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—— Abstract

Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo
a set of permutation of rules that reflects the commutative conversions of its cut-elimination
procedure. As such, it is related to the question of proofnets: finding canonical representatives
of equivalence classes of proofs that have good computational properties. It can also be seen as
the word problem for the notion of free category corresponding to the logic.

It has been recently shown that proof equivalence in MLL (the multiplicative with units
fragment of linear logic) is Pspace-complete, which rules out any low-complexity notion of
proofnet for this particular logic.

Since it is another fragment of linear logic for which attempts to define a fully satisfactory
low-complexity notion of proofnet have not been successful so far, we study proof equivalence in
MALL (multiplicative-additive without units fragment of linear logic) and discover a situation
that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL
corresponds (under ACq reductions) to equivalence of binary decision diagrams, a data structure
widely used to represent and analyze Boolean functions efficiently.

We show these two equivalent problems to be Logspace-complete. If this technically leaves
open the possibility for a complete solution to the question of proofnets for MALL", the established
relation with binary decision diagrams actually suggests a negative solution to this problem.
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1 Introduction

Proofnets: from commutative conversions to canonicity

From the perspective of the Curry-Howard (or propositions-as-types) correspondence [5], a
proof of A = B in a logic enjoying a cut-elimination procedure can be seen as a program
that inputs (through the cut rule) a proof of A and outputs a cut-free proof of B.

Coming from this dynamic point of view, linear logic [6] makes apparent the distinction
between data that can or cannot be copied/erased via its exponential modalities and retains
the symmetry of classical logic: the linear negation (-)* is an involutive operation. The study
of cut-elimination is easier in this setting thanks to the linearity constraint. However, in its
sequent calculus presentation, the cut-elimination procedure of linear logic still suffers from
the common flaw of these type of calculi: commutative conversions.

© Marc Bagnol;
Bv licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://cstheory.stackexchange.com/questions/29243/what-is-the-complexity-of-the-equivalence-problem-for-read-once-decision-trees/29248#29248
http://boole.stanford.edu/~dominic
http://aubert.perso.math.cnrs.fr/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

MALL proof equivalence is Logspace-complete, via binary decision diagrams

(m) (m) ()

A*,B*,C,D,T A*,B*,C,D,T A B
o) (1) (v) )
A% B*.C.D,T A B ., A%B.C.DT A® B
_— t
A9 B*.CeDT AeB ° C.D,T Cu
CoD.T cur CeDT °

In the above reduction, one of the two formulas related by the cut rule is introduced
deeper in the proof, making it impossible to perform an actual elimination step right away:
one needs first to permute the rules in order to be able to go on.

This type of step is called a commutative conversion and their presence complexify a lot
the study of the cut-elimination procedure, as one needs to work modulo an equivalence
relation on proofs that is not orientable into a rewriting procedure in an obvious way: there
are for instance situations of the form

(1) (m2) (1) (m3)
A*, B*, T A ot (m3) - A*, B*, T B ot (m3)

- B*,T B - AT A
T FT

where it is not possible to favor one side of the equivalence without further non-local knowledge
of the proof. The point here is that, as a language for describing proofs, sequent calculus is
somewhat too explicit. For instance, the fact that the two proofs

(r) (m)

A,B,C,D,T ) A,B,C,D,T
AgB.C.D.T & AB.CeDT ©
A9B.CoD.T © A9B.CeD.T °

are different objects from the point of view of sequent calculus generates the first commutative
conversion we saw above.

A possible solution to this issue is to look for more intrinsic description of proofs, to find
a language that is more synthetic; if possible to the point where we have no commutative
conversions to perform anymore.

Introduced at the same time as linear logic, the theory of proofnets [6, 7] partially
addresses this issue. The basic idea is to describe proofs as graphs rather than trees, where
application of logical rules become local graph construction, thus erasing some inessential
sequential informations. Indeed, the two proofs above would translate into the same proofnet:

A B C D

A®B Cw»D T

(where R, is the proofnet translation of the rest of the proof) and the corresponding
commutative conversion disappears.

For the multiplicative without units fragment of linear logic (MLL), proofnets yield
an entirely satisfactory solution to the problem, and constitute a low-complexity canonical
representation of proofs based on local operations on graphs.
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By canonical, we mean here that two proofs are equivalent modulo the permutations of
rules induced by the commutative conversions if and only if they have the same proofnet
translation. From a categorical perspective, this means that proofnets constitute a syntactical
presentation of the free semi-*-autonomous category and a solution to the associated word
problem [10].

Contrastingly, the linear logic community has struggled to extend the notion of proofnets
to wider fragment: even the question of MLL (that is, MLL plus the multiplicative units)
could not find a satisfactory answer. A recent result [9] helps to understand this situation:
proof equivalence of MLL is actually a Pspace-complete problem. Hence, there is no hope
for a satisfactory notion of low-complexity proofnet for this fragment.!

