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a b s t r a c t

Matrix projection models are a central tool in many areas of population biology. In most applications,
one starts from the projection matrix to quantify the asymptotic growth rate of the population (the
dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and
left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov
chain that contains information about the genealogy of the population. In this paper, we show that these
facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov
matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the
projection matrix separates properties associated with lineages from those associated with individuals.
It also clarifies the relationships between many quantities commonly used to describe such models,
including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of
such a decomposition by introducing a newmethod for aggregating classes in a matrix population model
to produce a simpler model with a smaller number of classes. Unlike the standard method, our method
has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying
properties such as commuting with changes of units.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many simple models in population biology take the following
form: a non-negative vector gives the current abundances of types
within the population; then, to determine the abundances of types
at some future time, one multiplies this vector by a non-negative
matrix capturing the interconversion and reproductive rates of
the types. Examples include models of deterministic mutation–
selection balance in population genetics (where the types cor-
respond to genotypes, Nagylaki, 1992 Chapter 2; Bürger, 2000
Chapter 3) and models of spatially structured populations (where
the types correspond to demes, Rousset, 2004). The most common
use of such models is in the ecological and demographic literature,
where the types correspond to age ranges or developmental stages.
In this last context, such models are commonly known as ‘‘matrix
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population models’’ and they play a critical role in both ecologi-
cal theory and applications to population management (Caswell,
2001).

In the ecological or demographic context, the entries in the
update or projection matrix are typically estimated based on ob-
servations from some natural population (Salguero-Gómez et al.,
2015; Salguero-Gómez et al., 2016). To better understand the dy-
namics of the population, one then calculates various descriptors
of the resulting model such as the asymptotic growth rate of the
population, the generation time, the asymptotic distribution of
type frequencies, etc. (for amore complete list, see e.g. Cochran and
Ellner, 1992; Caswell, 2001). Here, we provide a method to move
in the opposite direction: given certain descriptors of the popu-
lation, we construct the corresponding projection matrix. Besides
providing a means to construct projection matrices with specified
properties, our method provides a unifying perspective on the
theory of matrix population models by clarifying the relationships
between various commonly used descriptors.

The key idea is that any matrix population model is completely
determined by the specification of (1) its asymptotic growth rate,
(2) its stable stage distribution and (3) a Markov chain describing
the sequence of classes visited when we consider the lineages of

http://dx.doi.org/10.1016/j.tpb.2017.04.002
0040-5809/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.tpb.2017.04.002
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2017.04.002&domain=pdf
mailto:francois.bienvenu@normalesup.org
mailto:mccandlish@cshl.edu
http://dx.doi.org/10.1016/j.tpb.2017.04.002


70 F. Bienvenu et al. / Theoretical Population Biology 115 (2017) 69–80

individuals within the population. While this viewpoint is per-
haps implicit in the classical literature (Demetrius, 1974, 1975;
Tuljapurkar, 1982, 1993), its power has not been sufficiently ap-
preciated because the strength of the connections between this
genealogical Markov chain and other population descriptors has
only recently come to light. In particular, recent work has re-
vealed that certain hitting times on this genealogical Markov chain
determine the generation time (Bienvenu and Legendre, 2015;
Lehmann, 2014), while the asymptotic frequencies of the transi-
tions of this Markov chain give the elasticities of the asymptotic
growth ratewith respect to the entries of the projectionmatrix (Bi-
envenu and Legendre, 2015). Since an ergodic Markov chain is
uniquely specified by the asymptotic frequencies of its transitions,
this means that if we specify the asymptotic growth rate, stable
stage distribution and matrix of eigenvalue elasticities, we can
immediately write down the unique projection matrix with these
desired characteristics.

This construction provides a great deal of clarity, particularly
concerning the interpretation and biological meaning of eigen-
value elasticities. Indeed, merely recognizing that the matrix of
elasticities is given by the asymptotic transition frequencies of the
genealogical Markov chain makes several facts obvious that are
otherwise rather mysterious from a classical perspective (Bien-
venu and Legendre, 2015). For instance, one can show that the total
of the entries of the elasticity matrix must sum to one by either
direct calculation (de Kroon et al., 1986) or by an appeal to Euler’s
Theorem for homogeneous functions (Mesterton-Gibbons, 1993).
However, recognizing the elasticities as the asymptotic transition
frequencies of a Markov chain make it obvious that they sum to
one, since the asymptotic frequencies of the transitions form a
probability distribution (the chainmust always transition fromone
state to another). Similarly, the row sums of the matrix of elastic-
ities equal its column sums (van Groenendael et al., 1994) due to
the simple fact that at stationarity the probability of arriving in a
state must equal the probability of exiting that state. Furthermore
these row and column sums are just the class reproductive values,
which when appropriately normalized are themselves just the
asymptotic frequencies of the classes visited by the genealogical
Markov chain.

The presentwork showshowaMarkov chain perspective can be
carried further to illuminate other aspects of the theory of matrix
populationmodels. For instance, it is helpful to classify descriptors
of the matrix population models in terms of their dependencies on
the triple of growth rate, stable stage distribution, and genealogical
Markov chain: in our parametrization, elasticities depend only
on the genealogical Markov chain, whereas the sensitivities of
the asymptotic growth rate to perturbations in the entries of the
projectionmatrix do not depend on the asymptotic growth rate but
do depend on both the genealogical Markov chain and the stable
stage distribution. Similarly, whereas matrix population models
most frequently track the number of individuals in a given class,
they can also bewritten in terms of other units such as the biomass
present in each class. It turns out that specifying the stable stage
distribution is equivalent to making a choice of units, so that, for
example, the matrix of sensitivities depends on the choice of units
whereas the matrix of elasticities does not. Indeed, the genealogi-
calMarkov chains arise by expressing thematrix populationmodel
in units of reproductive value, so that the choice of stable stage
distribution can be fruitfully viewed as determining the conversion
factor between reproductive value and number of individuals. That
is, two models can have the same genealogical Markov chain and
asymptotic growth rate but different stable stage distributions
because of different choices concerning how reproductive value is
packaged into individuals.

To demonstrate the power of this approach, we present a new
solution to the problem of how to aggregate states in amatrix pop-
ulation model. This problem is important for two reasons. First, it

has long been known that estimates of various population descrip-
tors depend on the number of organismal states used in thematrix
population model (Silvertown et al., 1993; Enright et al., 1995;
Benton and Grant, 1999; Ramula and Lehtilä, 2005; Salguero-
Gómez and Plotkin, 2010; Picard and Liang, 2014). As a result,
when comparingmatrix projectionmodels of different species, the
dimensionality of the projection matrix is sometimes reduced by
aggregating or ‘‘collapsing’’ multiple states into one so that the
dimensionality is the same for all species being compared (Enright
et al., 1995; Salguero-Gómez and Plotkin, 2010). Second, because
one needs to observe multiple transitions between pairs of classes
to accurately estimate vital rates, there is a trade-off between
error in estimating the vital rates and the degree of within-state
heterogeneity that is neglected by the model (Vandermeer, 1978;
Moloney, 1986; Caswell, 2001). Thus, some degree of collapsing
necessarily arises in the construction of matrix populationmodels,
a defectwhich in partmotivated the proposal of integral projection
models (Easterling et al., 2000).

