therefore, we keep invariance around this wall.

Our second invariance result concerns the degree Θ of the additional cycle. We denote by
ω(n1,Θ) the intersection index between the hyperplane {ω(n1,−) = µ1} in NR/〈n1〉 and Ξ.
This index is defined as follows: if Ξ and µ1 are chosen generically, their intersection points
belong to edges of Ξ, let p1, . . . , pk be the intersection points, and v1, . . . , vk be the respective
slope of Ξ at these points. Then, the index is

k∑
1
|ω(n1, vi)|.

Using the balancing condition, one can see that this sum does only depend on the degree Θ
of Ξ. Alternatively, this follows from general results of intersection theory.
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Theorem 6.3.8
The value of 1

ω(n1,Θ)N
trop,1
∆ (µ,Ξ), already independent on the choice of µ and Ξ, does not

depend on the choice of Θ.

The value of 1
ω(n1,Θ)N

trop,1
∆ (µ,Ξ), now independent of µ and Ξ along with its degree Θ, is

denoted by N trop,1
∆ .

Proof. First, notice that invariant 1
|ω(n1,δ)|N

trop,1
∆ (µ,D) does not depend on the slope δ of

D: the set of solutions only depend on the intersection point of D with the hyperplane
{ω(n1,−) = µ1} ⊂ NR/〈n1〉. The slope only appears in the multiplicity through the presence
of ω(n1, δ). Hence, the result is invariant. We denote it by N 1

∆.

Let Ξ be a generic cycle of degree Θ, µ be a generic family of moments. Let p1, . . . , pk be
the intersection points of Ξ with the hyperplane {ω(n1,−) = µ1} ⊂ NR/〈n1〉. Every tropical
curve solution of the enumerative problem passes through one of these points. Let v1, . . . , vk
be the respective slopes of Ξ at these points. Then the set of tropical curves with moments µ
and meeting Ξ at pj are in bijection with the tropical curves having moment µ and meeting
the line Dj = pj +Rvj (also at pj). The case of a line constraint ensures that the contribution
of these solutions is equal to |ω(n1, vj)|N trop,1

∆ . Therefore, adding the various contributions,
we get (h(Γ) · Ξ)N trop,1

∆ . Hence, the result does not depend on Θ.

6.3.2.2 Constraint in the main strata

The next announced result concerning invariants is when we allow the tropical 1-cycle to
be in NR instead of NR/〈n1〉. For that, we need to consider an additional marked point, and
thus, the following evaluation map:

mom× ev0 :M0,1(NR,∆) −→ R|∆|−1 ×NR,

that associates to a parametrized tropical curve with a marked point the moment of its
unbounded ends and the position of the new marked point. Let Θ ⊂ N be a degree and let
Ξ be a 1-dimensional tropical cycle of degree Θ. Let µ be a family of moments. We assume
µ and Ξ are chosen generically.

Lemma 6.3.9
There is a finite number of parametrized tropical curves h : Γ→ NR such that mom(Γ, h) = µ

and ev0(Γ, h) ∈ Ξ. Moreover, these curves are trivalent and intersect Ξ along the relative
interior of their respective top-dimensional faces.

Proof. The proof is entirely similar to the proof of Lemma 6.3.6.

Once again, the complex multiplicity can be computed using the approach from Theorem
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3.2.12.

Lemma 6.3.10
Let h : Γ→ NR be a trivalent tropical curve having moment µ and meeting Ξ at a point where
their respective slopes are n0 and v. Then its complex multiplicity is equal to

mC
Γ =

∣∣∣∣∣ω(n1, v)
∏
v

ω(av, bv)
∣∣∣∣∣ ,

with obvious notations.

Proof. Notice that
ιn+n′(ιnω ∧ ιn′ω) = ω(n, n′)ιn+n′ω,

and
ιn+n′(ιnω ∧ 1) = ω(n, n′)× 1 ∈ Λ•M.