In this article, we consider the same question, but in the case of MALL : the multiplicative-
additive without units fragment of linear logic. Indeed, this fragment has so far also resisted
the attempts to build a notion of proofnet that at the same time characterizes proof
equivalence and has basic operations of tractable complexity: we have either canonical nets of
exponential size [13] or tractable nets that are not canonical [7]. Therefore, it would have not
been too surprising to have a similar result of completeness for some untractable complexity
class. An obvious candidate in that respect would be coNP: as we will see, one of these
two approaches to proofnets for MALL is related to Boolean formulas, which equivalence
problem is coNP-complete.

It turns out in the end that this is not the case: our investigation concludes that the
equivalence problem in MALL is Logspace-complete under AC( reductions. But maybe
more importantly, we uncover in the course of the proof an unexpected connexion of this
theoretical problem with a very practical issue: indeed we show that MALL proofs are
closely related to binary decision diagrams.

Binary decision diagrams

The problem of the representation of Boolean functions is of central importance in circuit
design and has a large range of practical applications. Over the years, binary decision
diagrams (BDD) [2] became the most widely used data structure to treat this question.

Roughly speaking, a BDD is a binary tree with nodes labeled by Boolean variables and
leaves labeled by values 0 and 1. Such a tree represents a Boolean function in the sense
that once an assignment of the variable is chosen, then following the left or right path at
each node according to the value 0 or 1 chosen for its variable eventually leads to a leave,
which is the output of the function.

This representation has many advantages which justify its popularity [15]: most basic
operations (negation and other logical connectives) on BDD can be implemented efficiently,
in many practical cases the size of the BDD representing a Boolean function remains compact
(thanks to the possibility to have shared subtrees) and once a variable ordering is chosen
they enjoy a notion of normal form.

In this article, we consider both BDD and ordered BDD with no sharing of subtrees and
write them as special kinds of Boolean functions by introducing an IfThenElse constructor.
However, when manipulating them from a complexity point of view we will keep the binary

L Of course, this applies only to the standard formulation of units: the equivalence problem for any
notion of multiplicative units enjoying less permutations of rules could potentially still be tractable
via proofnets: see for instance the work of S. Guerrini and A. Masini [8] and D. Hughes [11]
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tree presentation in mind.

AC, reductions

To show that a problem is complete for some complexity class C, one needs to specify
the notion of reduction functions considered, and of course this needs to be a class of
functions supposed to be smaller than C itself (indeed any problem in C is complete under
C reductions).

A standard notion of reduction for the class Logspace is (uniform) ACq reduction [3],
formally defined in terms of uniform circuits of fixed depth and unbounded fan-in. We will
not be getting in the details about this complexity class and, as we will consider only graph
transformations, we will rely on the following intuitive principle: if a graph transformation
locally replaces each vertex by a bounded number of vertices and the replacement depends
only on the vertex considered and eventually its direct neighbors, then the transformation
is in ACy. Typical examples of such a transformation are certain simple cases of so-called
“gadget” reductions used in complexity theory to prove hardness results.

Outline of the paper

Section 2 covers some background material on MALL and notions of proofnet for this
fragment: monomial proofnets and the associated vocabulary for Boolean formulas and BDD
in Section 2.1 and the notion of slicing in Section 2.2. Then, we introduce in Section 2.3 an
intermediary notion of proof representation that will help us to relate proofs in MALL and
BDD. In Section 3, we prove that proof equivalence in MALL and equivalence of BDD relate
to each other through AC( reductions and that they are both Logspace-complete.

2 Proof equivalence in MALL

» Notation 1. The formulas of MALL are built inductively from atoms which we write
a, B,7,... their duals a*, 8*,~*,... and the binary connectives ®,®, &, P (we consider
that the & connectives carry a label x to simplify some reasonings, but we will omit it when
it is not relevant). We write formulas as uppercase letters A, B,C,... unless we want to
specify they are atoms. Sequents are sequences of formulas, written as greek uppercase letters
A A, ... such that all occurrences of the connective & in a sequent carry a different label.
The concatenation of two sequents I' and A is simply written I', A.

Let us recall the rules of MALL .2 We do not include the cut rule in our study, since
in a static situation (we are not looking at the cut-elimination procedure of MALL) it can
always be encoded w.l.o.g. using the ® rule.

