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Abstract. Many correctness criteria have been proposed since linear
logic was introduced and it is not clear how they relate to each other.
In this paper, we study proof-nets and their correctness criteria from
the perspective of dependency, as introduced by Mogbil and Jacobé de
Naurois. We introduce a new correctness criterion, called DepGraph, and
show that together with Danos' contractibility criterion and Mogbil and
Naurois criterion, they form the three faces of a notion of dependency
which is crucial for correctness of proof-structures. Finally, we study the
logical meaning of the dependency relation and show that it allows to
recover and characterize some constraints on the ordering of inferences
which are implicit in the proof-net.
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1 Introduction

The bene�ts of Curry-Howard. Since the discovery of Curry-Howard correspon-
dence [2], programming language theory and proof theory have been tightly
intertwined. Among the numerous and fruitful back-and-forths between proofs
and programs, linear logic [3] certainly stands as exemplary.

While working on second-order arithmetics, Girard introduced system F [4,5],
a polymorphic λ-calculus. Studying the semantics of system F, he later in-
troduced the coherent semantics [6] which led to the linear decomposition of
implication (A ⇒ B = !A(B), the cornerstone of linear logic [3] since this
semantical observation turns to be syntactically re�ected in a well-behaved proof
system. With linear logic came a very canonical representation of proofs (for
fragments) of linear logic: proof nets [3,7,8] are a graphical notation for proofs,
resulting in very canonical proof objects (contrarily to sequent proofs) in which
cut-elimination is very elegant, and simple. As such, they are certainly one of the
most original innovations of linear logic. The beauty of proof-nets is especially
striking in the multiplicative fragment with no logical constant (also said unit-
free multiplicative logic) to which most of the paper will be dedicated.

? An extended version with supporting proofs can be found in [1] at http://www.pps.
univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf.

http://www.pps.univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf
http://www.pps.univ-paris-diderot.fr/~saurin/Publi/DepGraphLong.pdf


Proof-nets and logical correctness. By moving from inductive objects (e.g.
sequent calculus proof trees) to more geometrical objects (proof structures),
correctness becomes a global property contrarily to sequent proofs where cor-
rectness was local (a proof is correct if every step in the argument is correct).
To give a status to those (possibly incorrect) objects, one speaks of proof
structures, reserving the term proof nets to those objects which actually come
from a sequent calculus proof. From this comes the need for conditions to
ensure the logical correctness of proof structures. Several correctness criteria
have been introduced in the literature. Among the best-known criteria, one
can refer to the original long-trip criterion (LT) [3], Danos-Regnier criterion
(DR) [8], counter-proofs criterion (CP) [9,10], contractibility (C) [11], graph-
parsing criterion (GP) [12,13], Dominator Tree (DT) [14] and more recently
Mogbil-Naurois criterion (MN) [15].

Relating correctness criteria. Actually, correctness criteria usually provide us
with some speci�c viewpoints on the proof-theoretical or computational proper-
ties of proofs. For instance, they can (i) provide precise means to sequentialize
a proof-net into a sequent proof, or (ii) tell us about the complexity of the
correctness problem, or even (iii) say something about the structure of proofs.

Although correctness of proof-nets is now well-studied and understood, the
question of comparing and relating those criteria attracted much less attention.

Contributions of the paper. The present paper is a contribution in this direction:
we investigate a notion of dependency between inferences of a proof structure
and use it to compare three correctness criteria (C, MN and DepGraph, a new
criterion we introduce here) showing that they constitute three faces of this
dependency relation.

We reformulate Contractibility in a big-step version from which arises the
notion of dependency that one �nds in MN criterion. This leads us to introduce
a new criterion, DepGraph. We then show that these three criteria, arising from
the notion of dependency, meet the three categories given above: we show that
Contractibility gives actually a sequentialization of a proof-net, MN is a criterion
with e�ciency purposes and DepGraph emphasizes the structural properties of
logic since (i) it deals separately with positive and negative inferences, suggestion
possible connections with focusing, (ii) it is switching-independent, contrarily
to MN, (iv) it makes use of a well-known necessary condition for correction
following from Euler-Poincaré property [10] and �nally (iv) we use its notion of
dependency in order to characterize constraints on the order of introduction of
inferences which are shared by all sequentializations of a given proof-net.

