Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

RNF213, a new nuclear marker for acanthomorph phylogeny

Blaise Li^a, Agnès Dettaï^a, Corinne Cruaud^b, Arnaud Couloux^b, Martine Desoutter-Meniger^a, Guillaume Lecointre^{a,*}

^a Équipe 'Phylogénie', UMR 7138 'Systématique, Adaptation, Évolution', Département Systématique et Évolution, Muséum National d'Histoire Naturelle, 57, rue Cuvier, CP26, 75231 Paris cedex 05, France

^b Genoscope, Centre National de Séquençage, 2, rue Gaston Crémieux, CP5706, 91057 Évry cedex, France

ARTICLE INFO

Article history: Received 10 July 2008 Revised 11 November 2008 Accepted 15 November 2008 Available online 27 November 2008

Keywords: Acanthomorpha RNF213 Nuclear marker Phylogeny Reliability

ABSTRACT

We show that RNF213 is a nuclear gene suitable for investigating large scale acanthomorph teleosteans interrelationships. The gene recovers many clades already found by several independent studies of acanthomorph molecular phylogenetics and considered as reliable. Moreover, we performed phylogenetic analyses of three other independent nuclear markers, first separately and then of all possible combinations (Dettaï, A., Lecointre, G., 2004. In search of nothothenioid (Teleostei) relatives. Antarct. Sci. 16 (1), 71–85. URL http://dx.doi.org/10.1017/S0954102004) of the four genes. This was coupled with an assessment of the reliability of clades using the repetition index of Li and Lecointre (Li, B., Lecointre, G., 2008. Formalizing reliability in the taxonomic congruence approach. Article accepted by Zoologica Scripta. URL http://dx.doi.org/10.1111/j.1463-6409.2008.00361.x). This index was improved here to handle the incomplete taxonomic overlap among datasets. The results lead to the identification of new reliable clades within the 'acanthomorph bush'. Within a clade containing the Atherinomorpha, the Mugiloidei, the Plesiopidae, the Blennioidei, the Gobiesocoidei, the Cichlidae and the Pomacentridae, the Plesiopidae is the sister-group of the Mugiloidei. The Apogonidae are closely related to the Gobioidei. A clade named 'H' grouping a number of families close to stromateids and scombrids (Stromateidae, Scombridae, Trichiuridae, Chiasmodontidae, Nomeidae, Bramidae, Centrolophidae) is related to another clade named 'E' (Aulostomidae, Macrorhamphosidae, Dactylopteridae). The Sciaenidae is closely related to the Haemulidae. Within clade 'X' (Dettaï, A., Lecointre, G., 2004. In search of nothothenioid (Teleostei) relatives. Antarct. Sci. 16 (1), 71-85. URL http://dx.doi.org/10.1017/S0954102004), the Cottoidei, the Zoarcoidei, the Gasterosteidae, the Triglidae, the Scorpaenidae, the Sebastidae, the Synanceiidae, and the Congiopodidae form a clade. Within clade 'L' (Chen, W.-J., Bonillo, C., Lecointre, G., 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262-288; Dettaï, A., Lecointre, G., 2004. In search of nothothenioid (Teleostei) relatives. Antarct. Sci. 16 (1), 71-85. URL http://dx.doi.org/10.1017/ S0954102004) grouping carangoids with flatfishes and other families (Centropomidae, Menidae, Sphyraenidae, Polynemidae, Echeneidae, Toxotidae, Xiphiidae), carangids are the stem-group of echeneids and coryphaenids, and sphyraenids are the sister-group to the Carangoidei. The Howellidae, the Epigonidae and the Lateolabracidae are closely related. We propose names for most of the clades repeatedly found in acanthomorph phylogenetic studies of various teams of the past decade.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Acanthomorphs are a large group of more than 16,000 teleostean fish species. This monophyletic group is composed of some well supported clades but also of some poorly defined large assemblages like percomorphs, perciforms, scorpaeniforms. Most of these have been suspected not to be monophyletic for a long time (Stiassny et al., 2004). Morphology and comparative anatomy are difficult to use for phylogenetic purposes at such a large scale (see Stiassny and Moore, 1992, 1993). Even after the efforts to clarify acanthomorph interrelationships, synthesized by Johnson and Patterson (1993), many of the large clades retained later appeared strongly contradicted by molecular phylogenies (Chen et al., 2000, 2003, 2007; Dettaï and Lecointre, 2004, 2005, 2008, submitted for publication; Miya et al., 2001, 2003, 2005; Mabuchi et al., 2007; Kawahara et al., 2008; Smith and Wheeler, 2004, 2006; Smith and Craig, 2007). Paracanthopterygii, Acanthopterygii, Euacanthopterygii and Smegmamorpha, for instance, are all in this case. These large divisions had to be broken up because new contradicting groups were supported from independent molecular

^{*} Corresponding author. Fax: +33 1 40 79 38 44.

E-mail addresses: blaise.li@normalesup.org (B. Li), adettai@mnhn.fr (A. Dettaï), lecointr@mnhn.fr (G. Lecointre).

^{1055-7903/\$ -} see front matter \odot 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2008.11.013

studies. Percoids also are widely distributed among acanthomorphs, so at least the traditionally defined percomorphs, perciforms, scorpaeniforms and percoids can now be considered polyphyletic (see Dettaï and Lecointre, 2005, 2008, 2007).

Moreover, new groups emerged as a result of the analyses in a single matrix of a significant number of taxonomic components, often compared directly for the first time. The picture of large scale acanthomorph fish interrelationships changes rapidly, just like the mammalian tree changed as soon as enough genes were sequenced for all eutherian orders. However the acanthomorph revolution is far from being over. Large scale relationships are still poorly known: areas of irresolution remain and all 311 families (Nelson, 2006) have not yet been sampled. In spite of the recent spectacular advances, 'the bush at the top' (Nelson, 1989) persists. More acanthomorph families must be sampled, and in parallel, a higher number of phylogenetically efficient nuclear markers must be available (Li et al., 2007, 2008).

Reliability of phylogenetic findings is generally considered to be reached when several teams have found the same results independently from independent markers. This can be applied to the work of a single research team, by performing separate phylogenetic analyses of different independent molecular markers and checking for clade repetition across trees. Of course, it is necessary to base the study not only on mitochondrial markers, but also on carefully chosen, functionally and positionally independent nuclear markers. This comparative methodology was applied on acanthomorph by Chen et al. (2003), Dettaï and Lecointre (2004, 2005) and more recently by Miya et al. (2007) and Dettaï and Lecointre (submitted for publication). Studies using the partial rhodopsin retrogene (Chen et al., 2003), MLL (Dettaï and Lecointre, 2004, 2005) and IRBP (Dettaï and Lecointre, 2008) showed that these nuclear markers bear information relevant to the phylogeny of acanthomorphs. Other markers must be used more cautiously on this group and at this scale, like for instance 28S rDNA sequences (Chen et al., 2003) and TMO4C4 gene sequences (Smith and Wheeler, 2004). Therefore, there is still a need for additional, high phylogenetic quality markers. The availability of several teleost genomes opens new opportunities for the research of new markers, as also demonstrated by the study of Li et al., 2007, 2008. In the present study, we used the Ensembl Biomart mining tool and selected a few candidates markers. A promising locus, RNF213, was amplified for a representative sampling of teleost acanthomorphs, and compared to other large nuclear and mitochondrial datasets. Additionally, we

Table 1

Primers used in this study.

performed combined and separate phylogenetic analyses with retro-rhodopsin, MLL and IRBP, and assessed the reliability of clades using the repetition index of Li and Lecointre (2008).

2. Materials and methods

2.1. Selection of the molecular markers

In the case of the interfamilial relationships of Acanthomorpha, the addition of new nuclear markers appears to be still necessary: the changes between the topologies and reliabilities between Chen et al. (2003) and Dettaï and Lecointre (2004, 2005, 2008) show that the inclusion of new markers increases the number of repeated clades even if the sampling is similar (Dettaï and Lecointre, 2005, 2008, submitted for publication).

In previous studies, we used protein-coding nuclear genes as well as mitochondrial (12S and 16S, Chen et al., 2003; Dettaï and Lecointre, 2004, 2005) and nuclear (28S, Chen et al., 2003) rDNA sequences. Alignment difficulties and low phylogenetic content of these rDNA genes with respect to the acanthomorph issue led us to abandon these markers and focus on carefully chosen nuclear protein-coding genes.

The Biomart mining tool of the Ensembl Portal (Hubbard et al., 2005) release 40 was used to get a list of protein-coding genes shared by *Tetraodon nigroviridis*, *Takifugu rubripes*, and *Danio rerio*, using *T. nigroviridis* as a query. Genes having unique best hits were retained, and checked for divergence and exon length through the Ensembl Portal on all the available teleost genomes. The sequence coding for RNF213 was again blasted (Altschul et al., 1997) on all available teleost genomes to check that it was a single copy marker in all. Last, it was blasted in the CoreNucleotide database of Genbank and all available sequences for acanthomorph species were recovered and used for primer design after alignment with Bioedit (Hall, 2001). The primers are listed in Table 1.

The previously published datasets for the retro-rhodopsin (simply noted 'Rhodopsin' afterwards), MLL and IRBP genes were completed with additional taxa (Table 2). To these, we added sequence data from the gene RNF213.

2.2. PCR and sequencing

DNA was extracted mostly from muscle samples stored in 70% ethanol, following the protocol of Winnepenninckx et al. (1993).

Primer	Sequence $(5' \rightarrow 3')$	Forward/reverse	Source
Rh193	CNTATGAATAYCCTCAGTACTACC	Forward	Chen et al. (2003)
Rh667r	AYGAGCACTGCATGCCCT	Reverse	Chen et al. (2003)
Rh1039r	TGCTTGTTCATGCAGATGTAGA	Reverse	Chen et al. (2003)
Rh1073r	CCRCAGCACARCGTGGTGATCATG	Reverse	Chen et al. (2003)
MLL U1477	AGYCCAGCRGTCATCAAACC	Forward	Dettai and Lecointre (2005)
MLL U1499	GTCAATCAGCAGTTCCAGC	Forward	Dettai and Lecointre (2005)
MLL U1570	CCCYCAAAAKATCARTGCCAC	Forward	This study
MLL U1590	CRGGRGTGATNGACACCAGC	Forward	This study
MLL L2080	GTGAACTCMAYCAGTCCTCC	Reverse	This study
MLL 2105	ACCYTGCGTTGGGARGTGG	Reverse	This study
MLL L2158	ARAGTAGTGGGATCYAGRTACAT	Reverse	Dettai and Lecointre (2005)
IRBP U104	ATAGTYNTGGACAANTACTGCTC	Forward	Dettai and Lecointre (2008)
IRBP U110	TGGACAAYTACTGCTCRCCAGA	Forward	Dettai and Lecointre (2008)
IRBP L936	CACGGAGGYTGAYNATCTTGAT	Reverse	Dettai and Lecointre (2008)
IRBP L953	CNGGAAYYTGARCACGGAGG	Reverse	Dettai and Lecointre (2008)
IRBP L1338	GTGRAAGGAGAYTTTGATCAGCTC	Reverse	Dettai and Lecointre (2008)
C17 F3111	GCTGACTGGATTYAAAACCTT	Forward	This study
C17 F3128	CCTTTGTGGTGGAYTTYATGAT	Forward	This study
C17 F3150	WCTGATGGCNAARGACTTTGC	Forward	This study
C17 R4036	GGRATRGANCCNAGCTTTTCAT	Reverse	This study
C17 R4096	CCANACCAGAGGGATCATRCT	Reverse	This study
C17 R4111	AACTGTCCAAARTCCCACAC	Reverse	This study

Table 2

Sequences used in this study. Taxonomy follows Nelson, 2006, except for families, that are those present in Fishbase (Froese and Pauly, 2006). Sequences in boldface font are new sequences.