T A B A A/B T A B raAa TI.B
3 ® 52 Dr
T,A% B I AA® B TA®B = T,A®B T,A&,B

a, a* &z

(by convention, we leave the axiom rule implicit to lighten notations. Also, we will use the

notation <;> for “the proof m of conclusion T'”. )

2 'We consider a n-expanded version of MALL , which simplifies proofs and definitions, but the extension
of our results to a version with non-atomic axioms would be straightforward. Also, we work modulo the
exchange rule.
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» Remark 2. Any time we will look at a MALL proof from a complexity perspective, we
will consider they are represented as trees with nodes corresponding to rules, labeled by the
connective introduced and the sequent that is the conclusion of the rule.

Two MALL proofs 7 and v are said to be equivalent (notation 7 ~ v) if one can pass
from one to the other via permutations of rules [14]. We have an associated decision problem.

» Definition 3 (MALL equ). MALL equ is the decision problem:
“Given two MALL proofs m and v with the same conclusion, do we have ™~ v ?”

We will not go through all the details about this syntactic way to define proof equivalence
in MALL . The reason for this is that we already have an available equivalent characterization
in terms of slicing [14] which we review in Section 2.2. Instead, let us focus only on the most
significant case.

(m) () (m) {v) (1) {v)

I A,C T,B,C ) A, C A,D I,B,C A,D
& ~ ®
T,A&B.,C A,D I,A,A,C®D IA,B,C®D
® &
I A,A&B,C®D IA,A&B,C®D

In the above equivalence, the ® rule gets lifted above the & rule. But doing so, notice
that we created two copies of v instead of one, therefore the size of the prooftree has grown.
Iterating on this observation, it is not hard to build pairs of proofs that are equivalent, but
one of which is exponentially bigger than the other. This is indeed where the difficulty of
proof equivalence in MALL lies. As a matter of fact, this permutation of rules alone would
be enough to build the encoding of the equivalence problem of binary decision diagrams
presented in Section 3.1.

A way to attack proof equivalence in a logic, as we exposed in Section 1, is to try to setup
a notion of proofnet for this logic. In the following, we will review the main two approaches
to this idea in the case of MALL: monomial proofnets by J.-Y. Girard [7, 16] and slicing
proofnets by D. Hughes and R. van Glabbeek [13, 14]. We will then design an intermediate
notion of BDD slicing that will be more suited to our needs.

2.1 Monomial proofnets

The first attempt in the direction of a notion of proofnet for MALL is due to J.-Y.Girard [7],
followed by a version with a full cut-elimination procedure by O. Laurent and R. Maielli [16].

While proofnets for multiplicative linear logic without units were introduced along linear
logic itself [6], extending the notion to the multiplicative-additive without units fragment
proved to be a true challenge, mainly because of the superposition at work in the & rule.

Girard’s idea was to represent the superposed “versions” of the proofnet by attributing
a Boolean formula (called a weight) to each link, with one Boolean variable for each &
connective in the conclusion I'. To retrieve the version of the proofnet corresponding to some
selection of the left/right branches of each &, one then just needs to evaluate the Boolean
formulas with the corresponding valuation of their variables.

This is the occasion to introduce the vocabulary to speak about Boolean formulas.

» Definition 4 (Boolean formula). Given a finite set of variables V = {x1, ... ,2,}, a
Boolean formula over V is inductively defined from the elements of V'; the constants O
(“false”) and 1(“true”); the unary symbol = (“negation”); the binary symbols + and .
(“sum/or/disjuction” and “product/and/conjunction” respectively).
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We consider a syntactic notion of equality of Boolean formulas: for instance 0.x # 0.
The real important notion, that we therefore state separately, is equivalence: the fact that if
we replace the variables with actual values, we gets the same output.

» Definition 5 (equivalence). A waluation v of V is a choice of 0 or 1 for any element
of V. A valuation induces a an evaluation function v(-) from Boolean formulas over V' to
{0,1} in the obvious way. Two Boolean formulas ¢ and ¢ over V are equivalent (notation
¢ ~ 1) when for any valuation v of V', we have v(¢) = v(¢).

» Definition 6 (monomial). We write V = {71, ... ,Z,}. A monomial over V is a Boolean
formula of the form ;. ... .y, with {y1, ... ,ys} SV UV.

Two monomials m and m’ are in conflict if m.m’ ~ 0.

» Remark 7. Two monomials are in conflict if and only if there is a variable x such that x
appears in one of them and T appears in the other.

While monomials are a specific type of Boolean formula, the binary decision diagrams we
are about to introduce are not defined directly as Boolean formulas. Of course, they relate
to each other in an obvious way, but having a specific syntax for binary decision diagrams
will prove more convenient to solve the problems we will be facing.