We focus on multiplicative and unit-free linear logic. Rather than a restriction
of the results, this is a matter of presentation: DepGraph criterion can easily be
extended to MELL, thus capturing typed lambda-calculus

Organization of the paper. In Section 2, we recall the basics of proof nets
and correctness criteria and dedicate Section 3 to analyzing and comparing
the three criteria mentioned above by (i) showing how contractibility is related



with sequentialization, (ii) formulating a big-step notion of contractibility, (iii)
justifying the occurrence of a dependency relation in proof-nets, (iv) introducing
a new correctness criterion, DepGraph and (iv) comparing DepGraph with MN-
criterion. We �nally focus in Section 4 on the logical meaning of dependency
graphs. Due to lack of space, proofs are omitted but can be found in an extended
version with supporting proofs and more material, available online in [1].

2 Correctness problem of proof structures in linear logic

2.1 Linear logic and proof nets

MLL. In this paper, we will deal with multiplicative linear logic (MLL), which is
a fragment of linear logic. MLL formulas are built from the following grammar:

A,B := X | X⊥ | A⊗B | AOB (X ∈ V)

MLL is usually presented via a sequent calculus: an MLL sequent is a �nite
unordered list of MLL formulas, written ` Γ and a proof is a tree with nodes
labelled by (ax), (cut), (⊗), (O) and edges are labelled by sequents as follows:

Identity Group:
(ax)

` A,A⊥
` A,Γ ` A⊥, ∆

(cut)
` Γ,∆

Multiplicative Group:
` A,Γ ` B,∆

(⊗)
` A⊗B,Γ,∆

` A,B, Γ
(O)

` AOB,Γ

Sequent calculus induces a sometimes irrelevant order between inferences.
This is evidenced by possible permutations between inferences of a sequent proof.
We recall in �gure 1 the main cases of these permutations, the other cases are
much alike, included the permutations involving the cut inference.

` A,C, Γ ` D,∆
(⊗)

` A,C ⊗D,Γ,∆ ` B,Σ
(⊗)

` A⊗B,C ⊗D,Γ,∆,Σ
↔

` A,C, Γ ` B,Σ
(⊗)

` A⊗B,C, Γ,Σ ` D,∆
(⊗)

` A⊗B,C ⊗D,Γ,∆,Σ
` A,B,C,D, Γ

(O)

` AOB,C,D, Γ
(O)

` AOB,COD,Γ

↔
` A,B,C,D, Γ

(O)

` A,B,COD,Γ
(O)

` AOB,COD,Γ

` A,Γ
` B,C,D,∆

(O)

` B,COD,∆
(⊗)

` A⊗B,COD,Γ,∆

↔
` A,Γ ` B,C,D,∆

(⊗)
` A⊗B,C,D, Γ,∆

(O)

` A⊗B,COD,Γ,∆

Fig. 1: Key cases of inference permutations in the sequent calculus.



Proof structures and proof nets. Proof nets are canonical representations of MLL
sequent proofs quotienting them by the previous permutation rules, resulting in
a con�uent cut-elimination and other very good properties. Proof structures
allow to present MLL proofs in a non-sequential way and therefore those objects
are not inductively presented anymore which makes the checking of the logical
correctness of those object challenging, calling for correctness criteria.

In the following, we shall consider only cut-free proof structures. Indeed, cut
behaves exactly as⊗ from the view point of correctness and therefore introduces
no di�culty nor interesting aspects in our developments.

De�nition 1 (Proof structure). A proof structure is a �nite undirected graph
where vertices are labelled by the names of MLL inference rules or the special
label c (for the conclusions of the proof) and edges are labelled with formulas
of MLL. Moreover, edges which are adjacent to a vertice are partitioned into
premises and conclusions according to the following rules:

• Nodes of label ⊗ (resp. O) have two premises and one conclusion. If A is
the label of the �rst premise and B the label of the second premise, then the
conclusion is labelled A⊗B (resp. AOB);

• Nodes of label ax have no premise and two conclusions. If the label of the
�rst conclusion is A, the label of the second conclusion is A⊥;

• Nodes labelled c have one premise and no conclusion3.