Order/suborder	Family	Genus/species	Rhosopsin	MLL	IRBP	RNF213
Argentiniformes						
Alepocephaloidei						
	Alepocephalidae	Alepocephalus antipodianus (Parrot, 1948)	EU637933	-	_	-
Stomiiformes						
Gonostomatoidei	Conostomatidae	Conostoma bathynhilum (Valliant, 1884)	AV1/1256	_		
A 1 10	Guilostulliatidae	Gonostoma bathypmian (Valiant, 1884)	A1141250	_	_	-
Aulopiformes	loi					
Chlorophthannoit	Ipnopidae	Bathypterois dubius Vallian, 1888	AY141257	AY362219	DO168042	_
Myctophiformes	1 1 1				C · · · ·	
wyetopiniornes	Myctophidae	Electrona antarctica (Günther, 1878)	AY141258	AY36220	_	_
Lampriformes	•					
Lampinormes	Lampridae	Lampris immaculatus Gilchrist, 1904	AY141259	_	DQ168077	_
	Trachipteridae	Trachipterus arcticus (Brünnich, 1788)	-	-	EU638158	-
	Regalecidae	Regalecus glesene Ascanius, 1772	AY368328	AY362266	DQ168109	EU638252
Polymixiiformes						
	Polymixiidae	Polymixia nibilis Lowe, 1838	AY368320	AY362208	DQ168104	-
Percopsiformes						
	Apherdoderidae	Aphredoderus sayanus (Gilliams, 1824)	_	-	DQ168038	-
Gadiformes						
	Muraenolepididae	Muraenolepsis marmorata Günther, 1880	-	EU638073	-	-
	Macrouridae	Coryphaeniides rupestris Gunnerus, 1765 Trachyrincus murravi Cüpther, 1887	AY368319 AV368318	EU638041 AV362280	- DO168124	- EU638270
	Moridae	Mora moro (Risso, 1810)	AY368322	EU638071	DO168089	EU6382270
	Merlucciidae	Merluccius merluccis (L., 1758)	_	EU638068	_	_
	Phycidae	Phcis physics (L., 1766)	EU637994	-	-	-
	Lotidae	Enchelyopus cimbrius (L., 1766)4	EU637958	-	_	-
	Louidae	Gaidropsarus (Hector, 1874) Gaidropsarus sp	 FU637961	EU038051	_	_
	Lotidae	Gaidropsarus vulgaris (Cloquet, 1824)	_	_	DQ168067	_
	Gadidae	Gadus morhua L., 1758	AF137211	EU638050	DQ168066	-
	Gadidae	Merlangius merlangus (L., 1758)	AY141260	-	-	-
Ophidiiformes						
Ophidioidei	o : 1					FU 4004 P0
	Carapidae	Encheliophis boroborensis (Kaup, 1856) Echiodon cryomargaritas Markle Williams & Olney 1983	 ELI637056	_	_	EU638179
	Ophidiidae	Lamprogrammus scherbachevi Cohen & Rohr. 1993	EU637969	EU638058	EU638130	_
Bythitoidei						
bythitolder	Bythitidae	Cataetyx laticeps Koefoed, 1927	EU637947	EU638035	_	_
Batrachoidiformes	-					
buttuenoiunoinnes	Batrachoididae	Halobatrachus didactylus (Bloch Schneider, 1801)	AY368323	AY362246	DQ168069	EU638205
Lophiiformes						
Lophioidei						
-	Lophiidae	Lophius budegassa Spinola, 1807	-	-	-	EU638217
	Lophiidae	Lophius piscatorius L., 1758	AY368325	AY362274	-	-
Antennarioidei						
	Antennariidae	Antennarius striatus (Shaw, 1794)	AY368324	AY362215	DQ168037	-
Ogcocephaloidei						
	Himantolophidae	Himantolophus groenlandicus Reinhardt,1837	EU637965	EU638055	EU638125	- EUC20101
	Ceratiluae	Cerulius holdoelli Kløyel, 1845	A1141205	A1302270	DQ108049	E0020101
Mugiliformes	Mugilidao	Liza en	AV1/1266	47262248	DO169092	
	wingingae	Liza sp.	A1141200	A1302248	DQ108082	-
Atheriniformes	Atherinopsidae	Menidia menidia (J. 1766)	FU637077	FU638067	FU638137	
	Bedotiidae	Bedotia geavi Pellegrin, 1907	AY141267	AY362271	DO168043	_
Beloniformer					C · · · ·	
belonnormes	Adrianichthyidae	Oryzias latipes (Temminck	Schlegel, 1946)	_	- DQ168094	Ensembl
	Exocoetidae	Cheilopogon heterurus (Rafinesque, 1810)	EU637950	EU638039	EU638113	EU638184
	Belonidae	Belone belone (L., 1761)	AY141268	AY362273	DQ168044	-
Cyprinodontiformes	;					
	Anablepidae	Anableps anableps (L., 1758)	EU637935	-	-	-
	Poeciliae	roecilia reticulata Peters, 1859	¥11147	AY362203	DQ168102	EU638243
Stephanoberyciform	nes Rondolotiidee	Pendalatia an	47269227	EUC20007	D0160110	
	Barbourisiidae	Barbourisia rufa Parr. 1945	AY368333	AY362264	D0168041	_
	oo an onduc				(continued)	on next page)

Table 2 (continued)

Order/suborder	Family	Genus/species	Rhosopsin	MLL	IRBP	RNF213
Beryciformes						
Trachichthyoidei						
	Anomalopidae	Photoblepharon palpebratum (Boddaert, 1781)	EU637993	AY362268	DQ168101	EU638242
	Diretmidae	Diretmoldes sp. Honlostethus atlanticus Collett 1889	_	AY362205	DQ168060 FU638127	- FU638207
	Trachichthyidae	Hoplostethus mediterraneus Cuvier, 1889		AY362267	-	-
Berycoidei						
	Berycidae	Beryx splendens Lowe, 1834	AY141265	AY362238	DQ168045	EU638174
Holocentroidei						
	Holocentridae	Myripristis botche Cuvier, 1929	-	AY362265	DQ168091	-
	Holocentridae	Myripristis sp.	EU637983	-	-	EU638230
Zeiformes						
	Oreosomatidae	Neocyttus helgae (Holt Byrne, 1908)	AY141261	AY362288	-	-
	Grammicolepididae	Grammicolepis brachlusculus Poey, 1873 Zenonsis conchifera (Lowe, 1852)	EU63/964 AV36831/	EU638054	EU638124	- EU638270
	Zeidae	Zeus faber L., 1758	EU638023	AY362287	D0168128	_
Casterosteiformes					C	
Gasterosteoidei						
	Gasterosteidae	Gasterosteus aculeatus L., 1758	EU637962	EU638052	Ensembl	Ensembl
	Gasterosteidae	Spinachia spinachia (L., 1758)	AY141281	AY362261	-	EU638264
	Indostomidae	Indostomus paradoxus Prashad & Mukerji, 1929	EU637967	EU638057	-	EU638209
Syngnathoidei						
	Syngnathidae	Hippocampus guttulatus Cuvier, 1829	AY368330	AY362216	EU638126	_
	Syngnathidae	Nerophis lumbriciformis (Jenyns, 1835)	EU637987	-	EU638143	EU638232
	Syngnathidae	Syngnathus typhia (L., 1758)	 AV368326	 AV362211	DQ168071 DQ168120	_
	Fistulariidae	Fistularia petimba Lacèpède. 1803	AY141324	_	-	EU638202
	Aulostomidae	Aulostomus chinensis (L., 1766)	AY141279	AY362226	DQ168040	_
	Centriscidae	Aeoliscus strigatus (Günther, 1861)	EU637931	-	EU638100	-
	Centriscidae	Macroramphosus scolopax (L., 1758)	AY141280	AY362206	DQ168083	-
Symbranchiformes						
Symbranchoidei	o 1 111	M (7 1 4702)	11/1 11050	11000050	D0100000	511000000
Mastacomboloidoi	Symbranchidae	Monopterus albus (Zuiew, 1793)	AY141276	AY362252	DQ168088	EU638226
Mastacembeloidei	Mastacembelidae	Mastacembelus erythrotaenia Bleeker, 1850	AV141275	AV362249	DO168084	_
C	mustacembendae	mustacembelas erythotaenia breeker, 1050	111112/0	111302210	DQ100001	
Dactylopteroidei						
Ductylopterolder	Dactylopteridae	Dactylopterus volitans (L. 1758)	AY141282	AY362243	DO168059	_
Scornzenoidei	5 1				Ç	
Scorpacholder	Sebastidae	Sebastes sp.	_	_	_	EU638258
	Scorpaenidae	Pontinus longispinis Goode Bean, 1896	EU637996	EU638081	EU638146	EU638247
	Scorpaenidae	Scorpaena onaria Jordan Snyder, 1900	AY141288	AY362236	DQ168114	EU638257
	Synanceiidae	Synanceia verrucosa Bloc Schneider, 1801	EU638011	EU638093	EU638156	EU638267
	Congiopodidae	Zanclorhynchus spinifer Gúnther, 1880	EU638021	-	EU638165	EU638278
Platycephaloidei						
	Triglidae	Chelidonichthys lucernus (L., 1758)	AY141287	AY362284	DQ168053	EU638186
Cottoidei						
	Cottidae	Taurulus bubalis Euphrasen, 1786)	U97275	AY362217	DQ168121	_
	Agonidae	Agonopsis chiloensis (Jenyns, 1840)	EU637932	EU638025	EU638101	EU638167
	Agonidae Psychrolutidae	<i>Contuneulus thomsonii</i> (Gilbert, 1890)	EU638018 AV368315	AV362260	EU638162	_
	Cyclopteridae	Cyclonterus lumnus I 1758	AV368316	AV362200	- FU638116	_
	Liparidae	Liparis fabricii Krøyer, 1847	AY368317	AY362235	DQ168081	_
Perciformes						
Percoidei						
	Centropomidae	Centropomus undecimalis (Bloch, 1792)	_	-	-	EU638180
	Lateolabracidae	Lateolabrax japonicus (Cuvier, 1828)	AY141293	AY362253	DQ168078	EU638213
	Latidae	Lates calcarifer (Bloch, 1970)	EU637970	EU638059	DQ168075	EU638214
	Latidae	Lates niloticus (L., 1758)	EU637971	-	-	-
	Moronidae	Morone sayatilis (Walhaum, 1792)	- FU637981	- FU638072	EU038119 FU638140	EU038195 FU638228
	Percichthyidae	Howella brodiei (Ogilby, 1899)	EU637966	EU638056	EU638128	EU638208
	Serranidae	Acanthistius brasilianus (Cuvier, 1828)	-	EU638024	-	-
	Serranidae	Cephalopholis urodeta (Forster, 1801)	-	EU638036	-	-
	Serranidae	Dermatolepis dermatolepis (Boulenger, 1895)	-	EU638045	-	-
	Serranidae	Epinephelus aeneus (Geoffroy Saint-Hilaire, 1817)	AY141291	EU638049	AY362227	EU638201
	Serranidae	Udontanthias chrysostictus (Günther, 1872)	AY141290	AY362209	DQ168073	EU638206
	Serranidae	Ninhon spinosus Cuvier 1828	- FU637034	EU038062	_	_
	Serranidae	Plectropomus leopardus (Lacèpède, 1802)	_	EU638078	_	_
	Serranidae	Pogonoperca punctata (Valenciennes, 1830)	AY141292	AY362256	DQ168103	EU638244
	Serranidae	Pseudanthias squamipinnis (Peters, 1855)	-	EU638083	-	-

Table 2 (continued)