» Definition 8 (BDD). A binary decision diagram (BDD) is defined inductively as:

o The constants 0 and 1 are BDD
o If ¢, ¢ are BDD and X is either a variable, 0 or 1, If X Then ¢ Else ¢ is a BDD
o If ¢ is a BDD and X is either a variable, 0 or 1, DontCare X Then ¢ is a BDD

Moreover, suppose we have an ordered set of variables V' = {1, ... ,z,} with the convention
that variables are listed in the reverse order: x,, is first, then x,_1, etc. We define a subclass
of BDD which we call ordered binary decision diagrams over V (°BDD/V') by restricting to
the following inductive cases (we let V' = {xzy, ... ,2p_1})

o The constants 0 and 1 are °BDD/o
o If ¢ and ¥ are °BDD/V’, If x,, Then ¢ Else ¢ is a °BDD/V
o If ¢ is a °BDD/V’, DontCare z,, Then ¢ is a °BDD/V

The notions of valuation and equivalence are extended to BDD and °BDD the obvious way
so that DontCare X Then ¢ ~ ¢ and If X Then ¢Elset) ~ X.p+ X.1.

» Remark 9. Any time we will look at BDD and °BDD from a complexity perspective, we
will consider they are represented as labeled trees. The cases of If 0, DontCare 1,... will
be useful to obtain AC( reductions in Section 2.3 and Section 3.2, since erasing a whole
subpart of a graph of which we do not know the address in advance is not something that is
doable in this complexity class. The absence of sharing implied by the tree representation is
also crucial to get low-complexity reductions.

» Example 10. The Boolean formula z.y.Z is a monomial, while x.y + z and z.1 are not.

The BDD If x5 Then (If z1 Then0Else 1)Else 1 (which is not a °BDD/{z1,22} by the
way) is equivalent to the Boolean formula z2.Z7 + Z3: both evaluate to 1 only for the
valuations {z; — 1,22 — 0}, {1 — 0,22 — 0} and {z1 — 0,25 — 1}. There exist an
equivalent °BDD/{x1,22}: If 25 Then (If 1 Then 0 Else 1) Else (DontCare x1 Then1).

» Definition 11. BDDequ is the following decision problem:

“given two BDD ¢ and 1, do we have ¢ ~ 1) ?”



M. Bagnol

°BDDequ is the following decision problem:
“given two °BDD/V ¢ and ¢, do we have ¢ ~ ¢ ?”

Girard’s proofnets are called monomial because the only Boolean formulas that are
allowed are monomials. This is, as of the state of the art, the only known way to have a
notion of proofnet that enjoys a satisfying correctness criterion.

For our purposes, we do not need to get into the technical details of monomial proofnets.
Still, let us end this section with an example of proofnet from the article by Laurent and
Maielli, where the monomial weight of a link is pictured just above it:

2.2 Slicings and proof equivalence

The idea of slicing dates back to J.-Y. Girard’s original article on proofnets for MALL [7],
and was even present in the original article on linear logic [6]. It amounts to the natural point
of view already evoked in Section 2.1, seeing the & rule as introducing superposed variants
of the proof, which are eventually to be selected from in the course of cut-elimination. If we
have two alternative slices for each & connective of a sequent I' and all combinations of
slices can be selected independently, we readily see that the global number of slices will be
exponential in the number of & connectives in T".

This is indeed the major drawback of the representation of proofs as set of slices: the size
of objects representing proofs may grow exponentially in the size of the original proofs. This
of course impairs any fine-grained analysis in terms of complexity.

» Definition 12 (slicing). Given a MALL sequent T, a linking of T is a subset

{[al,aﬂ, ,[an,a;]}

of the set of (unordered) pairs of occurrences of dual atoms in T'.
Then, a slicing of T is a finite set of linkings of I".

To any MALL proof 7, we associate a slicing S, by induction:

o If m= a,a* then S; is the set containing only the linking {[a, a*]}

(1)
o If r= I A B then S, = S,,, where we see atoms of A2 B

I'A® B ¥ as the corresponding atoms of A and B



MALL proof equivalence is Logspace-complete, via binary decision diagrams

(1) {v)
o Ifr=T,A A/B then S ={AUN |XeS,, NS, }

INAA® B
(1)
o Ifr= T,A o then S; = §,,, and likewise for @,
Ao B
(w) (v)
o Ifr=T1,A TI'.B  then S, =8,US,
I'A,A&B
» Remark 13. In the ® rule, it is clearly seen that the number of slices are multiplied. This
is just what is needed in order to have a combinatorial explosion: for any n, a proof m, of

R, a&a, ... ,a&

n times n times

obtained by combining with the ® rule n copies of the proof

a*,a ot «

ar,a&a
will be of linear size in n, but with a slicing S,, containing 2" linkings.