The standard method for collapsing states in matrix population
models was proposed by Enright et al. (1995) and generalized
by Salguero-Gómez and Plotkin (2010). It essentially assumes that
the population is at its stable stage distribution and then aggre-
gates a group of classes by considering what we would observe if
wedid not distinguish between classeswithin this collapsed group.
Remarkably, this procedure preserves both the asymptotic growth
rate and the stable stage distribution (Hooley, 2000; Salguero-
Gómez and Plotkin, 2010). However, its effects on reproductive
values and elasticities are poorly characterized and can be sub-
stantial (Enright et al., 1995; Benton and Grant, 1999; Ramula and
Lehtilä, 2005; Salguero-Gómez and Plotkin, 2010; Picard and Liang,
2014).

Here we show that this behavior arises because the stan-
dard method, while preserving the stable stage distribution and
asymptotic growth rate, fails to preserve the genealogical Markov
chain. By applying our decomposition to the projection matrix, we
propose a method wherein the stable stage distribution and ge-
nealogicalMarkov chain are collapsed separately and subsequently
recombined to construct the collapsed projection matrix. This
method optimally preserves reproductive values, the genealogical
Markov chain, the matrix of elasticities, and the generation time
in addition to the stable stage distribution and the asymptotic
growth rate. The method is also independent of the units used
to describe the population in the sense that, unlike the standard
collapsing method, it commutes with changes of units. We return
to the practical applicability of this new collapsing method in the
Discussion.

2. Genealogical Markov chains associated with matrix popula-
tion models

A matrix population model is given by a non-negative matrix
A = (aij). The model assumes that if there are nj(t) individuals in
the population of class j at time t , these individuals will make a
contribution of aij nj(t) individuals to the total number of individ-
uals of class i at time t + 1. That is, the dynamics of the population
are governed by the matrix equation

n(t + 1) = An(t), (1)

where n(t) = (ni(t)) is the vector giving the number of individuals
in each class at time t .

While Eq. (1) describes the dynamics of the size and compo-
sition of the population, it is also sometimes useful to consider
the sequence of classes occupied by a particular individual, its
ancestors, and descendants. We begin by reviewing the features of
twoMarkov chains that capture the dynamics along such lineages.
These ideas are due to Demetrius (1974, 1975), and have been
further exploited in Tuljapurkar (1982, 1993).
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2.1. The backward chain, P

Suppose we want to know the probability that an individual
observed in class i at time t comes from class j, which can have
one of twomeanings: if the individual was alive at time (t −1), we
want to know the probability that it was in class j; conversely, if the
individual is a newborn at time t , we ask what is the probability
that its mother was in class j. Let A = (aij) be the population
projectionmatrix andn(t) = (ni(t)) be the population vector. Since
there are ni(t) individuals in class i at time t , aij nj(t − 1) of which
come from class j, this probability is given by

pij =
aij nj(t − 1)

ni(t)
. (2)

Now, let us assume that A is primitive, i.e. that there exists a
non-negative integer t such that all the entries of At are strictly
positive. In that case, the population structure will converge to a
unique stable distribution given by the vectorwwhose entries sum
to one and satisfying

Aw = λw, (3)

where λ, the greatest eigenvalue of A, gives the asymptotic growth
rate of the population (Caswell, 2001). If we then assume that the
population is at its stable stage distribution, n(t) ∝ w, we have
nj(t − 1)/ni(t) = wj/(λwi) and Eq. (2) becomes

pij =
aijwj

λwi
. (4)

Because each individual in the population at time t is descended
from some individual at t −1, the rows of the matrix P = (pij) sum
to one, so that it is a Markov matrix. Furthermore, the associated
Markov chain is ergodic due to the primitivity of A, since P and
A have the same pattern of non-zero entries. This Markov chain
allows one to track the classes visited by a lineage backwards in
time, i.e., it records the (infinite) sequence of stages occupied by
an individual and its ancestors.

The stationary probability distribution of P, which corresponds
to the asymptotic proportion of time that this backwards-time
lineage spends in each class, is given by π, the left eigenvector of
P satisfying π = πP, whose entries have been scaled to sum to 1.
Moreover,

πi = viwi, (5)

where v, the (row) vector of reproductive values satisfying vA =

λv, has been scaled so that vw = 1. This product viwi = πi
is also known as the class reproductive value. Whereas the in-
dividual reproductive value vi gives the asymptotic contribution
of an individual of class i to the total size of the population far
in the future, the class reproductive value gives the asymptotic
proportional decrease in the size of the population far in the future
if we were to kill all class i individuals at the present time in a
population at its stationary stage distribution. Thus, Eq. (5) shows
that the asymptotic proportion of time a lineage spends in class i
going backward in time, πi, is equal to the proportional reduction
in long-term population-size due to a single culling event of all
individuals in class i in an otherwise stationary population.

The matrix P also appears in several other contexts. In
population-genetics, it is known as the ‘‘backward migration ma-
trix’’ and plays a central role in the theory of evolution in class-
structured populationswhere it is used to update the class-specific
allele frequencies from one generation to the next (Bodmer and
Cavalli-Sforza, 1968; Taylor, 1990; Rousset and Ronce, 2004; Rous-
set, 2004, pp. 190–192). In that literature, the key observation is
that the allele frequency in class i in the current generation, xi(t),
is the average of the allele frequencies for the other classes j in the

previous generationweighted by the probability that an individual
currently in class i was descended from an individual in class j, so
that xi(t) =

∑
jpijxj(t − 1).

In ecology, the importance of the Markov chain defined by P
arises due to the close connection between the backwards-time
Markov chain defined by P and the eigenvalue elasticities of the
transition matrix. In particular, the frequencies of transitions be-
tween states in the stationary chain defined by P (i.e. transitions
along the arcs of the life-cycle graph) are equal to the elasticities of
the asymptotic growth rateλ to the entries of the projectionmatrix
(Bienvenu and Legendre, 2015):

πipij = eij where eij =
aij
λ

∂λ

∂aij
. (6)

Many formal features of the matrix of elasticities E = (eij), such
as the fact that the entries sum to one (de Kroon et al., 1986)
and the fact that the row sums equal the column sums (that is,∑

ieik =
∑

jekj, van Groenendael et al., 1994) are obvious once one
recognizes the matrix of elasticities as the asymptotic transition
frequencies of this genealogical Markov chain. At the same time
the stationary distribution π (class reproductive values) gives the
diagonal entries of the sensitivity matrix, i.e.

πi =
∂λ

∂aii
,

and the generation time is simply related to certain sums of the
stationary transition probabilities πipij (Bienvenu and Legendre,
2015).

2.2. The forward chain, Q

The transition matrix P allows us to study how a lineage moves
through the set of classes as we look backwards in time. We now
define a corresponding process that describes the classes occu-
pied by the descendants of a given individual as we look along
its lineage forward in time. The following construction is based
on Tuljapurkar (1982, 1993),with a straightforward generalization
from Leslie matrices to arbitrary primitive projection matrices.

While looking at lineages going backwards in time was rel-
atively simple because each individual has exactly one ancestor
at any prior time, looking at lineages going forwards in time is
more complex due to the branching nature of genealogies. Thus, to
follow a lineage forwards in time requires decisions about which
branches to follow. Most importantly, we need to ensure that we
will not get trapped in a ‘dead-end’ by following a lineage that does
not leave any descendants after a certain time.

