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Résumé

Dans ce travail, nous nous sommes intéressés d’une part à la théorie du chaos multipli-
catif Gaussien introduite par Kahane en 1985 et d’autre part à la théorie des matrices
aléatoires dont les pionniers sont Wigner, Wishart et Dyson. La première partie de
ce manuscrit contient une brève introduction à ces deux théories ainsi que les con-
tributions personnelles de ce manuscrit expliquées rapidement. Les parties suivantes
contiennent les textes des articles publiés [5, 6, 7, 8, 9] et pré-publiés [10, 11, 12]
sur ces résultats dans lesquels le lecteur pourra trouver des développements plus
détaillés.

Abstract

In this thesis, we are interested on the one hand in the theory of Gaussian mul-
tiplicative chaos introduced by Kahane in 1985 and on the other hand in random
matrix theory whose pioneers are Wigner, Wishart and Dyson. The first part of this
manuscript constitutes a brief introduction to those two theories and also contains
the personal contributions of this work rapidly explained. The following parts con-
tain the texts of the published articles [5, 6, 7, 8, 9] and pre-prints [10, 11, 12] on
those results where the reader can find more detailed developments.
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Chapter 1

Gaussian multiplicative chaos and
their scale invariance properties

Roughly observed, some random phenomena seem scale invariant. This is the case for the velocity
field of turbulent flows or for the evolution in time of the logarithm of the price of a financial asset.
However, a more precise empirical study of these phenomena displays in fact a generalized form
of scale invariance commonly called multifractal scale invariance or intermittency or stochastic
scale invariance. The exponent which governs the power law scaling of the process or field is no
longer linear. More precisely, for a one dimensional stationary process we observe the following
behavior for small scales h,

E [|Xt+h −Xt|p] ∼h→0+ Cph
ζ(p)

where ζ is a non linear function.

The concept of nonlinear power-law scalings goes back to the Kolmogorov theory of fully
developed turbulence in the sixties (see [52, 138, 143, 53, 76] and references therein), introduced
to render the intermittency effects in turbulence. In 1974, Mandelbrot [111] came up with the
first mathematical discrete approach of multifractality, the now celebrated multiplicative cas-
cades, in order to build random measures describing energy dissipation and contribute explaining
intermittency effects in Kolmogorov’s theory of fully developed turbulence.

Despite the fact that multiplicative cascades have been widely used as reference models in
many applications, they possess drawbacks related to their discrete scale invariance, mainly they
involve a particular scale ratio and they do not possess stationary fluctuations (this comes from
the fact that they are constructed on a dyadic tree structure).

A more refined model was then introduced by Kahane in 1985, under the name of Gaussian
multiplicative chaos. Following the ideas of multiplicative cascades, Kahane’s theory of Gaus-
sian multiplicative chaos also constructs multifractal random measures by iterating products of
lognormal random variables. The advantages of this construction is that the random measures
possess stationary fluctuations (no particular scale ratio is involved in the construction).

This chapter is a brief introduction to this theory of multiplicative chaos. In the first sub-
section 1.0.1, we start by recalling the construction of Mandelbrot’s multiplicative cascades
and their main properties. In particular, we introduce Mandelbrot’s star equation, which is a
stochastic scale invariance equation, satisfied by the multiplicative cascades. In the following
subsection, we introduce Kahane’s theory of Gaussian multiplicative chaos. The third subsection
is devoted entirely to the concept of stochastic scale invariance. We introduce two concepts: the
exact stochastic scale invariance and the stochastic star-scale invariance (which is the continuous
analog of the Mandelbrot’s star equation). We present a brief study on the link with Gaussian
multiplicative chaos and on the relation between the two concepts. In the final subsection 1.0.4,
we enunciate the main result obtained in this field.

1.0.1 Multiplicative cascades and Mandelbrot’s star equation

We recall the definition of multiplicative cascades, following the notations used in [34]. The fun-
damental properties of multiplicative cascades were first proved in [95] by Kahane and Peyrière
in 1976.
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16 CHAPTER 1. GAUSSIAN MULTIPLICATIVE CHAOS

Let In denotes the set of dyadic subintervals of [0, 1] of length 2−n, i.e.

In :=
{

[k2−n : (k + 1)2−n] : k ∈ {0, 1, . . . , 2n − 1}
}
.

Each interval in In can be divided in exactly two subintervals in In+1. We will also set I :=⋃
n In.

Let Z = eX−
σ2

2 where X is a Gaussian variable of mean 0 and variance σ2. Note that Z is
a non negative random variable with mean 1. We choose here a lognormal distribution for Z in
order to be consistent with the next subsections but the construction of multiplicative cascades
can be made with any choice of non negative random variable Z with mean 1. Let also ZI , I ∈ I
be a collection of independent random variables distributed as Z.

We now define inductively a sequence of random measures (µn)n∈N on [0; 1]. Let µ0 denote
the Lebesgue measure and set µ1 := Z[0;1]µ0. Let µ2 denote the measure that agrees with
Z[0;1/2]µ1 on [0; 1/2] and with Z[1/2;1]µ1 on [1/2; 1]. Inductively, define µn+1 as the measure that
agrees on every I ∈ In with ZIµn. Alternatively, we can also define the multiplicative cascade
by setting

µn := wnµ0, where wn(x) =
n−1∏
j=0

ZIj(x) ,

where Ij(x) denotes the interval I ∈ Ij that contains x (if there is more than one, the one whose
maximum is x, say).

For each Borel set A ⊂ [0, 1], note that the sequence (µn(A))n is a non negative martingale.
Thus, the sequence µn(A) converges almost surely when n → ∞ to a limit that we will denote
by µ(A).

Consequently the sequence of measures (µn) converges almost surely weakly to a measure
µ on [0; 1]. The authors of [95] also give a non-degenerescence criterion for the measure µ: the
measure µ is almost surely non zero if and only if we have E[Z logZ] < log 2. It is also shown
that the measure µ has almost surely no atoms.

The multiplicative cascades present multifractal property in the sense that they obey the
following stochastic scale invariance equation:

µ(dt)
law
= Z[0;1/2]1[0, 1

2
](t)µ

0(2dt) + Z[1/2;1]1[ 1
2
,1](t)µ

1(2dt− 1) , (1.1)

where µ0, µ1 are two independent copies of µ and Z[0;1/2], Z[1/2;1] are independent copies of Z,
also independent of µ0, µ1. Such an equation (and its generalizations to b-adic trees for b > 2),
the celebrated star equation introduced by Mandelbrot in [109], uniquely determines the law of
the multiplicative cascade.

Let us mention here that even if we write equation (1.1) in the more general setting where
(Z[0;1/2], Z[1/2;1]) has any prescribed law with components of mean 1, Mandelbrot star’s equation
uniquely characterizes the law of the multiplicative cascade.

In the next subsection, we present Kahane’s theory of Gaussian multiplicative chaos, which
constructs, again through iterative products, random measures with properties similar to mul-
tiplicative cascades.

1.0.2 Kahane’s theory of Gaussian multiplicative chaos

Kahane introduced the theory of Gaussian multiplicative chaos in 1985 in his paper [94]. This
theory relies on the notion of σ-positive type kernel: a kernel K : Rd × Rd → R+ ∪ {∞} is of
σ-positive type if there exists a sequence Kk : Rd × Rd → R+ of continuous non negative and
positive definite type kernels such that:

K(x, y) =
∞∑
k=1

Kk(x, y) . (1.2)

If K is a σ-positive type kernel with decomposition (1.2), one can consider a sequence of Gaussian
processes (Xn)n > 1 defined as Xn =

∑n
k=1 Yk where the (Yk(x))x∈Rd , k > 1 are independent
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centered Gaussian processes on Rd with respective covariance functions Kk(x, y), k > 1. Then
the covariance function of the Gaussian process (Xn(x))x∈Rd is

∑n
k=1Kk. It is proved in [94]

that the sequence of random measures mn defined on every Borel set A ⊂ Rd by

mn(A) =

∫
A
eXn(x)− 1

2
E[Xn(x)2]dx

converges almost surely in the space of Radon measures (equipped with the topology of weak
convergence) towards a (random) measure m and that the limit measure m does not depend on
the sequence Kk used in the decomposition (1.2). The measure m is called Gaussian multiplica-
tive chaos associated to the kernel K.

The main application of this theory is to give a meaning to the ”limit lognormal” model
introduced by Mandelbrot in [112]. We denote by ln+(x) the quantity max(lnx, 0). The ”limit
lognormal” model corresponds to the choice of a stationary kernel K given by

K(x, y) = γ2 ln+

(
R

|x− y|

)
+ g(x, y) (1.3)

where g is a bounded continuous function and γ2 and R are respectively the intermittency
parameter and the integral scale.

In [94], Kahane also gives a non degeneracy criterion: Gaussian multiplicative chaos m as-
sociated to a kernel K of the form (1.3) is almost surely non degenerate if and only if the
intermittency parameter γ2 is strictly less than 2d. This phase transition shows that the loga-
rithmic kernel is crucial in the theory of multiplicative chaos. Let us define the characteristic
exponent ζ (also called structure function):

ζ(p) = (d+
γ2

2
)p− γ2p2

2
.

The inequality γ2 < 2 implies the existence of ε > 0 such that ζ(1 + ε) > 1 and therefore there
exists a unique p∗ > 1 such that ζ(p∗) = d. Existence of positive moments for the random
variable m[0; 1] is then characterized through p∗: the random variable m[0; 1] admits moments
of order q > 0 for all q ∈]0; p∗[. It is also shown in [94] that the Gaussian multiplicative chaos
m has the following multifractal behavior when h→ 0,

E[m[0;h]p] ∼ hζ(p)

for all p < p∗. We will establish the link between Gaussian multiplicative chaos and stochastic
scale invariance in the next subsections.

The reader may wonder if we can get rid of the assumption that the kernels Kk used in the
decomposition are non negative (and then also of the assumption that K itself is non negative)
for this construction to be valid. The answer is yes and is carried out in [129]: we can define
Gaussian multiplicative chaos associated to any positive definite kernel that can be written under
the form (1.3).

The theory of Gaussian multiplicative chaos has found applications in 2d quantum gravity,
turbulence, finance,... We now review an application in finance.

Application in finance Let us briefly explain the application in finance for modeling the
volatility of an asset. If X(t) is the logarithm of the price of a financial asset, the volatility m
of the asset on the interval [0; t] can be defined as the quadratic variation of X:

m[0; t] = lim
n→∞

n∑
k=1

(X(tk/n)−X(t(k − 1)/n))2 .

The volatility can be viewed as a random measure on R+. The choice to model the volatility by
a Gaussian multiplicative chaos m associated to the logarithmic kernel

K(s, t) = γ2 ln+

(
R

|t− s|

)
(1.4)
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Figure 1.1: Simulated density of a Gaussian multiplicative chaos m associated to the kernel (1.3)
with g = 0, intermittency parameter γ2 = 0.1 and integral scale τ = 1/8. The intermittency
effect appears clearly.
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Figure 1.2: Simulated path of a multifractal random walk with intermittency parameter γ2 = 1
and with integral scale τ = 1/4. Note the intermittent bursts in volatility.
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enables to reproduce important empirical properties measured on financial markets: approximate
lognormality of the volatility, long range correlations (see [45, 60] for a review on empirical
finance). Given the volatility m, the most natural way to construct a model for the log price X
is then to set

X(t) = B(m[0; t]) (1.5)

where B(t) is a standard Brownian motion independent of m. Formula (1.5) defines the mul-
tifractal random walk (see [23]). A simulated path of a multifractal random walk is displayed
in Fig. 8.1. We can observe the intermittent bursts of volatility which are due to the Gaussian
multiplicative chaos m. We will work with this model in Chapter 8 ( and also in the article
[11]).

The theory of Gaussian multiplicative chaos can be generalized by doing products of expo-
nentials of infinitely divisible random variables. It was developed for example in [24].

We will now review stochastic scale invariance and its link with Gaussian multiplicative chaos
in the next subsections. We will mainly restrict to the Gaussian case, but the following results
can be extended to the case of Lévy random variables as well (see e.g. [133]).

1.0.3 Stochastic scale invariance

We will now define two different concepts of stochastic scale invariance: the exact stochastic
scale invariance and the star stochastic scale invariance. We will give those two definitions for
general dimension d.

Lognormal exact stochastic scale invariance

Denote by B(0;R) the euclidean ball of radius R. If m is a stationary random measure on Rd,
we say that m has the exact stochastic scale invariance property if there exists R > 0 such that
for all ε ∈]0, 1], the following equality in law holds:

(m(εA))A⊂B(0;R)
law
= eΩε(m(A))A⊂B(0;R) (1.6)

where Ωε is a Gaussian random variable independent of m.

As already mentioned, we restrict to the case of a Gaussian random variable Ωε. If we do
not make any particular assumption on Ωε, then if the measure m is not identically zero, we can
easily check that the random variable Ωε is infinitely divisible.

Example of lognormal exact stochastic scale invariant random measures

It is proved in [129] that the logarithmic kernel K defined in (1.4) is positive definite if and only
if d 6 3.

It is then straightforward to prove that, for d = 1, 2, 3, the Gaussian multiplicative chaos m
associated to this kernel K has the exact stochastic scale invariance property in the ball B(0, R)
where the random variable Ωε is a Gaussian random variable with mean −(d + γ2/2) ln(1/ε)
and variance γ2 ln(1/ε).

For d > 4, the authors of [132] construct stationary and isotropic random measures which
have the exact stochastic scale invariance property and which again fall under the scope of
Kahane’s theory of Gaussian multiplicative chaos introduced above.

The question of finding all the stationary random measures which satisfy the exact stochastic
scale invariance property remains unsolved.

Lognormal star scale invariance

The second concept of scale invariance is stochastic star scale invariance. It is the continuous
analog of the Mandelbrot star equation that we wrote in the case of 2-adic multiplicative cascades
in (3.1).
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A random Radon measure M is said to be lognormal star scale invariant if for all ε < 1, M
obeys the cascading rule

(M(A))A∈B(Rd)
law
=

(∫
A
eωε(x)M ε(dx)

)
A∈B(Rd)

(1.7)

where ωε is a stationary continuous Gaussian process and M ε a random measure independent
from the process ωε with law such that

(M ε(A))A∈B(Rd)
law
= ε

(
M

(
A

ε

))
A∈B(Rd)

.

Intuitively, this relation means that when we zoom in the measure M , we should observe the
same behavior up to an independent lognormal factor. A nice feature of stochastic star scale
invariance is that there is not a particular scale ratio.

Example of lognormal star scale invariant random measure

In this paragraph, we give the first known example of log-normal star scale invariant random
measures, which was first described in [26] (see also [24]). In fact many other examples exist
among multiplicative chaos as we will see later when explaining the results of our paper [5].