Order/suborder	Family	Genus/species	Rhosopsin	MLL	IRBP	RNF213
	Serranidae	Rypticus saponaceus (Bloch Schneider, 1801)	AY368329	AY362257	DQ168111	EU638253
	Serranidae	Serranus accraensis (Norman, 1931)	AY141289	AY362202	DQ168115	EU638260
	Callanthiidae	Callanthias ruber (Rafinesque, 1810)	EU637945	EU638034 EU638110	-	
	Plesiopidae	Assessor flavissimus Allen Kuiter, 1976	EU637944	EU638032	EU638109	EU638173
	Centrarchidae	Lepomis gibbosus (L., 1758)	AY742571	EU638061	EU638132	EU638216
	Percidae	Gymnocephalus cernuus (L., 1758)	AY141296	AY362278	DQ168068	-
	Percidae	Perca fluviatilis L., 1758	AY141295	AY362279	DQ168099	EU638240
	Priacanthidae	Priacanthus arenatus Cuvier, 1829	EU637997	EU638082	EU638147	-
	Epigonidae	Epigonus telescopus (Risso, 1810)	EU637959	EU638048	EU638122	EU638200
	Apogonidae	Apogon fasciatus (White, 1970)	EU637940	-	-	EU638171
	Apogonidae	Sphaeramia nematoptera (Bleeker, 1856)	EU638010	EU638091	EU638154	-
	Malacanthidae	Lopholatilus chamaeleonticeps Goode & Bean, 1879	EU637973	EU638063	EU638133	EU638218
	Sillaginidae	Sillago sihama (Forsskål, 1775)	EU638008	-	-	EU638262
	Coryphaenidae	Coryphaena equiselis L., 1758	EU637951	EU638040	EU638114	EU638189
	Coryphaenidae	Coryphaena hippurus L., 1758	-	-	DQ168056	-
	Echeneidae	Echeneis naucrates L., 1758	AY141315	AY362245	DQ168062	EU638197
	Carangidae	Chloroscombrus chrysurus (L., 1766)	AY141313	AY362223	DQ168054	EU638187
	Carangidae	Gnathanodon speciosus (Forsskål, 1755)	EU637963	EU638053	EU638123	EU638204
	Carangidae	Selene dorsalis (Gill, 1863)	EU638006	EU638089	EU638153	EU638259
	Carangidae	Trachinotus ovatus (L., 1758)	AY141314	AY362263	DQ168120	-
	Carangidae	Trachurus trachurus (L., 1758)	EU638013	_	EU638159	EU638269
	Menidae	Mene maculata (Bloch & Schneider, 1801)	AY141316	AY362250	DQ168085	EU638221
	Leiognathidae	Leiognathus fasciatus (Lacépède, 1803)	EU637972	EU638060	EU638131	-
	Bramidae	Pterycombus brama Fries, 1837	EU638001	EU638086	EU638149	EU638251
	Lutjanidae	Apsilus fuscus Valenciennes, 1830				
	Lutjanidae	Lutjanus sebae (Cuvier, 1816)	EU637974	EU638064	EU638134	EU638219
	Caesionidae	Pterocaesio digramma (Bleeker, 1864)	EU638000	EU638085	EU638148	EU638250
	Datnioididae	Datnioides polota (Hamilton, 1822)	EU637954	EU638044	EU638118	EU638194
	Haemulidae	Pomadasys perotaei (Cuvier, 1830)	_	AY362230	DO168105	EU638246
	Sparidae	Spondyliosoma cantharus (L., 1758)	_	EU638092	EU638155	EU638265
	Sciaenidae	Argyrosomus regius (Asso, 1801)	EU637942	EU638030	EU638107	EU638172
	Sciaenidae	Johnius sp. Bloch 1793	_	_	EU638129	_
	Sciaenidae	Micropogonias furnieri (Desmarest, 1823)	EU637979	_	_	_
	Sciaenidae	Micropogonias sp.	_	_	_	EU638224
	Sciaenidae	Sciaena sp.	EU638004	_	_	_
	Polynemidae	Pentanemus auinauarius (L. 1758)	AV141317	AV362272	DO168098	FU638239
	Mullidae	Mullus surmuletus L. 1758	EU637982	AY362231	DQ168090	EU638229
	Toxotidae	Toxotes sp	FU638012	FU638094	FU638157	_
	Monodactylidae	Monodactulus sp. Lacénède 1801	FU637980	FU638070	FU638139	_
	Kynhosidae	Microcanthus strigatus (Cuvier 1831)	EU637978	FU638069	FU638138	FU638222
	Chaetodontidae	Chaetodon semilarvatus Cuvier 1831	AV368312	AV362240	DO168050	_
	Drenaneidae	Drenane africana Osório 1892	AV141321	AV362240	DQ168061	FU638196
	Pomacanthidae	Holacanthus ciliaris (I 1758)	ΔV1/1322	AV362211	DQ168072	20030130
	Pomacanthidae	Pomacanthus maculosus (Forsskål 1775)	FU637995	FU638079	FU638145	FU638245
	Teranontidae	Pelates auadrilineatus (Bloch 1790)	EU037333	_	_	_
	Cheilodactylidae	Nemadactylus monodactylus (Carmichael 1819)	EU037985	FU638075	FU638142	FU638231
	Anlodactylidae	Anlodactylus nunctatus Valenciennes 1832	EU037939	_	_	_
	Cenolidae	Cenola macronhthalma (I 1758)	EU037948	FU638037	FU638111	_
	cepondae	Cepola macrophinalma (E., 1750)	20037340	20050057	LOUJUIII	
Elassomatoidei						
	Elassomatidae	Elassoma zonatum Jordan, 1877	EU637957	_	DQ168063	-
Labroidei						
Labioldei	Cichlidae	Haplochromis nubilus (Boulenger, 1906)	_	_	DO168070	_
	Cichlidae	Haplochromis sp	AB084933		-	_
	Pomacentridae	Dascullus trimaculatus (Rüppenl 1829)	FU637953	FU638043	FU638117	FU638193
	Labridae	Lahrus heroylta Asconius 1767	AV141318	AV362222	D0168075	FII638211
	Labridao	Yurichtus poyacula (I 1759)	EU628020	M1502222	EU629164	EU030211
	Scaridae	Scarus hoefleri (Steindachner, 1881)	ΔV1/1310		D0168112	EU038277
	Scalluae	Scurus noejien (Steindachnei, 1881)	A1141515	A1302212	DQ108112	E0038234
Zoarcoidei						
	Zoarcidae	Austrolycus depressiceps Regan, 1913	AY141297	-	-	-
	Zoarcidae	Lycodapus antarcticus Tomo, 1982	EU637976	EU638066	EU638136	-
	Pholidae	Pholis gunnellus (L., 1758)	AY141298	AY362285	DQ168100	EU638241
	Anarhichadidae	Anarhichas lupus L., 1758	EU637936	EU638026	EU638103	EU638169
Notothenioidei						
nototicilioluel	Nototheniidae	Notothenia corijcens Richardson 1944	AV141302	AY362282	D0168093	_
	Nototheniidaa	Trematomus hernachii Roulenger, 1002	FU628014		FU639160	EU639371
	Bovichtidae	Rovichtus variagatus Dichardson, 1946	AV1/1200	47363303	D0169046	EU0362/1
	Bovichtidae	Cottoperca trigliodes (Forstor, 1901)	AV141299	A1302203	DQ108040	E00581/6
	Rovichtidae	Degudanhritis unvillij (Valenciennes, 1922)	AV1/1201	-	_	_
	Eloginonsides	Electrone maclovinus (Currier, 1832)	AT 141301		- EUC20121	- EUC20100
	Channighthurid	Chiene dance formation (Linguistication 1005)	AY141303	EU03804/	E0038121	E0038199
	Chamilenthyidae	Neuronouraco namatus (Lonnberg, 1905)	A1362280	-	- D016000	
	Channichthyidae	Neopagetopsis ionah Nybelin, 1947	EU637986	AY362281	DQ16802	-
	Channichthyidae	Pagetopsis macropterus (Boulenger, 1907)	E0637990	EU638076	EU638144	E0638235
Trachinoidei						
	Chiasmodontidae	Kali macrura (Parr, 1933)	AY141308	AY362224	DQ168074	EU638210
					(continued	on next page)

Table 2 (continued)

Order/suborder	Family	Genus/species	Rhosopsin	MLL	IRBP	RNF213
	Champsodontidae	Champsodon snyderi Franz, 1910	EU637949	EU638038	_	EU638182
	Pinguipedidae	Parapercis clathrata Ogilby, 1910	_	EU638077	_	EU638238
	Pinguipedidae	Pinguipes chilensis Valenciennes, 1833	EU637989	_	_	EU638234
	Cheimarrichthyidae	Cheimarrichthys fosteri Haast, 1874	AY141307	AY362229	DQ168052	EU638185
	Trachinidae	Echiichthys vipera (Cuvier, 1829)	EU637955	EU638046	EU638120	EU638198
	Trachinidae	Trachinus draco L., 1758	AY141304	AY362277	DQ168123	EU638268
	Ammodytidae	Ammodytes tobianus L., 1758	AY141306	AY362234	EU638102	EU638168
	Uranoscopidae	Uranoscopus albesca Regan, 1915	AY141305	AY362239	DQ168126	EU638275
Diamate tata t					-	
Biennioldei	m · . · · ·		41/4 44 0 7 0	11/202270	DOLGOOGE	F11000000
	Tripterygildae	Forsterygion lapilium Hardy, 1989	AY1412/2	AY362276	DQ168065	EU638203
	Tripterygiidae	Tripterygion delaisi Cadenat & Blache, 1970	EU638016	_	-	EU638274
	Blenniidae	Parablennius gattorugine (L., 1758)	AY1412/1	AY362255	DQ168097	EU638237
	Blenniidae	Salaria pavo (Risso, 1810)	Y186/4	-	-	-
Gobiesocoidei						
	Gobiesocidae	Apletodon dentatus (Facciolà, 1887)	AY141274	AY362213	DQ168039	_
	Gobiesocidae	Aspasma minima (Döderlein, 1887)	EU637943	EU638031	EU638108	_
	Gobiesocidae	Lepadogaster lepadogaster (Bonnaterre, 1788)	AY141273	AY362247	DQ168080	EU638215
Callianumaidai						
Callionymoldel	Callia anna à da a	Callianana hara L. 1750	41/1 41270	41/202225	D0100047	FUC20177
	Callionymidae	Callionymus lyra L., 1758	AY141270	AY362225	DQ168047	EU638177
	Callionymidae	Callionymus schaapii Bleeker, 1852	EU637946	-	-	-
Gobioidei						
	Eleotridae	Ophiocara porocephala (Valenciennes, 1837)	EU637988	_	_	_
	Gobiidae	Favonigobius reichei (Bleeker, 1853)	EU637960	_	_	_
	Gobiidae	Periophthalmus barbarus (L. 1766)	EU637992	_	_	_
	Gobiidae	Pomatoschistus minutus (Pallas, 1770)	X62405	_	_	_
	Gobiidae	Pomatoschistus sp. Gill. 1863	_	EU638080	DO168106	_
	Gobiidae	Valenciennea strigata (Broussonet, 1782)	EU638017	_	_	_
	Microdesmidae	Ptereleotris zebra (Fowler, 1938)	EU637999	EU638084	_	_
	merodesindue		20001000	20000001		
Acanthuroidei						
	Scatophagidae	Selenotoca multifasciata (Richardson, 1846)	EU638002	EU638088	EU638150	-
	Siganidae	Siganus vulpinus (Schlegel & Müller, 1845)	EU638007	EU638090	DQ168116	EU638261
	Luvaridae	Luvarus imperialis Rafinesque, 1810	EU637975	EU638065	EU638135	EU638220
	Acanthuridae	Ctenochaetus sp.	-	-	-	EU638190
	Acanthuridae	Ctenochaetus striatus (Quoy & Gaimard, 1825)	AY141320	AY362242	DQ168057	-
	Acanthuridae	Naso lituratus (Forster, 1801)	EU637984	EU638074	EU638141	-
Scombroidei						
Scombronder	Sphyraenidae	Sphurgeng sphurgeng (I 1758)	AV1/1312	AV362254	DO168118	E11638363
	Trichiuridae	Anhanonya carbo Lowo 1820	FUC27020	FUC20020	EUC20105	EU036203
	Coombridge	Aprianopus carbo Lowe, 1859	EU03/938	EU030020	EU030103	E0038170
	Scollipfidae	Scomper Juponicus Houttuyii, 1782	AT141311 EUC29010	A1302237	DQ108113	- EUC2027C
	Xipillidae	Xipnius giuuius L., 1758	E0038019	E0038098	E0038103	EU038270
Stromateoidei						
	Centrolophidae	Psenopsis anomala (Temminck & Schlegel, 1844)	AY141310	AY362269	DQ168107	EU638248
	Centrolophidae	Schedophilus medusophagus (Cocco, 1839)	EU638003	EU660040	EU638151	EU638255
	Nomeidae	Cubiceps gracilis (Lowe, 1843)	EU637952	EU638042	EU638115	EU638192
	Stromateidae	Pampus argenteus (Euphrasen, 1788)	AY141309	AY362220	DQ168096	EU638236
Anabantoidoi						
AllaDalitoidei	Anabantidao	Ctanonoma an	4111070	41/262210	DO169059	EUC20101
	AllaDalltiluae	Clenopolnu sp.	A1141276	A1502210	DQ108038	E0038191
Channoidei						
	Channidae	Channa sp.	_	-	-	EU638183
	Channidae	Channa striata (Bloch, 1793)	AY141277	AY362241	DQ168051	_
Commidai						
Caproidei	Committee	Autimuia 1042	FUC25025	FUC20027	FUC20104	
	Caproidae	Antigonia capros Lowe, 1843	EU03/93/	EU038027	EU038104	-
	Caproidae	Capros aper (L., 1758)	AY141262	AY362233	DQ168048	EU638178
Pleuronectiformes						
Psettodoidei						
	Psettodidae	Psettodes belcheri Bennett, 1831	EU637998	AY362259	DQ168108	EU638249
Diama and dat					-	
Pleuronectoldel	C'11 11		41/4 44 000	11/2622222	DOLGOOSE	511000400
	Citharidae	Citharus linguatula (L., 1758)	AY141323	AY362232	DQ168055	EU638188
	Paralichthyidae	Syacium micrurum Ranzani, 1842	AY368334	AY362262	DQ168119	EU638266
	Scophthalmidae	Scophthalmus rhombus (L., 1758)	EU638005	_	EU638152	EU638256
	Scophthalmidae	Zeugopterus punctatus (Bloch, 1787)	EU638022	EU638099	EU638166	EU638280
	Bothidae	Arnoglossus imperialis (Rafinesque, 1810)	AY141283	AY362228	-	-
	Bothidae	Bothus podas (Delaroche, 1809)	AY368313	EU638033	-	EU638175
	Achiridae	Trinectes maculatus (Bloch & Schneider, 1801)	EU638015	EU638096	EU638161	EU638273
	Soleidae	Microchirus frechkopi Chabanaud, 1952	-	-	-	EU638223
	Soleidae	Microchirus variegatus (Donovan, 1808)	AY141284	AY362275	DQ168086	-
	Soleidae	Solea solea (L., 1758)	EU638009	-	DQ168117	-
Tetraodontiformer						
Triacanthodoidoi						
macanthouoidei	Triacanthodidao	Triacanthodas anomalus (Tempinek & Schlogal 1950)		E11629005		FUE20272
	Triacanthodidao	Triacanthodes sp	AV360221	F0030033	 D0169125	20030272
	macantinoulude	macanthoues sp.	A1506551		DQ108125	