• Every edge is premise of one of its endpoints and conclusion of the other.

De�nition 2 (Desequentialization). To any MLL proof π, one associates a
proof structure [π], its desequentialization, by forgetting the order of the inference
rules and keeping only the subformula ordering together with the axiom links.

De�nition 3 (Proof net). A proof net is any proof-structure which is the
desequentialization of some sequent proof.

By the previous de�nition, one immediately get an inductive characterization
of proof nets. Proof nets are those proof structures which can be obtained
inductively as in �gure 2

Remark 1. In the graphical representation of proof nets, we put arrows on edges
to represent the information on premise/conclusion, but we consider the graph
as undirected, in particular with respect to any notion such as paths, cycles, ...

2.2 Correctness criteria

The graph in �gure 3 is indeed a proof structure but it cannot be associated
with a MLL proof. A proof structure therefore does not necessarily correspond
to a sequent calculus proof; such a proof structure is called non-sequentialisable.
There is a number of methods to distinguish sequentializable proof structures �



A A⊥

ax

R1 R2

A B

A⊗B
⊗

R1

A B

AOB

O

Fig. 2: Inductive characterization of proof nets.

A A⊥

ax

A⊗A⊥
⊗

Fig. 3: A proof structure which is not a proof net.

proof nets � from non sequentialisable ones; such methods are called correctness
criteria.

Several correctness criteria have been introduced in the literature. In the rest
of this section, we shall present Danos-Regnier (DR) criterion which is one of
the most popular criteria; then we present Contractibility and Mogbil-Naurois
(MN) criterion which we will compare in the next section.

2.3 Danos-Regnier Criterion

De�nition 4 (Switching). A switching of a proof structure R is the choice,
for every O node of the graph, of one of its premises. More formally, a switching
of R is a map from the O nodes of R to {l, r}.

Given a switching s of a proof structure R, a O node n will be said to be
switched to the right (resp. to the left) if the right premise (resp. left) has been
selected, that is if s(n) = l (resp. r).

De�nition 5 (Correction graph). A Correction graph of a proof structure
R = (VR, ER) and a S of R is the undirected graph S(R) = (VS(R), ES(R)) de�ned
as VS(R) = VR and ES(R) is the subset of edges of R containing all edges from
R but for the left (resp. right) premise of a O node n when S(n) = r (resp. l)
and such that the labels are the inherited from R.

3 We shall often omit those nodes in the graphical representation of nets: they will be
depicted as pending edges.



De�nition 6 (Danos-Regnier criterion (DR)). A proof structure satis�es
the Danos-Regnier criterion if every correction graph is connected and acyclic;
in that case, it is said to be DR-correct.

Theorem 1. A proof structure is a proof net if, and only if, it is DR-correct.

2.4 Contractibility

Contractibility criterion expresses a topological property of the proof structure,
more precisely of an underlying graph structure, the paired graph which contains
just enough information to distinguish premises of a O from the other edges.

De�nition 7 (Paired graph). A paired graph is given by a graph G = (V,E)
together with a set P (G) of paired edges, that are undirected pairs of edges
which share at least one endpoint.

De�nition 8 (C(R)). To a proof structure R, one associates a paired graph,
written C(R), which is simply R together with the set of paired edges given as
the set of pairs of edges which are premises of a O node.

Example. We show below the unique proof net RaOa⊥ for the sequent ` aOa⊥
and the paired graph C(RaOa⊥) which is associated to RaOa⊥ (paired edges are
distinguished by a ̂):

a a⊥
ax

aOa⊥
O

•

•̂
•

De�nition 9 (Contraction rules). One de�nes two graph-rewriting rules on
paired graphs as follows (note that in both rules the two nodes shall be distinct):

• •
R1 : −→ • R2 : −→ •

•̂ •

De�nition 10 (Contractibility). A proof structure R is contractible if

C(R)→∗ •.

Contractibility characterizes proof nets, it provides a correctness criterion:

Theorem 2. A proof structure is a proof net if, and only if, it is contractible.