We can do so by picking an individual in the distant future and
identifying its ancestor at the present time. We then start from
this ancestor and choose to follow the branches that lead to the
individual that we picked in the distant future. Because far in the
future the population is at its stationary stage distribution, when
we trace this lineage backwards in time the sequence of classes
visited is described by the Markov chain P of the previous section.
Therefore, to describe it in forward time all we have to do is to
consider the time-reversedMarkov chain ofP, i.e. theMarkov chain
Qwhose probability transitions are given by

qij =
πjpji
πi

. (7)

Eq. (7) simply expresses the fact that, at stationarity, the probabil-
ity of going from i to j in forward time is the same as the probability
of going from j to i in backward time. Note that the ergodicity of
P is required to ensure that πi > 0 in the definition of Q, and
that Q is ergodic (since it has the same pattern of non-zero entries
as PT). Finally, it is easy to check that

∑
jqij = 1 and that the
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stationary probability distribution of Q is π. For more on time-
reversed Markov chains, see e.g. Section 5.3 of Kemeny and Snell
(1976).

Substituting for pij and πi in Eq. (7), we get

qij =
vjaji
λvi

. (8)

This expression has a straightforward biological interpretation,
which can in fact be used to define Q without referring to P: first,
recall that reproductive values give the contributions of individuals
to the long-term growth of the population. Indeed,

as τ → +∞, n(τ ) ∼ vn(0) λτ w (9)

so each of the ni(0) individuals in class i at time 0 contributes
viλ

τ to the
∑

ivi ni(0) λτ individuals in the population at time τ

(a proof of Eq. (9) can be found in Chapter 1 of Seneta, 2006).
Therefore, we can write down the probability that an individual
at time τ ≫ t had its ancestor in class j at time t + 1 given
that its ancestor was in class i at time t: indeed, the ancestor at
time t will leave aji descendants in class j at time t + 1, each of
them contributing vjλ

τ−(t+1) to the population at time τ . Thus, out
of the viλ

τ−t individuals left by the ancestor in class i at time t ,
vjλ

τ−(t+1)aji will be descended from an individual in class j at time
t + 1. As a result,

qij =
vjλ

τ−(t+1)aji
viλτ−t =

vjaji
λvi

,

and we recover Eq. (8).

3. The genealogical decomposition

So farwehaveworked froma given projectionmatrixA, derived
the correspondingMarkov chains defined byP andQ and discussed
some of the properties of these chains. This is in line with the
most common applications of matrix population models where
one estimates A from data and then computes various descriptors
of the population using the entries of A. However, sometimes it
might be useful to work in the opposite direction, for instance if
we have observed the values of some descriptors and we want to
know the set of all projectionmatrices that are compatiblewith the
observed values (e.g. if we know the generation time and stable
stage distribution, what values are possible for the unobserved
vital rates?). Moreover, from a theoretical perspective it is useful
to understand whether the value of one descriptor constrains the
possible values of another, or alternatively if the two descriptors
can be ‘‘chosen’’ arbitrarily, in the sense that for any pair of values
we can construct a corresponding projection matrix.

In particular, given a forward or backward time genealogical
Markov chain defined by a primitive matrix P or Q, we would like
to construct a corresponding projection matrix A that exhibits the
appropriate genealogy. To do this, first notice that P, Q and the
matrix of elasticities E all uniquely determine each other, and each
of these also determines the vector of class reproductive values π.
In particular, π is the dominant left eigenvector of P and Q and is
also given by the row and column sums of E, that is,

πk =

∑
i

eik =

∑
j

ekj . (10)

Given π, one can then convert between the entries of P, Q, and E
using Eqs. (6) and (7).

Once P, Q or E is specified, we can then construct a correspond-
ing matrix A by solving for aij in Eq. (4):

aij = λ pij
wi

wj
. (11)

Thus, for a given choice of P, Q or E we can explicitly construct
all possible compatible projection matrices by making a choice
of stationary stage distribution w and asymptotic growth rate λ.
Alternatively, we can choose the vector of reproductive values v
and the growth rate λ since, once P, Q or E is given, w and v
determine each other by the relations πi = viwi. Assuming that
the specified w (or v) and λ are strictly positive, the resulting A is
primitive because it has the same pattern of non-zero entries as P,
which is primitive. Note that these positivity conditions onw (or v)
and λ do not represent a substantial constraint on our choice of w
and λ because, by the Perron–Frobenius Theorem, these conditions
hold for any primitive matrix A.

The previous paragraphs shows that it is possible to specify the
Pmatrix independently ofw and λ. But from an intuitive perspec-
tive, the fact that the genealogical dynamics can be decoupled from
the relative abundances of the classes at stationarity is perhaps
surprising. To see why this is the case, it is helpful to consider
what happens to a matrix population model when we change
the units that the model is expressed in. For instance, instead of
tracking the number of individuals in each class we could track
the amount of biomass in each class, where individuals within a
class have uniform masses. Indeed, this might be quite useful for
management purposes in the case of forests or fisheries where we
might primarily be interested in yields rather than the number of
individual organisms. Using units different from individuals might
also be relevant in situations where it is hard to count individuals
(e.g., plants forming thick mats where it is hard to isolate individ-
uals but easy to count the number of fruits or to measure the area
of the mat; colonies of microorganisms, etc.) or in which we are
interested in the number of gene copies and individuals in different
classes have different ploidy. More generally, if ci is the number of
new units in class i for each old unit in class i (e.g. ci is the mass
in grams per individual of class i), then the entries of the matrix
population model in the new units are given by
ci aij
cj

, (12)

and the new stable stage distribution has entries proportional to
ciwi and reproductive values (per unit) of vi/ci. Importantly, when
we calculate the backwardMarkov chain we see that it is invariant
to changes of units since
(ciaij/cj) (cjwj)

λ (ciwi)
=

aijwj

λwi
.

This corresponds to the simple fact that when tracing genealogies,
it does not matter whether we track where a given gram came
from in the previous time step or where the individual containing
that gram came from. The genealogical Markov chains are likewise
independent of the asymptotic growth rate λ because changes in λ

only change the absolute size of the population and not the propor-
tions in each class. Because the stable stage distributiondepends on
the choice of units (picking a randomgram is different than picking
a random organism), by choosing the units appropriately, we can
produce an arbitrary stable stage distribution while maintaining a
fixed genealogical Markov chain.

The concept of changes of units also provides an additional
perspective on the matrices P and Q in that these matrices arise
when we express A in terms of its natural units. In particular,
if we pick ci = vi, so that the dynamics of the population are
expressed in units of reproductive value, then the new projection
matrix is λQT (see Eq. (8); the transpose arises because we are
following the convention that projection matrices act on column
vectors and transition matrices act on row vectors) and the stable
stage distribution is π, the vector of class reproductive values.
Thus, another way of viewing the stable stage distribution of the
original projection matrix A is as a way of partitioning a given
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amount of class reproductive value, πi, to a certain number of
individuals. For a fixed value of πi = wivi, one can choose to have
either a large number of individuals eachwith a small reproductive
value (large wi, small vi) or a small number of individuals each
with a relatively large reproductive value (large vi, small wi). This
flexibility is another way of understanding why a fixed set of
genealogical dynamics is compatible with an arbitrary observed
stable distribution of the population across classes.

