
2750 |     Ecology Letters. 2021;24:2750–2762.wileyonlinelibrary.com/journal/ele

M E T H O D

The kinship matrix: inferring the kinship structure of a population 
from its demography

Christophe F. D. Coste1  |    François Bienvenu2,3,4,5  |    Victor Ronget6  |    

Juan- Pablo Ramirez- Loza7  |    Sarah Cubaynes7  |    Samuel Pavard6

Received: 14 April 2021 | Revised: 28 June 2021 | Accepted: 28 June 2021

DOI: 10.1111/ele.13854  

This is an open access article under the terms of the Creat ive Commo ns Attri butio n- NonCo mmerc ial- NoDerivs License, which permits use and distribution in any 
medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
© 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.

Christophe F. D. Coste and François Bienvenu are co- first authors.  

1Centre for Biodiversity Dynamics, 
Department of Biology, Norwegian 
University of Science and Technology, 
Trondheim, Norway
2Department of Mathematics and 
Computer Science, Transilvania University 
of Braşov, Braşov, Romania
3Institut des Sciences de l’Evolution de 
Montpellier, Université de Montpellier, 
CNRS, IRD, EPHE, Montpellier, France
4UMR AGAP, Université de Montpellier, 
CIRAD, INRAE, L’institut Agro, 
Montpellier, France
5Department of Statistics, University of 
Oxford, Oxford, United Kingdom
6Unité Eco- anthropologie (EA), Muséum 
National d’Histoire Naturelle, CNRS, 
Université Paris Diderot, Paris, France
7CEFE, CNRS, Univ. Montpellier, Univ. 
Paul Valéry Montpellier 3, EPHE, IRD, 
Montpellier, France

Correspondence
Christophe F. D. Coste, Center for 
Biodiversity Dynamics, Department of 
Biology, NTNU, Trondheim, Norway.
Email: christophe.f.d.coste@ntnu.no

François Bienvenu, Facultatea de 
Matematică şi Informatică, Universitatea 
Transilvania din Braşov, Str. Iuliu Maniu 
nr. 50, Braşov, Romania.
Email: francois.bienvenu@normalesup.org

Funding information
Agence Nationale de la Recherche, Grant/
Award Number: ANR- 18- CE02- 0011 and 
ANR- 16- CE27- 0013; Research Council 
of Norway (Centre of Excellence Grant), 
Grant/Award Number: SFF- III, 223257; 
EPSRC, Grant/Award Number: EP/
N004833/1; The Transilvania University of 
Braşov

Editor: Tim Coulson

Abstract

The familial structure of a population and the relatedness of its individuals are de-

termined by its demography. There is, however, no general method to infer kinship 

directly from the life cycle of a structured population. Yet, this question is central 

to fields such as ecology, evolution and conservation, especially in contexts where 

there is a strong interdependence between familial structure and population dy-

namics. Here, we give a general formula to compute, from any matrix population 

model, the expected number of arbitrary kin (sisters, nieces, cousins, etc) of a focal 

individual ego, structured by the class of ego and of its kin. Central to our approach 

are classic but little- used tools known as genealogical matrices. Our method can 

be used to obtain both individual- based and population- wide metrics of kinship, 

as we illustrate. It also makes it possible to analyse the sensitivity of the kinship 

structure to the traits implemented in the model.
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INTRODUCTION

The demography of a population determines its level 
of inbreeding and its kinship structure, that is, the net-
work of kin relationships between the individuals of the 
population. Population geneticists have long used non- 
overlapping generation models to study the effects of de-
mography on kinship structure, for instance to estimate 
the frequency of consanguineous marriage (Barrai et al., 
1962; Hajnal, 1963). Models with overlapping generations 
have also been considered— from the seminal work of 
Goodman et al., (1974) to the recent advances by Caswell 
(2019, 2020)— but they focus on specific kin relationships. 
Thus, a general method has yet to be developed to infer 
kinship structure from population dynamics in struc-
tured populations, and little is known about the influence 
of specific life- history traits (or vital rates in general) on 
inbreeding levels, inclusive fitness and kinship/famil-
ial structures. Yet, those questions are central to fields 
such as ecology, demography, evolution, genetics and 
conservation.

In this article, we pave the way towards such a general 
method by showing how classic tools from the study of 
matrix population models can be combined in a new way 
to infer kinship structure from steady- state population 
dynamics. More specifically, we explain how to compute 
the expected number of kin of a focal individual ego, as 
a function of the classes of ego and of its kin, directly 
from the projection matrix of a population. Examples 
of applications include studying how inbreeding de-
pression leads to genetic Allee effects in populations of 
small effective sizes or modelling the eco- evolutionary 
demography of social species (where the vital rates of 
individuals may strongly depend on cooperative and 
competitive interactions with kin). Readily usable imple-
mentations of our methods are available at DOI:10.5281/
zenodo.4680716, see SM.1.

A brief history of kinship inference in structured 
populations

The first demographers to work on the estimation of kin 
distribution from the demographic rates of a structured 
population based their computations on age- structured, 
one- sex populations at the demographic steady state, 
and focused on a few key kin relationships (Le Bras, 
1973; Goodman et al., 1974, discussed in Pavard & Coste, 
2020). Their method, still widely used today, consists in 
computing the distribution of maternal age- at- childbirth 
from the Euler– Lotka equation (Lotka, 1939), and then 
use it to derive, for each age- class, the probability that 
the mother/grandmother of a focal individual is alive, as 
well as the expected number of daughters, sisters, aunts 
and nieces of that individual.

Shortly after, mathematicians attacked the prob-
lem from the field of branching processes. First, for 

unstructured populations without overlapping gen-
erations, using Bienaymé– Galton– Watson processes 
(Pullum, 1982; Waugh, 1981); then, by adding age 
as a category and considering multitype Crump– 
Mode– Jagers processes (e.g. Nerman & Jagers, 1984). 
However, the technical nature of these papers and their 
focus on sometimes abstract results has made them go 
largely unnoticed by demographers. For instance, de-
spite being directly relevant to the matter, the work by 
Joffe and Waugh (1985) is only cited nine times in the 
mathematical literature— and not once in a biology or 
demography journal.