The construction of this example is very intuitive (but limited to dimension 1) : It is ge-
ometric and relies on homothetic properties of triangles in the half-plane. We also stress that
this specific example of star scale invariant random measures is not restricted to the Gaussian
case: The factor can be more general (log-Lévy).

Following [24], we recall the construction of this example and refer the reader to the afore-
mentioned papers for further details. Fix T > 0 and let S+ be the state-space half plane

S+ = {(t, l) : t ∈ R, l > 0}.

with which one can associate the measure

µ(dt, dl) = l−2dtdl.

Then we introduce the independently scattered Gaussian random measure P characterized for
any µ-measurable set A by

E
[
eiqP (A)

]
= eϕ(q)µ(A)

with ϕ(q) = −γ2q2/2−iqγ2/2. Under those assumptions, we can note that for any µ-measurable
set A, P (A) is a Gaussian variable with mean m = −µ(A)γ2/2 and variance σ2 = γ2µ(A). We
can then define the Gaussian process (ωl(t))t∈R for l > 0 by

ωl(t) = P (Al(t))

where Al(t) is the triangle like subset Al(t) := {(t′, l′) : l 6 l′ 6 T,−l′/2 6 t− t′ 6 l′/2} (see a
picture of this triangle in Fig. 1.3).

Define now the random measure Ml by Ml(dt) = eωl(t)dt. Almost surely, the family of
measures (Ml(dt))l>0 weakly converges towards a random measure M . If γ2 < 2, the measure
M is not trivial.

Let us check that M is a good log-normal star scale invariant random measure. Fix ε < 1
and define the sets Al,εT (t) := {(t′, l′) : l 6 l′ 6 εT,−l′/2 6 t − t′ 6 l′/2} and AεT,T (t) :=
{(t′, l′) : εT 6 l′ 6 T,−l′/2 6 t − t′ 6 l′/2} (see Fig. 1.4 for a picture of those two ensembles).
Note that Al(t) = Al,εT (t) ∪ AεT,T (t) and that those two sets are disjoint. Thus, we can write
for every µ-measurable set A

Ml(A) =

∫
A
eωεT,T (t)eωl,εT (t)dt (1.8)

with ωεT,T (t) = P (AεT,T (t)) and ωl,εT (t) = P (Al,εT (t)).
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Figure 1.3: Representation of Barral-Mandelbrot’s cone.
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Figure 1.4: Decomposition of Barral-Mandelbrot’s cone.

We then study equation (3.17) in the limit l→ 0; we obtain

M(A) =

∫
A
eωεT,T (t)M ε(dt) (1.9)

where M ε is the limit when l→ 0 of the random measure M ε
l (dt) := eωl,εT (t)dt. We easily verify

that M ε(εA)
law
= εM(A) writing

M ε
l (A) = ε

∫
A
eωl,εT (εt)dt (1.10)

and checking that the covariance of the Gaussian process (ωl,εT (εt))t∈R is the same as the one
of (ωl,T (t))t∈R (this comes from the fact that the red set in Figure 1.4 is homothetic to the gray
set of Figure 1.3.).

In view of the result we present in the next subsection, note finally that the random measure
M is a Gaussian multiplicative chaos with associated kernel

K(r) =

∫ +∞

|r|

k(u)

u
du with k(u) = λ2(1− |u|

T
)1[0,T ](|u|). (1.11)

Before, turning to the whole description of all the random measures that are solutions of
(1.7), let us make a few remarks on the link between the two notions of stochastic scale invariance
we have just seen.

Note that the star scale invariance equation (1.7) is a global notion in the space Rd in
contrast with the exact stochastic scale invariance equation (1.6) which is restricted on a compact
euclidean ball (it is easily proved that the unique exact scale invariant stationary random measure
on the whole space is the null measure).
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The reader may wonder if the two notions are related or if there is a hierarchical relation
between the two’s. The answer is not yet complete but we were able to prove in [5] that if a
Gaussian multiplicative chaos M has a kernel of the form K(x, y) = γ2 ln+( R

|x−y|) (in particular

we have already seen that M satisfies the exact stochastic scale invariance property), then it is
not a lognormal star scale invariant measure.

In the next subsection, we explain the results we obtained in collaboration with R. Rhodes
and V. Vargas. The reader can find a complete proof of this result in Chapter 3 (see also [5]).
We characterize all the random measures that satisfy (1.7) under weak regularity assumptions
for the process ωε and with the additional assumption that M possesses a moment of order 1+δ
(with δ > 0).

1.0.4 Our contribution

In the following, we will say that a stationary random measure M satisfies the good lognormal
star scale invariance if M is lognormal star scale invariant with some additional weak regularity
assumptions on the covariance function kε of the process ωε, for all ε < 1.

Theorem 1.1 (R.A., R. Rhodes, V. Vargas). Let M be a good lognormal star scale invariant
random measure. Assume that

E[M([0, 1])1+δ] < +∞

for some δ > 0. Then M is the product of a nonnegative random variable Y ∈ L1+δ and an
independent Gaussian multiplicative chaos

∀A ⊂ B(R), M(A) = Y

∫
A
eXr−

1
2
E[X2

r ] dr (1.12)

with associated covariance kernel given by the improper integral

K(r) =

∫ +∞

|r|

k(u)

u
du (1.13)

for some continuous covariance function k such that

k(0) 6
2

1 + δ
. (1.14)

Conversely, given some datas k and Y as above, the relation (3.11) defines a log-normal star
scale invariant random measure M with finite moments of order 1 + γ for every γ ∈ [0, δ).

The inequality (1.14) implies that the Gaussian multiplicative chaos associated to the kernel
K defined in (1.13) has a moment of order 1 + δ, as expected.

It seems natural to describe all the stochastic (star or exact) scale invariant random measures.
Theorem 1.1 is a step in this direction as it characterizes all the (good) star scale invariant
stationary random measures with a moment of order 1 + δ. We hope this result to be useful to
prove convergence to Gaussian multiplicative chaos. Indeed the star scale invariance equation
(1.7) can be seen as a fixed point equation satisfied by the measure M and should be easy to
verify in practice for a limiting random measure. If an unknown limiting random measure has
this property, our theorem enables to identify this random measure as a Gaussian multiplicative
chaos and gives a formula for its covariance structure.

Let us mention that the more general case where the lognormal factor eωε(x) is replaced by
a log-Lévy factor has been solved later in [133].



Chapter 2

Random matrix theory and its
applications

Random matrix theory (RMT) has become one of the prominent field of research, at the bound-
ary between atomic physics, solid state physics, statistical mechanics, statistics, probability
theory and number theory [3, 20, 15]. The start of the field is usually attributed to the work of
Wigner, motivated by applications in nuclear physics. In 1951, Wigner suggested in [152] that
the fluctuations in positions of the energy levels of heavy nuclei could be described in terms of
statistical properties of eigenvalues of very large real symmetric matrices with independent iden-
tically distributed entries. This postulate has led to random matrix theory which is essentially
concerned with the study of large symmetric random matrices with i.i.d. entries, called Wigner
matrices but also in the study of other type of random matrices, see below. This theory aims at
describing the statistical properties of large random matrices and particularly those related to
the eigenvalues and eigenvectors. The first major result in this direction is due to Wigner (see
[151]) in 1957: the empirical eigenvalue density of a Wigner random matrix converges almost
surely in the limit of large dimension to the Wigner semicircle probability density. This prob-
ability density is compactly supported and shaped as a semi circle. Other eigenvalue statistics
such as the largest eigenvalue statistics or local eigenvalues statistics have also been investigated
in great details, see [15, 3, 114] for a review of RMT.

We now introduce another very popular type of random matrices of great interest for appli-
cations: the empirical covariance matrices, also called Wishart matrices. Historically, Wishart
matrices were introduced before Wigner matrices by John Wishart in 1928 to study populations
in biology through Principal Component Analysis (PCA). The purpose of PCA is to identify
common causes (or factors) that govern the dynamics of N quantities. These quantities might
be daily returns of the different stocks of the S&P 500, monthly inflation of different sectors of
activity, motion of individual grains in a packed granular medium, or different biological indi-
cators (blood pressure, cholesterol, ...) within a population. More precisely, if one is provided
with a vector of (centered) correlated random variables |x〉 := (x1, x2, · · · , xN ), whose covariance
matrix is denoted as C and defined by Cij = E[xixj ], PCA consists in writing the vector |x〉 in
the orthogonal basis of the eigenvectors |φi〉 of the covariance matrix C as

|x〉 =
N∑
i=1

〈x|φi〉|φi〉 . (2.1)

It is straightforward to see that the variance E[〈x|φi〉2] of the random variable 〈x|φi〉 is equal
to λi where λi is the eigenvalue of the matrix C associated with the eigenvector |φi〉. The
decomposition (2.1) then shows that the favorite (or most likely) directions for the random
vector |x〉 are the eigenvectors of C associated to the largest eigenvalues of the matrix C. Of
course, practitioners do not have access to C; instead, they must consider a noisy empirical
estimator E of the true covariance matrix C constructed from a sample of datas as

Eij =
1

T

T∑
t=1

xtix
t
j . (2.2)

23
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where the vectors |xt〉 := (xt1, · · · , xtN ) are independent and identically distributed as |x〉. The
matrix E defines an empirical covariance matrix. Random matrix theory has thus been con-
cerned, in the last decades, with the statistical properties of empirical covariance matrices. In
particular the eigenvalue statistics (eigenvalues density, statistics of the largest eigenvalues, local
eigenvalue statistics,...) for large dimensional empirical covariance matrices have been investi-
gated in great details (see e.g. [15, 29, 113]) as in the Wigner case described above. The
starting point of this active research area is the 1967 Marčenko Pastur paper [113] which gives
an explicit formula for the empirical eigenvalue density in the limit of large dimension N . This
result, as a new statistical tool to analyse large dimensional data sets, became very relevant in
the last two decades, when the storage and handling of humongous data sets became routine in
almost all fields – physics, image analysis, genomics, epidemiology, engineering, economics and
finance, to quote only a few. Since their introduction, Wishart matrices have appeared in many
different applications such as communication technology [134], nuclear physics [78], quantum
chromodynamics [148], quantitative finance [44, 45, 124], statistical physics of directed polymers
in random media [88] and non intersecting Brownian motions [135].

In this very short (and obviously far from exhaustive) introduction to the field, we introduce,
in the first section, the main ensembles of random matrix theory, the so called Gaussian orthog-
onal ensemble (GOE) and Gaussian unitary ensemble (GUE). Those ensembles are the most
classical and most studied random matrix ensembles in the literature, and were introduced by
Wigner and Dyson at the starting point of the theory. We review the main statistical properties
of the eigenvalues of the GOE/ GUE random matrices. In particular, we derive the joint law of
the eigenvalues, establishing the link between random matrix theory and Coulomb gas repulsive
interaction. For this derivation, we introduce the Dyson Brownian motion, which is a diffusive
matrix process closely related to the GOE and GUE. We also introduce a generalization of those
ensembles, the so called β-ensembles. At the end of the first section, we briefly explain some of
our results which are related to the Gaussian ensembles. Then, in the second section, we give
a fast review on the definition and main properties of empirical covariance matrices following
the same line as in the first section and we sum up our contribution in the study of empirical
covariance matrices at the end of the second section.

2.1 Gaussian Ensembles

We will denote by HβN with β = 1 (respectively β = 2) the space of symmetric real (resp.
Hermitian complex) matrices of size N × N . In the next subsection, we introduce the Gaus-
sian Orthogonal and Unitary Ensembles of random matrices. The random matrices of those
ensembles are random variables in the space H1

N (respectively H2
N ).

2.1.1 Classical Gaussian Ensembles

Gaussian Orthogonal Ensemble

A random matrix H ∈ H1
N is said to belong to the Gaussian Orthogonal Ensemble (GOE) if its

probability law on the space H1
N is given by:

P 1
N (dH) =

1

Z1
N

exp

(
−N

2
Tr(H†H)

)
dH (2.3)

where dH denotes the Lebesgue measure on the space H1
N , Z1

N a normalization factor and
where H† denotes the Hermitian conjugate of H. The factor Z1

N can be explicitly computed
(see [15, 114]).

It is clear from the definition of the law P 1
N given by (2.3) that the random matrices in the

Gaussian Orthogonal Ensemble are invariant under conjugation of orthogonal matrices, in the
sense that the matrix OHO† has the same law as the matrix H for any orthogonal matrix O.

If H is a real symmetric matrix, we have Tr(H†H) = Tr(H2) =
∑N

i,j=1H
2
ij =

∑N
i=1H

2
ii +

2
∑

i<j H
2
ij . Therefore the entries of the random matrix H in the GOE are independent (up to

symmetry) centered Gaussian variables with variance 1/N on the diagonal and variance 1/2N
off the diagonal.
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Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble is similarly defined: the random matrices take values in the
space HβN of Hermitian complex matrices of size N × N and are distributed according to the
law P 2

N defined as:

P 2
N (dH) =

1

Z2
N

exp

(
−N

2
Tr(H†H)

)
dH (2.4)

where Z2
N is again a normalization factor (which can also be explicitly computed).

The symmetry for this ensemble is now with respect to the unitary matrices: the random
matrices in the Gaussian Unitary Ensemble are invariant under conjugation of unitary matrices.
The entries are independent (up to symmetry) complex centered Gaussian random variables.
The diagonal entries are real centered Gaussian variables with variance 1/N whereas the off
diagonal entries can be written as N (0, 1/2N) +

√
−1N (0, 1/2N).

2.1.2 Dyson Brownian motion

Definition

In this subsection, the parameter β is equal to 1 or 2. In the following, the process (Hβ(t))t > 0

will denote a Dyson Brownian motion, i.e. a process with values in the set of N ×N symmetric

real (β = 1) or Hermitian complex (β = 2) matrices with entries
(
Hβ
ij(t), t > 0, 1 6 i 6 j 6 d

)
constructed via independent real valued Brownian motions

(
Bij(t), B̃ij(t), 1 6 i 6 j 6 d

)
by

Hβ
ij(t) =

{
1√
2N

(Bij(t) +
√
−1(β − 1)B̃ij(t)) if i < j ,

1√
N
Bii(t) otherwise .

(2.5)

The process Hβ(t) was first introduced by Dyson in [69].

We now want to define another diffusive matrix process that would converge in law in the
limit of large time to the law of the Gaussian Ensembles defined previously. The idea is simply
to define this matrix process Xβ(t) as solution of the following Ornstein-Uhlenbeck type equation

dXβ(t) = −1

2
Xβ(t)dt+ dHβ(t) (2.6)

where Hβ(t) is a Dyson Brownian motion of size N ×N .

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the Gaussian law
and therefore, the real symmetric (resp. complex hermitian) matrix process Xβ(t) converges in
law when t→∞ to the law of a GOE (resp. GUE) random matrix.