3.1. Descriptors and their relations

The above discussion helps clarify the relationships between
several commonly used descriptors of matrix population models.
In particular, it is helpful in understanding the relationship be-
tween the sensitivities and elasticities of λ with respect to the aij.
While the elasticities are completely determined by the genealog-
ical Markov chain, the sensitivities

sij =
∂λ

∂aij
= viwj (13)

depend on both the genealogical Markov chain and the choice
of units. This makes sense because elasticities measure the ef-
fects of multiplicative perturbations which are independent of the
choice of units (doubling a rate results in twice as much out-
put, whether the input and output are measured in individuals
or grams), whereas sensitivities measure the effects of additive
perturbations, which depend on the choice of units (producing an
extra fraction of an individual per individual is physically different
than producing an extra fraction of a gram per gram if individuals
of different classes do not have the same mass). The exception to
this dependence on the choice of units are the diagonal entries of
thematrix of sensitivities sii = viwi = πi, since the aii are invariant
to the choice of units and the sensitivities are equal to the class
reproductive values. Interestingly, the sensitivities only depend on
the genealogical Markov chain through its stationary distribution
(i.e. through the class reproductive values πi). Thus, sensitivities
contain information not contained in the elasticities in that they
reflect a choice of units, but elasticities contain information not
contained in the sensitivities in that they reflect the specific paths
that lineages tend to take through the life cycle and not just the
fraction of time lineages take in each stage.

Another important set of descriptors are the full set of eigen-
values of the projection matrix. These are determined by λ to-
gether with the genealogical Markov chain and are independent
of the choice of units, reflecting the more general fact that the
eigenvalues of amatrix are independent of the basis it is expressed
in. Importantly, the genealogical Markov chain alone determines
the ratios between eigenvalues (e.g. the damping ratio), which
explains why knowledge of the genealogical Markov chain alone is
sufficient to understand the approach to stationarity (Tuljapurkar,
1982, 1993).

3.2. Two parametrizations of 2 × 2models

To illustrate the discussion above, we work out the (P,w, λ)
parametrization in the case of 2 × 2 models. Any 2 × 2 matrix
model can be parametrized by 4 non-negative numbers a, b, c and
d through the projection matrix

A =

(
a b
c d

)
.

Though these four parameters usually have straightforward
individual-based interpretations, in the general case the link be-
tween them and the descriptors of the population is not immedi-
ate.

To write out the (P,w, λ) parametrization, we start by noting
that any ergodic Markov matrix P can be parametrized by two
numbers p and q in ]0, 1], where either p or q can be equal to 1,
but not both:

P =

(
1 − p p
q 1 − q

)
.

Similarly, any stable distribution vector w is parametrized by a
single number x > 0:

w =
1

1 + x

(
x
1

)
.

Choosing λ as the fourth parameter and using Eq. (11), we get the
following parametrization for A:

A = λ

(
1 − p px
q/x 1 − q

)
.

Although it looks more complicated than the (a, b, c, d)
parametrization, this parametrization has the advantage of taking
important population-level descriptors such as the growth rate
λ or the ratio x = w1/w2 directly as parameters. Similarly, the
elasticity and sensitivity matrices of these models are given by

E =
1

p + q

(
q(1 − p) pq

pq p(1 − q)

)
and S =

1
p + q

(
q q/x
px p

)
,

and the eigenvalues are λ and λ(1 − p − q) so that the damping
ratio is 1/|1− p− q| (which, as noted previously, depends only on
p and q).

In principle, the (P,w, λ) parametrization could provide an
alternative way to build a projection matrix from field data (for
instance, in the 2 × 2 case, λ can be estimated by n(t + 1)/n(t);
x by n1(t)/n(t); p by the fraction of newborns and 1 − q by the
fraction of individuals in class 2 that were already in class 2 in the
previous year). However, our results are likely to be most useful
in theoretical studies of matrix populations models: for instance,
by providing a way to specify ‘‘random’’ projection matrices with
prescribed descriptors (e.g., to test a conjecture), or to compare
models (e.g., seewhat the fertilities and survival probabilitiesmust
be to have a model with the same stationary distribution and
elasticities but a higher growth rate). As an illustration of the
utility of our approach, we turn now to our main application of
the genealogical decomposition: reducing the number of states in
a matrix population model while optimally preserving the proper-
ties of the original model.

4. Application: collapsing states

We have suggested that in some cases it might be more en-
lightening to think of a matrix population model as a (genealogy,
partitioning of class reproductive value, growth rate) ≡ (P,w, λ)
triple rather than as a population projection matrix. We illustrate
this by proposing a new method for aggregating a set of states
in a matrix population model into a single state. As discussed
in the Introduction, this is an important practical problem when
trying to compare projection matrices of different sizes, because
the dimensionality of the matrix population model is known to
affect the estimates of various descriptors (Silvertown et al., 1993;
Enright et al., 1995; Benton and Grant, 1999; Ramula and Lehtilä,
2005; Salguero-Gómez and Plotkin, 2010; Picard and Liang, 2014).

4.1. Individualistic collapsing

The most natural way to collapse a model is to put oneself in
the shoes of the experimenter building themodel, and then simply
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disregard the now superfluous distinctions between individuals in
the collapsed classes. To do so, we use the model that we want to
collapse to ‘‘simulate’’ the population dynamics. Then, we build the
collapsed model by counting individuals in terms of the collapsed
classes and interpreting the entries of the matrix as per capita
contributions – that is, akℓ is the number of individuals of class k
that come from class ℓ divided by the number of individuals that
were in class ℓ. As a result, the total contribution of collapsed
class j to collapsed class i is obtained by counting the number
of individuals coming from any class ℓ collapsed to j that are
present in any class k collapsed to i. Dividing by the total number of
individuals in collapsed class j, we get the per-capita contribution
of collapsed class j to collapsed class i:

âij(t) =

∑
k∈ϕ−1(i)

∑
ℓ∈ϕ−1(j)

akℓ nℓ(t)∑
ℓ∈ϕ−1(j)

nℓ(t)
,

where the akℓ’s are the entries of the original model and the âij’s
those of the collapsed model, and ϕ is the collapsing function,
which is defined by ϕ(k) = i if and only if class k corresponds to
class i in the new model. ϕ−1(i) denotes the preimage of i by ϕ,
i.e. the set of classes in A that are collapsed to i in Â. For simplicity,
from now on we will note k ⊂ i for k ∈ ϕ−1(i), the justification for
this notation being that k can be thought of as a subclass of i.

If wewant this collapsing to be independent of the composition
of the population, we can assume that the population is at its stable
stage distribution,w, in which case we have

âij =

∑
k⊂i

∑
ℓ⊂j

akℓ wℓ∑
ℓ⊂j

wℓ

. (14)

We call this method individualistic collapsing and hereafter refer to
Â as the individualisticmodel and toA as the original (or extended)
model. We use hats to denote any quantity associated with the
individualistic model.