Slicings (associated to a proof) correspond exactly to the notion of proofnets elaborated
by D. Hughes and R. van Glabbeek [13]. While their study was mainly focused on the
problems of finding a correctness criterion and designing a cut-elimination procedure for
these, it also covers the proof equivalence problem. The proof that their notion of proofnet
characterizes MALL proof equivalence can be found in an independent note [14].

» Theorem 14 (slicing equivalence [14, Theorem 1]). Let m and v be two MALL proofs. We
have that T ~ v if and only if S =S, .

Let us also end this section with a graphical representation of an example of proofnet
from the article of Hughes and van Glabbeek, encoding the proof on the left with three
linkings A1, Ao, As:

PP QQ M NPT
Pagp PeQ.Q (ProQ)®OR!, PL(Q&R)
* m O* / * ®1 % O)* / * @ * : 1
(PreQ ) e R, P (PreQ ) e R, P R R*,R o Az (PLoQL)ORL, PL(Q&R)
P oQ")® R, P& P*®Q*) o R*, P
(ProQr) Q (Pr Q") N . T
(PreQ) e R, (P&Q)&R (PreQt)eR, P&(QYR)

2.3 BDD slicings

We finally introduce an intermediate notion of representation of proofs which will be a central
tool in the next section. In a sense, it is a synthesis of monomial proofnets and slicings:
acknowledging the fact that slicing makes the size of the representation explode, we rely on
BDD to keep things more compact.

Of course, the canonicity property is lost. But this is exactly the point! Indeed, deciding
whether two “BDD slicings” are equivalent is the reformulation of proof equivalence in MALL
we rely on in the reductions between MALL equ (Definition 3) and BDDequ (Definition 11).
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» Definition 15 (BDD slicing). Given a MALL sequent T', a BDD slicing of T' is a function
B that associates a BDD to every element [v,v*] of the set of (unordered) pairs of occurrences
of dual atoms in T.

We say that two BDD slicings M, N of the same I" are equivalent (notation M ~ N) if
for any pair [y,v*], we have M|[y,~v*] ~ N|[v,~7*] in the sense of Definition 5.

To any MALL proof 7, we associate a BDD slicing B, by induction:

o If 7= a,a* then B:[o,a*] =1.

(1)
o Ifr= I AB then Br[v,v*] = B.[v,7*] where we see atoms of A9 B as the

'A% B corresponding atoms of A and B

(1) (v) Bu[v.v*] if v,7* are atoms of I, A
o If m= M ® then B[y,v*] = ¢ B,[v,7v*] if v,7* are atoms of A, B
A AeB 0 otherwise?

(1)

olfm= T,A  then Brly, 7] = ,
WY 1 0 otherwise

Buly.~*] if v,7* are atoms of T, A

and likewise for &,.
(k) (v)
o Ifr=T,A r,B then
DA A&B
If x Then B,[y,7*] Else 0 if 4 or v* is an atom of A
Br[v,7*] = { If x Then 0 Else B, [y, V"] if v or 4* is an atom of B
If o Then B,[y,7*| Else B,[y,7*]  otherwise

» Remark 16. The BDD we obtain this way are actually of a specific type: they are usually
called read-once BDD: from the root to any leave, one never crosses two IfThenElse nodes

asking for the value of the same variable.

» Example 17. The weight of the pairs [«, @*] and [§,*] in the BDD slicing of the proof

a, a* B, B*
— &P — Pr
a®fa* | asfBpr
m = K&
a® B, & 0" 5, 0%

a® B, (o &%) ® 6,6
are Br[a,a*] = If x Then 1 Else 0 and B,[6,0*] =1.

It is not hard to see that proof equivalence matches the equivalence of BDD slicings by
relating them to slicings from the previous section.

» Theorem 18 (BDD slicing equivalence). Let m and v be two MALL proofs. We have that
m ~ v if and only if B, ~ B, .

3 Remember we consider occurrences of atoms, and as the ® rule splits the context into two independent
parts that and no axiom rule can cross this splitting.
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Proof. We show in fact that S; = S, if and only if B, ~ B, , with Theorem 14 in mind.

To a BDD slicing B, we can associate a linking v(B) for each valuation v of the
variables occurring in B by setting v(B) = { [a, a*] | v(B[a, @*]) =1 } and then a slicing
f(B) = {v(B) | v valuation }. By definition, it is clear that if B and B’ involve the same
variables and B ~ B’ then f(B) = f(B').

Conversely, suppose B 7 B, , so that there is a v such that v(B,) # v(B,). To conclude
that f(Br) # f(B,), we must show that there is no other v’ such that v'(B,) = v(Bx).