The study of the eigenvalues diffusion process of Xβ(t) will enable us to derive, in the next
section, the joint law of the eigenvalues of the random matrices in the GOE and GUE.

Eigenvalues and eigenvectors diffusion processes

For each t > 0, the matrix Xβ(t) is a real symmetric matrix if β = 1 (resp. hermitian complex
if β = 2) and therefore is diagonalizable in an orthonormal basis. The eigenvalues of Xβ(t)
will be denoted1 in increasing order as λ1(t) 6 . . . 6 λN (t) and the associated orthonormal
eigenvectors as ψ1(t), . . . , ψN (t). Sometimes we will also use the following decomposition for the
matrix Xβ(t):

Xβ(t) = Oβ(t)∆β(t)Oβ(t)†

where ∆β(t) is the diagonal matrix Diag(λ1(t), . . . , λN (t)) and where Oβ(t) is the orthogonal
matrix (resp. unitary if β = 2) whose columns are (in respective order) given by ψ1(t), . . . , ψN (t).

To find the stochastic differential system of equations verified by the eigenvalues and eigen-
vectors processes, a direct method is provided by using perturbation theory. Let us briefly recall
the main ideas of this theory before coming back to our eigenvalues and eigenvectors processes.

1To simplify notations, we omit the subscript β for the eigenvalues and eigenvectors of Xβ(t).
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Perturbation Theory. We are given a symmetric (resp. hermitian) matrix H0 that is per-
turbed by the adding of a small symmetric (resp. Hermitian) matrix εP . Perturbation theory
enables to find approximations of the eigenvalues and eigenvectors of the matrix H1 defined as

H1 = H0 + εP (2.7)

in the limit ε→ 0. To second order in ε for the eigenvalues it gives

λ1
i = λ0

i + εPii + ε2
∑
j 6=i

|Pij |2

λ0
i − λ0

j

+ o(ε2) (2.8)

where2 Pij := 〈φ0
j |P |φ0

i 〉. For the eigenvectors, perturbation theory to second order writes as

ψ1
i =

1− ε2

2

∑
j 6=i

(
|Pij |

λ0
i − λ0

j

)2
 ψ0

i + ε
∑
j 6=i

Pij
λ0
i − λ0

j

ψ0
j +O(ε2) , (2.9)

where O(ε2) contains the second order transverse term (due to the non zero overlap of φ1
i with

the non perturbed eigenvectors ψ0
j for j 6= i) which will turn out to be negligible in the context

of Itô’s stochastic calculus (see below).

Physical derivation of the eigenvalues process. Coming back to our purpose, we can
re-interpret the stochastic differential equation (2.6) verified by Xβ(t) as a perturbation equa-
tion by writting Xβ(t + dt) = Xβ(t) − 1

2X
β(t)dt + dHβ(t). It is now straightforward to check

that 〈ψi(t)|Xβ(t)|ψi(t)〉 = λi(t) and that 〈ψi(t)|Xβ(t)|ψj(t)〉 = 0 for i 6= j due to the or-
thogonality of the family {ψk(t)}. On the other hand, conditionally on (ψk(t))k, the random
variables 〈ψi(t)|dHβ(t)|ψj(t)〉, i < j are centered Gaussian (real or complex whether β = 1
or 2) random variables (as they are linear combination of independent Gaussian variables)
which can be written as N (0, 1

2N (1 + δi=j) dt) if β = 1 (respectively N (0, dt/N) for i = j and
N (0, 1/2N) +

√
−1N (0, 1/2N) for i 6= j if β = 2 ). In addition we can check that they are

independent (their covariance is zero again because of orthogonality). The second order terms
in those perturbative equations are of order of the square of those random variables, i.e. of order
dt. Therefore, it is standard argument in Itô’s calculus that the fluctuations of those second
order terms are negligible: they can be replaced by their mean and we only keep the fluctuations
of the first order terms.

Gathering the above arguments, we conclude that the eigenvalues verify the following Stochas-
tic Differential System (SDS)

dλi = −1

2
λidt+

1√
N

dbi +
β

2N

∑
i 6=j

dt

λi − λj
(2.10)

where the bi are independent standard Brownian motions and with β = 1 or 2 depending on the
symmetry class (symmetric or hermitian).

For the eigenvectors, the evolution is described as follows. Let wβij(t), i < j be a family of real

or complex (whether β = 1 or 2) Brownian motions (i.e. wβij(t) = 1√
2
(B1

ij(t)+
√
−1 (β−1)B2

ij(t))

where the B1
ij , B

2
ij are standard Brownian motions on R), independent of the family of Brownian

motions {bi} involved in (2.10). For i < j, set in addition wβji(t) := w̄βij(t). The system of
Stochastic Differential Equation (SDE) verified by the eigenvectors can then be written as

dψi = − β

4N

∑
j 6=i

dt

(λi − λj)2
ψi +

1√
N

∑
j 6=i

dwβij
λi − λj

ψj . (2.11)

To write this evolution in terms of the matrix Oβ(t), define the skew Hermitian matrix (i.e.
such that Rβ = −(Rβ)∗) by setting for i 6= j,

dRβij(t) =
1√
N

dwβij(t)

λi(t)− λj(t)
, Rβij(0) = 0 .

2We use the classical bracket notations for the (hermitian) scalar product.



2.1. GAUSSIAN ENSEMBLES 27

Then, with λi(t) being the solution of the SDS (2.10), the matrix Oβ(t) evolves as

dOβ(t) = Oβ(t)dRβ(t)− β

4
Oβ(t)d〈(Rβ)†, Rβ〉t . (2.12)

To show more rigorously that Equations (2.10) and (2.11) (or equivalently (2.10) and (2.12))
hold, the proof usually goes backward, through the following steps (see [15, Lemmas 4.3.3 and
4.3.4]):

• One first has to show that the SDS (2.10) is well defined for all time t > 0. One can indeed
show that the λi solution of (2.10) almost surely never collide, in the sense that the first
collision time T1 := inf{t > 0 : ∃i 6= j, λi(t) = λj(t)} is almost surely infinite.

• Then one can show that the unique solution of the SDE (2.12) (this SDE indeed has a
unique solution as it is linear in Oβ and Rβ is a well defined martingale) is a matrix process
with values in the space of orthogonal (respectively unitary) matrices.

• The last step uses standard Itô’s calculus to show that the matrix process Y β(t) defined
as Y β(t) := Oβ(t)∆β(t)Oβ(t)†, with Oβ the solution of sde (2.12) and with ∆β(t) the
diagonal matrix Diag(λ1(t), . . . , λN (t)) where the λi are solution of the system (2.10),
indeed verifies the stochastic differential equation (2.6) (with Y instead of X).

2.1.3 Joint law of the eigenvalues

As already mentioned, the matrix Xβ(t) converges in law when t → ∞ to the law P βN of the
random matrices in the GOE if β = 1 and in the GUE if β = 2. Therefore a simple way to
determine the joint probability of the eigenvalues of the random matrices in the GOE (resp.
GUE) is to find the limiting law of the eigenvalues process of Xβ(t) for β = 1 (resp. β = 2).
The classical way to do this is to compute a stationary probability of the SDS (2.10) through the
Fokker-Planck equation (or through the infinitesimal generator associated to (2.10)) and then
to show that this stationary probability is the unique such measure.

The Fokker Planck equation gives a partial differential equation satisfied by the probability
density transition function of a diffusion given its stochastic differential equation. For the process
(λ1(t), . . . , λN (t)) that verifies (2.10), the transition function P (λ1, . . . , λN ; t) verifies:

∂P

∂t
= −

N∑
i=1

∂

∂λi

−λi
2

+
β

2N

∑
j 6=i

1

λi − λj

P

+
1

2N

N∑
i=1

∂2P

∂λ2
i

. (2.13)

The stationary solutions of (6.81) are found by setting the time derivative to 0. It is easy
using elementary algebra to show that a stationary solution to equation (6.81) is given by:

Pβ(λ1, . . . , λN ) =
1

Zβ

∏
1 6 i<j 6 N

|λi − λj |β exp(−N
2

N∑
i=1

λ2
i )

N∏
i=1

dλi . (2.14)

Furthermore it is the unique stationary probability measure for the process (λ1(t), . . . , λN (t))
since if there was another invariant distribution Qβ, we could reconstruct a Hermitian Ornstein-

Uhlenbeck process X̃β(t) and a matrix X̃β
0 whose eigenvalues would follow Qβ so that X̃β(0) :=

X̃β
0 and

dX̃β(t) = −1

2
X̃β(t)dt+ dHβ(t) .

But this gives a contradiction since as time goes to infinity, the law of X̃β(t) is a Gaussian law,
independently of the law Qβ.

Other derivations of formula (6.5) exist and can be found for example in [15].
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2.1.4 Matrix model for β-ensembles

The probability measure Pβ introduced in (6.5) is a Gibbs measure of a one-dimensional repulsive
Coulomb gas confined in an harmonic well with inverse temperature β and is in fact a well defined
probability measure for all β > 0. In the previous section, we have introduced two random
matrix ensembles whose eigenvalues are distributed according to the law Pβ=1 for the GOE
symmetric real matrices and Pβ=2 for the GUE hermitian complex matrices. Another random
matrix ensemble, which was not introduced above and called the Gaussian Symplectic Ensemble
(GSE), is invariant under conjugation by a symplectic matrix and has eigenvalues distributed
according to the law Pβ=4. Therefore, depending on the symmetry of the random matrix, only
three values are allowed β = 1, 2 and 4 up to now. This is known as Dyson’s “threefold way”.
The existence of matrix ensembles that would lead to general values of β > 0, is a very natural
question, and the quest for such ensembles probably goes back to Dyson himself.

Ten years ago, Dumitriu and Edelman [68] have proposed the following explicit construction
of tri-diagonal random matrices, with eigenvalues distributed according to Pβ for general β > 0,

Hβ =
1√
2N


g1 χ(N−1)β

χ(N−1)β g2 χ(N−2)β

. . .
. . .

. . .

χ2β gN−1 χβ
χβ gN

 (2.15)

where the gk are independent Gaussian random variables with variance 2 and where the χkβ are
independent χ distributed random variables with parameters kβ and scale parameter 2.

Another construction is proposed in [3, page 426-427] (see also [74]) and uses a bordering
procedure to construct iteratively on the dimension a sequence of matrices with eigenvalues
distributed according to Pβ for general β > 0. The advantage of this construction is that it
gives not just the eigenvalue probability density of one matrix but also the joint eigenvalue
probability density of all matrices of the sequence.

2.1.5 Eigenvalues density

Let H be an N × N symmetric (or hermitian) random matrix and denote by λi the (real)
eigenvalues of H, with λ1 6 · · · 6 λN . The empirical distribution of the eigenvalues of H is the
following (random) probability measure on R

µN =
1

N

N∑
i=1

δ(λ− λi) .

The measure µN is sometimes called spectral measure or density of states and is one of the
central object of study in random matrix theory. In the following subsection, we briefly recall
the main classical results on the empirical distribution of the eigenvalues in the limit of large
random Wigner matrices, which are symmetric or hermitian random matrices with independent
entries (up to symmetry).

Wigner matrices

A Wigner symmetric real (respectively hermitian complex) random matrixH can be defined from
a family of independent and identically distributed (i.i.d.) real (respectively complex) centered
random variables {hij}1 6 i 6 j<∞ living on a common probability space (Ω,P) by setting

HN (ij) =

{
1√
2N
hij , if i < j,

1√
N
hii, otherwise .

(2.16)

If the entries have a finite second moment σ2 = E[h2
ij ], then Wigner’s theorem (see [151])

asserts that the empirical spectral measure of the matrix HN (ij) converges weakly almost surely
to the semicircle distribution

ρ(dx) =
1

πσ2

√
2σ2 − x2 dx . (2.17)
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Figure 2.1: The histogram represents the eigenvalue density of a simulated GOE random matrix
of size N = 1500. The (red) curve is the Wigner semicircle density.

An illustration of this convergence is displayed in Fig. 2.1.

The case where the entries have infinite second moment was also treated in [43, 33]. The
entries are assumed to be in the domain of attraction of an α- stable law, for α ∈ (0; 2), i.e. they
verify the following asymptotic for the tail

P[hij > u] =
L(u)

uα
,

where L is a slowly varying function. Under this assumption, the authors of [33] show that
the empirical spectral measure µN of the matrix HN (where this time the entries of the matrix
are renormalized by a sequence aN , instead of

√
N in (2.16), of normalizing constants which

roughly grows as N1/α) converges weakly (in probability, say) to a measure µα. Moreover it
is also shown in [33] that the measure µα is symmetric, has unbounded support and a smooth
density ρα(x) outside a small subset. Even the asymptotic of the tails of µα(dx) = ρα(x) dx is
known: there exists a constant Lα > 0 such that

ρα(x) ∼ Lα
xα+1

.

Note that the GOE and GUE random matrices introduced above are particular cases of
Wigner matrices with Gaussian entries. In the next subsection, we will show a possible way
to recover the asymptotic of the empirical spectral distribution for those ensembles and more
generally in the case of general β-ensembles.

Proof of the Wigner semicircle law for β-ensembles

We first need to introduce the Stieltjes transform of a probability measure. If µ is a probability
measure on R, its Stieltjes transform is defined for all z ∈ C \ R as

G(z) =

∫
µ(dx)

x− z
.

The measure µ is characterized by its Stieltjes transform and its values on bounded continuous
test functions can be recovered from G(z) by a limiting procedure z → x ∈ R. In particular,
if the measure µ has a continuous density ρ(x) with respect to Lebesgue measure, we have the
classical inversion formula

lim
ε→0
=(G(x− iε)) = πρ(x) . (2.18)
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We now show that the empirical spectral distribution converges weakly to the Wigner semi-
circle density for general β-ensembles. Let (λ1(t), . . . , λN (t)) be the diffusion process that verify
the stochastic differential system (2.10) (with β > 0) and denote by GN (z, t) the associated
Stieltjes transform of the empirical distribution of the λi(t). The following relation holds

GN (z, t) =
1

N

N∑
i=1

1

λi(t)− z
. (2.19)

The idea of the proof is to study the evolution of GN (z, t) with respect to time t and in partic-
ular its convergence to equilibrium when t → ∞. We already know that the diffusion process
(λ1(t), . . . , λN (t)) converges in law in the limit of large time t to Pβ. Therefore, GN (z, t = ∞)
corresponds to the Stieltjes transform of the empirical spectral distribution of a random matrix
Hβ in the β-ensembles.