As of today, the inferred kin frequencies provided 
by Goodman et al., (1974), which have been in constant 
use since their publication, are still the state of the art 
(Pavard & Coste, 2020). These take the form of a lim-
ited number of ad hoc formulas, each specific to a kin 
relationship, that only apply to age- structured popula-
tions where at most one offspring can be produced at a 
time. Recently, Caswell (2019, 2020) has put this frame-
work in matrix form and extended it to age  ×  stage 
models, by giving a system of recursive equations ex-
pressing the number of kin at time t + 1 as a function of 
the number of kin at time t. However, before the pres-
ent work computing the expected number of any kin in 
any life cycle remained an open problem and a neces-
sary step in the development of a general theory of the 
interplay between kinship and demographic processes 
(Pavard & Coste, 2020).

Specific challenges to overcome

Inferring the complete kinship structure of an arbitrary 
structured population poses several challenges. First, in 
general class- structured models, the distribution of the 
class at birth is not as easily inferred as in age- structured 
populations, where it is obtained from the Euler– Lotka 
equation. We solve this problem by using the genealogi-
cal Markov chains first introduced by Demetrius to de-
fine population entropy (Demetrius, 1974, 1975). These 
somewhat little- known tools have recently proved useful 
to tackle various questions (Bienvenu et al., 2017; Bienvenu 
& Legendre, 2015).

The fact that several offspring can be produced at 
the same time constitutes another complication, be-
cause this prevents segregating genealogies as done 
in Goodman et al., (1974) and Caswell (2019, 2020). 
Accounting for the possibility of same- litter sisters 
requires special care and fine- grained information on 
reproduction.

Finally, the main difficulty is arguably the generali-
sation of the calculations to arbitrary kin relationships. 
This requires combining two different timescales: the 
demographic timescale (where time is expressed in fixed 
projection intervals, such as 1 year) and the genealogical 
one (where time is expressed in number of generations). 

https://doi.org/10.5281/zenodo.4680716
https://doi.org/10.5281/zenodo.4680716
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We do so by working out all the genealogies and associ-
ated trajectories of individuals in the life cycle that cor-
respond to a given kin relationship.

The kinship matrices

In order to describe the kinship structure of a population, 
we need a generic notation for arbitrary kin relationships. 
In one- sex populations, we can use the following: we say 
that two individuals 

(
i1, i2

)
 are (g, q)- kin when their most re-

cent common ancestor is separated from i1 by g generations 
and from i2 by q generations. For instance, the (1, 0)- kin of 
the focal individual ego is its mother, and its (0, 1)- kin are 
its daughters; similarly, its (1, 1)- kin are its sisters; its (1, 2)
- kin its nieces; its (2, 1)- kin its aunts; etc (see Figure 1a). The 
same convention was used by Atkins (1974) and Pullum 
(1982), but with the order of g and q reversed.

We describe the kinship structure of a class- 
structured population through the kinship matrices 
K (g, q), where the (i, j)- th entry of K (g, q) is the expected 
number of (g, q)- kin alive in class i  of ego in class j. 
From the point of view of ego— which is what matters 
for most applications— these matrices completely char-
acterise the (expected) kinship structure of the popula-
tion. An example of the genealogy of a focal individual, 
together with the corresponding population model and 
kinship matrix for daughters, is given in Figure 1b,c.

The rest of this article is organised as follows: First, we 
explain how to compute the kinship matrices directly from 
the projection matrix of the population. We then illustrate 
the method in Box 2 using the life cycle of the ground 
squirrel Spermophilus dauricus from Luo and Fox (1990); 
other detailed examples of applications can be found in 
SM.2. Finally, we conclude by discussing the limitations, 
implications and possible extensions of our method.

F I G U R E  1  (a) Kin relationships, as described in terms of (g, q)- kin of the focal individual ego. Each line (and colour) corresponds to a 
generation. To get to the (g, q)- kin of ego, one has to go “up” g generations in order to reach the most recent common ancestor of ego and 
its (g, q)- kin; and then “down” q generations to reach the (g, q)- kin themselves. (b) Simple example of an age- structured life cycle, with the 
corresponding projection matrix and kinship matrix K (0, 1) giving the expected number of daughters of ego. In this toy model, all individuals 
survive to age 3 and then die, and they produce exactly one offspring each year. Thus, individuals aged 2 have exactly one daughter (aged 1) and 
individuals aged 3 have exactly two daughters (one aged 1 and one aged 2). (c) The genealogy of ego for the population described in (b), with the 
corresponding kin structure. Each dotted circle corresponds to an individual at a given age, and each solid oval to an individual's life trajectory. 
The colors correspond to the generation with respect to ego, as in (a). Here, we have assumed that ego was born when its mother was aged 1, and 
that the mother of ego was born when its grandmother was aged 2
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M ETHOD

Our method is applicable to populations at the demo-
graphic steady state whose dynamics are governed by a 
matrix population model with a primitive (i.e. irreducible 
and aperiodic) projection matrix A =

(
aij
)
. It can also be 

used with some reducible matrices (see SM.3), but here 
we assume primitivity, for simplicity. Recall that aij is the 
per- capita contribution of an individual in class j at time 
t to the abundance of class i at time t + 1. The asymptotic 
growth rate � is given by the dominant eigenvalue of A and 
the stable class distribution by the corresponding right ei-
genvector w =

(
wi
)
 such that 

∑
iwi = 1.