To do this, we can extend the notion of valuation to proofs: if v is a valuation of the
labels x of the &, in m, v(r) is defined by keeping only the left or right branch of &,
according to the value of 2. Now we can consider the set v**(7) of axiom rules in v(7) and
we can show by induction that v®*(7) must contain at least one pair with one atom which is
a subformula of the side of each &, that has been kept. Therefore for any 7 and v with the
same conclusion, if v # v’ we have v**(v) # v/**(7) no matter what. Then we can remark
that v®* () is just another name for v(B;) so that in the end, there cannot be v # v’ such
that v'(B,) = v(Bx).

Finally, an easy induction shows that f(B,) = S, and therefore we are done. |

Also, a BDD equivalent to the BDD associated to a pair can be computed in ACy.

» Lemma 19 (computing BDD slicings). For any MALL proof © and any pair [v,~v*], we
can compute in ACy a BDD ¢ such that ¢ ~ Br[v,7*].

Proof. As we see proofs as labeled trees (Remark 2), we will only locally replace the rules of
the proof the following way to obtain the corresponding BDD ¢:

o Replace axiom rules v,7* by 1 and other axiom rules by 0
o Replace all ®® and @ rules by DontCare 1 Then - nodes

o Inthe ® case, test which side the atoms ~y,v* are attributed to (this can be done locally by
looking at the conclusions of the premise of the rule) and replace it by a If O Then - Else-
or a If 1 Then - Else - node accordingly

o Replace &, rules by a If x Then - Else - nodes

We can see by induction that the resulting BDD is equivalent to By[vy,7*]. All these
operations can be performed by looking only at the rule under treatment (and its immediate
neighbors in the case of ®) and always replaces one rule by exactly one node. Therefore it is
in ACO . <

» Corollary 20 (reduction). MALLequ reduces to BDDequ in ACy.

In the next section we focus on the equivalence of BDD and °BDD, proving first that the
case of °BDD can be reduced to proof equivalence in MALL . Then, we will show the problem
of equivalence of BDD to be in Logspace, and that of °BDD to be Logspace-hard, thus
characterizing the intrinsic complexity of proof equivalence in MALL as Logspace-complete.

Note that this contrasts with the classical result that equivalence of general Boolean
formulas is coNP-complete. It turns out indeed that the classes of BDD we consider enjoy a
number of properties that allow to solve equivalence more easily.
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3 Equivalence of BDD

3.1 Equivalence of °BDD reduces to proof equivalence in MALL

We now show that the converse of Lemma 19 holds for °BDD.

To do this, we rely on a formula B which will serve as the placeholder of a °BDD/V ¢
we want to encode; and a context I' which contains one &, connective for each variable z
in V| organized in a way that allows for an inductive specification of °BDD.

Given an °BDD ¢, we wish to obtain a proof my4 of B,I" such that dual pairs with
one element in B will receive either the value ¢ or a value equivalent to ¢ in the BDD
slicing of m4; and on the other hand, the other dual pairs of I' will receive equivalent values
whatever the °BDD we encode is. This will lead to the fact that two such encoding proofs
are equivalent if and only if the °BDD they encode are equivalent.

» Notation 21. We fix atomic formulas ai, ... ,a,... and 8 and write B= & 3. In
what follows, we will use 8* and 3° to refer respectively to the left and right copies of 3 in
B; and likewise o and of for copies of «; in a; & «;.

We write respectively mg and 7y the proofs

B, B B, B

D
B,5* B, 5*

and for any n, we write 7% the proof

*
ay,

*
Qg Oy & Qi

» Definition 22 (encoding a °BDD). Let ¢ be an °BDD over the variables V = {z1, ... ,2,}.
We define the sequent

*
Qp Qo Oy

"= ( o (6* ®O"1k) ®Oé§) X -- ) ®a:L , O &mlal , Qg &mQQQ g ey Op &zn_lan—l
with T? = 8* and set A" =T, a,, &, o, With also A? = g*.
We define the proof 7, of conclusion B, A™ by induction on n

o The base cases are 0 and 1, encoded respectively as mo and 7y .
o Otherwise, if ¢ = If x,, Then v Else (, with both ¢ and { being °BDD/{z1, ... ,2n-1},
we have my and m; defined by induction, and then

() (m¢)
B, A" ! ar, Oy B, A1 ar, O
T = ® ®
i B,I",a, B,I",a,
&n,
B,A7l

o The last case is ¢ = DontCare x,, Then ¢, with 1 being a °BDD/{z1, ... ,zn—1} so that
we have 7y defined by induction, and then

() (mg.)
T = B, A1 Oy, SOy,
B, A"

We still need to state in what sense 74 is an encoding of ¢: we turn the statement about
the value of atoms of B we made in the beginning of this section into a precise property.