Applying Itô’s formula to the functional 1
N

∑N
i=1 f(λi(t)) where f is the smooth function

f(λ) = 1/(λ− z) and using the SDS (2.10) verified by the λi, we obtain the following Langevin
equation for GN (z, t)

2 dGN =
β

2

∂G2
N

∂z
dt+

∂zGN
∂z

dt+
1

2N
(2− β)

∂2GN
∂z2

dt+ dMN
t (2.20)

where dMN
t = − 2

N

∑N
i=1

1
(λi−z)2

dbi√
N

with quadratic variation

d〈MN 〉t =
4

N3

N∑
i=1

1

(λi − z)4
dt .

In the large N limit, we easily see that the two last diffusion and martingale terms are
negligible compared to the other terms and therefore we can rewrite the Eq. (2.20) in the limit
N →∞ as a deterministic Burgers evolution equation

2
∂G

∂t
=
β

2

∂G2

∂z
+
∂zG

∂z
. (2.21)

To leading order, the stationary equation associated to (2.21) (where the time derivative is set
to 0 and which is satisfied by GN (z, t =∞)) can be integrated with respect to z as:

β

2
G2 + zG+ 1 = 0 (2.22)

where the integration constant comes from the boundary condition GN ∼ −1/z when |z| → ∞.
It is then easy to solve this equation (2.22) to find the equilibrium Stieltjes transform

G(z,∞) =
1

β

[√
z2 − 2β − z

]
.

It can now be checked with the inversion formula (2.18) that the associated empirical spectral
distribution is indeed the Wigner semicircle density

ρ(λ) =
1

πβ

√
2β − λ2, −

√
2β 6 λ 6

√
2β . (2.23)

2.1.6 Our contribution

Let us briefly explain our results related to Gaussian ensembles. For further details on those
results, we refer to the following chapters.

In the first paragraph, we define a new diffusive matrix model converging towards the β-
Dyson Brownian motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of
random matrices that is invariant under the orthogonal/unitary group. We show in the second
paragraph that, for small values of β, our process allows one to interpolate smoothly between
the Gaussian distribution and the Wigner semicircle. The interpolating limit distributions form
a one parameter family and can be explicitly computed. In the third paragraph, we use the
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previous construction to compute the corrections for the empirical eigenvalue distribution of
β-ensembles to the Wigner semicircle density for large but finite dimension. The last paragraph
concerns the eigenvectors of the GOE random matrices. We propose a general framework to
study the stability of the subspace spanned by P consecutive eigenvectors of a generic symmetric
matrix H0, when a small perturbation is added. This problem is relevant in various contexts,
including quantum dissipation (H0 is then the Hamiltonian) and financial risk control (in which
case H0 is the assets return covariance matrix). We state our results later in chapter 7 in the
case where H0 is a GOE random matrix or when H0 is a covariance matrix.

A diffusive matrix model for invariant β-ensembles [joint work with Alice Guionnet,
see also chapter 5 or [10]].

The goal of this work is to provide a natural interpretation of β-ensembles in terms of random
matrices for β ∈ [0, 2]. Dumitriu and Edelman [68] already proposed the tridiagonal matrix
introduced above with eigenvalues distributed according to Pβ. However, this tridiagonal matrix
lacks the invariant property of the classical ensembles (GOE is invariant under conjugation of an
orthogonal matrix whereas GUE is invariant under the conjugation of a unitary matrix). The
construction introduced in [10] has this property and moreover is constructive as it is based on
a dynamical scheme. It was proposed by JP Bouchaud, and [10] provides rigorous proofs of the
results stated in [6]. The idea is to interpolate between the Dyson Brownian motion and the
standard Brownian motion by throwing a coin at every infinitesimal time step to decide whether
our matrix will evolve according to a Dyson Brownian motion (with probability p) or will keep the
same eigenvectors but with eigenvalues diffusing according to independent Brownian motions.
When the size of the infinitesimal time steps goes to zero, we prove that the dynamics of the
eigenvalues of this matrix valued process converges towards the β-Dyson Brownian motion as
defined in (2.10) with β = p. The same construction with a hermitian Brownian motion leads
to the same limit with β = 2p.

More precisely, our model is defined as follows: we divide time into small intervals of length
1/n and for each interval [k/n; (k + 1)/n], we choose independently Bernoulli random variables
εnk , k ∈ N such that P[εnk = 1] = p = 1− P[εnk = 0]. Then, setting εnt = εn[nt], our diffusive matrix
process simply evolves as:

dMn(t) = −1

2
Mn(t)dt+ εnt dH(t) + (1− εnt )dY (t) (2.24)

where dH(t) is a Dyson real Brownian increment as defined in (5.2) and where dY (t) is a
symmetric matrix that is co-diagonalizable with Mn(t) (i.e. the two matrices have the same
eigenvectors) but with a spectrum given by N independent Brownian increments of variance
dt/N . It is clear that the eigenvalues of the matrix Mn(t) will cross at some points but only
in intervals [k/n; (k + 1)/n] for which εnk = 0 (in the other intervals where they follow Dyson
Brownian motion with parameter β = 1, it is well known that the repulsion is too strong and
that collisions are avoided). In such a case, the eigenvalues are re-numbered at time t = (k+1)/n
in increasing order.

Now, using again standard perturbation theory, it is easy to derive the evolution of the
eigenvalues of Mn(t) denoted as λn1 (t) 6 . . . 6 λnN (t):

dλni = −1

2
λni dt+

εnt
2N

∑
j 6=i

dt

λni − λnj
+

1√
N

dbi (2.25)

where the bi are independent Brownian motions also independent of the εnk , k ∈ N.
Recall that Cépa and Lépingle showed in [54] the uniqueness and existence of the strong

solution to the stochastic differential system

dλi(t) = −1

2
λi(t)dt+

p

2N

∑
j 6=i

1

λi(t)− λj(t)
dt+

1√
N
dbi (2.26)

starting from λ(0) = (λ1 6 λ2 6 · · · 6 λd) and such that for all t > 0

λ1(t) ≤ λ2(t) ≤ · · · ≤ λd(t) a.s. (2.27)

For the scaling limit of the ordered eigenvalues, we prove in Chapter 5 (and also in [10]) that
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Theorem 2.1 (R. A., A. Guionnet). Let Mβ
0 be a symmetric (resp. Hermitian) matrix if β = 1

(resp. β = 2) with distinct eigenvalues λ1 < λ2 < · · · < λd and (Mβ
n (t))t≥0 be the matrix

process defined in Definition 5.1. Let λn1 (t) 6 . . . 6 λnd (t) be the ordered eigenvalues of the

matrix Mβ
n (t). Let also (λ1(t), . . . , λd(t))t > 0 be the unique strong solution of (5.5) with initial

conditions in t = 0 given by (λ1, λ2, . . . , λd).

Then, for any T <∞, the process (λn1 (t), . . . , λnd (t))t∈[0,T ] converges in law as n goes to infin-

ity towards the process (λ1(t), . . . , λd(t))t∈[0,T ] in the space of continuous functions C([0, T ],Rd)
embedded with the uniform topology.

One of the difficulty of the proof comes from the fact that when p < 1, there is a positive
probability for eigenvalues verifying (2.10) to collide in finite time (the ordering constraint is
therefore useful at those points to restart). The idea is then to show that collisions are in a
sense sufficiently rare for the SDS (2.10) (with β = p < 1) to make sense (see [10, 54] or chapter
5 for further details).

The corresponding scaling limit of the matrices Mn(t), denoted as M(t), is furthermore
invariant under the orthogonal (or unitary) group. This is intuitively clear, since both alter-
natives in the evolution of Mn(t) (adding a free slice or adding a commuting slice) respect this
invariance, and lead to a Haar probability measure for the eigenvectors (i.e. uniform over the
orthogonal/unitary group). We have also proved in [10] that a collision leads to a complete
randomization of the eigenvectors within the two-dimensional subspace corresponding to the
colliding eigenvalues.

To check numerically Theorem 2.1, a possible way is to check that indeed the matrix process
Mn(t) share the known properties of the spectrum of β ensembles, for large time t (and large
n for Mn(t) to be near its scaling limit). Indeed we have seen that the eigenvalue density of β-
ensembles converges for large matrices to the Wigner semicircle density. Moreover the behavior
of the nearest neighbor spacing distribution (NNSD) P (s) is expected to behave as sβ near
0. We simulated numerically the matrix Mn(t) with N = 200 for a very small step 1/n and
until a large value of t so as to reach the stationary distribution for the eigenvalues. Then we
started recording the spectrum and the nearest neighbor spacings (NNS) every 100 steps so as
to sample the ensemble. We verified that the spectral density of Mn(t = ∞) is indeed in very
good agreement with the Wigner semi-circle distribution for β = 1/2 (see Fig. 4.1). Our sample
histogram for the NNS distribution is displayed in Fig.4.1. We also added the corresponding
Wigner surmise (which is expected to provide a good approximate description of the NNSD).

Invariant β-ensembles and the Gauss-Wigner crossover [joint work with Jean-Philippe
Bouchaud and Alice Guionnet, see also chapter 4 or [6]].

The construction (6.13) of the previous subsection leads to the β-ensembles (with in fact
β = p) introduced above as soon as the parameter p > 0 and we have seen that in this case the
empirical spectral distribution is given by the Wigner semicircle law with edges at ±

√
2p.

On the other hand, if p = 0, the eigenvalues process of the diffusive matrix verifying (6.13) is
given by N independent Ornstein-Uhlenbeck processes. The empirical eigenvalues distribution
is therefore in this case given by the Gaussian distribution.

This raises the question of the existence of an interpolation between these two regimes.
A continuous cross-over indeed takes place for β = p = 2c/N with c strictly positive and
independent of N . The SDE for the limiting eigenvalues process (λi(t)) is again given by (2.10)
with the additional ordering constraint λ1(t) 6 . . . 6 λN (t) (necessary to restart after collisions
occurred) and the stationary joint probability density function (pdf) is still given by (6.5) but
with now the vanishing repulsion coefficient β = 2c/N .

We can proceed along the same steps as in subsection 2.1.5. We restart from Equation
(2.20). In the present scaling, we expect the spectrum to have a width of order

√
p ∝ 1/

√
N

and therefore we can easily check that in this scaling, the martingale term of (2.20) is negligible
compared to the other terms which are now all of the same order (the second derivative term is
no longer negligible!). The stationary differential equation derived from equation (2.20) can be
integrated with respect to z and after a further rescaling to make the support of the eigenvalues
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Figure 2.2: Up: Empirical eigenvalue distribution for the matrix Mn(t =∞) with the semicircle
density for N = 200, β = 1/2. Down: Empirical NNSD P (s) for the matrix Mn(t = ∞) for
β = p = 1/2 with the Wigner surmise (red curve) corresponding to β = 1

2 , which behaves as sβ

when s→ 0.
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density of order 1, we obtain:

cG2 + zG+
dG

dz
= −1, (2.28)

where the integration constant comes from the boundary condition G ∼ −1/z for z → ∞.
Equation (4.12) can be also recovered directly from the saddle point equation route starting
from the joint pdf Pβ with β = 2c/N (this method is also presented in [6]).

Equation (4.12) can be explicitly solved and leads to the following eigenvalues density

ρc(λ) =
1√

2πΓ(1 + c)

1

|D−c(iλ)|2
; (2.29)

D−c(z) =
e−z

2/4

Γ(c)

∫ ∞
0

dxe−zx−
x2

2 xc−1.

The probability density ρc is the asymptotic eigenvalues density of a matrix Hβ defined as
in (2.15) with β = 2c/N or equivalently the asymptotic empirical density of a random vector
(x1, . . . , xN ) with distribution Pβ (with again β = 2c/N). See the progressive deformation of
the Gaussian towards Wigner’s semi-circle in Fig. 2.3.
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Figure 2.3: Density ρc(u) for c = 0, 1, 2, 3, 4, showing the progressive deformation of the Gaussian
towards Wigner’s semi-circle.

This family of distributions is indeed a crossover (or an interpolation) between the Wigner
semicircle and the Gaussian distributions, as we have on the one hand, for c = 0,

ρ0(λ) =
1√
2π

exp(−λ
2

2
)

and on the other hand, for c→∞,

ρc(λ) ∼ 1

2πc

√
4c− λ2 .

Wigner correction for large but finite dimension [joint work with Jean-Philippe Bouchaud,
Satya N. Majumdar and Pierpaolo Vivo, see also chapter 6 or [12]].

We now explain how to derive a 1/N expansion for the asymptotic mean empirical eigenvalues
distribution at order 1/N2 for matrices in the GOE and in the GUE but only at order 1/N for
general β-ensembles. More precisely, by denoting ρN (λ) the density (with respect to Lebesgue

measure) of the probability density ρβN (λ) := E[ 1
N

∑N
i=1 δ(λ−λi)] where the λi are the eigenvalues

of a GOE or GUE random matrix, we want to determine explicitly the 1/N expansion of ρN
written in the form

ρN (λ) =
1

2π

√
4− λ2 +

1

N
ρ1(λ) +

1

N2
ρ2(λ) +O(

1

N3
) . (2.30)
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We describe in the following how to find explicit formulas for the correction functions (not
necessarily positive) ρ1 and ρ2.

Let us return to (2.20) for β = 1 or 2. We consider the stationary differential equation
associated to (2.20) (i.e. when the derivative with respect to time is set to 0) as we have
done in the previous subsection. By rescaling3 the eigenvalues as λ ← λ

√
2/
√
β and by taking

expectation, it is easy to see that equation (2.20) can be rewritten as

dE[GN ]2

dz
+

dzE[GN ]

dz
+

1

N

2− β
β

d2E[GN ]

dz2
+

d

dz

(
E[G2

N ]− E[GN ]2
)

= 0 . (2.31)

It turns out that the limit when N → ∞ of the last term has been explicitly computed in
[105]. It is shown in [105] that

lim
N→∞

N2
(
E[G2

N ]− E[GN ]2
)

=
1

2βπ2

∫ 2

−2

∫ 2

−2

1

(λ− z)2(µ− z)2

4− λµ
√

4− λ2
√

4− µ2
dλdµ (2.32)

for β ∈ {1, 2}. By denoting Vβ the right hand side of (2.32), we can integrate (2.31) with respect
to z, neglecting terms of order N−3, as

E[GN ]2 + zE[GN ] +
1

N

2− β
β

dE[GN ]

dz
+

1

N2
Vβ = −1 (2.33)

where the integration constant is again chosen according to the boundary condition G ∼ −1/z
when |z| → ∞. The interesting fact here is that the integral Vβ can be computed analytically
as a function of z. We find

Vβ =
2

β

1

(z2 − 4)2
.

Then, using perturbation theory in (2.33), we can compute explicitly the coefficients ρ1 and ρ2

in expansion (2.30).