Individualistic collapsing is the standard method used for col-
lapsing projection matrices. It was introduced by Enright et al.
(1995) and later generalized by Salguero-Gómez and Plotkin
(2010). Its properties, which we now review, have been studied
by Hooley (2000).

We start by noting that individualistic collapsing preserves the
asymptotic growth rate and the stable stage distribution. Indeed,
let

ŵi =

∑
k⊂i

wk. (15)

Then,∑
j

âijŵj =

∑
j

∑
k⊂i

∑
ℓ⊂j

akℓwℓ

ŵj
ŵj

=

∑
k⊂i

∑
j

∑
ℓ⊂j

akℓwℓ

=

∑
k⊂i

λwk

= λŵj.

Moreover, ifA is primitive, then clearly so is Â and thus the Perron–
Frobenius theorem ensures that there is only one (that is, up to a
multiplicative constant) right eigenvector of Â with only positive
entries (Seneta, 2006). Since this is the case of the vector ŵ defined
in (15), it is the dominant right-eigenvector of Â and λ is the
associated eigenvalue.

What about reproductive values? The classic interpretation of
these quantities suggests that we should have

v̂i
?
=

∑
k⊂i

vkwk∑
k⊂i

wk
.

However, unless ∀i, ∀k, ℓ ⊂ i, vk = vℓ = v̂i, that is, if the
classes collapsed together have the same reproductive value (in
which case clearly v̂̂A = λ̂v), this candidate is not necessarily
a left-eigenvector of Â. Furthermore, reproductive values behave
in a highly unintuitive way under individualistic collapsing, as
illustrated by the fact that collapsing a set of classes can change
the reproductive values of other classes that are not collapsed.

Another shortcoming of individualistic collapsing is that it does
not commutewith the construction of the genealogicalmatrices, in
the sense that the descriptors of the Markov chain P constructed
from A are not compatible with those of the Markov chain P̂
constructed from Â. Take for instance the stationary probability
distributions, π and π̂: clearly, since the time spent in class i by
a lineage is the sum of the time spent in each of the subclasses
of i, π̂i should be equal to

∑
k⊂iπk. However, this is not the case,

since, unless v̂i =
∑

k⊂ivkwk/
∑

k⊂iwk,

π̂i = v̂iŵi ̸=

∑
k⊂i

vkwk .

As a result of this, the biological descriptors which depend on P,
such as the generation time, will not be the same for A and Â. Most
importantly, the elasticities are affected: since they quantify the
relative change in λ in response to a multiplicative perturbation
of the entries of the matrix, we should expect the elasticity of
the collapsed entry âij to be the relative change in λ when all the
corresponding entries inA are subjected to the samemultiplicative
perturbation. Thus, if we write

akℓ =

{
cbkℓ if k ⊂ i and ℓ ⊂ j
bkℓ otherwise

and evaluate around c = 1 (which implies ∂akℓ
∂c = akl if k ⊂ i and

ℓ ⊂ j, and 0 otherwise), then we should have

êij =
âij
λ

∂λ

∂ âij
?
=

1
λ

∂λ

∂c

=
1
λ

∑
k, ℓ

∂λ

∂akℓ

∂akℓ
∂c

=

∑
k⊂i

∑
ℓ⊂j

akℓ
λ

∂λ

∂akℓ

=

∑
k⊂i

∑
ℓ⊂j

ekℓ,

i.e. the elasticity of λ to âij should be the sum of the elasticities of
λ to the corresponding entries of A, in accordance with the inter-
pretation of the elasticities as asymptotic frequencies of traversal
of the arcs. However, this is not the case with individualistic col-
lapsing, since π̂i ̸=

∑
k⊂iπk.

Finally, note that individualistic collapsing does not commute
with changes of units, in the sense that if we define the collapsed
conversion factors naturally as the weighted average within each
collapsed class, i.e.

ĉi =

∑
k⊂i ck wk∑
k⊂i wk

, (16)

then we see that switching to a given unit, collapsing and then
switching back to the original unit gives amodel different from the
one obtained by collapsing alone. In other words, individualistic
collapsing depends on the units the model is expressed in.
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Fig. 1. Graphical comparison of the two collapsing strategies.

4.2. Genealogical collapsing

Given the limitations of individualistic collapsing, we look for
an alternative method. Our framework suggests collapsing the
(genealogy, partitioning of reproductive value, growth rate) triple
rather than the projection matrix A, as illustrated by Fig. 1. The
idea behind this approach is that we will be able to choose how
we collapse each of the separate components of the triple in order
to preserve specific properties. This construction can be done using
any of P, Q or E for the genealogical part of the triple, and either of
w or v for the distribution of class reproductive value among the
classes of themodel – all these possibilities are equivalent andwill
give the same result. Here we use (P,w, λ).

If we want to preserve the asymptotic growth rate and the sta-
ble stage distribution, thenw and λ should be collapsed according
to

w⋆
i =

∑
k⊂i

wk and λ⋆
= λ . (17)

Therefore, all we have to do is specify how to collapse P. Some
precaution is needed here as, in the general case, it is impossible
to collapse a Markov chain – in the sense that the process we
obtain by aggregating the states of a Markov chain is not a Markov
chain. To see this, consider a Markov chain that goes from state i
to state i + 1 and then from i + 1 to i + 2 with probability 1.
If states i and i + 1 are to be collapsed together, the resulting
system should spend exactly two time intervals in the collapsed
state – a behavior that cannot be accounted for by a Markov chain;
similarly, discarding information about the state space of aMarkov
chain usually results in a loss of the Markov property. When it
does not, the chain is said to be lumpable. The reader is referred to
chapter VI of Kemeny and Snell (1976) for more on this subject.
Here, we will not try to find conditions on the life-cycle graph
for the strong or weak lumpability of P, let us only mention that
(1) from Theorem 6.3.2 of Kemeny and Snell (1976), the Markov
matrix associated with most models encountered in practice are
not strongly lumpable and (2) at the very least, we need the chains
associated with P to be weakly lumpable when using π as initial
probability distribution, but even this is not easy to turn into simple
necessary and/or sufficient conditions on the life-cycle graph.

Therefore, rather than restricting ourself to the (probably very
restricted) class of matrix population models that have lumpable
ergodic chains, we recognize that, in general, the process obtained
by observing the original Markov chain on the set of collapsed
classes is non-Markovian, but we seek to approximate it with a
Markov chain. It remains to specify what sense we would like to
give to this approximation, i.e. which properties we would like the
original and the collapsed model to share.

If we want to preserve elasticities, which correspond to the
stationary probability distribution on the arcs of P, we would like
P⋆ and P to have compatible stationary probability distribution,

i.e. π ⋆
i =

∑
k⊂iπk. Looking at the calculations that showed that

individualistic collapsing preserves the stable stage distribution,
we see that this can be achieved by letting

p⋆
ij =

∑
k⊂i

∑
ℓ⊂j

πk pkℓ∑
k⊂i

πk
. (18)

And indeed, it is then immediate that π⋆P⋆
= π⋆.