To compute the kinship matrix K (g, q), we decom-
pose the projection matrix A into its survival and repro-
ductive components— that is, into A = S + F, where the 
survival matrix S =

(
sij
)
 is such that sij is the probability 

that an individual of class j survives into class i, and 
the fertility matrix F =

(
fij
)
 is such that fij is the expected 

number of offspring of class i produced by an individual 
of class j . Mathematically, we need reproduction and 
survival to be independent (it is otherwise not possible 
to retrace the life trajectory of an ancestor and then use 
this trajectory to compute its number of offspring). This 
assumption is never applicable in post- breeding mod-
els, where individuals have to survive a full projection 
interval before they can reproduce. We therefore rec-
ommend using pre- breeding models whenever possible 
and avoiding post- breeding models with our method. 
Birth- flow models can also be used as long as the co-
variance between survival and reproduction is kept in 
mind as a potentially significant source of discrepancy. 
Finally, note that one way to deal with covarying repro-
duction and survival (e.g. due to trade- offs) is to add 
(survival, fertility) classes to the model.

Finally, to take into account models with several off-
spring per time step, we need the same- litter newborn sis-
ters matrix Z =

(
zij
)
, where zij is the expected number of 

same- litter sisters of ego that have just been born in class  
i, knowing that ego is in class j. Unlike S and F, the ma-
trix Z is not always directly available, and to compute it 
one will typically need to make additional assumptions on 
the offspring distribution. We give expressions of Z under 
three of the most common scenarios: when at most one 
offspring is produced by projection interval; when there is 
only one class of offspring: and when the total number of 
offspring follows a Poisson distribution and each offspring 
is independently allocated to a newborn class.

The three matrices S, F and Z are all we need to com-
pute any kinship matrix K (g, q), as summarised in Box 1.  
Python and MATLAB implementations of the method 
are provided (see SM.1). In the rest of this section, we 
detail the reasoning behind the expression of K (g, q) and 
give examples of aggregated metrics of the kinship or re-
latedness structure of a population that can be derived 
from it. Concrete examples of application are given in 
Box 2 and SM.2.

The genealogical Markov chain

The central tool of our approach is the genealogical 
Markov chain introduced by Demetrius (1974, 1975) to 
define population entropy. Despite its early introduction 
in the field of matrix population models, this Markov 
chain has remained mostly associated with population 
entropy (see, e.g. Tuljapurkar, 1982, 1993) and has so far 
failed to become part of the standard toolbox of pop-
ulation ecologists and demographers. However, it has 
recently proved useful to study questions such as the 
generation time (Bienvenu & Legendre, 2015) and the 
optimal aggregation of classes (Bienvenu et al., 2017). 
Our work provides yet another example of the useful-
ness of this tool.

The transition matrix of the genealogical Markov 
chain associated with A is the matrix P =

(
pij
)
, where

This Markov chain describes the sequence of classes 
that we encounter as we go “up” the genealogy of the 
population by following the lineage of an individual, 
backwards in time. That is, pij is the probability that an 
individual in class i at time t was either alive and in class 
j at time t − 1; or else had its mother in class j at that 
time. Thus, the probability distribution of the class of the 
ancestor (in the sense of a younger self or a genealogical 
ancestor), t time steps ago, of an individual currently in 
class i is given by eiP

t, where ei (j) = 1 if j = i and 0 other-
wise (note that the formalism of Markov chain uses right 
multiplication to project probability distributions, as in 
x (t + 1) = x (t)P, whereas population projection matri-
ces use left multiplication). See Bienvenu et al., (2017) for 
more on genealogical Markov chains.

As we did with A, we can split the transitions of the ge-
nealogical matrix into a survival and a reproductive com-
ponent. We then have P = PS + PF, where PS =

(
pS (i, j)

)
 

and PF =
(
pF (i, j)

)
 are given by

Accordingly, pS (i, j) is the probability that an individ-
ual in class i at time t was alive and in class j at time 
t − 1, while pF (i, j) is the probability that it was born be-
tween times t − 1 and t to a mother in class j. Thus, for 
instance, the (i, j)- th entry of PSPF is the probability that 
the mother of an individual from class i was in class j two 
time steps ago and that the first transition when going up 
the genealogy was a survival transition, while the second 
one was a reproductive transition.

We are now able to: (1) project the class of the ances-
tor of ego backwards in time (within generations using PS 
and between generations using PF); and (2) project the de-
scent of an ancestor forwards in time (within generations 

(1)pij =
aijwj

�wi
.

(2)pS (i, j) =
sijwj

�wi
and pF (i, j) =

fijwj

�wi
.
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using S and between generations using F). With this, 
our strategy to compute the number of (g, q)- kin of ego 
is to go “up” the genealogy to locate its g- th ancestor; 
and then “down” to compute the q- th descendants of that 
ancestor. However, to account for same- litter sisters, we 
also need to look at the (g − 1)- th ancestor of ego.

Distribution of the (g – 1)- th ancestor of ego

Let us start by assuming that g ≥ 1 (the case g = 0 will be 
treated separately later). For t ≥ 1, let U (t, g) be the ma-
trix whose (i, j)- th entry is the probability that t − 1 time 
steps ago the (g − 1)- th ancestor of ego was in class j , 
given that ego is currently in class i. To compute U (t, g) , 
we need to consider all the ways that g − 1 generations 
can pass in the span of t − 1 time steps. For any integers 
n ≥ 0 and � ≥ 1, let

denote the set of vectors of length � whose components 
are non- negative integers that sum to n (with � (n,�) = ∅ 
when � = 0 or n < 0). Such vectors are known as weak 
compositions of the integer n into � parts, and there are ef-
ficient algorithms to list them (see SM.4). The weak com-
positions k ∈� (t − g, g) exactly encode the sequences of 
t − 1 “survival” or “reproduction” events that contain g − 1 
“reproduction”: indeed, k =

