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Method selection
Frequent approach:

I A priori decision, based on a compromise between
complexity of the operations and expected accuracy of
the results.

I Use of a testing tool, like jModelTest (Posada, 2008),
that makes likelihood calculations on trees obtained by
fast methods.

My proposition:
I Apply various methods.
I Look how coherent the results obtained are when a given

method is used on several datasets.
I Choose a posteriori the method that generated the most

coherent results.
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More than just method: Strategy of analysis

Only the results count, so the thing to select can be a whole
analysis pipeline, including such things as:

I Data selection and pre-processing (alignment, trimming,
recoding, . . . )

I Model (sustitution rates, composition, heterogeneities,
correlations, . . . )

I Method of inference (distance, parsimony, likelihood, . . . )
and it implementation (program, options, tunings, . . . )

I Support evaluation (bootstrapping, . . . )
I <Insert your favourite strategy item here>
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Result coherence

Why?:

I The most accurate strategies should extract more
historical signal than the others.

I So the different datasets should produce more similar
trees whith these strategies.

datasets
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But:
I Strategies prone to reconstruction errors will produce

wrong results in a consistent manner if the datasets share
the error-inducing characteristics (false positive).
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Data

I 42 cyanobacteria and plastids
I 73 protein-coding genes

I 4 sets of congruent markers according to
concaterpillar (Leigh et al., 2008)

Due to the internals of concaterpillar the analyses of the 4
sets should yield results with some degrees of incoherence, at
least for standard maximum likelihood under a GTR + I + Γ
model.
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Strategies
I Maximum likelihood bootstrap (200 pseudo-replicates):

I RAxML (Stamatakis, 2006), GTR + I + Γ

I recodings to eliminate signal associated with
synonymous substitutions

I Bayesian MCMC inference:
I Phylobayes (Lartillot and Philippe, 2004),

GTR + I + Γ + CAT (site-wise composition heterogeneity)
I P4 (Foster, 2004), GTR + I + Γ + NDCH (clade-wise

composition heterogeneity)
I A priori less accurate strategies (using Phylip,

Felsenstein, 2005):
I parsimony bootstrap (200 pseudo-replicates)
I distance bootstrap (Jukes-Cantor and LogDet, 200

pseudo-replicates)
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Robinson-Foulds distance
(a.k.a symmetric difference)

A

B

A ∩ B A ∩ B

A: bipartitions defined by the
branches of one tree

B: bipartitions defined by the
branches of the other tree
Distance between the trees:
RF = |A ∩ B|+ |A ∩ B|
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The conclusions

I To some extent, coherence seems correlated to
phylogenetic accuracy.

I But the discriminative power of the Robinson-Foulds
based coherence measure is low and this measure may be
subject to biases related to the degree of resolution that a
strategy of analysis typically produces. (Is this a bug or a
feature?)

I Could better measures of coherence be designed?
I Including in the pannel a priori poorly performing analysis

strategies may help to detect false positives.
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Thanks for your attention

I This work was supported by a Fundação para a Ciência e
a Tecnologia (FCT, Portugal) grant to Cymon J. Cox,
Centro de Ciencias do Mar (CCMAR) - CIMAR-Lab.
Assoc., (PTDC/BIA-BCM/099565/2008).

I I’m currently looking for a job, so if you think I can be
useful in your lab, feel free to contact me.

I Contact: blaise.li@normalesup.org

This work relied heavily on the Python programming language.

This presentation was made using the excellent beamer and TikZ/pdf LATEX packages.
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