Having collapsed (P,w, λ) into (P⋆,w⋆, λ⋆), all we have to do
is reconstruct A⋆ from (P⋆,w⋆, λ⋆) using Eq. (11). After simplifica-
tions, we get

a⋆
ij =

∑
k⊂i

∑
ℓ⊂j

vk akℓ wℓ(∑
k⊂i vkwk∑
k⊂i wk

)∑
ℓ⊂j

wℓ

. (19)

It is easy to check that

v⋆
i =

∑
k⊂i

vkwk∑
k⊂i

wk
and w⋆

j =

∑
ℓ⊂j

wℓ (20)

are, respectively, left and right eigenvectors of A⋆ associated with
λ⋆

= λ. By the same argument as previously,A⋆ being primitive,we
conclude that v⋆, w⋆ and λ⋆ are indeed the vector of reproductive
values, the stable stage distribution, and the growth rate of A⋆,
respectively – in accordance with intuition. Similarly, one can
check that

e⋆
ij =

∑
k⊂i

∑
ℓ⊂j

ekℓ .

We call this new method for collapsing genealogical collapsing.
In addition to preserving the growth rate, stable stage distribution,
reproductive values and elasticities, this method also has concep-
tually satisfying properties such as the fact that it commutes with
unit conversion, provided that the collapsed conversion factors are
defined by

c⋆
i =

∑
k⊂i ck wk∑
k⊂i wk

. (21)

The easiest way to see why this is the case is to remember that,
in the (P,w, λ) decomposition, only w is affected by the choice of
units and, clearly, collapsing w commutes with changes of units,
since

∑
k⊂ick wk = c⋆

i w⋆
i .

The fact that genealogical collapsing commutes with unit con-
version is conceptually satisfying because there is something arbi-
trary in the choice of units (even though in the case of population
models, the individual usually imposes itself as the natural unit).
Moreover, the previous discussion about units allows us to better
interpret genealogical collapsing: from formula (19), we can see
that it consists in expressing the model in terms of reproductive
values, as described by (12), with ci = vi, performing individual-
istic collapsing on the resulting model, and then switching units
back to individuals again. This allows us to understand where
individualistic collapsing fails: in individualistic collapsing, indi-
viduals of different classes are added. But, strictly speaking, an
individual of class k is not the same unit as an individual of class
ℓ ̸= k. By contrast, reproductive value is a ‘‘central’’ unit in the
sense that only the amount of reproductive value counts, not the
individuals carrying it – in accordance with the intuition behind
formula (20) for the collapsing of reproductive value. Thus, in
genealogical collapsing, adding contributions is made possible by
the fact that they have been converted to a common unit first.

Before closing this technical presentation of genealogical col-
lapsing, it should be noted that if the reproductive values of the
classes collapsed together are the same (∀k, ℓ ⊂ i, vk = vℓ = v⋆

i ),
then Eq. (14) and Eq. (19) give the same results, that is, genealogical
collapsing reduces to individualistic collapsing.
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4.3. Examples

We close our presentation of genealogical collapsing by work-
ing out a few examples that illustrate the difference between indi-
vidualistic and genealogical collapsing. More specifically, we give
three simple models that correspond to very different biological
situations but yield almost identical individualistic models.

Consider the projection matrix

A(1)
=

( 0 2 2
0.33 0.66 0
0.33 0 0.66

)
,

whose life-cycle graph is depicted in Fig. 2A. It corresponds to
a model with two identical adult classes. The dominant eigen-
elements of A(1) are

λ(1)
= 1.53, v(1) =

(
0.64 1.47 1.47

)
and

w(1)
=

(0.57
0.22
0.22

)
.

It can be checked from Eq. (14) that, conforming to intuition,

Â(1) =

(
0 2

0.66 0.66.

)
Moreover, v

(1)
2 = v

(1)
3 , i.e. the classes that are collapsed have

the same reproductive value. We have seen that in that case, ge-
nealogical collapsing and individualistic collapsing yield the same
projection matrix. Therefore, A(1)⋆

= Â(1).
But now consider the matrix

A(2)
=

( 0 0.1 6.35
0.33 0.9 0
0.33 0 0.1

)
with dominant eigen-elements

λ(2)
= 1.52, v(2) =

(
0.83 0.13 3.71

)
and

w(2)
=

(0.57
0.30
0.13

)
.

This projectionmatrix,whose life-cycle graph is depicted in Fig. 2B,
corresponds to a very different biological situation, where the two
adults types are radically different: one has a low fertility and
high survival while the other has a high fertility and low survival.
This translates into the first one having a lower reproductive value
while making-up a bigger proportion of the stable population.
Collapsing states 2 and 3 in A(2) gives us:

Â(2) =

(
0 2.00

0.66 0.66

)
and A(2)⋆

=

(
0 2.00

1.04 0.16

)
,

so that different from A(1) though A(2) is, Â(2) ≈ Â(1). Furthermore,
notice that Â(2) andA(2)⋆ are actually quite different, demonstrating
that individualistic and genealogical collapsing can give quite dif-
ferent results, even on simple models. More subtly, the bottom left
entry ofA(2)⋆ also illustrates the fact that, unlike individualistic col-
lapsing, genealogical collapsing does not guarantee that collapsing
transitions of weight smaller than 1 yields a transition of weight
smaller than 1, forbidding one to interpret the collapsed weight as
a survival probability.Wewill return to this issue in theDiscussion.

Finally, consider yet another projection matrix (shown in
Fig. 2C):

A(3)
=

( 0 2 2
0.66 0.22 0
0 0.66 0.23

)
,

Fig. 2. A–C, the life-cycle graphs associated with the projection matrices A(1) , A(2)

and A(3) , respectively. D, the structure of the life-cycle graph obtained by collapsing
states 2′ and 2′′ in any of these three models.

Table 1
The reproductive value vectors v, generation times T , net reproductive rates R0
and elasticity matrices E of the individualistically collapsed and genealogically col-
lapsed models for each of the three models presented in the main text. Small dis-
crepancies such as the fact that the entries of Ê(2) sum to 0.99 are due to the fact
that, as in the rest of the section, the results have been rounded to two digits to be
displayed.

A(1) A(2) A(3)

v̂
(
0.64 1.47

) (
0.64 1.48

) (
0.64 1.47

)
v⋆

(
0.64 1.47

) (
0.83 1.22

) (
0.69 1.41

)
T̂ 2.76 2.76 2.76
T = T ⋆ 2.76 2.12 2.57
R̂0 3.88 3.85 3.89
R0

⋆ 3.88 2.48 3.31
R0 3.88 2.66 3.14

Ê
(

0 0.36
0.36 0.28

) (
0 0.36

0.36 0.27

) (
0 0.36

0.36 0.28

)
E⋆

(
0 0.36

0.36 0.28

) (
0 0.47

0.47 0.06

) (
0 0.39

0.39 0.22

)

with dominant eigen-elements

λ(3)
= 1.53, v(3) =

(
0.69 1.59 1.06

)
and

w(3)
=

(0.57
0.29
0.15

)
,

which collapses to

Â(3) =

(
0 2.00

0.66 0.66

)
and A(3)⋆

=

(
0 2.00

0.74 0.55

)
.

A(3) is yet another example of model that is very different from
A(1) and A(2) and yet shares the same individualistically collapsed
matrix.

Table 1 gives some classic biological descriptors for each of
the models presented above. It shows that the difference between
the descriptors of the individualistic model and those of the ge-
nealogical one can be non-negligible. Note that, on these particular
examples, the net reproductive rate R0

⋆ of the genealogical model
seems to be a better approximation of real value (i.e. the R0 of the
original model) than the net reproductive rate R̂0 of the individu-
alistic model.