2.5 Mogbil-Naurois criterion

We shall �rst present Mogbil-Naurois criterion, one of the most recent correctness
criteria which characterized the space-complexity of the correctness problem.

De�nition 11 (Elementary path). A path in a undirected graph is elemen-
tary when it does not enter twice the same edge.

De�nition 12 (Dependency graph of a correction graph). Given R a
proof structure and S a switching of R, the dependency graph of S(R), written
D(S, R) is an oriented graph (V,E) de�ned as follows:

• The set of nodes V consists in the set of conclusions of O nodes of R together
with an additional node s.

• Let x be a O node in R, xr (resp. xl) its right (resp. left) premise in R.

• There is an edge (s → x) in E if there exists an elementary path
xl, . . . , xr in S(R) which goes through no O node.

• Let y be another O node in R. There is an edge (y → x) if there exists
an elementary path xl, . . . , xr in S(R) containing y.

De�nition 13 (SDAG graphs). A graph G is SDAG if: it is acyclic and it
contains a node s, the source, such that all nodes of G are accessible from s.

De�nition 14 (Mogbil-Naurois Criterion). A proof structure satis�es the
Mogbil-Naurois criterion (MN) if there exists a connected and acyclic switching
S such that D(S, R) is SDAG. Such a proof structure is said MN-correct.

Theorem 3. A proof structure is a proof net if, and only if, it is MN-correct.

One notices that dependency graphs are de�ned on correction graphs and thus
they depend on the switching. Compared to Danos-Regnier, the use of switchings
in (MN)-criterion is quite odd: it only requires to analyze one switching and
the corresponding correction graph. Moreover, the choice of this switching is
itself arbitrary. It is therefore natural to wonder what is the exact role of this
switching: is it really necessary? We answer this question in the following by
going back to the origin of the idea of dependence, which was already present
in the contractibility criterion as we shall see in section 3. From that point, we
state a dependency-graph based criterion which does not rely on any switching.

3 On the three faces of contractibility

Despite the wide diversity of correctness criteria, their relationship remains
poorly studied in the literature. In this section, we shall investigate the con-
nections between three criteria: Mogbil-Naurois, Contractibility and DepGraph
which is a new criterion that we introduce in the remainder.



3.1 Contractibilty and sequentialization

Before relating contractibility with the other two criteria, we make clear that it
gives a genuine sequentialization. To do this, we simply label nodes of the paired
graph of the proof structures with open proofs containing context variables.
These open proofs correspond to partial sequentializations, which become larger
and larger as contraction progresses, until reaching a full MLL proof. More
precisely, these open proofs are constructed on sequents with context variables,
generated by the following syntax (F is a formula and Γ ? is a context variable):

S := ∅ | S, F | S, Γ ?

We consider these sequents up to commutativity. Open proofs are constructed
by the following syntax:

(ax)

` AOA⊥ ` S
` S1, A ` S2, B

(⊗)
` S1, S2, A⊗B

` S,A,B
(O)

` S,AOB

Given a proof structure R, the labelled paired graph Cl(R) is obtained by
applying the following rules:

ax O ⊗−→ −→ −→` A,A⊥
` A,B, Γ ?

AOB

` AOB,Γ ?
AOB

` A,Γ ?
A ` B,Γ ?

B

` A⊗B,Γ ?
A, Γ

?
B

A⊥A

A B

A⊗B

A B

AOB
A⊥A

A⊗B

A B A B

AOB

Labeled contractibility rules become:

R1 :

` A,B, Γ ?
AOB

ν

π

` A,B, Γ

A
B −→

π

` A,B, Γ
` ν[Γ/Γ ?

AOB ]

R2 :

θ ` A,Γ ?
A⊥

ν

π

` A,Γ

A
−→ θ

π

` A,Γ
` ν[Γ/Γ ?

AOB ]

If R is actually a proof net, the node at which its paired graph contracts is
labeled by one of its sequentializations (see long version for an example):

Proposition 1. Let R be a proof structure. If C(R) contracts (by rules R1 and
R2) to a point, then by following the same contraction path, Cl(R) contracts to
a point whose label is a sequentialization of R.