(
k1,…, kg

)
 corresponds to the 

sequence

Thus, letting Q (k) = P
k1
S
PF⋯PFP

kg

S
— whose (i, j)- th 

entry is the probability that, starting from class i, after 
k1 +…+ kg + g − 1 steps one ends in class j after having 
encountered k1 survivals, then one reproduction, then k2 
survivals, etc— we have(3)𝒞 (n,𝓁) =

{(
k1,…, k

𝓁

)
∈ ℕ

𝓁: k1 +⋯ + k
𝓁
= n

}

survival,…, survival
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k1times

, reproduction,⋯,

reproduction, survival,…, survival
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

kg times

,

Box 1 Expression of the kinship matrix K (g, q)

• Input: let A = S + F be the projection matrix of the population, where S is the survival matrix and F is the 
fertility matrix. Let Z be the same- litter newborn sisters matrix (see main text).
• Compute the genealogical matrices PS =

(
pS (i, j)

)
 and PF =

(
pF (i, j)

)
 defined by

where � is the asymptotic growth rate (dominant eigenvalue of A) and w is the stable class distribution vector 
(dominant right eigenvector of A).
• For all integers n ≥ 0 and � ≥ 1, let � (n,�) denote the set of vectors k =

(
k1,…, k

�

)
 of non- negative integers 

such that k1 +⋯ + k
𝓁
= n (when � = 0 or n < 0, let � (n,�) = ∅ ).

• For any k =
(
k1,…, k

�

)
, let Q (k) = P

k1
S
PF⋯PFP

k𝓁
S

 and

with the convention that U (0, 0) = I, the identity matrix, and that U (t, g) = 0 when the sum is empty.
• For any k =

(
k1,…, k

�

)
, let R (k) = Sk1F⋯FSk𝓁 and

with the convention that D (t, q) = 0 when the sum is empty.
• The kinship matrix K (g, q), whose (i, j)- th entry is the expected number of (g, q)- kin of class i of a focal indi-
vidual of class j, is K (0, 0) = I and, for (g, q) ≠ (0, 0),

where Y (g) = I if g = 0 and PT

F
 otherwise.

pS (i, j) =
sijwj

�wi
and pF (i, j) =

fijwj

�wi
,

U (t, g) =
∑

k∈�(t−g,g)

Q (k) ,

D (t, q) =
∑

k∈�(t−1−q,q+1)

R (k) ,

K (g, q) =
∑

t≥0

(
D (t, q) SPT

F
+D (t, q − 1) Z +

∑

�≥1

D (t + �, q − 1)F
(
PT

S

)�
Y (g)

)
U(t, g)T,
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Box 2 Illustration

We illustrate our method on the most common model in animal ecology: the extended Leslie model, that is, an 
age- structured model with a class that regroups all individuals older than a certain age. More complex exam-
ples are given in SM.2, to illustrate and discuss specific points; but once an appropriate projection matrix has 
been obtained the method is always the same. Recall that we need to consider a pre- breeding model— that is, 
in the case of a three- class model, a projection matrix of the form

where classes 1 and 2 correspond to individuals that are about to turn 1 year and 2 years old, respectively, and  
class 3 corresponds to older individuals; s0 is the probability that newborns survive their first year, si is the proba-
bility that class- i individuals survive to the next year and mi is the average number of (female) newborns to which 
they give birth.
Using the life table for the ground squirrel Spermophilus dauricus from Luo and Fox (1990), we get the follow-
ing survival and fertility matrices:

The asymptotic growth rate is � = 1.00 and the stable class distribution is w = (0.47, 0.27, 0.27). From this, 
Equation (2) gives

For instance, the (3,2)- th entry of PS shows that, at the demographic steady state, 54% of class- 3 individuals 
were in class 2 the previous year. Similarly, the (1, 1)- th entry of PF indicates that a yearling has a 23% prob-
ability of having been born to a yearling the previous year. Since there is a single newborn class, we can use 
Equation (10) to compute the matrix Z under arbitrary assumptions on the fertilities. But here, in the absence 
of additional information, we will simply assume that they correspond to Poisson random variables, so that 
Z = FPT

F
. This yields

Let us now compute K (1, 0), whose (i, j)- th entry is the probability that the mother of an individual of class j is 
currently alive and in class i. Using tmax = 9 and �max = 0 , which as per SM.6 gives an approximation error 
‖‖‖
�K−K

‖‖‖1 < 10−2, we get

This matrix indicates, for instance, that a yearling has a 13% probability that its mother is alive in class 2, and 
38% that it is alive in class 3. Note that kin are structured by their current class. Thus, it is not possible to have 
yearling mothers here: even if the mother of ego was a yearling when ego was born, by now it will have moved 
to an adult class.

A =

⎛
⎜
⎜
⎝

s0m1 s0m2 s0m3

s1 0 0

0 s2 s3

⎞
⎟
⎟
⎠
,

S =

⎛
⎜
⎜
⎝

0 0 0

0.57 0 0

0 0.54 0.46

⎞
⎟
⎟
⎠
and F =

⎛
⎜
⎜
⎝

0.23 0.51 0.84

0 0 0

0 0 0

⎞
⎟
⎟
⎠
.

PS =

⎛
⎜
⎜
⎝

0 0 0

1.00 0 0

0 0.54 0.46

⎞
⎟
⎟
⎠
and PF =

⎛
⎜
⎜
⎝

0.23 0.29 0.48

0 0 0

0 0 0

⎞
⎟
⎟
⎠
.

Z =

⎛
⎜
⎜
⎝

0.60 0 0

0 0 0

0 0 0

⎞
⎟
⎟
⎠
.

K (1, 0) =

⎛
⎜
⎜
⎝

0 0 0

0.13 0 0

0.38 0.24 0.08

⎞
⎟
⎟
⎠
.
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with the convention that U (t, g) = 0 when the sum is 
empty (e.g., if t < g).