5. Discussion

Matrix population models are used to calculate the ecologi-
cal properties of a population (e.g., the population growth rate,
the stable stage structure, etc.) from the traits of the individuals
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composing it (survival probabilities and fertilities). However, the
link between the descriptors of the individuals and those of the
population can be complex, making it hard to see how some of
the ecological descriptors of the population are related. We have
suggested an alternative framework to partly solve this problem, in
which matrix population models are parametrized by a set of de-
scriptors that capture various aspects of the population dynamics.
In this parametrization, rather than directly specify the entries of
the population projection matrix (n2 degrees of freedom, where n
is the number of stages) we instead specify the elasticities, which
contain information about the realizations of the life-cycle along
the lineages of the genealogy of the population (n2

− n degrees
of freedom); the stable stage distribution – or, equivalently, the
reproductive values – which determines the partitioning of class
reproductive value into individuals (n−1 degrees of freedom); and
the asymptotic growth rate, which describes the expansion of the
population over time (1 degree of freedom).

The genealogical decomposition follows directly from previ-
ously known facts about matrix population models (Demetrius,
1974, 1975; Tuljapurkar, 1982, 1993), but to our knowledge had
not previously been recognized as an alternative way of spec-
ifying a matrix population model. The main conceptual insight
this decomposition offers is that some properties of a structured
population depend only on the genealogical properties of the pop-
ulation. Furthermore, these properties are independent of the units
we use to keep track of organisms (biomass, individuals, etc.), or
equivalently, the form of the stationary stage distribution.

This primary insight is in some ways a generalization of the
well-known observation that although demographic events (birth,
death, survival) as a rule happen to individuals in various states,
to compare the importance of these events for the population
dynamics, one needs to ‘‘convert’’ individuals in different states
to a common unit by weighing them with their reproductive val-
ues (Fisher, 1930). Our results show that one can go one step
further, and characterize the dynamics of a population in this
common unit separately from the description of how the dynamics
manifest themselves in units of individuals.

This kind of separation seemswell suited for theoretical studies
of matrix population models because, whereas changing one entry
of the projection matrix will affect many biological descriptors,
changing a parameter in our parametrization will leave many of
them unchanged, or affect them in a straightforward way. The
parametrization also makes it easy to build projection matrices
with prescribed properties. Finally, if clarifies the link between
widely used descriptors by showing how some of them can be
decoupled.

For instance, there has been a long-going debate about when to
use elasticities or sensitivities. Our framework suggests that elas-
ticities should be favored when the properties one is interested in
depend only on the genealogy of the population – or, equivalently,
when the units used to build the model do not matter; by contrast,
when units play a crucial role, using sensitivities seems a better
option.

Our framework also helps make sense of recent results on
the accumulation of neutral mutations in structured populations
(Balloux and Lehmann, 2012; Lehmann, 2014; Allen et al., 2015;
Amster and Sella, 2016). These results show that the neutral sub-
stitution rate can be very different than the expectedmutation rate
of a random individual drawn from the population, in apparent
contradiction of classical results in population genetics (Kimura
et al., 1968). However, these results appear very natural under
our framework because the neutral substitution rate is simply
the long-term frequency of mutations along lineages. Thus, the
neutral substitution rate depends only on the genealogies and
stage-dependentmutation rates and is completely uncoupled from
the stationary stage distribution (and hence from the expected
mutation rate in a randomly drawn individual).

A third potential use of the genealogical decomposition is to un-
cover underlying similarities in the life-history of different species
that are not apparent in the individual-based projection matrices.
Our two-state examples in Section 3.2 illustrate this: if the two
states are, say, juveniles and adults, populationswith very different
ratios of juveniles to adults (e.g., high or low x) might nonetheless
have similar P matrices. This would mean that the dynamics of
lineages are similar in the two populations, and therefore the
populations would also have similar elasticities, generation times,
and class reproductive values despite their grossly different com-
positions.

An important limitation of our analysis arises from the de-
terministic nature of matrix population models. One interpreta-
tion of these models is that they describe the dynamics of the
expected abundances of the types in a discrete time multi-type
branching process (see chapter 5 of Athreya and Ney (1972) for
a mathematical presentation of multi-type branching processes,
and chapter 16 of Caswell (2001) for more on the link with matrix
population models), and all of the ingredients of the genealogical
decomposition are available in this framework. For instance, a rich
literature exists on the structure and convergence properties of the
genealogical Markov chains and their relation to the asymptotic
growth rate in the broader context of multi-type branching pro-
cesses (Hermisson et al., 2002; Georgii and Baake, 2003; Baake
and Georgii, 2007; Leibler and Kussell, 2010; Wakamoto et al.,
2012; Sughiyama et al., 2015; Kobayashi and Sughiyama, 2015).
However, there are also important differences between the de-
terministic and the stochastic setting: whereas in a deterministic
setting the choice of units is in some sense arbitrary, in branching
processes the choice of some particle as the unit is central to
the specification and analysis of the model, as the particles make
independent contributions to the next generation.

Another important stochastic generalization of matrix popula-
tion models arises when considering the joint genealogy of two or
more individuals sampled from the population, as in coalescent-
based approaches for studying structured populations (e.g., Rous-
set, 2004). In this context, the choice of units again becomes
important because the number of individuals in the class de-
termines the probability of coalescence. Note, however, that the
theoretically important unit of individuality in this context is the
chromosome rather than the organism. Thus, whereas our analysis
depends on the ability to change units while preserving many
features of the model, more detailed stochastic models will often
have a single natural choice of unit.

We illustrated the practical potential of the genealogical de-
composition by showing how it naturally leads to a new solution to
the problem of aggregating stages in a matrix population models.
This newmethod, which we dubbed ‘‘genealogical collapsing’’, has
many properties not enjoyed by the standard, ‘‘individualistic’’
method for collapsing, such as the fact that it preserves the repro-
ductive values and the elasticities, and that it is independent of the
units of the model.

One obvious application of genealogical collapsing is to allow
demographic comparisons between species modeled with differ-
ent numbers of stages (e.g. Enright et al., 1995). In this case, the
applicability of the method is the same as that of individualistic
collapsing: any set of classes of any primitive projection matrix
can be collapsed thanks to Eq. (19). Therefore, a natural question
arises: when should genealogical collapsing be favored over indi-
vidualistic collapsing? If the classes collapsed together have the
same reproductive value, both methods are equivalent. However,
as shown in Section 4.3, when the reproductive values of the
classes collapsed together differ, the differences can be substantial.

If one is primarily interested in descriptors such as the repro-
ductive values, the elasticities, or descriptors that are expected
to be closely related to these, then genealogical collapsing should
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be used. If by contrast what matters most is the interpretation of
the entries of the projection matrix as per capita contributions,
then individualistic collapsing seems a better option. In that case,
classes should preferentially be grouped based on similarity of the
reproductive values, rather than by their similarity in terms of
other demographic traits; if the reproductive values of the classes
collapsed together differ substantially, then one should be careful
about the resulting collapsedmodel. In any case, it is probably best
to compare the results obtained with both methods. Finally, note
that if one is only interested in global (that is, non class-specific)
quantities such as the net reproductive rate, etc., then these should
of course be computed from the original model.