Table 2 (continued)

Order/suborder	Family	Genus/species	Rhosopsin	MLL	IRBP	RNF213
Balistoidei						
	Balistidae	Balistes sp.	AF137212	_	-	-
	Ostraciidae	Ostracion cubicus L., 1758	_	_	_	EU638233
	Ostraciidae	Ostracion sp.	AF137213	AY362207	DQ168095	-
Tetraodontoidei						
	Tetraodontidae	Lagocephalus laevigatus (L., 1766)	-	AY362221	DQ168076	-
	Tetraodontidae	Lagocephalus lagocephalus (L., 1758)	EU637968	-	_	EU638212
	Tetraodontidae	Takifugu rubripes (Temminck & Schlegel, 1850)	_	Ensembl	Ensembl	Ensembl
	Tetraodontidae	Tetraodon nigroviridis Marion de Procé, 1822	Ensembl	Ensembl	Ensembl	Ensembl
	Molidae	Mola mola (L., 1758)	AF137215	AY362251	DQ168087	EU638225

The primers published in Chen et al. (2003) for Rhodopsin, in Dettaï and Lecointre (2005) for MLL and in Dettaï and Lecointre (2008) for IRBP were used, but 4 new primers were designed for MLL in order to obtain more gadiform sequences, and 6 new primers were used to amplify the new RNF213 marker (Table 1). Most RNF213 sequences could be obtained with primers C17 F3111 and C17 R4111. Various PCR conditions were used, depending on the primers and the DNA sample. Three different polymerases were used for the PCRs: Taq Appligen, QbioTaq and Taq Qiagen. PCRs began with a denaturation phase at 94 °C for 2-5 min and ended with a final elongation phase at 72 °C (or 68 °C for the longest PCRs using Taq Qiagen) for 4-7 min. Cycles began with a denaturation phase at 94 °C for 20-40 s, followed by an annealing phase at temperatures ranging from 47 to 60 °C and during from 25 to 45 s. The annealing phase was followed by an elongation phase at 72 °C (or 68 °C for the longest PCRs using Taq Qiagen) for 35 s to 2 min. The number of cycles ranged from 35 to 60. Purification and sequencing of the PCRs were performed at the Genoscope (http://www.genoscope.cns.fr/). The same primers were used for PCR and sequencing. Sequences were checked individually using Sequencher (Gene Codes Corporation) and aligned by hand using Se-Al (Rambaut, 2002). Indels were grouped by 3 so as to fit the coding frame, and adjusted according to the translation in amino acid sequences.

Characteristics of the aligned markers are given in Table 3.

Preliminary distance trees were done using PAUP* (Swofford, 2002) to check for contaminations. Accession numbers are given in Table 2.

2.3. Analysis strategy

When a clade contradicts the previously supported phylogenetic hypotheses, it is necessary to check whether this is due to an artifact. Those can be detected by using different taxonomic samplings, tree reconstruction methods, or, more reliably, by comparing the topology to the one inferred from an independent dataset. This is the primary reason to perform separate analyses in molecular phylogenetics. If selective pressures characterizing mutational space at each position are relatively homogeneous within genes but heterogeneous among genes, the fact that a given clade is recurrently recovered from independent markers is a strong indication of its reliability (Nelson, 1979; Chen et al., 2003; Dettaï and Lecointre, 2004, 2005).

Indeed, finding a clade twice independently just by chance is very improbable (Page and Holmes, 1998), and the probability of obtaining exactly the same tree reconstruction artifact from independent genes is also low, although sometimes the notorious long branch attraction artifact can occur with several markers when higher mutation rates affect large parts of the genome of several of the included species. Separate analyses tend to be more subject to stochastic errors (because of the shorter length of the analyzed sequences), but also prone to marker-specific biases. The recovery of a clade in separate analyses of several independent markers in spite of these problems is therefore a strong indication of the reliability of the clade. This led to the definition of a repetition index based on the number of occurrences of a clade across independent analyses (Li and Lecointre, 2008). This can also be used to detect instances where the markers reflect distinct and incompatible histories. Repetition across trees based on independent data is a better indicator than bootstrap proportions extracted from a crude 'total evidence' (for a review of the origins of that term, see Rieppel, 2004; Lecointre and Deleporte, 2005), because tree reconstruction artifacts can lead to clades with high robustness (Philippe and Douzery, 1994). Additionally, a positively misleading signal from a single gene can impose the topology of some parts of the tree inferred from the combined data (Grande, 1994; Chen et al., 2000, 2003; Chen, 2001). Separate analyses of independent partitions are an efficient way to assess the reliability of clades and to identify marker-specific reconstruction artifacts.

However, as mentioned above, keeping partitions separate has its own risks (see review in Miyamoto and Fitch, 1995; Lecointre and Deleporte, 2005). To circumvent these problems, it is interest-

Table 3

Characteristics of the datasets used in this study. The statistics were computed using p4 version 0.86.r43 (Foster, 2004, http://bmnh.org/pf/p4.html).

Number of sequences (new ones)		Rhodopsin	MLL	IRBP	RNF213
		190 (92)	165 (77)	161 (66)	118 (114)
Alignment length		856	730	828	991
Variable sites		572 (66.8%)	542 (74.2%)	684 (82.6%)	799 (80.6%)
Informative sites		469 (54.7%)	468 (64.1%)	557 (67.2%)	727 (73.3%)
Pairwise differences	Mean	0.214861	0.267751	0.225977	0.220434
	Minimum	0.007009	0.004644	0.013285	0.015228
	Maximum	0.857477	0.604380	0.524155	0.773604
P-value of χ^2 homogeneity tests	Global	0.000015	0.922810	0.614509	1.000000
	First codon	1.000000	1.000000	1.000000	1.000000
	Second codon	1.000000	1.000000	1.000000	1.000000
	Third codon	0.000000	0.000000	0.000000	0.117940
Location (Tetraderon chromosome)		9	10	2	3

ing to perform both separate and simultaneous analyses (Mickevich, 1978; Bull et al., 1993; Miyamoto and Fitch, 1995). (Dettaï and Lecointre, 2004 Fig. 2 therein), Dettaï and Lecointre (2005) and Li and Lecointre (2008) proposed partial combinations as a way to explore marker-specific topologies and to assess the reliability of clades. In their approach, not only is each elementary dataset analyzed separately, but every possible combination of the datasets is produced and analyzed too.

However, counting occurrences makes sense only when the trees taken into account are based on independent data. The minimal independent data units (elementary datasets) and their combinations are grouped into various sets of datasets: the partitioning schemes. A partitioning scheme, contains independent non overlapping datasets (elementary datasets or combinations thereof, see Li and Lecointre, 2008). For example, among all possible combinations of our datasets, RNF213 and the combination of the three other markers together form a partitioning scheme because the two parts do not contain elementary datasets in common. The number of clade occurrences may be then counted over the two trees obtained from these datasets.

In the present study, we used this approach, analyzing every possible combination of the datasets and recording repeated clades from combinations having no marker in common. This allows to take into account both the strengths and the weaknesses of separate and simultaneous analyses. The four nuclear markers were thus assembled in 15 combinations of one to four elementary datasets.

2.4. Datasets design

All genera for which we could obtain sequence data for at least one of the four nuclear markers were used in this study, in order to cover a broad taxonomic area, and because it has been shown that even a single sequence can still convey relevant information for the phylogenetic analyses (Wiens and Reeder, 1995). Nonetheless, missing data can sometimes disturb phylogenetic reconstruction, therefore, we made a decision about the minimum amount of sequences that need to be present for a taxon to be included in a dataset. The taxa for which half the markers (or more) were missing for a given combination were not included in that combination. This means that in a combination, a terminal must have sequences for at least two of the markers in a combination of 2 or 3 markers, and sequences for 3 or 4 markers for the combination of the 4 markers. For a few taxa, the sequences for different genes were obtained from different species of the same genus. Using such chimeric sequences at the species level for a study at the interfamilial level should not be problematic. For Callionymus, Coryphaena and *Nerophis*, species were not fused in a chimeric sequence because this would not have led to a better taxonomic overlap between the different markers: Callionymus lyra was present for the four markers while C. schaapii was present for Rhodopsin only, Coryphaena equiselis was present for the four markers while C. hippurus was present for IRBP only, and Nerophis lumbriciformis was present for RNF213, IRBP and Rhodopsin while N. ophiodon was present for IRBP only.

2.5. Primary analyses

Considering the taxonomic scale of our study, sequence data were analyzed under probabilistic sequence evolution models. PhyML (Guindon and Gascuel, 2003) was used for its speed, with a GTR + I + Γ model.

To offer an assessment of the role played by the RNF213 sequence data in the resolution of the 'acanthomorph bush', four trees were compared: the tree based on the new RNF213 sequence data, the tree based on the combination of the three other nuclear markers, the tree based on the combination of all four datasets (the 'total evidence' tree) and an MRP-like supertree displaying/summarizing the reliable clades calculated from the repetition indices of Li and Lecointre (2008), based on partial combinations and validity domains for the four datasets studied here.

2.6. Validity domains: adapting Li and Lecointre's method to datasets with different sets of taxa

To evaluate the reliability of clades, Li and Lecointre (2008) proposed repetition indices based on the partial combinations strategy (Dettaï and Lecointre, 2004). However, the proposed indices are only valid when all trees to be compared have the same set of terminals. Here, restricting all analyses to genera present in all four elementary datasets would have resulted in discarding nearly half the taxa, a considerable loss of information. To avoid this problem, we adopted here a pruning strategy based on three levels of what we call 'validity domains' (Fig. 1).

Analyses of the various dataset combinations were done on different sets of taxa, depending on the proportion of available sequences for a given taxon in the combined datasets. The sets of taxa included in each separate and combined analysis are called the 'first-level validity domains' (validity domains of the primary analyses). As stated earlier, we decided to take into account the taxa present in at least half the elementary datasets of a given combination. With three elementary datasets *A*, *B* and *C*, noting V_A, V_B and V_C their validity domains, the validity domain of $A \cup B \cup C$ would be:

 $V_{A \cup B \cup C} = (V_A \cap V_B) \cup (V_A \cap V_C) \cup (V_B \cap V_C)$ (that is, the taxa that are either in *A* and *B*, in *A* and *C* or in *B* and *C*).

These validity domains are, logically, also the sets of leaves of the trees resulting from the primary analyses. The number of occurrences of the clades are counted over collections of such trees (see Fig. 1).

But a clade can be recognized and counted only when the trees are defined on the same set of taxa. As the count is performed within a partitioning scheme (a set of independent, non overlapping datasets, see above), the sampling for a given partitioning scheme has to be reduced to the taxa shared by all trees of the

Fig. 1. The 3 levels of validity domains. The first-level validity domains (V_X) are the sets of leaves of the trees (T_X) obtained by the analyses of the datasets (X). In this example, 3 elementary datasets are used, which leads to 7 datasets, and thus to 7 trees and 7 first-level validity domains. The second-level validity domains (V_{PSc_i}) are the intersections of the validity domains of the independant datasets involved in the partitioning schemes (PSc_i). Here, only the full partitioning scheme, across its constituent datasets, after pruning the corresponding trees of the taxa outside the relevant second-level validity domains. The third-level validity domains. The repetition indices are attached to such third-level validity domains. The repetition indices are attached to such third-level validity domains. They are based on the maximum number of occurrences (for the clades once pruned of the taxa outside the third-level validity domain and the entire third-level validity domain. Only some of the passible third-level validity domain are shown here.

scheme. This is a 'second-level validity domain'. It is associated to the partitioning scheme through a process we call 'prune-tocount'. Taxa that are not in all datasets in the partitioning scheme are pruned from the trees. If we note PSc_2 partitioning scheme $(A, B \cup C)$, the corresponding second-level validity domain (Fig. 1) would be:

$$V_{PSc_2} = V_A \cap V_{B \cup C}$$

In addition to using the definition of partitioning schemes of Li and Lecointre (2008), we also took into account all the 'partial partitioning schemes' (not shown in Fig. 1). These do not include all elementary datasets but have a larger second-level validity domain (a larger shared taxonomic sampling) than full partitioning schemes. This has the advantage of retaining more information about potentially reliable relationships.