Notice that two di�erent contraction paths may lead to di�erent sequential-
izations of a proof net.



3.2 Big-step contractibility

We reformulate Contractibility in a big-step fashion to highlight the intrinsic
notion of dependency present in this criterion.

One de�nes a new graph-rewriting rule R as follows:

De�nition 15 (Big-step Contraction R). An elementary cycle can be con-
tracted to a point if it contains exactly two paired edges that are paired together
that are adjacent in the cycle.

⇒

This new notion of contractibility is easily seen to correspond to usual
contractibility and thus induces a correctness criterion expressed as:

Theorem 4. A proof structure is a proof net if, and only if, contraction R can
be applied until:

• no paired edges are left and
• it leads to a tree of unpaired edges.

3.3 Towards dependency graphs

This version of contractibility criterion induces a natural dependency relation
between the O nodes of the proof structure: when the premises of a O node are
connected by a path that does not go through any premise of an other O node
(see �gure 4), one can contract directly this path; these are the nodes connected
at the source in the dependency graph of MN-criterion. When, on the contrary,
the path from the premises of a O node (O1) goes through one of the premises of
another O node (O2) (see �gure 4), we say that O1 depends on O2 because O1

can only be contracted if O2 is contracted before. In this way, we can construct
a dependency graph which looks like the dependency graph of MN criterion,
but this one is built directly on the proof structure rather than on a correction
graph. The �rst condition of big-step contractibilty criterion says simply that
this graph is SDAG. We will see how to transform the second condition in order
to get a full correction criterion. Before moving to the study of this new criterion,
let us simply remark that one can actually de�ne a dependency relation between
O nodes of a proof structure R and any set of nodes of R as follows:

De�nition 16 (Dependency graph of a proof structure, relatively to
a set of nodes). Let R be a proof structure and N a set of nodes of R. We
denote by P the set of O nodes of R. The dependency graph of R relatively to
N , DN (R), is the oriented graph (V,E) de�ned as follows:



O

O2

O1

Fig. 4: Various dependency configurations.

• V = N ∪ P ∪ {s} where s is an additional node.

• Let p be an element of P .

• There is an edge (s → p) in E if the premises of p are connected by an
elementary path in R which goes through no O node.

• Let q be an element of V . There is an edge (q → p) if the premises of
p are connected by an elementary path containing q which does not go
successively through the two premises of a O node.

Remark 2. The intuition underlying this exdended notion of dependency graph
is that in big-step contractibility, the contraction of the paired graph depends
not only on depdency between paired edges, but also on the fact that the⊗nodes
on the cycles actually can be contracted to a point (with no loop), thus making
a O node depend on a ⊗ node.

Notation. The previous de�nition has two natural instances: when we take N
to be the set of the O nodes of a proof structure N , DN (R) is a graph which
expresses the dependency relation between O nodes only. We note it by DO(R).
When N is taken to be the set of all O and⊗ nodes of a proof structure, DN (R)
is a graph which expresses the dependency relations between the O nodes and the
other O and ⊗ nodes. We denote it by DO,⊗(R).
In the following we shall consider only DO(R) until section 4 where DO,⊗(R)
will be considered. When there is no ambiguity will shall omit the subscript.

3.4 DepGraph criterion

As said before, the �rst condition of big-step contractibility expresses thatDO(R)
is SDAG: the existence of a contractibility sequence ensures that there is some
O node having a cycle that does not contains any paired edges which is the
condition to be connected to the source, while the acyclicity condition ensures
that we will always �nd a O node with a cycle that can be contracted.

To get a full correction criterion, we will make use of a graph theoric property
called Euler-Poincaré lemma, as suggested by Girard in [10].
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ax

ax

ax

⊗ ⊗

⊗

P4

O
P3

O

P2

O

P1

O

R′ =

ax ax

P2

O

P1

O

⊗

D(R) =

s

P3 P4

P2

P1

D(R′) =

P2

s

P1

Fig. 5: Examples of dependency graphs.

De�nition 17. Let G be an undirected graph and n, e be its numbers of nodes
and edges. We set χG = n− e and call this quantity the characteristic of G.