The result reads:

ρβN (dλ) =
1

2π

√
4− λ2 dλ (2.34)

+
1

N

(
1

β
− 1

2

)(
1

2
(δ(λ− 2) + δ(λ+ 2))− 1

π

1√
4− λ2

)
dλ (2.35)

+
1

π

(
1

β
− 1

2

)2 1√
4− λ2

[
3

2

1

λ2 − 4
+

5

4

(
1

(λ+ 2)2
+

1

(λ− 2)2

)]
1

N2
(2.36)

− 1

βπ

dλ

(4− λ2)5/2

1

N2
+O(

1

N3
) . (2.37)

A numerical evidence for this formula is shown in 2.4. The issue of extracting subleading
corrections to the asymptotic semicircular density was addressed in quite a few papers [75, 89,
63, 96]. Whereas the results in [89] coincide with those derived here, other works [75, 63, 96]
found oscillatory corrections of order 1/N . Those oscillatory terms contribute to higher order
after integration. In [75], the authors discuss the origin of the Dirac mass at the edges.

Stability of eigenspaces [joint work with Jean-Philippe Bouchaud, see also chapter 7 or [7]].

We are now interested in the eigenvectors stability of GOE random matrices when a small
GOE perturbation matrix εP is added. Our aim is to understand the overlap between the
eigenvectors of a non-perturbed GOE matrix H0 with the eigenvectors of the perturbed matrix
H1 obtained from H0 by adding a small perturbation εP as in equation (2.7) where P is a GOE
matrix and ε is a small parameter.

It is quite clear, in view of the perturbation equation for the eigenvectors (7.2), that it will
be difficult to follow the evolution of one single eigenvector when the perturbation is added if
the perturbation entries are too large compared to the eigenvalue spacing of the GOE matrix

3This rescaling is chosen so that the eigenvalue density, in the limit of large matrices, is the Wigner semicircle
density with the classical support [−2; 2] instead of [−

√
2β;
√

2β].
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Figure 2.4: Numerical simulations of the state density of a GOE matrix of dimension N = 10.
Histogram: sample density. Red curve: Finite size correction (2.34) until order 1/N , which
coincides almost perfectly with the sample density inside the bulk. The Dirac is pictured with
a single point. Green dashed curve: Finite size correction (2.34) until order 1/N2. Blue curve:
N →∞ Wigner semi-circle density.

H0 (this level spacing is typically of order 1/(Nρ(λ)) where ρ is the density of eigenvalues for a
GOE matrix renormalized by 1/

√
N). Indeed the small denominators, due to eigenvalues at very

near distance, will lead to divergence in the individual overlaps 〈ψ1
i |ψ0

j 〉 between the perturbed
and non perturbed eigenvectors.

The idea to avoid this problem is to study the overlap between a whole subspace of non-
perturbed eigenvectors with a whole subspace of perturbed eigenvectors. More precisely, we
study the (not necessarily square) overlap matrix with entries

Gij = 〈ψ1
i |ψ0

j 〉

obtained by taking the scalar product between all the non-perturbed eigenvectors ψ0
j whose

eigenvalues lie in the interval4 [a; b] ⊂ [−2; 2] with all the perturbed eigenvectors ψ1
i whose

associated eigenvalues lie in an interval [a− δ; b+ δ] (where δ > 0).
We are then able to extract precise informations on the overlap matrix G. In particular,

we characterize its spectrum in the limit of large matrices and we extract the main information
on the shape of this spectrum. We also define the overlap distance D(V0, V1) between the two
subspaces V0 and V1, which are respectively the subspaces generated by the ψ0

j and by the ψ1
i ,

as follows

D(V0, V1) = − 1

P

P∑
i=1

log(si)

where s1, . . . , sP are the singular values of G (with P being the smallest dimension of the
rectangular matrix G)5. We also compute this distance D(V0, V1) in the limit of large dimension.
This establishes some stability properties of the subspace generated by the eigenvectors of a
GOE matrix and finds applications in quantum dissipation and in the study of the physical
phenomenon of singular x-ray absorption in metals.

4In this paper, the renormalization of the matrices are such that the support of the spectrum when N =∞ is
[−2; 2].

5In the limit of large matrices the former definition of G through the interval [a; b] implies that P ∼ N
∫ b
a
ρ

where ρ is the eigenvalue density.
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2.2 Empirical Covariance matrices

In this section, we first review the classical ensembles of random covariance matrices and we
recall as in the previous section their main spectral properties. Then, in the final subsection,
we present our contribution in this direction. Part of those results are theoretical results but we
have also worked on some applications in quantitative finance.

2.2.1 Real and complex Gaussian Wishart Ensembles

Let X be a real (respectively complex) Gaussian random matrix of size M ×N , i.e. a random
matrix chosen in the space of M ×N real (resp. complex) matrices according to the law:

P (dX) ∝ exp

(
−1

2
Tr(X†X)

)
dX , (2.38)

where X† is the Hermitian conjugate of X. In the following, we will denote the real (resp.
complex) Wishart ensemble by Wβ with β = 1 in the real case (resp. β = 2 in the complex
case).

The real (resp. complex) Wishart Ensemble is the ensemble of (N ×N) square matrices of
the product form W := X†X where X is a real (resp. complex) Gaussian random matrix of size
N ×M .

The spectral properties of the Wishart matrices have been studied extensively and it is known
[87] that for M > N , all N positive eigenvalues of W are distributed via the joint pdf

Pβ(λ1, . . . , λN ) =
1

Z
e−

1
2

∑N
i=1 λi

N∏
i=1

λ
β
2

(M−N+1)−1

i

∏
i<j

|λi − λj |β (2.39)

where Z is a constant normalization factor and where β = 1 in the real case (resp. β = 2 in the
complex case). Note that the distribution Pβ defined in (2.39) is in fact defined for every β > 0.

2.2.2 Continuous processes for real and complex Wishart ensembles

We wish to define here a diffusive matrix process depending on a fictitious time t > 0 that will
converge to the Wishart Ensembles in the limit of large time. The idea is simply to set

Wt := X†tXt (2.40)

where Xt is a real (resp. complex) random matrix process (of size M × N) following the
Ornstein-Uhlenbeck law,

dXt = −1

2
Xtdt+ dBt

where Bt is a real Brownian (resp. complex) random matrix, i.e. a matrix whose entries are
given by independent standard Brownian motions.

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the Gaussian
law and therefore, the real (resp. complex) matrix process Xt converges in law when t → ∞
to the law of a Gaussian real (resp. complex) random matrix. Hence, we deduce that the real
(resp. complex) matrix process Wt defines a diffusive matrix process that converges in law to
W ∈ Wβ.

It is also easy to check that the positive definite matrix process Wt verifies the following
stochastic differential equation [49]:

dWt = −Wtdt+
√

WtdBt + dB†t
√

Wt +Mβ I dt (2.41)

where Bt is a real (resp. complex) Brownian random matrix and with β = 1 (resp. β = 2).
The evolution of the eigenvalue process λ1(t) 6 λ2(t) . . . 6 λN (t) is also easy to derive [50]

using perturbation theory to second order as in the second section of this chapter

dλi = −λidt+ 2
√
λi dbi + β

M +
∑
k 6=i

λi + λk
λi − λk

 dt (2.42)
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where the bi are independent standard Brownian motions. The stationary distribution of the
process (λ1, . . . , λN )(t) is necessarily the joint pdf Pβ(λ1, . . . , λN ) defined in (2.39) (this is true
for any β > 0 and can also be recovered using the Fokker-Planck equation for the multivariate
diffusion (2.42)).

2.2.3 Eigenvalues density

As in the second section, we are interested in the limiting eigenvalues density for large empirical
covariance matrices, which we define here as matrices of the product form E := X†X/M where
X is an M ×N matrix with i.i.d. entries.

Real and complex Gaussian Wishart random matrices are a particular case of what we call
an empirical covariance matrix.

Under the assumption that the entries, denoted as xij , of the random matrix X have finite
second moment (i.e. such that E[x2

ij ] = σ2 <∞), the Marčenko Pastur theorem states that the
eigenvalues empirical distribution of the random covariance matrix E converges weakly almost
surely, in the limit N,M →∞ with N/M → q (where q is a fixed parameter), to a deterministic
probability measure whose density with respect to Lebesgue measure is

ρ(λ) =
1

2πq

√
(γ+ − λ)(λ− γ−)

λ
, γ− < λ < γ+ (2.43)

where γ± are the edges of the compactly supported spectrum given by

γ− = (1−√q)2, γ+ = (1 +
√
q)2 .

This result can be derived in the case of real and complex Gaussian Wishart random matrices
by using the diffusion process defined in (2.42) along the same line as in the second section (see
subsection 2.1.5). It is also done in [12].

We mention in passing that the case of heavy tail entries for the matrix X is treated in [32],
but as in the Wigner case, the limiting spectral density is not the Marčenko Pastur density but
is fully characterized in [32]. As in [33], the authors of [32] also derive the main properties of
the limiting probability measure (continuous density with respect to Lebesgue measure, tails
behavior).

2.2.4 Our contribution

This subsection is devoted to our main contribution in the study of Wishart matrices. In
the first paragraph, we construct a diffusive matrix model for the β-Wishart (or Laguerre)
ensemble for general β ∈ [0, 2], which preserves invariance under the orthogonal/unitary group.
Scaling the Dyson index β with the largest size M of the data matrix as β = 2c/M (with c
a fixed positive constant), we obtain a family of spectral densities interpolating continuously
between the Marčenko-Pastur and the Gamma laws as c is varied. We obtain as a byproduct
the correction to the Marčenko-Pastur density until order 1/M for all β and until order 1/M2

for the particular cases β = 1, 2. In the second paragraph, we are interested in the empirical
covariance matrix composed from the increments of independent multifractal random walks
and in particular in the eigenvalue empirical density of this matrix. This study is motivated by
applications in risk control and portfolio optimization in finance. In the third and last paragraph,
we are interested in empirical covariance matrices composed from datas which have a non trivial
”true” covariance matrix with one eigenvalue much larger than the other ones. In particular,
we study the evolution of the top eigenvalue and associated eigenvector of the empirical matrix
when it is measured through a sliding widow along a time series of datas.

Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to
the Marčenko-Pastur law [joint work with Jean-Philippe Bouchaud, Satya N. Majumdar
and Pierpaolo Vivo, see also chapter 6 or [12]].

This paragraph is related to the work [6] but concerns the Gaussian Wishart model instead of
the Gaussian Orthogonal ensemble. We define a diffusive matrix model for invariant β-Wishart
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Ensembles for all β and we find the interpolation family of spectral measures when taking a
vanishing repulsion coefficient β = 2c/M . As a by product, we can also find the 1/N and 1/N2

correction terms to the Marčenko Pastur density (for the convergence of the empirical spectral
distribution).

We first need to introduce a family of real diffusion processes. Let δ > 0 be a fixed parameter.
The CIR process (named after its creators John C. Cox, Jonathan E. Ingersoll, and Stephen A.
Ross) is the diffusion process x(t) defined by x(0) := x0 > 0 and for t > 0 by

dx(t) = −x(t) dt+ 2
√
x(t) dbt + δ dt . (2.44)

Using the assumption δ > 0, it is easy to see that the process x(t) will remain non negative for
all times t > 0. It is also easy to verify that the stationary pdf of the Langevin equation (6.11)
is the Gamma distribution with shape and scale parameters k = δ/2 and θ = 2 defined as

pδ(x) =
1

2
δ
2 Γ( δ2)

x
δ
2
−1e−

x
2 . (2.45)

In analogy with squared Bessel processes, the parameter δ will be called the dimension of the
process x(t).

Following [6, 10], our goal is to construct a diffusive matrix process whose eigenvalues process
is asymptotically distributed according to Pβ for general β ∈ [0; 2].

The idea is to slice the time interval into small intervals of length 1/n and for each interval
[k/n; (k+ 1)/n], to choose independently Bernoulli random variables εnk , k ∈ N such that P[εnk =
1] = p = 1− P[εnk = 0]. Then, setting εnt = εn[nt], our diffusive matrix process evolves as:

dWn
t = −Wn

t dt+ d∆n
t (2.46)

where the increment matrix d∆n
t now depends on the value of the additional random process

εnt :

• if εnt = 1, then
d∆n

t =
√

Wn
t dBt + dB†t

√
Wn

t +M I dt.

where dBt is an N ×N real6 Brownian increment matrix whose entries have variance dt.

• if εnt = 0, then
d∆n

t =
√

Wn
t dYt + dY†t

√
Wn

t + δ I dt.

with δ > 0 and where dYt is a symmetric matrix that is co-diagonalizable with Wn
t (i.e.

the two matrix have the same eigenvectors) but with a spectrum given by N independent
real Brownian increments of variance dt.

It is clear that the eigenvalues of the matrix Wn
t will cross at some points but only in

intervals [k/n; (k + 1)/n] for which εnk = 0 (in the other intervals where they follow the SDE
(2.42) with parameter β = 1, it is well known that the repulsion is too strong and thus collisions
are avoided). In this case, the eigenvalues are re-numbered at time t = (k + 1)/n in increasing
order. With this procedure, when ordered λn1 (t) 6 . . . 6 λnN (t), we can again check as in [6, 10],
using perturbation theory, that the eigenvalues will remain always non-negative and will verify
the Stochastic Differential System (SDS):

dλni = −λni dt+ 2
√
λni dbi +

εntM + (1− εnt )δ + εnt
∑
k 6=i

λni + λnk
λni − λnk

 dt (2.47)

where the bi are independent standard Brownian motions, which are also independent of the
process εnt .

Note that when εnt = 0, the particles λni are evolving as independent CIR processes of
dimension δ > 0 as defined above. Therefore, the particles can cross in those time intervals,

6Obviously, this construction can be done with complex Brownian motions, corresponding to the parameter
β = 2 instead of β = 1 in the present case.
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breaking the increasing order so that they will be re-ordered at time ([nt] + 1)/n but they will
remain non-negative as the dimension δ is strictly positive. Therefore the SDS (6.14) remains
well defined at all times t > 0.

One can follow the proof of [10] to prove that the scaling limit (i.e. when n → ∞) of the
process (λn1 (t) 6 . . . 6 λnN (t)) verifies the following SDS

dλi = −λidt+ 2
√
λi dbi +

pM + (1− p)δ + p
∑
k 6=i

λi + λk
λi − λk

 dt . (2.48)

One can deduce from the above equation (6.15) the Fokker-Planck equation for the joint
density P ({λi}, t), for which the stationary joint pdf is readily found to be

P ∗(λ1, . . . , λN ) =
1

Z
e−

1
2

∑N
i=1 λi

N∏
i=1

λ
p
2

(M−N+1−δ)−(1− δ
2

)

i

∏
i<j

|λi − λj |p . (2.49)

The probability Pβ introduced in (2.39) is recovered here by taking the values p = β and δ = 0.
If p = β > 0, the eigenvalue probability density in the large N,M limit is the Marčenko-Pastur
law. Note that with the above normalizations, the spectrum is spread over a region of R+ of
width of order pM . On the other hand, if p = 0, the large N,M -limit of the spectral density is
the Gamma distribution with shape and scale parameters k = δ/2 and θ = 2 (recall that it is
the stationary pdf of the CIR process of dimension δ):

ρ0(dλ) =
1

2δ/2Γ( δ2)
λ
δ
2
−1e−

λ
2 dλ . (2.50)

It is quite natural to ask whether a crossover regime may be found, interpolating between the
Marčenko-Pastur density (p > 0, independent of the dimension M) and the Gamma distribution
(p = 0). A good candidate for triggering such a transition is clearly a parameter p vanishing
with M as p = 2c/M where c is a positive fixed constant.