The repetition index for a clade (Li and Lecointre, 2008) involves a comparison between the best number of occurrences of the clade across all possible partitioning schemes and the best number of occurrences of its contradictors. But here, different partitioning schemes (PSc_1 , PSc_2 , PSc_3 , etc.) can have different taxonomic samplings. The repetition index could be computed in the set of taxa common to all partitioning schemes, but this would entail an important loss of terminals. Therefore, the repetition index was also computed using all possible smaller sets of partitioning schemes, which potentially have a higher number of shared terminals.

Computing a repetition index which takes into account a given set of partitioning schemes, requires restricting the analysis (in terms of terminals) to the intersection of the validity domains of these partitioning schemes.

This second pruning step is performed in order to be able to compare clades from the different partitioning schemes of the set. We call it a 'prune-to-compare' process: if PSc_1, PSc_3 and PSc_4 are the partitioning schemes from which the clades to be compared are drawn, the comparison is made in a 'third-level validity domain' (noted W_1 , Fig. 1):

Extended N + 1

$$W_1 = V_{PSc_1} \cap V_{PSc_3} \cap V_{PSc_4}$$

Fig. 2. Maximum likelihood tree obtained by the analysis of the new RNF213 sequence data matrix under a GTR + I + Γ model with phyML Guindon and Gascuel (2003). Bootstrap proportions are reported for clades over 70%.

Fig. 3. Maximum likelihood tree obtained by the analysis of the combined matrix Rhodopsin + MLL + IRBP under a $GTR + I + \Gamma$ model with phyML Guindon and Gascuel (2003). Bootstrap proportions are reported for clades over 70%.

Table 4

Clades of interest extracted from the separate and multiple combined analyses and repetition index. New names are proposed for some of those reliable clades of the 'acanthomorph bush'. First column lists the contents of the clade; the name given to the clade refers to the last common ancestor to the taxa indicated. Second column indicates by a cross the presence of the clade in Fig. 2. A blank means that the clade is not recovered in the tree Fig. 2 and a question mark indicates that the presence of the clade cannot be assessed either because of an incomplete taxonomic sampling or because of irresolution. Third column indicates presence of clades in Fig. 3. Fourth column indicates presence of clades in Fig. 4. The mention 'x – 1' indicates that a single taxon escapes from the clade (generally a long branch). Fifth column indicates presence of the clade in the summary tree of Fig. 5. Sixth column gives the letter associated to the clade in Chen et al. (2003) and Dettaï and Lecointre (2005, 2008) and proposes letters for new clades (P, P', R, S, T, U, V, W, Y, Z, L', L'', M', M''). Seventh column refers to the presence of the clade in the study of Dettaï and Lecointre (2008) based on the studies of Miya et al. (2003, 2005) based on independent mitochondrial sequence data; ninth column in the study of Mabuchi et al. (2007) using the same genes as in Miya et al. (2005) and tenth column in the study of Smith and Craig (2007) based on mitochondrial and nuclear data independent from both Dettaï and Lecointre (2005) and Miya et al. (2005). In these last five columns, question marks are given either when taxonomic sampling is insufficient or the interrelationships unresolved. The last column proposes a name to some of the clades in the study.

Last common ancestor to	Fig. 2	Fig. 3	Fig. 4	Fig. 5	Nomenclature (Chen et al. and this study)	Dettai and Lecointre (2008)	Miya et al. (2003, 2005)	Mabuchi et al. (2007)	Kawahara et al. (2008)	Smith and Craig (2007)	Names (new ones in bold)
Zeioidei, Gadiformes	х	х	х	х	А	х	х	?	?	?	Zeioigadiformes
Zeioidei, Gadiformes, Polymixiiformes	?				0	х		?	?	?	-
Lampridiformes, Percopsiformes	?	?	?	х		х		?	?	?	
Lampridiformes, Percopsiformes, Polymixiiformes	?	?	?	х				?	?	?	
Zeioidei, Gadiformes, Polymixiiformes, Lampridiformes, Percopsiformes	?	?	?	х	Р	х		?	?	?	
Trachichthyoidei, Berycoidei, Holocentroidei	х				В		х	?	?	?	Beryciformes (after Chen et al., 2003)
P sister-group of the rest of acanthomorpha	?	х	х	х		х	?	?	?	?	
Ophidiiformes sister-group of non-P and non beryciform and non Stephanoberyciformes acanthomorphs		х	х	х	P'	?	х	х	х	?	Percomorpha (<i>sensu</i> Miya et al., 2003)
Mugiloidei, Atherinomorpha	?				С	?	?			?	
Blennioidei, Gobiesocoidei	?	х	х	х	D	х	х	х	х	?	Blenniiformes
Mugiloidei, Plesiopidae	?	х	х	х	Y	?	?	?	?	?	
Mugiloidei, Plesiopidae, Blenniiformes, Atherinomorpha, Cichlidae	х		х	x – 1	Q	х	x?	x?	B?	x?	Stiassnyiformes
Apogonidae, Gobioidei				х	W	?	?	?	?	?	
Syngnathidae, Callionymoidei, Mullidae	х		х		E'	?	?	?	?	?	
Centrolophidae, Bramidae, Nomeidae, Scombridae, Trichiuridae, Chiasmodontidae	х	х	х		U	?	?	?	?	?	
Stromateidae, Centrolophidae, Bramidae, Nomeidae, Scombridae, Trichiuriae, Chiasmodontidae	х	х	х	х	Н	х	?	?	?	x?	Stromateoidei , new definition
Dactylopteridae, Aulostomidae, Macrorhamphosidae	?	х	х	x – 1	Е	?	?	?	х		
Stromateoidei + E	?	х	х	x – 1	S	?	?	?	?		
Channidae, Anabantidae	х	х	х	х	f1	х	?	?	?	?	Labyrinthoidei
Symbranchidae, Mastacembelidae	?	х	х	х	f2	х	х	х	A?	?	Synbranchiformes
Channidae, Anabantidae, Mastacembelidae, Symbranchidae, Indostomidae	х	х	х	х	F	х	?	?	A?	?	Anabantiformes
Uranoscopidae, Ammodytidae, Cheimarrichthyidae, Pinguipedidae	х	х	х	х	G	х	?	?	?	x?	Paratrachinoidei
Sciaenidae, Haemulidae	х	х	?	х	M′	?	?	?	?		
Centrarchidae, Moronidae, Elassomatidae				х	M″	?	?	?	?		
Cottoidei, Zoarcoidei					I	х				х	
Zoarcoidei, Gasterosteidae		х	х	х	I	?	х	х	х		Zoarciformes
Cottoidei, Zoarcoidei, Gasterosteidae	х	х	х	х	Is	?	х	х	х	х	Cottimorpha
Cottoidei, Zoarcoidei, Gasterosteidae, Triglidae	х	х	х	х	Isc	?	х	?	?	х	Triglimorpha
Cottoidei, Zoarcoidei, Gasterosteidae, Triglidae, Scorpaenidae, Sebastidae, Synanceiidae, Congiopodidae	х		х	х	Z	?	?	?	?		
Notothenioidei, Percophidae	?	?	?				?	?	?	F	Notothenioidi Smith and Craig (2007)
Notothenioidi, Niphon, Acanthistius, Percidae							?	?	?	Е	Percoide
Notothenioidei, Trachinidae	х		х	x-1	Т		?	?	?	(continued on next page)

Last common ancestor to	Fig. 2	Fig. 3	Fig. 4	Fig. 5	Nomenclature (Chen et al. and this study)	Dettaï and Lecointre (2008)	Miya et al. (2003, 2005)	Mabuchi et al. (2007)	Kawahara et al. (2008)	Smith and Craig (2007)	Names (new ones in bold)
Notothenioidei, Percidae Notothenioidei, Percidae, Triglimorpha, Trachinidae, Scorpaenidae, Sebastidae, Synanceiidae, Serranidae, Congiopodidae	×	×	×	x - 1	ХX	×	2	ć ć	? G?	×	Serraniformes
Carangoidei stem group of Echeneidae and Coryphaenidae	×	× ;	× ;	× ;	Ľ,	× r	~ c	~ · ·	د. د	د	
sphyraemdae sister-group of t. Pleuronectiformes, Centropomidae, Carangidae, Coryphaenidae, Menidae, Sphyraenidae, Polynemidae,	×	× ×	x - 1	x x - 1	ت ت	~ ×	x?	, x?	E2	x7	Carangimorpha
Carangimorpha, Anabantiformes Tetraodontiformes, Lophiformes, Caproidei, Elassomatidae, Acanthuridae, Siganidae, Pomacanthidae, Drepanidae, Chaetodontidae	× ~	×	×		> Z	~ ×	2 ×7	2 x?	Н?	~ ~	
Extended N Labridae, Scaridae	x + 1 x	x - 2 x	x - 1 x	×	W	x X	; ۲۲	×?	Н + G? ?	ذ	Labroidei <i>sensu</i>
Percichthyidae, Epigonidae, Lateolabracidae	×		×	×	R	2	2	<i>ż</i>	?	x	Epigonoidei

This pruning and comparing step is done for all combinations of partitioning schemes and leads to several third-level validity domains $(W_1, W_2, W_3,$ etc. Only some of them are represented in Fig. 1).

Thus, within each *W*, each clade has a first order repetition index, which is the maximum number of occurrences found among the involved partitioning schemes by counting all clades corresponding to the clade under focus before the pruning process. Then, the best first order repetition index found among the contradictors of the clade under focus within the same *W* is subtracted from this first order repetition index as described in Li and Lecointre (2008). This procedure associates a repetition index to each clade, each association being defined in a particular *W*.

The procedure can be summarized as follows (see also Fig. 1):

- 1. Analyze each dataset (elementary datasets and all possible combinations thereof).
- 2. Arrange the data into partitioning schemes (sets of independent datasets) and, for each of them, determine the corresponding validity domain (set of included terminals). The validity domain of a partitioning scheme (second-level validity domain, noted V_{PSc}) is the intersection of the validity domains of its constituent datasets (first-level validity domains, noted V).
- 3. For each partitioning scheme, prune the taxa not in the validity domain of the partitioning scheme from the trees and record the clades in the pruned trees with their number of occurrences (whenever a number of clade occurrences is used, a sum of support values could be used instead).
- 4. Combine the partitioning schemes and determine the validity domain of each of the possible combinations (third-level validity domains, noted *W*). The validity domain of a combination of partitioning schemes is the intersection of the validity domains of its constituent partitioning schemes. Group together combinations that have the same validity domain.
- 5. For each of the preceding validity domains (*W*), prune the taxa that are not in the validity domain from the clades found in the associated combinations of partitioning schemes. For each distinct resulting clade, keep as first order repetition index the best number of occurrences found among the clades that, once pruned, become the clade under focus.
- 6. Within each third-level validity domain, proceed as in Li and Lecointre (2008) to obtain the final repetition indices.

In order to take robustness into account, the repetition index can also be based on sums of bootstrap proportions instead of sums of occurrences. In the present reliability analyses, to accommodate for the uncertainty entailed by the use of heavy heuristics, bipartition occurrences were weighted by their bootstrap supports across 100 resamplings. But pruning taxa from a tree causes the fusion of several internal branches. The highest bootstrap support among fused branches was used to weight the bipartition delimited by such fused branches. We consider this choice justified because in order to collapse a clade, one must break its branch. The clade resulting from taxon pruning in a restricted validity domain is the 'heir' of one or more pre-pruning clade(s), as they differ only with respect to the terminals that have been pruned. This new clade may thus be supported by several successive branches in the original tree, each of which has to be broken. This clade can therefore be considered to be as strong as the strongest of its 'ancestors' in the original trees.

2.7. Displaying reliable clades

Some clades repeated in the separate analyses can be absent from the tree based on all available data. This has been shown theoretically (see the clade BCD in Barrett et al., 1991, Fig. 1) as well as

Fable 4 (continued

Fig. 4. Maximum likelihood tree obtained by the analysis of the combined matrix of the four nuclear genes ('total evidence') under a GTR + I + Γ model with phyML (Guindon and Gascuel, 2003). Bootstrap proportions are reported for clades over 70%.

empirically (Dettaï and Lecointre, 2004, Figs. 4 and 5 therein). This is one of the grounds to conduct both separate and simultaneous analyses (Nixon and Carpenter, 1996). A tree summarizing the clades considered reliable has to be constructed to allow the visualization of the possible discrepancies. To synthesize the results of the reliability analysis, we used a supertree approach derived from the MRP method (Baum and Ragan, 2004): the bipartitions with positive repetition indices from the various third-level validity domains were gathered in a matrix representation and weighted by their repetition indices. This matrix was analyzed under maximum parsimony.

