Towards a Reliability Index for Clades: an Application on Acantomorph Teleosts

Blaise Li and Guillaume Lecointre

UMR 7138 Département Systématique et Évolution Muséum National d'Histoire Naturelle - Paris

ASIH annual meeting - 11 July, 2005

How to measure a result's quality ?

- Does it resist data perturbation (robustness) ?
- What is the credit given to a statement about relationships among species (**reliability**) ?

How to measure reliability ?

Use multiple data sets

Combine the data into a single matrix or keep it separate ?

Combined analysis (« Total Evidence »)

Drawback: a marker-specific bias can influence the inference from the whole data during the optimization process

Separate analysis

Biological background knowledge is needed to justify delineation and independence of the data sets

Drawbacks: higher stochastic effects full expression of marker-specific biases

How to measure reliability ?

Consider corroboration between **independent parts** of the data (with **partial data combination**)

About independent data

Choose basic markers you postulate to evolve independently

Thus, if a marker is subject to some bias, you would expect that bias not to exist for the other markers also

It increases the chance that **repeated results** are caused by a shared feature of the data sets: the history of the taxa represented by the markers

Partial combinations...

(a,b). Is it true historical signal ?

... to reduce stochastic effects

B+C corroborates (a,b). Partial combination overcame some stochastic effects that prevented (a,b) from appearing.

A repeatability index for clades: a way to formalize reliability

The more a clade is found by the analysis of independent data, the more reliable it is

• Separate the data into non-overlapping **parts** and analyze each part with the same method

One of the possible partitioning schemes with 3 parts (1, 2, 3)

A repeatability index for clades: a way to formalize reliability

The more a clade is found by the analysis of independent data, the more reliable it is

- Separate the data into non-overlapping **parts** and analyze each part with the same method
- Count the occurrences of the clades among non-overlapping parts
- Repeat the process with each possible **partitioning scheme**
- For each clade, retain the highest number of occurrences over all the partitioning schemes

A partitioning scheme with 3 parts

data sets: A, B, ...

clade	occurrences
α:	3 occurrences
β:	3 occurrences
<i>y</i> :	2 occurrences
δ :	2 occurrences
ε:	1 occurrence
ζ:	1 occurrence

. . .

Another partitioning scheme with 3 parts

clade occurrences

- α : 2 occurrences
- β : **3** occurrences
- γ : 1 occurrence

 δ :

ϵ:

ζ:

- 2 occurrences
- 3 occurrences
 - 2 occurrences

Taking into account probabilities for clades to appear at random

- Clades appear also from data containing no signal
- Therefore one must measure the probability of a clade to appear purely at random for a given program:
 - give random data to the program
 - analyze that data
 - repeat the process and compute the frequency of each clade

data sets

Taking into account contradiction among clades

• First order reliability of clade α :

 $R_1(\alpha) = Max_{partitioning schemes}(\sum_{parts}(Occurrences-P))$

• Second order reliability of clade α :

 $\mathbf{R}_{2}(\alpha) = \mathbf{R}_{1}(\alpha) - \mathbf{R}_{1}(\beta_{1})$

- β_1 being the highest $R_1 \alpha$ contradictor
- Etc...

$$\mathbf{R}_{\mathbf{n}}(\alpha) = \mathbf{R}_{\mathbf{n}}(\alpha) - \mathbf{R}_{\mathbf{n}}(\beta_{\mathbf{n}})$$

An application on Acanthomorpha

- 5 basic data sets:
 - mitochondrial markers: partial 12S+16S (828 bp)
 - nuclear markers: partial 28S (801 bp), partial Rhodopsin (759 bp), partial MLL (552 bp), partial IRBP (713 bp)
- 73 taxa shared by all data sets
- 31 ways to combine the 5 independent data sets (allowing to compose 51 partitioning schemes), each analyzed with Paup 4 under Maximum Parsimony

Total evidence majority rule consensus tree

Majority-rule bootstrap tree for the total data combination

Tree constructed to include the highest reliability inter-compatible clades

Reliability is not robustness

high reliability, neither present in the total evidence tree, nor in the bootstrap consensus

Total evidence

Best repeatability scores

Bootstrap

Reliability is not robustness

Total evidence

Best repeatability scores

A short conclusion because it's time to finish

- Some non-robust clades have been identified as reliable by our method (Psenopsis, Pampus)
- Some clades with high boostrap support are not considered reliable by our method (Dactylopterus, Aulostomus)
- Works with completely shared taxonomic samplings

Acknowledgements

- G. Lecointre, W.-J. Chen and A. Dettaï
- Service de Systématique Moléculaire (MNHN)
- École Normale Supérieure and French Ministry of Research
- Free software programers

Reliability is not robustness (2)

Limits of the method

General long-branch attraction is still a problem

Best repeatability scores

Taking into account probabilities of clades to appear by chance

- One must measure them for a given tree reconstruction program:
 - produce data without signal (randomly chosen character states)
 - analyze it and count the clades
 - reproduce the experiment many times
- Problem: it takes a lot of time

Estimating probabilities of clades knowing their sizes

- All groups of the same size are equivalent
 - random data
 - random addition sequence
 - work on unrooted trees
- Shift to rooted trees
 - clades that appear in rooted trees were there before rooting
 - but clades present in unrooted trees may disappear at rooting if there are 4 outgroups or more -> one overestimates probabilities of clades containing outgroup taxa

* : outgroup taxon

The clade is in the unrooted tree and in the rooted one

The clade is in the unrooted tree but not in the rooted one

taxon 1 ATCCGTGGCAATCGG... taxon 2 CCTAGGTGGCGAAAT... taxon 3 AACATTGCGAACCTC...

This is a black box

Frequencies of the clades:

...

1 1.0
2 0.0128452241715
3 0.00225390436877
4 0.000548933608531
5 0.000169633642931
6 7.05808639245e-05
7 3.73445397052e-05
8 2.46185158724e-05
9 2.01545100926e-05
10 2.01545100926e-05
11 2.46185158724e-05
12 3.73445397052e-05
13 7.05808639245e-05
14 0.000169633642931
15 0.000548933608531
16 0.00225390436877
17 0.0128452241715
18 1.0
19 1.0

From counts to probabilities

N(t): number of clades including t taxa

T: number of trees examined

N(t)/T = mean number of clades including t taxa per tree

n: number of taxa in the trees

n!/t!(n-t)!: number of possible clades including t taxa when there are n taxa in the study

P(t) = (N(t)/T)/(n!/t!(n-t)!)