The derivation of the crossover density can be made with two different (and perhaps sur-
prisingly equivalent) methods: the Itô method using Stochastic calculus as was first done in [6]
and the Saddle point route (which was also presented in [6]). We explain the link between those
two methods in [12].

The interpolating family of probability densities that we finally find is the three parameters
c (such that p = 2c/M), q = N/M and δ > 0 as

ρc,q,δ(λ) =
1

2Γ(µ+ ζ + 1
2)Γ(ζ − µ+ 3

2)

1

|W−ζ,µ(−λ
2 )|2

(2.51)

where W−ζ,µ is a Whittaker function and with the following values for the parameters

ζ = cq − α

4
; µ =

1

4
|α− 2| with α = (2− δ)− 2c(1− q); .

For c = 0, the probability density ρ0,q,δ is indeed given by the Gamma distribution with shape
and scale parameters k = δ/2 and θ = 2. For c → +∞, one can also check that the distribu-
tion ρc=+∞,q,δ indeed corresponds to the Marčenko Pastur distribution with parameter q (the
parameter δ is irrelevant in this regime). We also checked expression (2.51) numerically, with
very good agreement, see Fig. 2.5.

We mention also that following a method similar to the one explained in paragraph Wigner
correction for large but finite dimension, we can derive the correction term to the Marčenko
Pastur distribution for the empirical eigenvalue distribution.

Marčenko Pastur theorem for MRW processes [joint work with Rémi Rhodes and Vin-
cent Vargas, see also chapter 8 or [11]].

This work is inspired from applications. It stems from finance and focuses on the study
of covariance matrices which is a crucial tool for minimizing the risk Rw of a portfolio w that
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Figure 2.5: The histogram represents the empirical eigenvalue distribution of the matrix Wn
t=∞

for the following values of the parameters c = 1, p = β = 2c/M,M = 100, N = 50, δ = 1, q = 1/2.
The (red) curve is our theoretical prediction for the limiting eigenvalue density given by (2.51).

invests wi in asset number i. Indeed, if we denote by ri the price variation of asset i, Rw can
be defined as the variance of the random variable

∑
iwiri and can be computed in terms of the

covariance matrix R of the ri (defined as Rij = E[rirj ]):

Rw = wtRw .

Of course, practitioners do not have access to R; instead, they must consider a noisy empirical
estimator of R, which consists of a large empirical covariance matrix. A key tool in distinguishing
noise from real correlations is the study of the eigenvalues of the empirical covariance matrix: we
refer to [44, 124] for more extended discussions on the applications of large empirical covariance
matrices in finance and in particular in portfolio theory.

We consider here N stock price processes Xi(t) for i = 1, . . . , N that evolve continuously
with respect to time t ∈ [0; 1] and we observe those prices only on a discrete finite grid {j/T, j =
1, . . . , T} where T is the number of observations. Using this discrete grid, we can compute the
price variations ri(j) (that we will abusively call returns) for each asset price Xi on every time
interval [(j − 1)/T ; j/T ] by:

ri(j) := Xi

(
j

T

)
−Xi

(
j − 1

T

)
.

Then, we define the N × T matrix XN such that XN (ij) = ri(j) that enables to define the
empirical covariance matrix RN as follows

RN := XNX
t
N .

The Marčenko Pastur theorem enables to compute the limiting eigenvalue density of the
empirical covariance matrix RN if the stock price processes Xi(t) are evolving as independent
standard Brownian motions. Indeed, in this case, the random variables ri(j) are i.i.d. Gaussian
variables and the matrix RN is precisely an empirical covariance matrix as defined in subsection
2.2.3 (more precisely, RN is a real Gaussian Wishart matrix).

In [11], we have been interested in the case where the stock price processes Xi(t) are inde-
pendent lognormal multifractal random walk (LMRW), as defined in the first section in equation
(1.5), which are typically not diffusions and which present many very interesting properties for
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finance as they respect several of the universal features, called stylized facts, observed for the
price of assets on financial markets (see [60] for a review on stylized facts). We have been able to
prove convergence of the eigenvalue density and to characterize the limiting distribution (which
is a deformation of the Marčenko Pastur distribution due to the (long) memory volatility pro-
cess of the LMRW process) through its Stieltjes transform. We have verified numerically our
result: the agreement between the simulated eigenvalue density and the numerical value of the
theoretical density obtained by inverting our equations on the Stieltjes transform is excellent.
We also give some numerical properties of the limiting eigenvalue density in view of applications.

Empirical measurement of a covariance matrix with one isolated top eigenvalue
[joint work with Jean-Philippe Bouchaud, see also chapter 7 or [7]].

We are concerned here with the empirical measurement of a covariance matrix denoted as
C which has a very large dimension N and a spectrum of the form (λ1, 1, . . . , 1) where λ1 � 1
and we are given a sample of i.i.d. centered Gaussian vectors (r1(t), . . . , rN (t)), t ∈ N whose
covariance matrix is C. There are two ways of measuring the empirical covariance matrix E.
The first one is to pick a large integer T (typically such that N/T = q ∈ [0 : 1] where q is a fixed
parameter) and to compute E as before through the classical formula,

Eij =
1

T

T∑
i=1

ri(t)rj(t) (2.52)

for each entries i, j of the matrix E.

The other way of measuring the empirical covariance matrix is through the exponential
moving average estimator. Letting ε > 0 (this parameter will play the role of T ), the matrix E
is measured through

Eij = ε

∞∑
t=0

(1− ε)tri(t)rj(t) . (2.53)

The two different formulas (2.52) and (2.53) lead to two different matrices with different
properties (although related). We can also use a sliding window to have sequences of matrices
E(t) which evolve with time as, if we consider for example the second model defined in (2.53),

Eij(t) = (1− ε)Eij(t− 1) + εri(t)rj(t) . (2.54)

We always consider the evolution equation (2.54) in its stationary regime.

In [7], we are interested in the dynamic evolution of the top eigenvalue and eigenvector of
the matrix E(t) which evolves with time through (2.54). In particular, we give the Langevin
equations followed by the top eigenvalue and the angle θt between the top eigenvector of E(t)
with the top eigenvector of the matrix C.The dynamics of the angle θt defines an interesting
new class of random processes. We also compare our results with numerical simulations with
very good agreement.

We mention in passing that the study of the top eigenvalue of the empirical covariance
matrix E defined in (2.52) can be found in [29] in a more general setting where an arbitrary
finite number of spikes (isolated eigenvalues different from 1) are authorized. The authors prove
convergence of the top eigenvalue of the matrix E and they characterize the fluctuations for
large but finite N . In particular, they exhibit a phase transition depending on the value of the
top eigenvalue of the covariance matrix C. If this top eigenvalue of C is above their explicit
threshold, the fluctuation of the empirical top eigenvalue is given by a (generalized) Gaussian
distribution with the classical scaling in

√
N although it is, as expected given by a Tracy Widom

law if the top eigenvalue of C lies below the threshold with the usual scaling N2/3.

In [7], let us mention that we are able to recover the value of the limit of the top eigenvalue
of E when N,T →∞ with N/T → q but not the fluctuations.

Applications to empirical finance [Work in collaboration with Jean-Philippe Bouchaud,
see Chapters 7, 9 and 10 ]. We have also been interested in applications of random matrix theory
to empirical and statistical finance. We would not go too much into the details in this paragraph
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and we refer the reader to the corresponding chapters. A part of Chapter 7 is devoted to the
study of the evolution in time of the sectors (or top eigenvectors of the correlation matrix) in
financial markets. This study uses the results we establish on eigenvectors stability in the same
chapter. In Chapter 9, we revisit the Leverage effect in financial market. The Leverage effect is
among the best known stylized facts of financial markets: negative price returns induce increased
future volatilities. Using random matrix theory, we study this effect and its mechanisms in great
details. Random matrix theory enables us in particular to compute the noise measurement and
to check the significancy of our empirical results. In Chapter 10, we study the intra-day dynamics
of stocks returns and we draw the picture of the co-movement of stocks. Again, this study relies
partly on random matrix theory.
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Chapter 3

Lognormal ?-scale invariant random
measures

Résumé

Cet article est publié dans le journal Probability theory and Related Fields et est écrit
en collaboration avec Rémi Rhodes et Vincent Vargas. Nous considérons l’analogue
continu de la célébre équation étoile de Mandelbrot (avec des poids lognormals).
Mandelbrot a introduit cette équation afin de caractériser la loi des cascades mul-
tiplicatives. Nous montrons l’existence et l’unicité des mesures qui satisfont cette
équation continue; ces mesures aléatoires appartiennent à l’ensemble des chaos mul-
tiplicatifs Gaussiens introduit par J.-P. Kahane en 1985 (voir à des extensions de
cet ensemble). Nous obtenons aussi une caractérisation explicite de la structure de
covariance de ces mesures. Nous prouvons de plus que certaines propriétés qualita-
tives telles que l’indépendance à longue portée ou l’isotropie peuvent être déduites
de cette équation.

Abstract

In this article, we consider the continuous analog of the celebrated Mandelbrot star
equation with lognormal weights. Mandelbrot introduced this equation to char-
acterize the law of multiplicative cascades. We show existence and uniqueness of
measures satisfying the aforementioned continuous equation; these measures fall un-
der the scope of the Gaussian multiplicative chaos theory developed by J.P. Kahane
in 1985 (or possibly extensions of this theory). As a by product, we also obtain an
explicit characterization of the covariance structure of these measures. We also prove
that qualitative properties such as long-range independence or isotropy can be read
off the equation.

3.1 Introduction

Fractality and the related concept of scale invariance is nowadays well introduced in many fields
of applications ranging from physics, finance, information or social sciences. The scale-invariance
property of a stochastic process is usually quantified by the scaling exponents ξ(q) associated
with the power-law behavior of the order q moments of the fluctuations at different scales. More
precisely, if Xt is a 1-d process with stationary increments, we can consider the q-th moments
of its fluctuations at scale l:

E
[
|Xt+l −Xt|q

]
.

The scaling exponents ξ(q) are defined through the following power-law scaling:

E
[
|Xt+l −Xt|q

]
= Cql

ξ(q) ∀l < T.

When ξ(q) = qH is linear, the process is said to be monofractal. Famous examples of
such processes are (fractional) Brownian motion, α-stable Lévy processes or Hermitte processes.

47
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When ξ is nonlinear, the process is said to be multifractal. The concept of nonlinear power-
law scalings goes back to the Kolmogorov theory of fully developed turbulence in the sixties
(see [52, 138, 143, 53, 76] and references therein), introduced to render the intermittency ef-
fects in turbulence. Mandelbrot [110] came up with the first mathematical discrete approach
of multifractality, the now celebrated multiplicative cascades. Roughly speaking, a (dyadic)
multiplicative cascade is a positive random measure M on the unit interval [0, 1] that obeys the
following decomposition rule:

M(dt)
law
= Z01[0, 1

2
](t)M

0(2dt) + Z11[ 1
2
,1](t)M

1(2dt− 1), (3.1)

where M0,M1 are two independent copies of M and (Z0, Z1) is a random vector with prescribed
law and positive components of mean 1 independent from M0,M1. Such an equation (and its
generalizations to b-adic trees for b > 2), the celebrated star equation introduced by Mandelbrot
in [109], uniquely determines the law of the multiplicative cascade. Despite the fact that multi-
plicative cascades have been widely used as reference models in many applications, they possess
many drawbacks related to their discrete scale invariance, mainly they involve a particular scale
ratio and they do not possess stationary fluctuations (this comes from the fact that they are
constructed on a dyadic tree structure).

Much effort has been made to develop a continuous parameter theory of suitable stationary
multifractal random measures ever since, stemming from the theory of multiplicative chaos
introduced by Kahane [94, 26, 138, 24, 129, 132]. The construction of such measures is now
well understood and they are largely used in mathematical modeling since they obey a so-called
stochastic scale invariance property, namely the property of being equal in law at different scales
up to an independent stochastic factor. This is some kind of continuous parameter generalization
of (3.1). Stochastic scale invariance property is observed in many experimental and theoretical
problems, like turbulence (see [76, 52] and many others), quantum gravity (see [97, 66, 131]),
mathematical finance, etc... and this is the main motivation for introducing multifractal random
measures. However, as far as we know, the following question has never been solved: are these
measures the only existing stochastic scale invariant object? This is fundamental since a positive
answer gives a full justification to their intensive use. In this paper, we characterize stochastic
scale invariant measures when the stochastic factor is assumed to be log-normal. We prove that
the class of such objects is made up of Gaussian multiplicative chaos with a specific structure
of the covariation kernel, which turns out to be larger than described in the literature.

3.2 Background

Let us first remind the reader of the main definitions we will use throughout the paper. We
denote by B(E) the Borelian sigma field on a topological space E. A random measure M is a
random variable taking values into the set of positive Radon measures defined on B(Rd) such
that E[M(K)] < +∞ for every compact set K. A random measure M is said to be stationary
if for all y ∈ Rd the random measures M(·) and M(y + ·) have the same law.

3.2.1 Gaussian multiplicative chaos

We remind the reader of the notion of Gaussian multiplicative chaos as introduced by Kahane
[94]. Consider a sequence (Xn)n of independent centered stationary Gaussian processes with
associated nonnegative covariance kernel kn(r) = E[Xn

rX
n
0 ] > 0. For each N > 1, we can define

a Radon measure MN on the Borelian subsets of Rd by

MN (A) =

∫
A
e
∑N
n=0 X

n
r − 1

2
E[(Xn

r )2] dr.

For each Borelian set A, the sequence (MN (A))N is a positive martingale. Thus it converges
almost surely towards a random variable denoted by M(A). One can deduce that the sequence
of measures (MN )N weakly converges towards a Radon measure M , commonly denoted by

M(A) =

∫
A
eXr−

1
2
E[X2

r ] dr (3.2)
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and called Gaussian multiplicative chaos associated to the kernel

K(r) =
+∞∑
n=0

kn(r). (3.3)

Roughly speaking, (3.2) can be understood as a measure admitting as density the exponential
of a Gaussian process X with covariance kernel K. Of course, this is purely formal because X
can only be understood as a (random Gaussian) distribution in the sense of Schwartz because
of the possible singularities of the kernel K.