3. Results

3.1. Effect of RNF213 on support

Fig. 2 is the tree based on RNF213 sequence data only. The marker allows to recover clades already recorded in previous molecular phylogenies (Dettaï and Lecointre, 2005, 2008, Table 4), namely A, D, E', F, G, H, E' + H, L, M, Q, X, Is, Isc, P (Zeioidei, Gadiformes, Polymixiiformes, Percopsiformes and Lampridiformes, as in Dettaï and Lecointre, 2008, submitted for publication).

Clade N (Dettaï and Lecointre, 2005, 2008; Yamanoue et al., 2007; Kawahara et al., 2008; Holcroft and Wiley, 2008) fails to ap-

pear. Lophilforms and *Siganus* are out of it, though without resolution. Resolution inside N is also very poor. Clade B is the monophyly of Beryciformes *sensu lato* (Chen et al., 2003; Miya et al., 2005), however that clade is not repeated throughout studies. Clades C and O are not recovered because of incomplete taxonomic samplings, while clades I, J, K are contradicted.

Comparing Fig. 3 (combination of Rhodopsin, MLL and IRBP) to Fig. 4 (combination of all four markers), it is not clear whether RNF213 sequence data are able to improve resolution. More investigation is needed to establish whether clade N should also include (as in Fig. 3) Monodactylidae and Lutjanidae (they should according to Yamanoue et al., 2007; Holcroft and Wiley, 2008), Leiognathidae, Cepolidae, Labridae, Scaridae and Moronidae (the last three are closely related in Dettaï and Lecointre, submitted for publication), Centrarchidae, Elassomatidae (as suggested in Dettaï and Lecointre, submitted for publication), Callanthiidae, Priacanthiidae, Caesionidae, Malacanthidae, Datnioididae, and Scatophagidae, Sciaenidae and Haemulidae (as in Chen et al., 2007). The previously described clade N plus the families listed above constitute a working hypothesis that we call here 'extended N'. That clade is rendered paraphyletic in Fig. 4 ('total evidence') and Fig. 5 (supertree based on reliability indices). If those topologies are to be trusted, it could be extended again to contain Kyphosidae, Aplodactylidae, Cheilodactylidae, Sparidae, Champsodontidae and clades X, G and R.

Fig. 5. Supertree exhibiting the clades having the highest repetition indices (Li and Lecointre, 2008) in the partial combination and validity domains approach. The tree is the majority-rule consensus of the most parsimonious trees obtained by 10,000 RAS + TBR parsimony analyses by PAUP^{*} (Swofford, 2002) of the matrix representing the clades with positive repetition indices, weighted by their repetition indices. The values above the branches are the percentages of equally parsimonious trees that include the clades. The illustrations come from Fishbase (Froese and Pauly, 2006).

In Figs. 3 and 4, clade H is the sister-group of clade E (forming together clade S) while clade H is the sister group of E' in Fig. 2 (RNF213 data only). This E' + H clade might be due to the lack of taxa of clade E in the RNF213 dataset.

3.2. New results from RNF213 sequence data

The new RNF213 sequence data adds some interesting results, while others come from the addition of new taxa to the previously published samplings.

The ability of RNF213 sequence data to get more clades can be assessed through clades absent from Fig. 3 and present in Figs. 2 and 4:

- Clade Q (Dettaï and Lecointre, 2005, 2008) is recovered (Gobiesociformes, Blennioidei, Atherinomorpha, Mugiloidei, Pomacentridae) with a new member, the Plesiopidae;
- Family Plesiopidae is in clade C, probably as sister-group to the Mugiloidei;

- Clade E': Mullidae, Callionymidae, Syngnathidae. That clade is not new, already proposed in Dettaï and Lecointre (submitted for publication) and not contradicted by Kawahara et al. (2008) because of poor support within their clade 'D' and absence of any mullid or callionymid;
- Clade R: Howellidae, Lateolabracidae and Epigonidae. It was already present in Smith and Craig (2007);
- Clade T: Notothenioidei, Trachinidae due to the addition of *Echiichthys*;
- Clade Z: Cottoidei, Zoarcoidei, Gasterosteidae, Triglidae, Scorpaenidae, Sebastidae, Synanceiidae, Congiopodidae. That clade is a beginning of structuration within clade X (Dettaï and Lecointre, 2004).
- Clade S (E + H) because members of E are present in Figs. 3 and 4;
- Indostomidae is a member of clade F because Indostomus is added (also found by several studies, Miya et al., 2003, 2008);
- Clade U: *Pampus* (Stromateidae) sister-group of all other members of H in Figs. 2–4;

Fig. 5. (continued)

- Clade V: L + F in Figs. 3 and 4;
- Clade L': Coryphaenidae and Echeneidae nested within the Carangidae.

Fig. 5 is the supertree summarizing the reliable clades. When this tree is compared to Fig. 2, it appears that some of the new clades listed above were recovered by RNF213 only.

- Clade R: Epigonidae, Lateolabracidae and Howellidae form a clade (as in Smith and Craig, 2007);
- Indostomidae is a member of clade F (as in Miya et al., 2003; Kawahara et al., 2008);
- Clade Q including the Plesiopidae;
- Clade T (Notothenioidei, Trachinidae, contradicting the clade K of Dettaï and Lecointre (2004, 2005).

These clades are an indication that the new marker has the potential to help to the emergence of some not yet identified reliable clades, while it also has the potential to recover clades previously recorded as reliable, like A, D, Q, H, f1, f2, F, G, Is, Isc, X, L, M.

The comparison of Fig. 5 with Fig. 4 is interesting to evaluate whether there are reliable clades that do not appear in the tree based on the simultaneous analysis of all datasets ('total evidence'). It is indeed the case for the following clades:

- Clade W: Apogonidae and Gobioidei;
- Clade M': Sciaenidae and Haemulidae;
- Clade M": Centrarchidae, Moronidae and Elassomatidae;

This discrepancy has already been described (Dettaï and Lecointre, 2004), and is not entirely surprising as the tree based on the whole data can be perturbed by the usual pitfalls of phylogenetic reconstruction like any other tree.

Symmetrically, some clades from the total evidence approach are not found in Fig. 5:

- Clade E' (Figs. 2 and 4);
- Clade U (Figs. 2-4);
- Clade V (Figs. 2–4);

These clades are intuitively more problematic because they are found from different trees based on independent data. Clades U and V are striking examples. They are repeated from independent data (Fig. 2: RNF213 data only, and Fig. 3: all other data) while they are not recovered using the multiple combinations protocol.

4. Discussion

4.1. New names for new reliable clades

A number of clades had already been recovered in the previous studies and will not be further discussed (Chen et al., 2000, 2003; Dettaï and Lecointre, 2004, 2005, 2008, submitted for publication): A, C, D, E, F, G, H, J, K, L, N, M, P'. We will focus here on the new results. In both cases, new names are proposed for some of these clades (Table 4)

- Clade Y: Plesiopids (roundheads) are the sister-group of the Mugiloidei (grey mullets). This has not been proposed before, and was not found by Smith and Craig (2007), as they had no mugiloid included.
- The large clade Q contains the Mugiloidei (grey mullets), the Plesiopidae (roundheads), the Atherinomorpha (guppies, pupfishes, silversides, needlefishes), the Pomacentridae (damselfishes), the Blennioidei (blennies) and the Gobiesociformes (clingfishes). The group was present with a more reduced sampling in Chen et al. (2003) and Miya et al. (2005), as there were no cichlid, no pomacentrid and no plesiopid; Dettaï and Lecointre (2005) added a cichlid but no pomacentrid and no plesiopid. Different studies showed that the Cichlidae were close to a group containing the Atherinomorpha (Chen et al., 2003, 2007; Dettaï and Lecointre, 2005; Mabuchi et al., 2007) and not to the other members of the six-family labroidei: Labridae and Scaridae (Dettaï and Lecointre, 2005: Mabuchi et al., 2007: Chen et al., 2007). Among these studies, the best taxonomic sampling is reached by Mabuchi et al. (2007) showing that the Pomacentridae, the Embiotocidae (surfperches) and the Cichlidae are close to each other (their clade 'B') and to members of what we call here clade Q, while the Odacidae (cales), the Scaridae (parrotfishes) and the Labridae (wrasses) form a clade (their clade 'A') and are members of what we call here the 'extended clade N'. These results are clearly corroborated by Chen et al. (2007) from independent nuclear and mitochondrial sequence data. The Labroidei are therefore diphyletic and the specialized 'labroid' pharyngeal jaw apparatus evolved twice. Here the cichlids (Haplochromis) have an undetermined position within clade Q, while the Blennioidei are the sister-group of the Gobiesociformes (clade D, Chen et al., 2003). It must be noticed that the family Pseudochromidae (dottybacks) may also be a member of clade Q according to the position of Labracinus in the tree of Mabuchi et al. (2007). This is corroborated by the tree of Smith and Craig (2007) where another pseudochromid, Pseudochromis, lies within a clade corresponding to the present clade Q (Cichlidae, Blennioidei, Atherinomorpha). But gobiesociforms and mugiloids are absent in their dataset and some families missing from ours integrate their equivalent of clade Q: Opisthognathidae (jawfishes), Grammatidae and Pholidichthyidae. An interesting feature emerges from the comparison of all these studies. Clade Q may contain the Atherinomorpha, the Mugiloidei, the Plesiopidae, the Pomacentridae, the Cichlidae, the Embiotocidae, the Blennioidei, the Gobiesociformes, the Pseudochromidae, the Opisthognathidae, the Grammatidae and the Pholidichthyidae. A closer look for possible morphological characters uniting all these taxa yielded one candidate. Mooi (1990) records adhesive chorionic filaments arranged around the micropyle of the demersal egg in grammatids, opisthognathids, pomacentrids, plesiopids and apogonids (the latter is not in Q here but in clade W, see page 21). Such eggs are found in pseudochromids (Mooi, 1993) and in plesiopids sensu lato (i.e. including acanthoclinids Mooi, 1993 and notograptids Gill and Mooi, 1993). Gill and Mooi (1993) also record such demersal eggs with filaments in blennioids (here clade Q) and gobioids (here in clade W), as did Breder and Rosen (1966). Parenti (1993) records these eggs as a synapomorphy of the Atherinomorpha (viviparity in that group being a derived condition). Additionally Smith and Wheeler (2004) mention these eggs in the Cichlidae, and Breder and Rosen (1966) in the Gobiesocidae and the Kurtidae (probably in clade W). These eggs are recorded in 9 of the 12 potential components of clade Q. The Mugiloidei and the Embiotocidae do not have these eggs (Breder and Rosen, 1966), but these conditions may be reversals, as mugiloids are the sister group of plesiopids and embiotocids are grouped with cichlids and pomacentrids. Demersal eggs with filaments may

therefore be a synapomorphy of the clade. The presence of this character state also in gobioids, kurtids and apogonids remains to be explained. It could have been gained by convergence, but this needs an in-depth comparison to explore the homology in and between these two groups. Alternatively, demersal eggs with chorionic adhesive filaments could also be a synapomorphy of a clade W + Q, however more resolution is needed to test that hypothesis.

- Clade W: Apogonidae (cardinalfishes) are closely related to the Gobioidei in our Fig. 5 (as in Smith and Wheeler, 2006), while Apogon is grouped with Kurtus in Smith and Craig (2007) in the absence of gobioids. Kurtus is found to be the sister-group of Apogon and gobies in Smith and Wheeler (2006). Interestingly, horizontal and vertical rows of sensory papillae on the head and body are exclusively shared by Apogonidae, Kurtidae (nurservfishes), Gobioidei (gobies) and Champsodontidae (crocodile toothfishes) (Johnson, 1993, p. 18). However, here Champsodon fails to cluster with the apogonid and gobioidei representatives. On the basis of anatomical data, Prokofiev (2006) stresses a close relationship between the Apogonidae and the Kurtidae (without mentioning the Gobioidei). Comparison of different studies and Smith and Wheeler (2006) suggest that a clade 'W' at least composed of Apogonidae, Kurtidae and Gobioidei is worth being investigated further. Like clade Q, this clade would also be supported by the presence of eggs with chorionic adhesive filaments (see page 20). Apogonids and kurtids were not among the potential sister-groups of the Gobioidei identified by Winterbottom (1993): trachinoids, gobiesocoids, hoplichthyids and other scorpaeniforms. However, apogonids and kurtids were not included in his study.
- Clade T (notothenioids more closely related to trachinids than to percids) contradicts the clade K of Chen et al. (2003) and Dettaï and Lecointre (2004, 2005) where the perches (Percidae) are the most closely related group to Antarctic fishes (Notothenioidei). Nonetheless, in Chen et al. (2003) as well as in Dettaï and Lecointre (2004, 2005), Trachinus (Weeverfish) was always placed very close to clade K. Interestingly, in Smith and Craig (2007) Bembrops (Percophidae), Acanthistius (Serranidae, Anthiinae) and Niphon (Serranidae, Epinephelinae) are inserted between percids and notothenioids and Trachinus is branched off far away, among serranids. On the contrary, in Smith and Wheeler (2006) trachinids are more closely related to notothenioids than percids, while Bembrops is still the closest to notothenioids. In our summary tree (Fig. 5), Niphon is among serranids and Acanthistius has an undertermined position. Sequence data for the genes analyzed here would be much needed for Bembrops, to test their effects on the relative positions of trachinids and percids and get a clearer idea about the sister-group of notothenioids.
- Clade Z is providing more precision within clade X: Synanceiidae (stonefishes), Scorpaenidae (scorpionfishes and rockfishes), Congiopodidae (pigfishes) and Sebastidae (thornyheads) constitute the stem-group of clade Isc. Clade Z cannot be identified in most other studies because of insufficient taxonomic sample overlap. In Smith and Craig (2007) the clade is very well represented by 33 terminals however it is not recovered because the Synanceiidae branches outside it and a clade made of the Bembridae (deepwater flatheads), Plectrogeniidae, and their 'clade E' (notothenioids, percids, percophids, anthines) is included in it. It is important to note that we have identified clade X and clade Z without taking into account single unstable taxa 'escaping' with no determined position. In fact, the problematic four taxa (Acanthistius, Pseudaphritis, Liopropoma, Plectropomus) have sequences for one marker only and have question marks for all the other genes. More data are needed to stabilize their position. Moreover, the pinguipedid *Parapercis* (grubfishes and sandperches)