Theorem 5 (Euler-Poincaré Lemma). Let G be an undirected acyclic graph
and cG be its number of connected components. The following equality holds:

χG = cG.

Proposition 2. For every correction graph G of a proof net, one has χG = 1.

Proposition 3. Every correction graph G of a proof structure R satis�es:

χG = #ax−#⊗ .

Putting the two previous propositions together, a sequentializable proof
structure must have one more axiom links than tensor links: #ax−#⊗= 1.

Remark 3. When a structure contains cuts, one has χG = #ax−#⊗−#cut for
every correction graph G. The condition above becomes #ax−#⊗−#cut = 1.

We can �nally state our new criterion, DepGraph:

De�nition 18 (DepGraph criterion). A proof structure R is DO-correct (or
satis�es DepGraph criterion) if

(1) DO(R) is a SDAG, (2) R is connected and (3) #ax−#⊗= 1.

Theorem 6. A proof structure is a proof net if, and only if, it is DO-correct.



3.5 Comparing the two notions of dependency graphs

Example on �gure 6 shows that Mogbil-Naurois dependency graphs are switching-
dependent. We will show that, for proof nets, they are almost invariant: the
transitive closure of the dependency graphs induced di�erent switchings are
all equal and are equal to the transitive closure of the dependency graph we
introduced in the previous section.

ax

ax

ax

ax

⊗ ⊗

⊗

P4

O
P3

O

P2

O

P1

O

ax

ax

ax

ax

⊗ ⊗

⊗

P4

O
P3

O

P2

O

P1

O

D(S, R) =

s

P3 P4

P2

P1

D(S ′, R) =

s

P3 P4

P2

P1

Fig. 6: Switchings S S ′ of net R, the associated dependency graphs.

Notations. If S is a switching for a proof structure R and a a O-link in R, we
note Sa the switching S in which we have toggled the switching for a.

Given a graph D, D∗ is its transitive closure.

Lemma 1. Let z and a be two O links of a proof net R and S be a switching.

• if (z → a) ∈ D(S, R), then (z → a) ∈ D(Sa, R)
• if (a→ z) ∈ D(S, R), then (a→ z) ∈ D(Sa, R)

Theorem 7. Let R be a proof net and S,S ′ be switchings of R. Then we have

D(S, R)∗ = D(S ′, R)∗.

Remark 4. The proof relies strongly on the fact that in a connected acyclic
graph, there always exists a single elementary path between two nodes. The
result would not hold if the structure were not correct.

Finally, we have:

Theorem 8. Let R be a proof net and S a switching for R. Then: DO(R)
? =

D(S, R)?.



4 On the order of introduction of connectives in

sequentializations

In this section, we will investigate the logical meaning of dependency graphs
introduced for DepGraph criterion. A crucial step in proving that a proof net
satis�es DepGraph is to show that if π is a sequentialization of proof net R, every
dependence in the dependency graph is also present in the order of introduction
graph, more precisely:

De�nition 19 (Order of introduction). Let π be an MLL proof. For every
O or ⊗ rule rF introducing formula F , we note πF the sub-tree of π rooted in
the premise of rF . We de�ne a partial order on the formulas introduced by O or
⊗ inferences in π, that will be noted <π as follows:

F <π G if rF ∈ πG

It formalizes the relation �to be introduced above�.
The graph of this relation is noted O−(π) and one de�nes O(π) as O−(π)

augmented by adding a vertice s and, for all vertice e in O−(π), an edge s→ e.

To show that every proof net is DO-correct, we established the following:

Lemma 2. Let π be an MLL proof and R its desequentialization. Then

DO(R) ⊆ O(π).

As a consequence, DO(R) ⊆ O(R) := ∩π,[π]=RO(π) where O(R) can be seen
as the essence of the sequentalizations of R. It is natural to wonder whether this
inclusion can be sharpened in an equality characterizing O(R) and that would
rely on our notion of dependency. Actually, DO expresses only the relationship
betweep O nodes, and it is not enough to characterize O(R). We will use instead
the dependency graph DO,⊗(R) to take in acount also the dependency relation
between O and⊗ nodes.