Of special interest is the situation when the function K can be rewritten as (for some λ2 > 0)

K(r) = λ2 ln+
T

|r|
+ g(r) (3.4)

for some bounded function g (and ln+(x) = max(0, ln(x))). In that case, Kahane proved that
the martingale (MN (A))N , for some Borelian set A with non-null finite Lebesgue measure, is
uniformly integrable if and only if λ2 < 2d. This condition is necessary and sufficient in order for
the limiting measure M to be non identically null. For kernels of the form (3.4) which can not be
written as a sum of nonnegative terms as (3.3), we refer to the extended Gaussian multiplicative
theory developed in [129]. We remind that Gaussian multiplicative chaos with kernel given by
(3.4) has found applications in many fields in science:

• In dimension 1, the measure M is called the lognormal Multifractal Random Measure
(MRM). It is used to model the volatility of a financial asset (see [25], [65]).

• In dimension 2, the measure M is a probabilistic formulation of the quantum gravity
measure (more precisely, the quantum gravity measure is defined as the exponential of the
Gaussian Free Field and therefore is defined in a bounded domain). We refer to references
[34], [66], [131] for probabilistic papers on this topic.

• In dimension 3, the measure M is called the Kolmogorov-Obhukov model (see textbook
[76]): it is a model of energy dissipation in the statistical theory of fully developed turbu-
lence.

3.3 Main results

3.3.1 Definitions

In this paper we are interested in stationary random measures satisfying the following scale
invariance property:

Definition 3.1. Log-normal ?-scale invariance. A random measure M is said to be lognor-
mal ?-scale invariant if for all ε < 1, M obeys the cascading rule(

M(A)
)
A∈B(Rd)

law
=
( ∫

A
eωε(r)M ε(dr)

)
A∈B(Rd)

(3.5)

where ωε is a stationary Gaussian process with continuous sample paths and M ε is a random
measure independent from ωε satisfying the relation(

M ε(εA)
)
A∈B(Rd)

law
= εd

(
M(A)

)
A∈B(Rd)

. (3.6)

Intuitively, this relation means that when you zoom in the measure M , you should observe
the same behavior up to an independent log-normal factor. This relation is the continuous
parameter analog of the celebrated Mandelbrot star equation.

Remark. In order for a measure M satisfying (3.5) with a moment of order 1 to be non trivial,
it is obvious to check that the Gaussian process ωε must be normalized so that E[eωε(r)] = 1.
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Definition 3.2. We will say that a stationary random measure M satisfies the good lognormal
?-scale invariance if M is lognormal ?-scale invariant and for each ε < 1, the covariance kernel
kε of the process ωε involved in (3.5) is continuous and satisfies:

|kε(r)| → 0 as |r| → +∞, (3.7)

∀r, r′ ∈ Rd \ {0}, |kε(r)− kε(r′)| 6 Cεθ
(

min(|r|, |r′|)
)
|r − r′| (3.8)

for some positive constant Cε and some decreasing function θ :]0,+∞[→ R+ such that∫ +∞

1
θ(u) ln(u) du < +∞. (3.9)

Though we would like to solve (3.5) in great generality, we must make a few technical
assumptions to avoid pathological situations (a pathological example is given at the very end
of Section 3.4). This is basically the purpose of the above definition 3.2. Let us make a few
comments on its content.

Equation (3.8) mainly expresses that the kernel kε is Lipschitzian with a local Lipschitz
constant that decays at most like θ when approaching infinity. By combining (3.7) and (3.8), it
is plain to see that

∀r 6= 0, |kε(r)| 6 Cε
∫ +∞

|r|
θ(u) du. (3.10)

This is a very weak decorrelation property for the process ωε, which describes how fast the
covariance function decays at infinity. In our proofs, it will be the key tool to investigate the
mixing properties of the measure M .

3.3.2 Results

In what follows, we are mainly interested in the one-dimensional case d = 1. We have the
following description of the solutions to (3.5), which is the main result of the paper:

Theorem 3.3. Let M be a good lognormal ?-scale invariant random measure. Assume that

E[M([0, 1])1+δ] < +∞

for some δ > 0. Then M is the product of a nonnegative random variable Y ∈ L1+δ and an
independent Gaussian multiplicative chaos

∀A ⊂ B(R), M(A) = Y

∫
A
eXr−

1
2
E[X2

r ] dr (3.11)

with associated covariance kernel given by the improper integral

K(r) =

∫ +∞

|r|

k(u)

u
du (3.12)

for some continuous covariance function k such that k(0) 6 2
1+δ .

Conversely, given some datas k and Y as above, the relation (3.11) defines a log-normal
?-scale invariant random measure M with finite moments of order 1 + γ for every γ ∈ [0, δ).

Let us also state the following result giving a sufficient (and not far from being necessary)
condition in terms of k for the measure M as constructed in Theorem 3.3 to be good:

Proposition 3.4. Let M be a log-normal ?-scale invariant random measure as constructed in
Theorem 3.3. If ∫ +∞

1
ln r sup

|u| > r

|k(u)|
u

dr < +∞ (3.13)

then M is a good lognormal ?-scale invariant random measure.
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Let us comment on Theorem 3.3. First we point out that Y is deterministic as soon as the
random measure M is ergodic. Second, good lognormal ?-scale invariant measures exhibit a
multifractal behaviour. More precisely, if we consider a measure M as in Theorem 3.3, we define
its structure exponent

∀q > 0, ξ(q) = (1 +
k(0)

2
)q − k(0)

2
q2.

Then we have the following asymptotic power-law spectrum, for q < 1 + δ:

E
[
M([0, t])q

]
' Cqtξ(q) as t→ 0,

for some positive constant Cq.

We also stress that the intermittency parameter k(0) is explicit when one knows K because
of the relation

K(r) ∼ k(0) ln

(
1

r

)
, when r → 0. (3.14)

The covariance function K can also be recovered from the two sets marginals of the measure M
thanks to formula (3.48).

Finally, Theorem 3.3 has the following consequence about the regularity of good lognormal
?-scale invariant measures:

Corollary 3.5. Almost surely, a good log-normal ?-scale invariant random measure M does not
possess any atom on R, that is:

almost surely, ∀x ∈ R, M({x}) = 0.

Now we investigate long-range independence for good lognormal ?-scale invariant random
measures. So we introduce the related notion of cut-off:

Definition 3.6. We will say that a stationary random measure M admits a cut-off d > 0 if,
for t < s, the σ-algebras Ht−∞ = σ{M(A);A ∈ B(R), A ⊂ (−∞, t]} and H+∞

s = σ{M(A);A ∈
B(R), A ⊂ [s,+∞)} are independent, conditionally to the asymptotic σ-algebra of M , as soon
as s− t > d.

Of course, if the measure M is ergodic then the asymptotic σ-algebra of M is trivial and we
can remove the sentence ”conditionally to the asymptotic σ-algebra of M” from the definition.
For instance the measure constructed in subsection 3.3.4 admits a cut-off T and is ergodic. It
results from the proof of Theorem 3.3 that the cut-off property can be read off the cascading
rule (3.5):

Proposition 3.7. Let M be a good lognormal ?-scale invariant random measure with finite 1+δ
moment. Then M admits a cutoff if and only if, for some ε < 1 (or equivalently for all ε < 1),
the covariance kernel kε of the process ωε in (3.5) reduces to 0 outside a compact set.

Finally, we mention that another notion of stochastic scale invariance has been studied in
the literature before: it is called the exact stochastic scale invariance (see [24, 52, 132]). Let
us recall the main result: if the Gaussian multiplicative chaos M admits a covariance kernel
K such that K(x) = λ2 ln T

|x| + C for some constant C and for all x in a ball B(0, R) then M
satisfies the ”exact stochastic scale invariance”:

∀α ∈ (0, 1), (M(αA))A⊂B(0,R)
law
= αeYα−

1
2
E[Y 2

α ](M(A))A⊂B(0,R)

where Yα is a centered Gaussian random variable with variance λ2 ln 1
α .

The reader may wonder if we can construct random measures that are both exactly stochas-
tically scale invariant and good lognormal ?-scale invariant. Let us show that

Proposition 3.8. Let M be a Gaussian multiplicative chaos whose covariance kernel K is such
that, for |r| 6 R, K(r) = λ2 ln T

|r| +C for some constant C (in particular, M satisfies the ”exact

stochastic scale invariance”), then M is not a good lognormal ?-scale invariant random measure.
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3.3.3 Multidimensional results

We stress that our results remain true in higher dimensions without changes in the proofs. For
the sake of completeness, we state the main result.

Theorem 3.9. Let M be a good lognormal ?-scale invariant random measure such that for each
ε < 1, the covariance kernel kε of the process ωε is continuous and differentiable on Rd \ {0}.
Assume that

E[M([0, 1]d)1+δ] < +∞

for some δ > 0. Then M is the product of a nonnegative random variable Y ∈ L1+δ and an
independent Gaussian multiplicative chaos:

∀A ⊂ B(Rd), M(A) = Y

∫
A
eXr−

1
2
E[X2

r ] dr (3.15)

with associated covariance kernel given by the improper integral

∀x ∈ Rd \ {0}, K(x) =

∫ +∞

1

k(xu)

u
du (3.16)

for some continuous covariance function k such that k(0) 6 2d
1+δ .

Conversely, given some datas k and Y as above, the relation (3.11) defines a lognormal
?-scale invariant random measure M with finite moments of order 1 + γ for every γ ∈ [0, δ).

It turns out that Proposition 3.4 remains true in dimension d > 1. When the dimension
is greater than 1, it may be interesting to focus on the isotropy properties. In the same spirit
as Proposition 3.7, for a good lognormal ?-scale invariant measure M with a finite moment of
order 1 + δ, the following assertions are equivalent:

1. M is isotropic,

2. its covariance kernel K (or equivalently k in (3.16)) is isotropic,

3. the covariance kernel kε is isotropic for some ε < 1,

4. the covariance kernels kε are isotropic for all ε < 1.

3.3.4 Classical example

As far as we know, there exists only one example of good log-normal ?-scale invariant random
measures in the literature, which was first described in [26] (see also [24]). Its construction is
very intuitive: it is geometric and relies on homothetic properties of triangles in the half-plane.
We also stress that this specific example of ?-scale invariant random measures is not restricted
to the Gaussian case: the factor can be more general (log-Lévy).

Following [24], we recall the construction of this example and refer the reader to the afore-
mentioned papers for further details. Fix T > 0 and let S+ be the state-space half plane

S+ = {(t, l) : t ∈ R, l > 0}.

with which one can associate the measure

µ(dt, dl) = l−2dtdl.

Then we introduce the independently scattered Gaussian random measure P defined for any
µ-measurable set A by

E
[
eiqP (A)

]
= eϕ(q)µ(A)

with ϕ(q) = −λ2q2/2−iqλ2/2. Under those assumptions, we can note that for any µ-measurable
set A, P (A) is a Gaussian variable with mean m = −µ(A)λ2/2 and variance σ2 = λ2µ(A). We
can then define the Gaussian process (ωl(t))t∈R for l > 0 by

ωl(t) = P (Al(t))
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0 t

l

Al(t)

l

T

where Al(t) is the triangle like subset Al(t) := {(t′, l′) : l 6 l′ 6 T,−l′/2 6 t− t′ 6 l′/2}.
Define now the random measure Ml by Ml(dt) = eωl(t)dt. Almost surely, the family of

measures (Ml(dt))l>0 weakly converges towards a random measure M . If λ2 < 2, this measure
is not trivial.

Let us check that M is a good log-normal ?-scale invariant random measure. Fix ε < 1 and
define the sets Al,εT (t) := {(t′, l′) : l 6 l′ 6 εT,−l′/2 6 t − t′ 6 l′/2} and AεT,T (t) := {(t′, l′) :
εT 6 l′ 6 T,−l′/2 6 t − t′ 6 l′/2}. Note that Al(t) = Al,εT (t) ∪ AεT,T (t) and that those two
sets are disjoint. Thus, we can write for every µ-measurable set A

Ml(A) =

∫
A
eωεT,T (t)eωl,εT (t)dt (3.17)

with ωεT,T (t) = P (AεT,T (t)) and ωl,εT (t) = P (Al,εT (t)).

0 t

l

AεT,T (t)

Al,εT (t)

εT

l

T

We then study equation (3.17) in the limit l→ 0; we obtain

M(A) =

∫
A
eωεT,T (t)M ε(dt) (3.18)

where M ε is the limit when l→ 0 of the random measure M ε
l (dt) := eωl,εT (t)dt. We easily verify

that M ε(εA)
law
= εM(A) writing

M ε
l (A) = ε

∫
A
eωl,εT (εt)dt (3.19)

and checking that the covariance of the Gaussian process (ωl,εT (εt))t∈R is the same as the one
of (ωl,T (t))t∈R.

The covariance kernel of the stationary Gaussian process ωεT,T (t) is given by

kε(r) =


0 if |r| > T
λ2(ln T

|r| + |r|
T − 1) if εT 6 |r| 6 T

λ2(ln 1
ε + |r|

T −
|r|
εT ) if |r| 6 εT .

(3.20)
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Since kε reduces to 0 outside a compact set, it is straightforward to check (3.7) and (3.8). We
further stress that this measure admits a cut-off in the sense of Definition 3.6.

Remark. In view of Theorem 3.3, note that the random measure M is a Gaussian multiplicative
chaos with associated kernel

K(r) =

∫ +∞

|r|

k(u)

u
du with k(u) = λ2(1− |u|

T
)1[0,T ](|u|). (3.21)

and that we have

kε(r) =

∫ |r|
ε

|r|

k(u)

u
du.

3.4 Construction of log-normal ?-scale invariant random mea-
sures

This section is devoted to the existence part of Theorem 3.3: we give an explicit construction
of lognormal ?-scale invariant random measures.

We are given a positive random variable Y ∈ L1+δ (for some δ > 0) and a continuous
covariation kernel k such that k(0) 6 2

1+δ . Let F be the (symmetric) spectral measure associated
to k, that is

k(t) =

∫
R
eiλtF (dλ),

and we assume that the improper integral

K(r) =

∫ +∞

r

k(u)

u
du

converges for r > 0.
Let µ, ν be two i.i.d. independently scattered Gaussian random measures (independent of

Y ) distributed on the half plane R× R∗+ such that:

∀A ∈ B(R× R∗+), E[eqµ(A)] = e
1
2
q2θ(A)

where

θ(A) =

∫
λ∈R

∫
y∈R∗+

1A(λ, y)
1

y
dyF (dλ).