is nested among serranids in Fig. 5. In Smith and Craig (2007) it is close to other trachinoid families like Ammodytidae (sandlances) and Cheimarrichthyidae (torrentfish), like in our Fig. 2. The position of *Parapercis* in Fig. 5 must be taken with caution. Indeed, clade G includes *Pinguipes* in Fig. 5 (along with three formerly 'trachinoid' families Ammodytidae, Uranoscopidae (stargazers), Cheimarrichthyidae) and in Fig. 2 the two pinguipedids *Pinguipes* and *Parapercis* are both placed in clade G. More sequence data is needed for *Parapercis* before a conclusion can be drawn on the mono- or polyphyly of the Pinguipedidae.

- Clade S (H and E) is recovered in Figs. 3–5; it does not appear in other studies because of the lack of overlap between the taxonomic samplings. In Chen et al. (2007), there is a 'backbone' of clade E' + H with *Mullus* (E') associated to *Scomberomorus* and *Psenopsis* (H). The study of Kawahara et al. (2008) dealing with the polyphyly of the Gasterosteiformes from independent sequence datasets using a complete sampling of that order at the family level includes no member of our 'clade H'. Moreover the position of their 'clade C' (containing *Macrorhamphosus, Aulostomus* and dactylopterids) is poorly supported, leaving the question open.
- The Gasterosteiformes are polyphyletic, with indostomids (armored sticklebacks) within clade F (with synbranchiformes) and gasterosteids (sticklebacks) closely related to the Zoarcoidei (eelpouts), a result fully confirmed by independent data in Miya et al. (2003) and in Kawahara et al. (2008) with a much larger sampling for gasterosteiform. In Kawahara et al. (2008), the Syngnathoidei are paraphyletic, including dactylopterids (flying gunards). Gasterosteoids are closer to the Zoarcoidei and indostomids closer to symbranchiforms. Interestingly, here, part of the Syngnathoidei (Macrorhamphosus and Aulostomus) are close to the Dactylopteridae (clade E) however other syngnathoids (Aeoliscus, Syngnathus, Hippocampus and Nerophis) never group with them, probably because they have long branches. Though they concluded from comparative anatomy and bone development that indostomids were gasterosteoid gasterosteiforms. Britz and Johnson (2002) mentioned a feature that is shared by indostomids and mastacembelids (though also by most other gasterosteoids): the lack of distal radials in all pterygiophores supporting fin spines at all developmental stages.
- Clade M' (Sciaenidae (croakers) and Haemulidae (grunts)) has not been found by molecular studies because of lack of representatives included for these families. However, Smith and Craig (2007) did sample those two families but they do not appear related to each other in their tree. Also, from partially independent sequence data in Chen et al. (2007), haemulids appear close to lutjanids and sparids while sciaenids are closer to drepanids and chaetodontids.
- The same applies for clade M" grouping the Centrarchidae (sunfishes), the Moronidae (temperate basses) and the Elassomatidae (pygmy sunfishes). Moreover, that clade contradicts the association of the Moronidae in Dettaï and Lecointre (submitted for publication) with some members of the labroids (i.e. labrids and scarids) and some members of the polyphyletic trachinoids. In Chen et al. (2007), *Elassoma* is not related to moronids and this family is closer to labrids and scarids. Clade M" should be evaluated again with more taxa.
- Clades L' and L" are structuring the inside of clade L. Carangids (jacks and pompanos) are placed as the stem group of the Echeneoidea (*sensu* Johnson, 1993), represented here by Echeneidae (remoras) and Coryphaenidae (dolphinfishes). The Sphyraenidae (barracudas) are the sister-group of carangoids (carangids plus Echeneoidea). Johnson (1984, 1993) defined the Carangoidei as the Carangidae, Echeneidae, Rachycentridae, Nematistiidae and Coryphaenidae. Those clades L' and L" have not been found by

previous molecular studies because of the lack of representation of these groups. The exception is Smith and Wheeler (2006), who confirm these two clades. Smith and Craig (2007) did find an equivalent of L but did not find any clade compatible with clade L" as the Sphyraenidae are branched well within L.

- Clade R: Epigonus, Howella, and Lateolabrax form a clade (already found by Smith and Craig (2007)) suggesting close relationships of Howella, Lateolabracidae (Asian seaperches) and Epigonidae (deepwater cardinalfishes). Interestingly, the study of Smith and Craig (2007) includes other percichthyid genera (namely Bostockia, Gadopsis, Macquaria, Nannoperca), but Howella is not grouped with them but within their equivalent of clade R, suggesting the polyphyly of the Percichthyidae. This would not be surprising as the family is known to be poorly defined (Nelson, 1994). Prokofiev (2007) even erected a new family with three genera (Howellidae) on the basis of several osteological features. Other families like Polyprionidae (wreckfishes), Dinolestidae (long-finned pike), Pentacerotidae (armorheads), Acropomatidae (lanternbellies) appear in Smith and Craig (2007) as more closely related to the clade grouping Howella, Epigonus and Lateolabrax than Howella is to the other Percichthyidae. Sequence data for more markers from all those key taxa would be of interest to confirm the polyphyly of the Percichthyidae.
- Clade P is interesting. As a large clade located at the base of the acanthomorph tree, it has been difficult to find because of longbranch attractions in molecular studies of acanthomorph phylogeny. Long-branch attractions tend to attract the longest branches towards the outgroups (which have long branches by definition, see for example Dettaï and Lecointre, 2005) and create comb-like tree shapes at the most basal parts of the trees. Clade P groups Polymixiiformes (beardfishes), Percopsiformes (trout-perches), Lampridiformes (oarfishes and opahs), Zeioidei (dories), and Gadiformes (cods). The clade appears in Dettaï and Lecointre (2008) and is only partial in Dettaï and Lecointre (2005). It is contradicted by studies using complete mitochondrial sequence data (Miya et al., 2001, 2003, 2005, 2007) on a single point: the Lampridiformes are attracted to a non-acanthomorph group (either Myctophiformes or Ateleopodiformes). In Miya et al. (2007), RAG1 places Lampridiformes sister to the Acanthopterygii. Our large-scale clade P contains two orders of the former paracanthopterygians (Percopsiformes and Gadiformes) and during the last ten years the polyphyly of the Paracanthopterygii has been demonstrated several times by independent teams and data: the Lophiiformes are members of clade N, the Gobiesociformes members of clade D and the Batrachoidiformes the sister-group of what we call here clade F (Miya et al., 2005).
- Basal Acanthomorpha: present results corroborate that clade P is the most basal among acanthomorphs sampled here and that ophidiifoms (cusk-eels) are the sister-group of non-P and nonberyciform acanthomorphs (as in Miya et al., 2003, 2005).

A number of groups are found in several trees however they are absent from Fig. 5 and not considered to be reliable. They can be used as working hypotheses.

- Clade U: *Pampus* (Stromateidae) sister-group of all other members of H in Figs. 2–4;
- Clade V: Carangimorpha (L) + Anabantiformes (F) found in Figs. 2–4;
- Extended N: clade N including Monodactylidae (fingerfishes), Lutjanidae (snappers), Leiognathidae (ponyfishes), Cepolidae (bandfishes), Labridae (wrasses), Scaridae (parrotfishes) and Moronidae, Centrarchidae, Elassomatidae, Callanthiidae (groppos), Priacanthiidae (bigeyes), Caesionidae (fusiliers), Scatophagidae (scats), Malacanthidae (tilefishes), Datnioididae

(tigerperches), Kyphosidae (sea chubs), Aplodactylidae (marblefishes), Cheilodactylidae (morwongs), Sparidae (porgies), Champsodontidae (crocodile toothfishes), clades X, G, M' and R.

As discussed above, a clade can be considered reliable when it has been recovered on several independent datasets, and whenever possible by several teams independently. New clades are hypotheses of interrelationships that need to be tested through various sources of data by other teams before being accepted by the community. This is why new clades temporarily received letters (as in Chen et al., 2003; Kawahara et al., 2008; Dettaï and Lecointre, 2005; Dettaï and Lecointre, 2008) suggesting that they were working hypotheses. However, as letters differ from one study to another for the same clades, a need for stabilization emerges. Once the new clades are sufficiently corroborated, it becomes necessary to give them names, for convenience' sake. In the case of acanthomorphs, the new names were proposed by Johnson and Patterson (1993). Almost none of the molecular studies of large-scale acanthomorph interrelationships (Chen et al., 2000, 2003; Wiley et al., 2000; Miya et al., 2001, 2003; Dettaï and Lecointre, 2004, 2005, 2008; Smith and Wheeler, 2004, 2006) proposed new names. It is striking that, while many clades were recovered several times from independent genes and teams, they still remain unnamed. Table 4 proposes names for the clades that have been repeatedly recovered in the molecular phylogenies of acanthomorphs.

All the 311 (Nelson, 2006) acanthomorph families have not yet been included in a single study. However this is not an obstacle and recommendations for names can be made progressively as new families are included. Smith and Craig (2007) added new evidence and summarized results from different studies. They then proposed new and necessary delimitations for serranids, percoids, trachinoids, resurrected epinephelids and niphonids, and created the Moronoidei. We have a single minor point of disagreement with their propositions: they proposed to incorporate the Notothenioidei and the Percophidae into the new Notothenioidea. 'Notothenioidei' has the suborder termination: while 'Notothenioidea' has the super family termination: the second cannot contain the first. Therefore, the name Notothenioidea should be replaced by the name Notothenioidi. The status of our Notothenioidiformes with regard to Smith and Craig's Percoidei will be clarified once sequences of Niphon, Acanthistius and Bembrops will be accessible for the present four molecular markers.

4.2. Supertrees and reliability

In Li and Lecointre (2008), since all trees were built on the same set of taxa, the repetition indices could easily be mapped on the summary tree. Here, the MRP supertree plays the role of a summary tree and is obtained from several partially-overlapping third-level validity domains. Since the repetition indices that were used to weight the clades are only valid in their restricted validity domains, no repetition index is displayed on the supertree. MRP is known to have biases. Even if the bipartitions were weighted according to their repetition indices, the reliability of clades shown in the summary tree holds if the supertree method used is itself accurate. Moreover, our conclusions could be affected by some taxa with undetermined position because the method (supertree based on clades weighted according to Li and Lecointre's repetition index) does not seem to handle well taxa present in only one elementary dataset (e.g. as a result Acanthistius, Plectropomus and Liopropoma do not join serranids, Aeoliscus does not group with macrorhamphosids, Centropomus is not close to Lates, Balistes fails to join the Tetraodontiformes, Pseudaphritis fails to join notothenioids, Encheliophis is not close to Echiodon). The interpretation given to clades present in the 'total evidence' tree (Fig. 4) and not in Fig. 5—as a possible bias in the tree from the 'total evidence'—must therefore be taken with caution.

Acknowledgments

This work was supported by the 'Consortium National de Recherche en Génomique', and the 'Service de Systématique Moléculaire' of the Muséum National d'Histoire Naturelle (IFR 101). It is part of the agreement number 2005/67 between the Genoscope and the Muséum National d'Histoire Naturelle on the project 'Macrophylogeny of life' directed by Guillaume Lecointre. Part of this work was carried out by using the resources of the Computational Biology Service Unit from the Muséum National d'Histoire Naturelle (MNHN) which was partially funded by Saint Gobain. Thanks to Damien Hinsinger for some of the new MLL sequences. Thanks to Bruno Chanet and Laure Corbari for help and advice. The name 'Stiassnyiformes' is proposed for clade Q, refering to the title of the paper of Stiassny (1993).