As examples of the formula, note that for g = 1 and 
t ≥ 1, U (t, 1) = Pt−1

S
, and for g = 2 and t = 2, 3, 4,…

Finally, letting U (t, g) =
(
uij (t, g)

)
, the probability, 

given that ego is currently in class i, that its g- th ances-
tor gave birth to its (g − 1)- th ancestor in class �, from 
class k and between times t and t − 1 before the present is 
ui� (t, g) pF (�, k). The reason why we need to look at both 
the (g − 1)- th and the g- th ancestor of ego, rather than at 
its g- th ancestor only, is that we will need this informa-
tion to account for the (g, q)- kin ego that are descendants 

of same- litter sisters of its (g − 1)- th ancestor. Note that 
the probability, given that ego is currently in class i, that 
its g- th ancestor gave birth to its (g − 1)- th ancestor from 
class k and between times t and t − 1 before the present is 
the (i, k)- th entry of U (t, g)PF.

Expected number of q- th generation descendants

Let D (t, q) be the matrix whose (i, j)- th entry is the ex-
pected number of q- th generation descendants in class 
i, after t − 1 time steps, of an individual in class j (not 
counting offspring produced before the first time step). 
As before, to compute D (t, q) we need to consider all the 
ways that q generations can pass in the span of t − 1 time 
steps. For k =

(
k1,…, k

�

)
, let R (k) = Sk1F⋯FSk𝓁. Recall 

that the expected number of descendants in class i of an 
individual in class j, after t − 1 time steps (and counting 
the initial individual) is the (i, j)- th entry of the matrix

(4)U (t, g) =
∑

k∈�(t−g,g)

Q (k) ,

U (2, 2) =P
F
, U (3, 2) =P

F
P
S
+P

S
P
F
,

U (4, 2) =P
F
P
2

S
+P

S
P
F
P
S
+P

2

S
P
F
, …

F I G U R E  2  (a) Graphical representation of the matrix K (2, 1), whose entries give the expected number of aunts of ego as a function of 
its class and that of its aunts; (b) the elasticities of the expected total number of aunts of ego (sampled at random in the stable population), 
�ln1K (2, 1)w∕�lnaij
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Box 2 Continued

Figure 2a gives a graphical representation of K (2, 1), the kinship matrix for aunts. The total number 
of aunts (irrespective of their class) of an individual sampled according to the stable class distribution is 
1K (2, 1)w = 0.36 , and numerically it is possible to compute its elasticities to the entries of the projection ma-
trix, that is, � ln1K (2, 1)w∕� lna

ij
. These are plotted in Figure 2b, which shows that the number of aunts is most 

affected by relative changes in the survival probabilities s1 and s3.
Finally, we get sensibly the same results when taking the values of tmax and �max suggested by Equation (16), 
with the maximal age �̂ = 6 reported in Luo and Fox (1990). This is also the case with other models that we 
studied (see SM.2), which tends to suggest our simple heuristic to chose tmax and �max based on a maximal age 
is adequate.
In SM.12, we compare the kinship matrices K (1, 0) and K (2, 1) to the output of individual- based simulations, 
confirming our formulas.



   | 2757COSTE et al.

For instance, for t − 1 = 3,

In these expressions, the terms corresponding to a 
fixed value of q correspond to the q- th generation de-
scendants of the initial individual. In other words,

again with the convention that D (t, q) = 0 when the sum is 
empty (e.g. when q < 0 or t − 1 < q).

Expected number of (g, q)- kin

Let ego be in class j, and recall that we assume g ≥ 1. 
For t ranging over the positive integers and k,� over the 
classes of the model, the events “the g- th ancestor of ego 
gave birth to its (g − 1)- th ancestor in class �, from class 
k , and t − 1 time steps before the present” form a com-
plete system of events. Each of these events has probability 
uj� (t, g) pF (�, k). Thus, all we need in order to compute the 
expected number of (g, q)- kin of ego is the expected number 

of q- th generation descendants of an individual that was 
in class k at time t before the present and had an offspring 
born in class � between times t and t − 1. For this, we need 
to distinguish between descendants of younger, older and 
same- litter sisters of the (g − 1)- th ancestor of ego (see 
Figure 3).

Descendants of younger sisters of the  
(g − 1)- th ancestor

Between times t and t − 1 before the present, the g- th an-
cestor of ego survives from class k to class m with prob-
ability smk. From there, the expected number of q- th 
generation descendants that it leaves in class i after the 
remaining t − 1 time steps is dim (t, g), the (i,m)- th entry of 
the matrix D (t, g). The expected number of class- i (g, q)- 
kin of ego through younger sisters of its (g − 1)- th ances-
tor is, therefore, 

∑
t≥0

∑
k,�,m

dim (t, q) smk uj� (t, g) pF (�, k)

— which, in matrix notation, is the (i, j)- th entry of

Descendants of older sisters of the  
(g − 1)- th ancestor

To compute the expected number of descendants of older 
sisters of the (g − 1)- th ancestor of ego, we have to look 
at the g- th ancestor at times t + � before the present, for 
each � ≥ 1, to see how many older sisters were born then 

At−1= (S+F)t−1=

t−1∑

q=0

∑

k∈�(t−1−q,q+1)

R (k) .

A3= S3

⏟⏟⏟
q=0

+ FS2+SFS+S2F
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

q=1

+ F2S+FSF+SF2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
q=2

+ F3

⏟⏟⏟
q=3

.

(5)D (t, q) =
∑

k∈�(t−1−q, q+1)

R (k) ,

(6)Ky (g, q) =
∑

t≥1

D (t, q)SPT
F
U(t, g)T.