Therefore, we can compute the multiplicity by cutting the curve and meeting at the marked
point. The marked point cuts the curve in two halves. One half has every unbounded end
with a fixed moment, and the first relation allows us to cut it up to the edge where it meets
the marked point, making the product of the vertex multiplicities of this first half appear.
The other half tropical curve has every end but one with a fixed moment. The last unbounded
end is free. Using the two previous relations, we can still cut it, and we get the product of the
vertices multiplicities for the second half. The last contribution, given by the marked point,
is equal to

ιn0ω ∧ ρ ∧ 1 ∈ ΛmM,

where ρ denotes the polyvector of Λm−1M corresponding to the edge of Ξ. This contribution
is equal to ω(n0, v).

Then, every parametrized tropical curve h : Γ → NR with a marked point such that
mom(Γ, h) = µ and ev0(Γ, h) ∈ Ξ is trivalent, and the marked point belongs to a 1-dimensional
cell of Ξ. Let n0 and v be the respective slopes of h and Ξ at this common point. We denote
by h(Γ) ·Ξ the integer |ω(n1, v)| and we refine the complex multiplicity using Definition 6.3.1:

N trop,0
∆ (µ,Ξ) =

∑
mom(Γ)=µ
ev0(Γ)∈Ξ

(h(Γ) · Ξ)mh
Γ ∈ Z[Λ2N ].

Theorem 6.3.11
The value of N trop,0

∆ (µ,Ξ) does not depend on the choices of µ and Ξ among the cycles of
degree Θ as long as these are generic.

The value, now independent of the choice of µ and Ξ, is denoted by N trop,0
∆ (Θ).

Proof. As in the first proofs of invariance, we know that the count with complex multiplicities
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leads to an invariant count. This gives the repartition of the solutions around each wall, and
we need to check the invariance of refined multiplicities around these walls. Let h : Γ→ NR
be a tropical curve inside a wall. In our case, there are three walls to study:

- The parametetrized marked tropical curve (Γ, h) has a quadrivalent vertex. The proof
is the same as in proof of Theorem 6.3.7.

- The tropical curve meets Ξ at one of its vertices. Proof is again the same as in Theorem
6.3.7.

- Last, the marked point coincides with a vertex of the tropical curve. In that case, let
a1, a2, a3 be the slope of h on the edges adjacent to the marked vertex. Let v be the slope
of Ξ at the marked point. The complex invariance amounts to the following relation:

ω(a1, v) + ω(a2, v) + ω(a3, v) = 0.

This relation also ensures the invariance of the refined count.

Remark 6.3.12. As in the case of constraints at infinity, the dependence in Θ of the invariant
N trop,0

∆ (Θ) is expected to be of the form f(∆,Θ)N trop,0
∆ , for some integer function f , and

N 0
∆ ∈ Z[Λ2N ] being equal to the assumed common value of N trop,i

∆ , for i > 1. �

6.3.3 Classical counterpart

We now provide a classical enumerative problem, tropicalizing to the moment problem
in the sense that the classical problem can be resolved using the tropical geometry approach
of the analog tropical enumerative problem and a suitable correspondence theorem, such as
[NS06] or[Tyo17]. We expect the refined enumeration of tropical curves to correspond to some
refined count of classical curves, with respect to their quantum class, provided such classes
are well-defined for the solutions of the enumerative problem. We still consider real rational
curves of degree ∆ ⊂ N , and choose a 2-form ω on N .

6.3.3.1 Real moment problem

We start with the real problem, analog to the problem considered by Mikhalkin in [Mik17]
when all the points are real.