Another possible application of genealogical collapsing is to
simplify integral projection models (Easterling et al., 2000; Ellner
and Rees, 2006; Merow et al., 2014), where some aspects of the
organismal state are continuous, to standard matrix population
models containing only discrete states. While current discretiza-
tion methods often require a very fine grid over the continuous
states to provide a good approximation (Zuidema et al., 2010),
the theoretical guarantees on the performance of genealogical col-
lapsing suggests that genealogical collapsing might provide more
satisfactory results for coarse discretizations. We note, however,
that the rigorous analysis of integral projection models is quite
technical (Ellner and Rees, 2006) and that the methods described
here are only applicable to the extent that a fine discretization
provides a sufficiently accurate approximation to the full integral
projection dynamics.

A third possible application of collapsing is to assess the im-
pact of within-class heterogeneity in the vital rates. The fact that
the vital rates are homogeneous within a class is an underlying
assumption of matrix population models, but it is rarely met in
practice so it is natural to wonder how this can affects the output
of a given model. To estimate this, one can formulate a specific
hypothesis about how the heterogeneities are distributed within
the classes by thinking of the classes as being composed of several
subclasses. The model can then be ‘‘extended’’ into a compatible
model, i.e. a model that will give the model fromwhich we started
when collapsed using individualistic collapsing. For instance, if the
initialmodelwas built by counting individuals and interpreting the
entries of the projection matrix as per capita contributions, then
the initial model can be seen as the individualistically collapsed
model associated with the ‘‘true’’ extended model. Comparing the
initial model with the model obtained via genealogical collapsing
of the extended model can thus be used to get an idea of how
important the discrepancies introduced by the heterogeneities of
the vital rates within the classes can be. Note that this scheme
has the advantage of allowing for a very selective relaxation of
the within-class homogeneity hypothesis, because all the other
assumptions on which the study of matrix population models is
based are kept.

All of this is in the spirit of the examples presented in Sec-
tion 4.3, where A(2) and A(3) can be viewed as two different hy-
potheses about the formof heterogeneity in the vital rates of class 2
of model Â(2) ≈ Â(3). Similarly, most matrix population models
encountered in practice are either age-based (Leslie models) or
size-based, whereas the vital rates are usually known to depend
on both variables. Collapsing can be used to convert between
these two types of models, by extending a size-based model into
an (age, size)-based model and then collapsing it into an age-
only model, as depicted in Fig. 3. In particular, given a size-based
model, once can construct an extended version of thismodelwhere
the states are (age, size) pairs, but the vital rates are determined
entirely by size as in the original model. Collapsing such a model
to include only size classes recovers the originalmodel because the
vital rates (and hence reproductive values) are determined solely
by size. However, reproductive value will typically vary within age

classes, and so the results of collapsing to an age-only model will
depend on the collapsing method used.

The discussion above highlights an important conceptual impli-
cation of our results: since in practice models are built by counting
individuals, any matrix population model can be viewed as the
individualistically collapsed version of a ‘‘real’’ extended model
to which we do not have access. As a result, computing descrip-
tors such as the elasticities or the reproductive values can give
incorrect results, even if there is no error in the entries of the
projection matrix. In particular, it is a fundamental limitation of
matrix population models that they are not resilient to within-
class heterogeneitieswhen it comes to computing the reproductive
values or the elasticities; by contrast, under stationarity they give
consistent estimates of the asymptotic growth rate and of the
stable population structure.

A theoretical solution to this problemwould be to count contri-
butions in terms of reproductive value rather than in individuals,
but this is unlikely to be of much use in practice since reproductive
value cannot be measured directly.

Since collapsing is about discarding information from a model,
any collapsingmethod is bound tohave shortcomings.Wenowdis-
cuss some of the limitations of genealogical collapsing. The biggest
problem of the method is that is does not retain the interpretation
of the entries of the population projection matrix as per-capita
entries. For instance, we have seen that collapsing transitions that
correspond to survival probabilities might yield a transitionwhose
weight is greater than 1, so that it cannot be interpreted as a
probability. By contrast, this cannot happen with individualistic
collapsing, since the weight obtained by collapsing survival prob-
abilities individualistically is simply the observed average survival
probability across the collapsed classes for a population at its stable
stage distribution.

However, this defect of genealogical collapsing may not be
as much of a drawback as it first appears because great care is
needed in the interpretation and analysis of survival probabilities
in collapsedmodels evenwhen using individualistic collapsing. For
instance, the classic method most notably developed in Cochran
and Ellner (1992) and reviewed in chapter 5 of Caswell (2001)
consists in interpreting survival probabilities as the transition
probabilities of an absorbing Markov chain that tracks the moves
of individuals between the classes of the model during their life-
time. However, when viewed in the reduced state-space, the paths
taken by individuals under the original model will typically not
be Markovian, violating a key assumption of the Cochran and
Ellner (1992) method. While individualistic collapsing does opti-
mally preserve the one-step survival probabilities, other descrip-
tors calculated by the Cochran and Ellner (1992) method will
generally not be preserved. On the other hand, genealogical col-
lapsing results in transition rates that cannot be interpreted as
survival probabilities but which nonetheless maintain several key
global properties of the population dynamics such as the genera-
tion time and reproductive values, and which optimally preserve
the one-step transition probabilities of the stationary genealogical
Markov chains defined by thematricesP andQ. Furthermore,while
entries of the genealogically collapsed projection matrix cannot
be interpreted as per-capita contributions, their interpretation is
actually straightforward from a different point of view: since it
does not make sense to add-up individuals from different classes,
we express all contributions in terms of reproductive values, sum
them, and then convert back the result in terms of individuals by
using the collapsed reproductive value as the conversion factor.

It should also be noted that even though individualistic collaps-
ing is the de facto standard for collapsing projection matrices, in
some specific situations other methods have been suggested. For
instance, Yearsley and Fletcher (2002) proposed amethod that pre-
serves the asymptotic growth rate, the stable stage distribution and



F. Bienvenu et al. / Theoretical Population Biology 115 (2017) 69–80 79

Fig. 3. An (age, size)-based model and the corresponding age-based model and size-based model, both obtained by collapsing some of the classes of the (age, size) model.
Recovering the original model from the collapsed one requires additional hypotheses about the distribution of vital rates within the classes, made on a per case basis and
based on a good knowledge of the organism and of the population being studied. Comparing the individualistic and genealogical model can be used to test how these
hypotheses impact the output of the model.

the generation time when collapsing adjacent stages in what are
often called size-based models (cf. Fig. 3). Genealogical collapsing
also enjoys all of these properties, but in addition preserves the
reproductive values and the elasticities, and ismore general in that
it can be used to collapse any group of classes in any primitive
matrix population model.

Although genealogical collapsing is interesting in its own right,
it is important to see that its properties flow fundamentally from
its close relationship with the reparameterization of matrix pop-
ulation models described here. Because this parametrization al-
lows the different global properties of the model to be altered
independently from each other, each can be collapsed separately
and thereby optimally preserved. By clarifying the relationship
between various global features of matrix population models, we
hope that this reparameterization will spur further innovation in
the inference and analyses of these models.
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