F I G U R E  3  Genealogy of the population, showing the various contributions to the kinship matrix K (g, q). On the left is the lineage of ego, 
up to its g- th ancestor. The solid black lines correspond to survival and the dotted ones to reproduction. On the right are the q- th descendants 
of the g- th ancestor of ego, grouped according to whether they are descendants of younger, same- litter or older sisters of the (g − 1) − th 
ancestor of ego. The weights of the red arrows have to be multiplied along a path to get the corresponding contribution to the expected number 
of (g, q)- kin (matrix transposes have been omitted for simplicity)
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and how many (q − 1)- th generation descendants each of 
these left. Using the same reasoning as before, we get:

Descendants of same- litter sisters of the  
(g − 1)- th ancestor

Unlike for descendants of older and younger sisters, for 
which knowing about the g- th ancestor of ego was suffi-
cient, here we also need to know about its (g − 1)- th an-
cestor. This is because knowing that the g- th ancestor 
gave birth to the (g − 1)- th one t time steps before the 
present biases its number of offspring for this reproduc-
tive event. To understand this bias, we have to know the 
class in which the (g − 1)- th ancestor was born. Indeed, if 
we sample an individual uniformly at random in class i 
and then look at its mother, then the mother is sampled 
proportionally to its number of offspring in class i. Let 
Fij have the distribution of the number of offspring of 
class i of an individual of class j, and let F (�)

ij
 have the 

distribution of Fij biased by F
�j, that is, 

ℙ(F
(�)

1j
= x1,…,F

(�)

Nj
= xN ) =

x�

f�j
ℙ
(
F1j = x1,…,FNj = xN

)
. 

Finally, let f̃
(�)

ij
= �(F

(�)

ij
) − �{i=�} (where �{i=�} = 1 if i = � 

and 0 otherwise). With these quantities, the expected 
number of class- i (g, q)- kin of ego through same- litter sis-
ters of its (g − 1)- th ancestor is

where zm� =
∑

k
f̃
(�)

mk
p
F (�, k). In matrix form, this is the 

(i, j)- th entry of

What makes Equation (8) relevant is that the matrix Z 
has a concrete interpretation: as mentioned at the begin-
ning of this section, zij is the expected number of same- 
litter sisters of a focal individual in class j that have just 
been born in class i. Thus, the matrix Z can be estimated 
from detailed census data. Alternatively, Z can be com-
puted from the matrices S and F and the covariances 
Cov

(
Fij,F�j

)
. Indeed, elementary calculations give

from which Z can then be computed. A few special cases 
are worth pointing out. First, when at most one offspring 
is produced during a projection interval we have Z = 0. 

Second, if there is a single newborn class, say class 1, then 
zij = 0 if i ≠ 1 or j ≠ 1, and

This covers the majority of the models used in prac-
tice. Third, when the numbers of offspring produced 
by an individual in the various classes are independent 
Poisson variables,

This formula can be used by default when the covari-
ances of the fertilities are not available.

Expression of the kinship matrix

Combining Equations (6), (7) and (8), we get the follow-
ing expression for the kinship matrix K = Ky +Ko +Ks, 
which is valid for all q ≥ 0 but for g ≥ 1 only:

For g = 0, the (g, q)- kin of ego are its q- th descendants 
(and ego itself when q = 0). Thus, K (0, 0) = I and, for 
q > 0,

Note that, compared to Equation (7), there is no fac-
tor PT

F
 to the right of (PT

S
)�.

In order to get a unique expression of K (g, q) that 
works for all g ≥ 0, we let U (t, 0) = 0 for t ≥ 1, in agree-
ment with Equation (4) and the definition of weak com-
positions in Equation (3); but for t = 0 we use the special 
convention U (0, 0) = I. Setting Y (g) = I if g = 0 and PT

F
 

otherwise, this gives the following general expression for 
the kinship matrix, valid for any (g, q) ≠ (0, 0):

Note that for q = 0, this formula reduces to

and gives the probability that the g- th ancestor of ego is 
alive, structured by the class of ego and of the g- th ancestor.

(7)
For g≥1, Ko (g, q) =∑

t≥1

∑

�≥1

D (t+�, q−1) F
(
PT
S

)�
PT
F
U(t, g)T.

∑

t≥1

∑

k,�,m

dim (t, q−1) f̃
(�)

mk
p
F (�, k) uj� (t, g)

=
∑

t≥0

∑

�,m

dim (t, q−1) zm� uj� (t, g) ,

(8)Ks (g, q) =
∑

t≥1

D (t, q − 1) ZU (t, g)T .

(9)f̃
(�)

ij
= Cov

(
Fij,F�j

)
∕f

�j + f
�j − �{i=�},

(10)z11 =
∑

k

(
Var

(
F1k

)
∕f1k + f1k − 1

)
pF (1, k) .

(11)Z = FPT
F

K (g, q) =
∑

t≥1

(
D (t, q) SP

T

F
+D (t, q−1) Z

+
∑

�≥1

D (t+�, q−1)F
(
P
T

S

)�
P
T

F

)
U(t, g)T.

(12)K (0, q) =
∑

�≥1

D (�, q − 1) F
(
PT
S

)�
.

(13)
K (g, q) =

∑

t≥0

(
D (t, q) SP

T

F
+D (t, q−1) Z

+
∑

�≥1

D (t+�, q−1)F
(
P
T

S

)�
Y (g)

)
U(t, g)T.

(14)K (g, 0) =
∑

t≥1

St PT
F
U(t, g)T
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Computing the kinship matrix in practice

Equation (13) gives the kinship matrix as an infinite sum. 
However, in numerical applications it will have to be ap-
proximated by a finite sum, for instance, of the form

This raises the question of determining how many 
terms to sum, and of the precision of the resulting esti-
mate. In SM.6, we give an explicit upper bound on ‖‖‖K (g, q) − K̂

(
g, q;tmax, �max

)‖‖‖ that can be used to chose 

tmax and �max so as to meet a target accuracy in the esti-
mation. A procedure to do so automatically is imple-
mented in our code (see SM.1). It should be pointed out, 
however, that the upper bound of SM.6 is rather crude 
and that the actual precision will typically be much bet-
ter than it suggests.