11
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» Lemma 23 (associated BDD slicing). Writing B the BDD slicing of my, we have
B3, 3] = ¢ B5*, 3] ~ ¢ Blaj, o] ~ z; Bloj, of] ~ T

Proof. By a routine inspection of induction cases. Let us only review ¢ = Ifx,, ThentyElse(.
Let us write By, By and B: the BDD slicings respectively associated to the proofs my, my
and 7¢.

By induction we have that B[S, %] = ¢ and B¢[S*, 5*] = ¢, therefore by definition of
the BDD slicing associated to a & rule, we have that By[3', 3] = If 2, Then ) Else ( = ¢.
The case of 8* is similar, but for its use of Lemma 27 from the next section.

As for the other pairs of occurences of dual atoms in the conclusion, let us have a look at
the case of [af, af]: if by induction By[af, af] ~ z; and B¢}, af] ~ z;, then by definition
Bylaf, ai] ~ If x, Thenz; Else ; ~ x;. The case of of is similar. <

» Corollary 24 (equivalence). If ¢ and i are two °BDD/{z1, ... ,z,}, then my ~ my if and
only if ¢ ~ 1.

» Lemma 25 (computing the encoding). Given a °BDD/{z1, ... ,zn} ¢, Ty can be computed
m ACO .

Proof. As in the proof of Lemma 19, we show that the inductive definition can in fact be
seen as a local graph transformation introducing nodes of bounded size:

(mo) (m1)
o Replace each 0 node by B,5* and 1 node by B, 5" .

(mg!)
ap, o &, 0
o Replace each DontCare z; Then - by B.A
oF, oy o, o
i ® i
o Replace each If z; Then - Else- by B,I" o B,I" o .

B, A’

For any of these replacements, we see that the choice of the case to apply and the label of
the resulting block (of bounded size) of rules replacing a node depends only on the label of
the node we are replacing, therefore the transformation is in ACg. <

» Corollary 26 (reduction). °BDDequ reduces to MALL equ in ACy.

To sum up, we have so far the following chain of ACy reductions:

°BDDequ — MALLequ — BDDequ

3.2 Logspace-completeness

We prove in this section that all these equivalence problems are Logspace-complete. We
begin by listing a few useful properties of BDD that will allow to design a Logspace decision
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procedure for their equivalence. Then, we prove the Logspace-hardness by reducing to
°BDDequ a Logspace-complete problem on line graph orderings.

The starting point is the good behavior of BDD with respect to negation. In the following
lemma, we consider the negation of a BDD which is not strictly speaking a BDD itself: we
think of it as the equivalent Boolean formula, the point being precisely to show that this
Boolean formula can be easily expressed as a BDD.

» Lemma 27 (negation). If ¢ and ¢ are BDD and X is either 0, 1 or a variable, we have

If X Then ¢ Else ¢ ~ If X Then ¢ Else ¢

DontCare X Then ¢ ~ DontCare X Then ¢

Proof. First we can transform our expression by

If X Then ¢ Else ¥ ~ X.d+ Xt ~ (X + (X +0) ~ X0 + X0+ 1.6
then we can apply the so-called “consensus rule” of Boolean formulas
XYp+X.p+1v.¢p ~ X.p+ X.p ~ If X Then ¢ Else )
The case of DontCare is obvious. |

» Corollary 28. If ¢ is a BDD, then there is a BDD $ such that ¢ ~ (E

Moreover QAS can be computed in logarithmic space.

Proof. An induction on the previous lemma shows that we can obtain the negation of a
BDD simply by flipping the 0 nodes to 1 nodes and conversely. Hence the transformation is
even in ACy. <

Then, we show that a BDD can be seen as a sum of monomials through a Logspace
transformation.

» Lemma 29 (BDD as sums of monomials). If ¢ is a BDD, then there is a formula ¢, which
is a sum of monomials and is such that ¢ ~ ¢y .

Moreover ¢, can be computed in logarithmic space.

Proof. For each 1 node in ¢, go down to the root of ¢ and output one by one the variables
of any If x Then - Else - encountered: this produces the monomial associated to this 1
node. Then ¢, is the sum of all the monomials obtained this way and is clearly equivalent
to ¢. The procedure is in Logspace because we only need to remember which 1-leave we
are treating and where we are in the tree (when going down) at any point. |

Putting all this together, we finally obtain a space-efficient decision procedure. Note
however that it is totally sub-optimal in terms of time: to keep with the logarithmic space
bound, we have to recompute a lot of things rather than store them.

» Corollary 30 (BDDequ is in Logspace). There is a logarithmic space algorithm that, given
two BDD ¢ and 1, decides wether they are equivalent.

13
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Proof. The BDD ¢ and ¢ are equivalent if and only if ¢ < 1 = (¢ +1).( + ¢) ~ 1 that
is to say (by passing to the negation) (¢.¢) + (¢.¥)) ~ 0, which holds if and only if both
P.p ~ 0 and ¢.p ~ 0.