Recall that in the toric variety C∆, the moment of a point p belonging to a toric divisor
D associated to a ray of the fan Σ∆ directed by n is the scalar χιnω(p). The set of points in D
having the same moment is the orbit of p under the action of the subgroup (ker ιnω)⊗ C∗ ⊂
N ⊗ C∗. Thus, we have the following moment map:

mom :M0(N ⊗ C∗,∆)→ (C∗)|∆|.
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As in the tropical case, the Weil reciprocity law ensures that the product of the moments at
the boundary points only depends on the degree ∆, with a value equal to ±1. Also, just as
in the tropical case, we need an additional constraint to obtain an enumerative problem. If
we fix the moments µ ∈ (C∗)|∆|, once again, there are several possibilities for the additional
constraint:

- Let δ ∈ N be a co-character, we ask for the first marked point, i.e. the point cor-
responding to the first unbounded end and already belonging to a toric divisor D, to
belong to an orbit D of D under the action of the subgroup 〈δ〉 ⊗ C∗.

- Instead of being an orbit, the additional constraint may be a real curve inside C∆.
- One could consider an additional marked point on the curve, and ask for this new
marked point to belong to a chosen real curve, curve that might be an orbit or not.

- Finally, one could mix up these constraints just as in the tropical case.
We can see that the tropicalization of these enumerative problems are indeed the tropical

problems described in subsection 6.3.1. This means that the classical problems, known to
provide an invariant in the complex setting, can be solved near the tropical limit through the
use of a correspondence theorem such as the one from [Tyo17], in case all the constraints are
torus orbits. This allows one to compute the invariants.

Theorem 6.3.13 (Tyomkin [Tyo17])
Let the constraints µ and D be tropically general. Then, we have a correspondence between
the tropical curves solutions to the tropical problem, and the complex curves solutions to the
classical problem. Furthermore, each tropical curve is the limit of mC

Γ complex solution.

The complex number of solution is equal to the number of tropical curves if those curves
are counted with multiplicity the absolute of the determinant of the tropical evaluation map.

We prove that the signed count, refined by the value of the quantum class, of the solutions
near the tropical limit is invariant. Before stating properly this theorem, we define the sign
of the solutions near the tropical limit. Recall that a real oriented structure on a tropical
curve is a ribbon structure. Moreover, given a 2-form ω and a trivalent curve h : Γ → NR
with non-zero complex multiplicity, we have a ribbon structure given by ω: if a1, a2, a3 are
slope of the three edges adjacent to a vertex v, the order for the ribbon structure is a1, a2, a3
if ω(a1, a2) = ω(a2, a3) = ω(a3, a1) > 0. It is the reversed order otherwise.

Definition 6.3.14. Let h : Γ → NR be a tropical curve, enhanced with a real oriented
structure o. At each vertex, the orientation given by the ribbon structure may coincide or not
with the orientation prescribed by ω. Let w be the number of vertices where the orientation
differs. The sign σ(Γ, h, o) is set to be (−1)w.

Let µ be a generic family of real moments in (R∗)|∆| and D a generic orbit under 〈δ〉⊗C∗
inside the toric divisor D1. Then, we set

N 1
∆(µ,D) =

∑
C

σ(C)qh(C),
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where the sum is over the real oriented rational curves having moments µ, and passing through
D. Such curves have real intersection with the toric divisor. Thus, they have a well-defined
quantum class h(C) ∈ H2(KN ,R). Moreover, they have a well-defined sign near the tropical
limit, equal to the sign σ(Γ, h, o) of their tropical limit curve enhanced by the ribbon structure
obtained as the limit of the real curve.

Theorem 6.3.15
Near the tropical limit, the value of N 1

∆(µ,D) is independent of the choice of µ, D, and equal
to N trop,1

∆ .

Proof. This is a straight-forward application of the correspondence theorem.

Remark 6.3.16. As we are counting oriented real rational curves, this count might be seen
as a count for holomorphic disks with boundary in the real locus of the toric variety, which
happens to be a lagrangian. �

Remark 6.3.17. The definition of the signs of real oriented curves, along with the invariance
of their refined count, is an open question when we are not close to the tropical limit. �

6.3.3.2 Imaginary constraints

Although the meaning of the previous enumerative problem might bear some symplec-
tic interpretation, the problem can be seen purely algebraically, as we look for real oriented
rational curves satisfying some algebraic constraints. In a perspective of refinement, the
introduction of non real constraints in the problem complicates the setting since algebraic
condition are not enough to ensure the curves are ropip, which is a necessary condition for
them to have a quantum class.