Importantly, when there exists a maximal age � in the 
model (i.e. � such that S�−1

≠ 0 and S� = 0), the sums 
in Equation (13) are, in fact, finite: indeed, in that case, 
U (t, g) = 0 for all t > g𝜔; D (t, g) = 0 for all t > (q + 1)𝜔 
and P�

S
= 0 for all � ≥ �. As a result,

This gives a useful heuristic to choose tmax and �max 
when the values obtained from the upper bound of 
SM.6  lead to prohibitively long calculations: first, find 
a reasonable estimate of the maximum age that one 
can expect to observe in the population, by picking �̂ 
such that the probability that an individual reaches 
age �̂ is less than some very small � (e.g. by taking 
�𝜔 = inf {t ≥ 0: ∥ S

t−1 ∥1 < 𝜀}, where ‖X‖1 = supj
∑

i �xij �); 
then use the values of tmax and �max obtained by plugging 
�̂ in Equation (16).

Although there is no mathematical guarantee— that 
is, other than that given in SM.6— on the difference be-
tween K and K̂ when using tmax =min

(
g�̂, (q + 1) �̂

)
 and 

�max = �̂ − 1, this difference should be well within the 
modelling error of the projection model, as it will ex-
clusively be due to individuals that live past �̂— which 
are allowed by the model but may not exist in practice. 
One way to test this is to compare the results obtained 
with the projection matrix A to those obtained with a 
model A

(
�̂
)
 where the maximal age has been capped 

(as discussed in SM.7). The biological relevance of 
A
(
�̂
)
 compared to that of A is something that can be 

assessed independently; and once this is done, the kin-
ship matrix of A

(
�̂
)
 can be computed exactly using 

tmax =min
(
g�̂, (q + 1) �̂

)
 and �max = �̂ − 1.

Aggregated measures of kinship and relatedness

Having a general expression for the number of any type 
of kin makes it possible to consider various aggregated 
measures of the kinship structure of a population. For 
instance, the matrix

gives the number of kin that are at distance d from ego in 
their genealogical tree. If 𝜆 > 1, K̃ (d) diverges as d →∞, 
whereas if 𝜆 < 1 it goes to zero. It is, thus, natural to wonder 
how ‖‖K̃ (d)‖‖ grows/decreases as a function of d. In SM.9, 
we show that it grows like �d

c
, where

and where � denotes the spectral radius. This characterisa-
tion makes it straightforward to compute �c numerically. 
In SM.9, we also explain why we expect to have

where the vector of reproductive values v and the stable 
distribution w are such that vw = 1.

One of the notable feature of �c is that it describes the 
global kinship structure, at a large scale. This contrasts 
with the matrices K̃ (d), which can only be computed for 
relatively small values of d (see SM.10) and thus only give 
us access to the local, small- scale structure of the kinship.

In applications, �c could be a useful descriptor for 
questions ranging from life- history theory to inclusive 
fitness: for instance, Equation (19) shows that for a fixed 
value of 𝜆 > 1, the number of kin is maximised by in-
creasing s⋆, that is, by K- strategies; but that if 𝜆 < 1 it is 
optimised by decreasing s⋆, that is, by r- strategies. The 
statistic �c could, thus, be used to compare life- history 
patterns in terms of the r −K  continuum, as an alterna-
tive to the generation time T = 1∕

(
𝜆 − s⋆

)
 (Bienvenu & 

Legendre, 2015). In the context of inclusive fitness, since 
the matrices K can be interpreted as measures of relat-
edness (see SM.11), �c is an indicator of how much relat-
edness is carried by various kin: for instance, the higher 
�c, the more relatedness is carried by close kin— but the 
smaller the relative contribution of close kin compared 
to that of distant ones.

Of course, K̃ (d) and �c are only two examples of ag-
gregated measures of kinship that can be defined from 
the matrices K. In general, one may want to consider var-
ious statistics of the form 

∑
g,q
f(K (g, q) , g, q), for functions 

f  and values of (g, q) that depend on the specific applica-
tion. If the application requires summing on large values 
of g and q, this may not be possible because of prohibi-
tive computation times. In that case, one possible strategy 
could be to first turn the projection matrix into a 1 × 1 
matrix projecting the unstructured population (see 

(15)
K̂
(
g, q;tmax, �max

)
=

tmax∑

t=0

(
D (t, q) SP

T

F
+D (t, q−1) Z

+

�max∑

�=1

D (t+�, q−1)F
(
P
T

S

)�
Y (g)

)
U(t, g)T.

(16)

K (g, q) = K̂
(
g, q; tmax, �max

)
,

with

{
tmax=min (g�, (q+1)�)

�max=�−1
.

(17)K̃ (d) =
∑

g+q=d

K (g, q) ,

(18)𝜃c= inf{𝜃 >0: 𝜌
(
S+𝜃−1F

)
𝜌
(
P
S
+𝜃−1P

F

)
<1}

(19)𝜃c ≈
𝜆 − s

⋆

√
𝜆 − s

⋆
with s⋆ = vSw,
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Bienvenu et al., 2017; Coste et al., 2017), and then use the 
efficiently computable formulas of K (g, q) for 1 × 1 mod-
els given in SM.8.

DISCUSSION

In this article, we have developed a unified framework 
to compute the expected number of kin of a focal indi-
vidual (as a function of the vital traits of the focal in-
dividual and of its kin), directly from the demographic 
rates of a population. The main feature of our method is 
that it applies to any kin relationship (mother– daughter, 
aunt– niece, cousin– cousin, etc) and any structured pop-
ulation described by a matrix population model— be 
it structured by age (as illustrated in Box 2), by stage 
(SM.2.1), by patch (SM.2.3) or by any conceivable type of 
discrete class. These theoretical results come with read-
ily usable implementations that make them available to 
any ecologist. Here, we discuss the main limitations and 
implications of this unified framework, and give some 
perspectives for future research.