De�nition 20 (Subformula graph of a proof net). Let R be a proof net. The
subformula graph of R, SF (R), is the directed graph (V,E) de�ned as follows:

• V = P ∪ T where P and T are respectively the set of O nodes and ⊗ nodes.
• Let n and m be two elements of V . There is an edge (m → n) in E if
the formula of the conclusion of m is a sub formula of the formula of the
conclusion of n.

Theorem 9. Let R be a proof net. Then (DO,⊗(R) ∪ SF (R))? = O(R).

Proposition 4. Let π be an MLL proof and R its desequentialization. Then:

DO,⊗(R) ⊆ O(π).

Corollary 1. Let R be a proof net. One has (DO,⊗(R) ∪ SF (R))? ⊆ O(R).



To prove the other inclusion, we will use the fact that two MLL proofs have
the same proof net if and only if they are obtained one from the other by the
permutation rules introduced in section 2.1. More precisely, we will make use of
the two following lemmas, proven in the long version of this paper:

Lemma 3. Let π be an MLL proof and r1, r2 two consecutive rules in π
introducing the formulas F1 and F2, such that r1 is above r2. If r1, r2 are not
permutable by the previous three rules, then:

(F1 → F2) ∈ O([π])

De�nition 21. Let π be an MLL proof and r1,r2 two inference rules in π
introducing the formulas F1 and F2, such that rF1

is above rF2
. We note by

]r2, r1[ the sequence bottom-up of inference rules lying between r1 and r2 in the
branch of π connecting r1 and r2. The distance between r1, r2 in π, noted by
dπ(r1, r2), is the length of ]r2, r1[. The minimal distance between r1, r2, noted
by dm(r1, r2), is de�ned by: dm(r1, r2) = infν,[ν]=[π]dν(r1, r2).

Lemma 4. Let π be an MLL proof and r1, r2 two inference rules in π in-
troducing the formulas F1 and F2, such that r1 is above r2. We assume that
dπ(r1, r2) = dm(r1, r2). If r is an inference rule introducing a formula F in π
such that r ∈]r2, r1[, then (F1 → F ) ∈ O([π]).

We can �nally prove the following (see [1] for a detailed proof):

Proposition 5. Let R be a proof net. One has O(R) ⊆ (DO,⊗(R) ∪ SF (R))?.

5 Conclusion

Comparing correctness criteria. We have seen that Contractibility, Mogbil and
Naurois's criterion and DepGraph are three faces of the same notion, dependency.
More precisely, those three criteria can been understood as di�erent concrete
implementations of a proto-criterion related with dependency relation, along
the di�erent points of view developed in the introduction: we showed that
(i) Contractibility gives actually a sequentialization of a proof-net from which
arises dependency, (ii) MN is a criterion with e�ciency purposes (working on
the generalized dependency graph, it is not clear how to stay in NL since it
requires to remember which premise of a O node has been visited, thus justifying
the seemingly odd choice of a switching) while (iii) DepGraph emphasizes
structural properties of logic by clearly separating conditions on O inferences
from other inferences and by unveiling the meaning of its dependency graph
which correponds (when considered together with the sub-formula relation) to
the order of introduction of inferences common to all sequentializations of a given
proof-net.

This last point actually evidences that, while they are completely parallel
proof objects, proof-nets contain enough logical dependency to allow for the
retrieval of inherently sequential information by computing the dependency
relation which represent the true logical causality of sequential proofs.



Future works. The present work suggests two main directions for future works:

• The separation between positive and negative inferences which is the cor-
nerstone of DepGraph criterion suggests connections with focusing. While
proof-nets and focalized proofs are the results of diverging choices of proof-
theoretical design (parallelism versus hypersequentiality), this suggests that
they actually may be di�erent aspects of the same phenomenon as already
advocated in the study of multi-focusing [16].

• Another direction concerns the development and the validation of our
comparative study of proof-nets. Indeed, the prototypical classi�cation
we suggested is mainly built on empirical considerations and we plan to
investigate it more systematically in the future, in particular by considering
connections with other criteria which seems to be related with the notion of
dependency such as Di Giamberardino and Faggian's work on jumps [17], or
Murawski and Ong's work on dominator's trees [14].
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