Figures were prepared using TikZ (http://sourceforge.net/projects/pgf/), TreeGraph (Müller and Müller, 2004), Inkscape (http://www.inkscape.org/) and Ipe (http://tclab.kaist.ac.kr/ipe/).

References

- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (17), 3389–3402.
- Barrett, M., Donoghue, M., Sober, E., 1991. Against consensus. Syst. Zool. 40 (4), 486–493.
- Baum, B., Ragan, M., 2004. The MRP method. In: Bininda-Edmonds, O. (Ed.), Phylogenetic supertrees: combining information to reveal the tree of life. Kluwer Academic, Dordrecht, The Netherlands, pp. 17–34.
- Breder, C.M., Rosen, D.E., 1966. Modes of reproduction in fishes. The Natural History Press, New York.
- Britz, R., Johnson, D., 2002. "paradox lost": skeletal ontogeny of *Indostomus paradoxus*, and its significance for the phylogenetic relationships of Indostomidae (Teleostei, Gasterosteiformes). Am. Mus. Novit. (3383), 1–43. http://hdl.handle.net/2246/2872.
- Bull, J., Huelsenbeck, J., Cunningham, C., Swofford, D., Waddell, P., 1993. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42 (3), 384–397.
- Chen, W.-J., 2001. La répétitivité des clades comme critère de fiabilité: application à la phylogénie des Acanthomorpha (Teleostei) et des Notothenioidei (acanthomorphes antarctiques). Ph.D. thesis, Université Paris VI Pierre et Marie Curie.
- Chen, W.-J., Bonillo, C., Lecointre, G., 2000. Taxonomic congruence as a tool to discover new clades in the acanthomorph (Teleostei) radiation. In: Program Book and Abstracts, 80th Annual Meeting ASIH, La Paz, México, June 14-20, 2000. American Society of Ichthyologists and Herpetologists, American Society of Ichthyologists and Herpetologists, p. 369.
- Chen, W.-J., Bonillo, C., Lecointre, G., 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262–288.
- Chen, W.-J., Ruiz-Carus, R., Ortí, G., 2007. Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. J. Fish Biol. 70, 202–218. http://dx.doi.org/10.1111/j.1095-8649.2007.01395.x.
- Dettaï, A., Lecointre, G., 2004. In search of nothothenioid (Teleostei) relatives. Antarct. Sci. 16 (1), 71–85. URL http://dx.doi.org/10.1017/S0954102004.
- Dettaï, A., Lecointre, G., 2005. Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. C.R. Biol. 328, 674–689.
- Dettaï, A., Lecointre, G., 2008. New insights into the organization and evolution of vertebrate IRBP genes and utility of IRBP gene sequences for the phylogenetic study of the Acanthomorpha (Actinopterygii: Teleostei). Mol. Phylogenet. Evol. 48 (1), 258–269. URL http://dx.doi.org/10.1016/j.ympev.2008.04.003.
- Dettaï, A., Lecointre, G., submitted for publication. Clade reliability in spiny teleosts. Foster, P.G., 2004. Modeling compositional heterogeneity. Syst. Biol. 53 (3), 485–
- 495. URL http://dx.doi.org/10.1080/10635150490445779. Froese, R., Pauly, D., 2006. Fishbase. World Wide Web electronic publication. URL www.fishbase.org, version (06/2006). URL www.fishbase.org.
- Gill, A.C., Mooi, R.D., 1993. Monophyly of the Grammatidae and of the Notograptidae, with evidence for their phylogenetic positions among perciforms. B. Mar. Sci. 52 (1), 327–350.
- Grande, L., 1994. Repeating patterns in nature, predictability, and "impact" in science. In: Grande, L., Rieppel, O. (Eds.), Interpreting the hierarchy of nature, 1st ed. Academic Press, New York, pp. 61–84.
- Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 (5), 696–704. URL http://dx.doi.org/10.1080/10635150390235520.

Hall, T., 2001. Bioedit version 5.0.6. North Carolina State University, Department of Microbiology.

- Holcroft, N.I., Wiley, E.O., 2008. Acanthuroid relationships revisited: a new nuclear gene-based analysis that incorporates tetraodontiform representatives. Ichthyol. Res. Online, 1–10. URL http://dx.doi.org/10.1007/s10228-007-0026-x.
- Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp, M., Clarke, L., Coates, G., Cox, T., Cunningham, F., Curwen, V., Cutts, T., Down, T., Durbin, R., Fernandez-Suarez, X.M., Gilbert, J., Hammond, M., Herrero, J., Hotz, H., Howe, K., Iyer, V., Jekosch, K., Kahari, A., Kasprzyk, A., Keefe, D., Keenan, S., Kokocinsci, F., London, D., Longden, I., McVicker, G., Melsopp, C., Meidl, P., Potter, S., Proctor, G., Rae, M., Rios, D., Schuster, M., Searle, S., Severin, J., Slater, G., Smedley, D., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Storey, R., Trevanion, S., Ureta-Vidal, A., Vogel, J., White, S., Woodwark, C., Birney, E., 2005. Ensembl 2005. Nucleic Acids Res. 33, 447–453. URL http://dx.doi.org/10.1093/nar/gki138.
- Johnson, D., 1984. Percoidei: development and relationships. In: Richards, W.J., Cohen, D.M., Fahay, M.P., Kendall, A.W., Jr., Richardson, S.L. (Eds.), Ontogeny and systematics of fishes (based on an international symposium dedicated to the memory of Elbert Halvor Ahlstrom). Allen Press, Lawrence, Kansas, pp. 464– 498.
- Johnson, D., 1993. Percomorph phylogeny: progress and problems. B. Mar. Sci. 52 (1), 3–28.
- Johnson, D., Patterson, C., 1993. Percomorph phylogeny: a survey of acanthomorphs and a new proposal. B. Mar. Sci. 52 (1), 554–626.
- Kawahara, R., Miya, M., Mabuchi, K., Lavoué, S., Inoue, J., Satoh, T., Kawaguchi, A., Nishida, M., 2008. Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives): A new perspective based on whole mitogenomes sequences from 75 higher teleosts. Mol. Phylogenet. Evol. 46, 224–236. URL http://dx.doi.org/10.1016/j.ympev.2007.07.009.
- Lecointre, G., Deleporte, P., 2005. Total evidence requires exclusion of phylogenetically misleading data. Zool. Scr. 34 (1), 101–117.
- Li, B., Lecointre, G., 2008. Formalizing reliability in the taxonomic congruence approach. Article accepted by *Zoologica Scripta*. URL http://dx.doi.org/10.1111/ j.1463-6409.2008.00361.x.
- Li, C., Lu, G., Orti, G., 2008. Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst. Biol. 57 (4), 519–539. URL http://dx.doi.org/10.1080/10635150802206883.
- Li, C., Orti, G., Zhang, G., Lu, G., 2007. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 7 (44), 1–11. URL http://dx.doi.org/10.1186/1471-2148-7-44.
- Mabuchi, K., Miya, M., Azuma, Y., Nishida, M., 2007. Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evolutionary Biology 7 (10), 1–12. URL http://dx.doi.org/10.1186/1471-2148-7-10.

Mickevich, M., 1978. Taxonomic congruence. Syst. Zool. 27, 143-158.

- Miya, M., Holcroft, N.I., Satoh, T.P., Yamaguchi, M., Nishida, M., Wiley, E.O., 2007. Mitochondrial genome and a nuclear gene indicate a novel phylogenetic position of deep-sea tube-eye fish (Stylephoridae). Ichthyol. Res. 54, 323–332. URL http://dx.doi.org/10.1007/s10228-007-0408-0.
- Miya, M., Kawaguchi, A., Nishida, M., 2001. Mitogenomic exploration of higher teleostean phylogenies: A case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol. Evol. 18 (11), 1993–2009.
- Miya, M., Satoh, T., Nishida, M., 2005. The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biol. J. Linn. Soc. 85, 289–306.
- Miya, M., Takeshima, H., Endo, H., Ishiguro, N., Inoue, J., Mukai, T., Satoh, T., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S., Nishida, M., 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol. 26, 121– 138.
- Miyamoto, M., Fitch, W., 1995. Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 44 (1), 64–75.
- Mooi, R.D., 1990. Egg surface morphology of pseudochromoids (Perciformes: Percoidei), with comments on its phylogenetic implications. Copeia (2), 455–475.

- Mooi, R.D., 1993. Phylogeny of the Plesiopidae (Pisces: Perciformes), with evidence for the inclusion of the Acanthoclinidae. B. Mar. Sci. 52 (1), 284–326.
- Müller, J., Müller, K., 2004. TreeGraph: automated drawing of complex tree figures using an extensible tree description format. Mol. Ecol. Notes 4, 786–788.
- Nelson, G.J., 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson's Familles des plantes (1763-1764). Syst. Zool. 28, 1–21.
- Nelson, G.J., 1989. Phylogeny of major fish groups. In: Jörnvall, H., Fernholm, B., Bremer, K. (Eds.), The hierarchy of life: molecules and morphology in phylogenetic analysis. Nobel Foundation, Excerpta Medica, Amsterdam, pp. 325–336.
- Nelson, J., 1994. Fishes of the World, third ed. John Wiley and Sons, Inc., Hoboken, New Jersey.
- Nelson, J., 2006. Fishes of the World, fourth ed. John Wiley and Sons, Inc., Hoboken, New Jersey.
- Nixon, K.C., Carpenter, J.M., 1996. On simultaneous analysis. Cladistics 12 (3), 221– 241. URL http://dx.doi.org/10.1111/j.1096-0031.1996.tb00010.x.
- Page, R., Holmes, E., 1998. Molecular Evolution. Blackwell Science, Oxford.
- Parenti, L.R., 1993. Relationships of the atherinomorph fishes (Teleostei). B. Mar. Sci. 52 (1), 170–196.
- Philippe, H., Douzery, E., 1994. The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. J. Mammal. Evol. 2 (2), 133–152.
- Prokofiev, A.M., 2006. A new genus of cardinalfishes (Perciformes: Apogonidae) from the south China sea, with a discussion of the relationships between the families Apogonidae and Kurtidae. J. Ichthyol. 46 (4), 279–291. URL http:// dx.doi.org/10.1134/S0032945206040011.
- Prokofiev, A.M., 2007. The osteology of *Bathysphyraenops symplex* and the diagnosis of the Howellidae (Perciformes: Percoidei) family. Journal of Ichthyology 47 (8), 566–578. URL http://dx.doi.org/10.1134/S0032945207080036.
- Rambaut, A., 2002. Se-Al, Sequence Alignment Editor, version 2.0a11. Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
- Rieppel, O., 2004. The language of systematics, and the philosophy of 'total evidence'. Syst. Biodivers. 2 (1), 9–19.
- Smith, L., Craig, M., 2007. Casting the percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of serranid and percid fishes. Copeia (1), 35–55.
- Smith, L., Wheeler, W., 2004. Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data. Mol. Phylogenet. Evol. 32, 627–646.
- Smith, L, Wheeler, W., 2006. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. J. Hered. 97 (3), 206–217. URL http://dx.doi.org/10.1093/jhered/esj034.
- Stiassny, M., 1993. What are grey mullets? B. Mar. Sci. 52 (1), 197-219.
- Stiassny, M., Moore, J., 1992. A review of the pelvic girdle of acanthomorph fishes, with comments on hypotheses of acanthomorph intrarelationships. Zool. J. Linn. Soc.-Lond. 104, 209–242.
- Stiassny, M.L.J., Wiley, E.O., Johnson, G.D., de Carvalho, M.R., 2004. Gnathostome fishes. In: Cracraft, J., Donoghue, M.J. (Eds.), Assembling the tree of life. Oxford University Press, New York.
- Swofford, D., 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
- Wiens, J., Reeder, T., 1995. Combining data sets with different numbers of taxa for phylogenetic analysis. Syst. Biol. 44 (4), 548–558. URL http://dx.doi.org/ 10.2307/2413660.
- Wiley, E.O., Johnson, G.D., Dimmick, W.W., 2000. The interrelationships of acanthomorph fishes: a total evidence approach using molecular and morphological data. Biochem. Syst. Ecol. 28, 319–350.
- Winnepenninckx, B., Backeljau, T., Dewachter, R., 1993. Extraction of highmolecular-weight DNA from mollusks. Trends Genet. 9 (12), 407.
- Winterbottom, R., 1993. Search for the gobioid sister group (Actinopterygii: Percomorpha). B. Mar. Sci. 52 (1), 395–414.
- Yamanoue, Y., Miya, M., Matsuura, K., Yagishita, N., Mabuchi, K., Sakai, H., Katoh, M., Nishida, M., 2007. Phylogenetic position of tetraodontiform fishes within the higher teleosts: Bayesian inferences based on 44 whole mitochondrial genome sequences. Mol. Phylogenet. Evol. 45, 89–101.