But then, considering the first one (the other being similar) we can rewrite it in logarithmic
space using the two above lemmas as (@)m.gﬁm ~ 0. This holds if and only if for all pairs
(m, m’) of one monomial in (@)m and one monomial in ¢, m and m’ are in conflict; which

can be checked in logarithmic space using Remark 7. <

Let us now introduce an extremely simple, yet Logspace-complete problem [4], which
will ease the Logspace-hardness part of our proof.

» Definition 31 (order between vertices). Order between vertices (ORD) is the following
decision problem:

“Given a directed graph G = (V, E) that is a line* and two vertices f,s € V
do we have f < s in the total order induced by G ?”

» Lemma 32. ORD reduces to °BDDequ in ACy.

Proof. Again we are going to build a local graph transformation that is in ACy.

First, we assume w.l.o.g. that the begin b and the exit e vertices of G are different from
f and s. We write f™ and s™ the vertices immediately after f and s in G.

Then, we perform a first transformation by replacing the graph with three copies of itself
(this can be done by locally scanning the graph and create labeled copies of the vertices
and edges). We write x; to refer to the copy of the vertex x in the graph i¢. The second
transformation is a rewiring of the graph as follows: erase the edges going out of the f; and
s; and replace them as pictured in the two first subgraphs:

fl%fé 81><82 T /x\y
AR N st 53 sy by bg‘/ \bg

Let us call G, the rewired graph and G,, the non-rewired graph. To each of them we add two
binary nodes x and y connected to the begin vertices b; as pictured in the third graph above.
Then we can produce two corresponding °BDD ¢,. and ¢,, by replacing the exit vertices e;, ea,
es by 1, 0, O respectively,  and y by a If 2Then (DontCareyThen-)Else(IfyThen-Else-)
block of nodes; and any other v; vertex by a DontCare v Then -. It is then easy to see that if
f < s in the order induced by G if and only if ¢, and ¢, are equivalent.

Let us illustrate graphically what happens in the case where f < s: we draw the resulting
°BDD as a labeled graph with the convention that a node labeled with z with out-degree 1 is
a DontCare z Then- and a node labeled with z with out-degree 2 is a If zThen - Else- node
with the upper edge corresponding to the Then branch and the lower edge corresponding to
the Else branch.

4 We use the standard definition of graph as a pair (V, E) of sets of vertices and edges (oriented couples of
vertices * — y). A graph is a line if it is connected and all the vertices have in-degree and out-degree 1,
except the begin vertex which has in-degree 0 and out-degree 1 and the exit vertex which has in-degree
1 and out-degree 0. A line induces a total order on vertices through its transitive closure
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/b—>~~~—>f te—o s st—m . —1
y ><
e \"b—>---—>f ff— —s st—s...—0
~
\‘b—>---—>f ff— —s——sT—... —0
|

» Remark 33. The above construction relies on the fact that there are non-commuting
permutations on the set of three elements: in a sense we are just attributing two non-
commuting o and 7 to f and s and make sure that the order in which they intervene affects
the equivalence class of the resulting °BDD. An approach quite similar in spirit with the idea
of permutation branching program [1].

We can now extend our chain of reductions with the two new elements from this section
ORD (Logspace-hard) — °BDDequ — MALLequ — BDDequ (€ Logspace)
so in the end we get our main result:

» Theorem 34 (Logspace-completeness). The decision problems °BDDequ, MALL equ and
BDDequ are Logspace-complete under ACy reductions.

4 Conclusion

In this work, we characterized precisely the complexity of proof equivalence in MALL as
Logspace-complete, contrasting greatly with the situation for the MLL fragment which has a
Pspace-complete equivalence problem. We did so by establishing a correspondence between
MALL proofs and specific classes of BDD.

This path we took for proving our result is interesting in itself since the established
correspondence allows a transfer of ideas in both directions. In particular, any progress in the
theoretical problem of finding a correct notion of proofnet for MALL would yield potential
applications to BDD, a notion of widespread practical use. An idea to explore might be the
notion of conflict net defined by D. Hughes in an unpublished note [12]. Roughly speaking,
the principle is to consider a presentation of proofnets with the information of the links that
cannot be present at the same time, rather than giving an explicit formula to compute their
presence, as it is the case with monomial proofnets or the BDD slicings we introduced.

On the other hand, since many optimization problems regarding BDD are known to be
NP-complete, a finer view at the encoding of Section 3.1 in addition to basic constraints
about what we expect from a notion of proofnet should lead to an impossibility result, even
though the equivalence problem for MALL is only Logspace-complete.
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