Conceptual and practical limitations

Our work is set in the framework of matrix popula-
tion models, and thus inherits its usual limitations. In 
particular, density dependence and environmental 
stochasticity— which are not considered by our input 
model— are likely to be two of the main sources of dis-
crepancies between our theoretical predictions and re-
ality. However, because our mathematical reasoning is 
based directly on the stochastic model underlying the 
matrix population model (rather than on its determin-
istic description of the average population dynamics), 
demographic stochasticity is not a limitation: it is taken 
into account in our calculations, and although our final 
formulas correspond to expected values with respect 
to this stochasticity, our methods could also be used to 
compute, for example, variances. This is discussed below.

Another important limitation of our approach is that 
it hinges on the assumption that the dynamics of the 
population has been at the steady state for an extended 
period of time. This limits the validity of our formulas in 
populations whose demography has been perturbed in 
the recent past— all the more so when studying distant 
kin relationships. Unfortunately, there does not seem to 
be an easy way to circumvent this using our techniques, 
and there may not be alternatives to recursive formulas 
for such models (Caswell & Song, 2021).

When applying our results, one should also pay at-
tention to the fact that they are formulated for models 
where the fertilities are independent from adult survival. 
This assumption is required for the connection with the 
stochastic population model that implicitly underlies our 
calculations, but it is not compatible with post- breeding 

models. However, these can (usually easily) be reformu-
lated as pre- breeding models, so this is not a major lim-
itation of our work.

As implicit with matrix population models, we work 
in the context of monoparental genealogies. This setting 
could correspond either to a one- sex species or to a two- 
sex species with a female- based demographic model. In 
the latter case, it should be noted that our formulas are 
based on a notion of kinship that only considers matri-
lines, and will thus differ from the traditional notion of 
kinship in a complete pedigree: for instance, the daugh-
ters of the brothers of the focal individual will not be 
counted as its nieces. Although this is not a limitation of 
our results, this is something important to have in mind 
when interpreting them. Incidentally, this specific no-
tion of kinship can, in some contexts, be interpreted as 
a direct measure of relatedness. Indeed, as explained in 
SM.11, in an idealised setting (namely, a large panmictic 
population where males and females have similar life his-
tories and where no two individuals have the same two 
parents), discarding kin that are not based on matrilines 
has the same effect as the dilution of genetic material 
over successive generations. Thus, although our results 
were first and foremost developed to study kinship, they 
could have wider ranging implications in evolutionary 
biology, by working as a measure of relatedness.

Finally, a practical limitation of our results is that 
the computing time of our formulas increases rapidly 
when we consider increasingly distant kin, and can be-
come prohibitively long— especially for organisms with 
a “slow” strategy on the slow- fast continuum. Because 
close kin are what matter in most situations, this is, in 
general, hardly going to be a problem. However, should 
very distant kin be of interest, we provide two partial 
solutions to prohibitive computing times: first, we use 
our results to derive an efficiently computable statistic 
to describe the large- scale kinship structure of a popu-
lation; second, if one is ready to discard the structure of 
the population, then in SM.8 we give a simple formula 
for the expected number of kin that is trivial to compute 
in practice. Note that both of these results are made pos-
sible by the fact that we have a generic formula for the 
kinship, and would presumably not have been possible 
using ad hoc formulas for each type of kin.

Implications and perspectives

First and foremost, having a generic formula for arbi-
trary kin relationship makes it possible— and elemen-
tary— to define tailor- made measures of kinship to be 
used in a specific setting. For instance, anthropologists 
who would like to compare the number of lineal versus 
collateral kin can easily do so by summing the kinship 
matrices of their choice— or, more generally, combine 
them however they want to produce the best suited met-
ric for their particular application.
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Our methods can be used to compute, at least nu-
merically, the sensitivity or the elasticity of the kinship 
structure to the traits implemented in the model. This is 
illustrated on a concrete example in Box 2. Because our 
formulas apply to any primitive projection matrix, they 
can be used to study models where classes are based on 
several traits, such as metapopulation models (Lebreton 
& Gonzáles- Dávila, 1993) or more general multitrait 
models (Coste et al., 2017; Coste & Pavard, 2020; Roth & 
Caswell, 2016). This makes it possible to study and com-
pare the relative effects of different traits on the kinship. 
We illustrate this in SM.2.3, where we use a stage × patch 
model to study the effect of dispersal.

Finally, because our results make new use of classic tools 
to solve a long- standing problem, they could spur further 
theoretical developments in the field of matrix population 
models. An example of this is given by our introduction, 
in SM.5, of the previous- generation matrix (which is a dual 
version of the classic next- generation matrix of Cushing & 
Zhou, 1994) and of the Euler– Lotka matrices (which give 
two simple generalisations of the Euler– Lotka equation 
to arbitrarily structured populations). Despite being very 
natural from a mathematical and biological point of view, 
these quantities do not seem to have been identified as such 
before (although similar ideas can be found in Lebreton, 
2005). Though not directly linked to kinship, these results 
are straightforward consequences of the framework we 
have developed to study it.

Our work offers several perspectives in terms of exten-
sions, in particular to see if our methods can be extended 
beyond the framework of matrix population models. A 
natural candidate for these are integral projection models 
(Rees et al., 2014). Because the variations in the individ-
ual realisations of the vital rates have a relevant impact 
on kin structure (Coresh & Goldman, 1988; Tuljapurkar 
et al., 2020, 2021), another perspective is to go beyond 
the “expected- value” description of the kinship structure 
given here— namely, by deriving statistics that describe the 
demographic stochasticity underlying our calculations, in-
stead of averaging it out. For instance, with our method, 
the classic results of Everett and Ulam (1948) on multitype 
Galton– Watson processes could be used to compute the 
variance of the number of kin. Finally, an important line 
of research that we plan to explore is the extension of our 
work to two- sex models. This is particularly challenging, 
as it requires leaving the framework of monoparental ge-
nealogies and will, therefore, have to be done using a com-
bination of analytical and numerical methods.
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