In the real problem, the intersection points with the toric boundary are real. Thus, any
curve with real intersection with the toric boundary is ropip, and has a well-defined quantum
class, which is the case of the solution to the real problem. If we ask for a point to have
purely imaginary moment, there is no guarantee that the other coordinates of the point are
real or purely imaginary, as it was the case in the planar problem from [Mik17].

Maybe evaluating the quantum class on the class provided by the 2-form ω allows us to
enlarge the set of curves having a quantum index, maybe by only asking for a real or purely
imaginary moment. Hopefully, a real rational curve can be ensured to have a quantum index
by satisfying only some algebraic constraints. Otherwise, maybe one should look at lagrangian
constraints.
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Résumé — La géométrie tropicale a permis le calcul de nombreux invariants de géométrie com-
plexe (invariants de Gromov-Witten), ainsi que réelle (invariants de Welschinger) à travers l’utilisation
de théorèmes de correspondance. Ceux-ci mettent à jour des liens profonds entre la géométrie tropi-
cale et la géométrie dite classique. La richesse des objets tropicaux alliée à leur simplicité apparente
a également permis de proposer de nouveaux invariants, dits raffinés, dont les interprétations en
géométrie classique restent à ce jour encore mystérieuses, bien que plusieurs conjectures, comme celle
de Göttsche-Shende, laissent présager d’une connexion profonde avec certaines quantités géométriques
classiques. Une de ces interprétations est proposée par Mikhalkin en 2015, à travers le comptage de
courbes rationnelles réelles dans les surfaces toriques, en fonction de la valeur d’un "indice quantique".
Les courbes comptées sont astreintes à passer par certains points réels ou complexes conjugués situés
sur les diviseurs toriques de la surface, et le résultat s’avère ne dépendre que du nombre de points
complexes. Dans le cas où les points sont réels, Mikhalkin relie l’invariant classique ainsi obtenu aux
invariants tropicaux raffinés. En donnant une manière de calculer l’indice quantique d’une courbe
rationnelle quelconque, nous étendons ensuite cette relation entre invariants classiques et tropicaux
dans le cas où certains des points de la configuration sont imaginaires purs, et fournissons une formule
récursive qui permet un calcul effectif de ces invariants raffinés tropicaux. Enfin, on propose une
généralisation des invariants raffinés au cas de variétés toriques de dimension arbitraire.

Mots clés : géométrie tropicale, invariants raffinés.

Abstract — Tropical geometry enabled the computation of numerous invariants in complex ge-
ometry (Gromov-Witten invariants), as well as in real geometry (Welschinger invariants) using corre-
spondence theorems. These theorems reveal a deep connection between tropical geometry and classical
geometry. The richness of tropical objects coupled with their simplicity of use also enabled the defi-
nition of tropical refined invariants, whose interpretation on the classical geometry side remains quite
mysterious, although several conjectures, e.g. the Göttsche-Shende conjecture, suggest an even deeper
connection to other classical geometric quantities. One such interpretation is proposed by Mikhalkin
in 2015, through the counting of real rational curves in toric surfaces, according to the value of a
so-called "quantum index". The refined count of curves, which have to pass through some real and
complex conjugated points chosen on the toric boundary of the surface, happens to depend only on the
number of complex points on each divisor. In the case where all the chosen points are real, Mikhalkin
related the obtained invariant to tropical refined invariants. After giving a way of computing the
quantum index of rational curves, we extend this relation between classical and tropical invariants in
the case where some of the points of the configuration are purely imaginary, and we give a recursive
formula that allows one to compute the involved tropical refined invariants. Finally, we propose a
generalization of these refined tropical invariants in toric varieties of higher dimension.

Keywords: tropical geometry, refined invariants.
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