Let ε < 1, we define the centered Gaussian process

∀t ∈ R, Xε(t) =

∫
λ∈R

∫
y∈[1, 1

ε
[
cos(λty)µ(dλ, dy) +

∫
λ∈R

∫
y∈[1, 1

ε
[
sin(λty)ν(dλ, dy).

It is plain to compute its covariation kernel, call it kε, by using the symmetry of the spectral
measure F (dλ):

kε(t− s) = E[Xε(s)Xε(t)]

=

∫
λ∈R

∫
y∈[1, 1

ε
[
cos(λty) cos(λts)

1

y
dyF (dλ) +

∫
λ∈R

∫
y∈[1, 1

ε
[
sin(λty) sin(λsy)

1

y
dyF (dλ)

=

∫
λ∈R

∫
y∈[1, 1

ε
[
cos(λ(t− s)y)

1

y
dyF (dλ)

=

∫
y∈[1, 1

ε
[

∫
λ∈R

eiλ(t−s)yF (dλ)
1

y
dy

=

∫
y∈[1, 1

ε
[

k(|t− s|y)

y
dy

=

∫ 1
ε
|t−s|

|t−s|

k(y)

y
dy.
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For all A ∈ B(R), the process

M1/l(A) = Y

∫
A

exp
(
X1/l(r)−

1

2
E[X2

1/l(r)]
)
dr

is obviously a positive martingale and thus converges as l → ∞ towards a random variable
M(A). The stationary random measure (M(A))A∈B(R) is a Gaussian multiplicative chaos in the
sense of [129] with associated kernel K.

Note that for l > 1/ε, we have ∀t ∈ R:

X1/l(t) =Xε(t) +

∫
λ∈R

∫
y∈[ 1

ε
,l[

cos(λty)µ(dλ, dy) +

∫
λ∈R

∫
y∈[ 1

ε
,l[

sin(λty)ν(dλ, dy)

def
=Xε(t) + X̄ε,1/l(t), (3.22)

where X̄ε,1/l is a centered stationary Gaussian process independent from Xε with covariance
kernel given by:

k̄ε,1/l(t− s) = E[X̄ε,1/l(s)X̄ε,1/l(t)] =

∫ l|t−s|

1
ε
|t−s|

k(y)

y
dy.

As above, we can define the random measure M ε as the limit as l→ +∞ of the random measures

∀A ∈ B(R), M ε
1/l(A) = Y

∫
A

exp
(
X̄ε,1/l(r)−

1

2
E[X̄2

ε,1/l(r)]
)
dr.

The stationary random measure (M ε(A))A∈B(R) is a Gaussian multiplicative chaos in the sense

of [129] with associated covariance K(·1ε ). We deduce that 1
εM

ε
(
ε ·
)

is a Gaussian multiplicative
chaos in the sense of [129] with associated covariance K(·). The measure 1

εM
ε
(
ε ·
)

thus has the
same law as M . From (3.22), we obviously have:

M(A) =

∫
A

exp
(
Xε(r)−

1

2
E[X2

ε (r)]
)
M ε(dr)

in such a way that (3.5) holds. Finally we point out that M admits a moment of order 1 + γ
for all 0 6 γ < δ (see [94]).

Remark. By focusing on the above construction, we see that the covariance kernel k can be
intuitively interpreted as some kind of infinitesimal stochastic generator. We may look Xε as a
sum

Xε(r) =
∑

1 6 y 6 1
ε

ayZ
y
r

where (Zy)y are independent centered Gaussian processes with kernel k(y·) and (ay)y are inde-

pendent random Gaussian variables with variance dy
y . So, when ε decreases infinitesimally, we

”add” an independent Gaussian process with kernel k(1
ε ·) times an independent Gaussian factor

of variance −dεε .

Proof of Proposition 3.4 We show that the measure M is good under assumption (3.13). Because

k is continuous, the kernel kε(r) =
∫ |r|/ε
|r|

k(u)
u du is of class C1 on R∗. Thus, we have:

|kε(r)− kε(r′)| 6 sup
u > min(|r|,|r′|)

|k′ε(u)|.

Because we have

k′ε(u) =
1

u
(k(u/ε)− k(u)),

it is plain to see that a reasonable choice for θ is θ(x) = supu > |x| |
k(u)
u | and Cε = 2/ε.∫ +∞

1
ln r sup

|u| > r

|k(u)|
u

dr < +∞⇒
∫ +∞

1
ln r θ(r) dr < +∞,

so that the measure is good.
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3.4.1 Practical examples

In this subsection, we give practical examples of log-normal ?-scale invariant random measures.
Using Theorem 3.3, good log-normal ?-scale invariant random measures are Gaussian multi-
plicative chaos whose covariance structure is given by

K(s) =

∫ +∞

|s|

k(u)

u
du (3.23)

where k is a continuous covariance function satisfying k(0) < 2 and some weak decay assumptions
(ensuring (3.13) for instance). Therefore, to define explicit examples, we just need to exhibit
suitable kernels k. The decay assumptions can be read off the spectral measure of k. For
instance, if k is the Fourier transform of some positive even integrable function f , which possesses
an integrable derivative, it is a simple application of the Riemann theorem to prove that (3.13)
is satisfied. Actually, for (3.13) to be satisfied, the assumptions on the regularity of the spectral
measure can be much weakened. For instance, we can consider a kernel k that is the Fourier
transform of some positive even integrable function f with integrable α-fractional derivative for
0 < α < 1:

∂αf =

∫
R∗

f(x+ z)− f(x)

|z|1+α
dz ∈ L1(R).

In that case, the Riemann theorem implies |u|αk(u) → 0 as |u| → ∞ and it is then plain to se
that (3.13) is satisfied.

Below are listed a few examples of such kernels:

• the function k(s) = 1
σ
√

2π
e−
|s|2

2σ2 (where σ > 0) is continuous and positive-definite since its

Fourier transform k̂(r) = e−σ
2r2/2 is positive.

• the covariance function of the stationary Orstein-Uhlenbeck process which takes on the
form k(s) = σ2

2θ e
−θ|s| where θ > 0, σ > 0.

• we can consider k as the Fourier transform of the function ( λ > 0)

f(x) =

∫ +∞

0
e−λtE[g(x+Xt)] dt (3.24)

where g ∈ L1(R) is any positive integrable function and X is a pure jump Lévy process
with Lévy symbol

η(u) =

∫
R∗

(eiuz − 1)
1

|z|1+α
dz

for some 0 < α < 1. It is well know that the Lebesgue measure is invariant for the semi-
group generated by X so that k(0) = ‖f‖1 = ‖g‖1/λ: this gives a condition on the norm
‖g‖1 for having k(0) < 2. Furthermore, f admits an integrable α-fractional derivative
so that (3.13) is satisfied. Actually, it turns out that all the functions in L1(R) with an
integrable α-fractional derivative admit a representation as (3.24). The reader may consult
[16] for further details.

We stress that, as soon as they are not trivial (i.e. k(0) < 2), the Gaussian multiplicative
chaos of the first two above examples do not have cut off in the sense of Definition 3.6. Obviously,
many other examples exist.

Let us mention another example of log-normal ?-scale invariant random measures which
does not present the goodness property of Definition 3.2. From Theorem 3.3, the Gaussian
multiplicative chaos associated to the covariance function

K(s) =

∫ +∞

|s|

cos(u)

u
du. (3.25)

is log-normal ?-scale invariant in the sense of Definition 3.1. The function k(r) = cos(r) is indeed
positive definite since its spectral measure is the positive measure (δ1(dx) + δ−1(dx))/2. The

kernel kε(r) =
∫ |r|/ε
|r|

cos(u)
u du does not satisfy (3.8) so that the associated measure M is not good.

Note that this Gaussian multiplicative chaos falls under the scope of [129] since the function K
does not have a constant positive sign.
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3.5 Characterization of star scale invariance

This section is devoted to the proof of the first statement of Theorem 3.3. For the sake of
readability, some proofs of auxiliary results are gathered in the appendix.

Let M be a good log-normal scale invariant random measure defined on a probability space
(Ω,F ,P). We introduce as usually the spaces Lp on (Ω,F ,P) for 1 6 p 6 ∞. Recall that the
measure M satisfies, for all ε ∈ (0, 1)(

M(A)
)
A∈B(R)

law
=
( ∫

A
eωε(r)M ε(dr)

)
A∈B(R)

(3.26)

where ωε is a Gaussian process independent from M ε, with M ε(dr) = εM(drε ) in law. kε denotes
the covariation kernel of the process ωε. Furthermore, we assume that the measure M is non
trivial (M 6= 0) with a moment of order 1 + δ so that the process ωε is necessarily normalized,
that is E[eωε ] = 1.

Now we introduce some definitions and tools that will be used throughout this section. For
each ε ∈ (0, 1), define

∀r 6= 0, Kε(r) =

+∞∑
n=0

kε
( r
εn
)
. (3.27)

The uniform convergence of the series on the sets {r ∈ R; |r| > ρ} for any ρ > 0 is ensured by
(3.10) since for |r| > ρ:

+∞∑
n=0

|kε
( r
εn
)
| 6 Cε

+∞∑
n=0

∫ +∞

|r|
εn

θ(u) du 6 Cε

+∞∑
n=0

∫ +∞

ρ
εn

θ(u) du

6 Cε

∫ +∞

0

∫ +∞

ρε−y+1

θ(u) du dy

=Cε

∫ +∞

ρε
θ(u)

∫ ln uρ
− ln ε

+1

0
dy du

=
Cε
− ln ε

∫ +∞

ερ
θ(u) ln

u

ερ
du (3.28)

and this last integral is assumed to be converging (3.9). Furthermore, (3.8) also ensures that
Kε is Lipschitzian over each set {z ∈ R; |z| > ρ} for any ρ > 0 because:

|Kε(r)−Kε(r′)| 6
+∞∑
n=0

|kε
( r
εn
)
− kε

( r′
εn
)
|

6 Cε

+∞∑
n=0

θ
(min(|r|, |r′|)

εn
)∣∣r − r′

εn
∣∣

6 Cε

∫ +∞

0
θ
( ρ

εy−1

)∣∣r − r′
εy

∣∣ dy
6

Cε
−ρε ln ε

|r − r′|
∫ +∞

ρε
θ(u) du.

We let (Xn)n denote a sequence of independent centered stationary Gaussian processes with
respective covariance kernels

E[Xn
rX

n
s ] = kε(

r − s
εn

)
def
= kn(r − s).

Clearly Xn depends on ε but this parameter is omitted from the notations for the sake of
readability. We assume that the whole sequence (Xn)n and the measure M are constructed on
the same probability space and are mutually independent. We further define the measure MN

for N > 0 by

∀A ∈ B(R), MN (A) = εN+1M
( 1

εN+1
A
)
.
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Note that E[MN (A)] = |A| where |A| stands for the Lebesgue measure of the set A.
By iterating the scale invariance relation (3.5), it is plain to see that, for each N > 0, the

measure M̃N defined by

M̃N (A) =

∫
A

exp
( N∑
n=0

Xn
r −

1

2
E[(Xn

r )2]
)
MN (dr) (3.29)

has the same law as the measure M .

3.5.1 Ergodic properties

First we investigate the immediate properties of M resulting from the definitions.

Lemma 3.10. Let M be a stationary random measure on R admitting a moment of order 1+δ.
There is a nonnegative integrable random variable Y ∈ L1+δ such that, for every bounded interval
I ⊂ R,

lim
T→∞

1

T
M (TI) = Y |I| almost surely and in L1+δ,

where | · | stands for the Lebesgue measure on R. As a consequence, almost surely the random
measure

A ∈ B(R) 7→ 1

T
M(TA)

weakly converges towards Y | · | and EY [M(A)] = Y |A| (EY [·] denotes the conditional expectation
with respect to Y ).

Proof. If M is a stationary random measure, the Birkhoff ergodic theorem implies the following
convergence, for n ∈ N, n→∞,

1

n
M([0, n]) =

1

n

n∑
i=1

M([i− 1, i])→ Y almost surely and in L1+δ (3.30)

where Y ∈ L1+δ is a nonnegative random variable. Using monotonicity of the mapping t 7→
M([0, t]), one can show that 1

TM([0, T ]) → Y almost surely and in L1+δ. For a > 0, b > a, it
is clear that 1

TM (T [0, a]) → aY and that 1
TM (T [a, b]) → (b − a)Y almost surely and in L1+δ.

So, for every bounded interval I ⊂ R+, the following convergence holds 1
TM(TI)→ |I|Y almost

surely and in L1+δ. Along the same lines, one can show the same convergence for every bounded
interval I ⊂ R− involving some nonnegative random variable Y ′ ∈ L1+δ. Stationarity implies
that 1

TM (T [−1, 1]) has the same law as 1
TM (T [0, 2]). By letting T go to∞, we find that Y +Y ′

has the same law as 2Y . Stationarity also implies that Y ′ has the same law as Y . Let 0 < α < 1.
We prove

E[Y α] = E
[(

Y + Y ′

2

)α]
>

1

2

(
E[Y α] + E[Y ′α]

)
= E[Y α] (3.31)

by using the Jensen inequality for the concave function x 7→ xα. So the above inequality turns
out to be an equality and thus Y = Y ′ almost surely. We have shown that 1

TM(TI) → |I|Y
almost surely and in L1+δ when T →∞ for every bounded interval I ⊂ R.

Finally, by the portemanteau theorem, the convergence of the measureA ∈ B(R) 7→ 1
TM(TA)

on the intervals towards Y | · | is enough to ensure the weak convergence.

3.5.2 Mixing properties

This section is devoted to study of the mixing properties of the measure M , which can be read
off the structure of the kernel Kε.

We first draw attention to the following relation, which will be used throughout the paper:

EY
[
F
(
M(A1), . . . ,M(An)

)]
= EY

[
F
(
M̃N (A1), . . . , M̃N (An)

)]
a.s.

for every positive measurable function F : Rn → R. The proof is deferred to appendix 3.6 (see
Lemma 3.23).
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Lemma 3.11. Let A,B be two disjoint sets such that dist(A,B) > 0. Then the random variable
M(A)M(B) is integrable under EY [.] and

EY [M(A)M(B)] = Y 2

∫
A×B

eK
ε(r−u)dr du.

Proof. We fix R > 0 and denote by G the σ-field generated by M . Because the function
x ∈ R+ 7→ min(R, x) is concave, we have

EY
[

min
(
R,M(A)M(B)

)]
=EY

[
min

(
R, M̃N (A)M̃N (B)

)]
=EY

[
E
[

min
(
R, M̃N (A)M̃N (B)

)
|G
]]

6 EY
[

min
(
R,E

[
M̃N (A)M̃N (B)|G

])]
.

Since M̃N is given by (3.29), it is straightforward to compute:

E
[
M̃N (A)M̃N (B)|G

]
=

∫
A×B

e
∑N
n=0 k̄n(r−u)MN (dr)MN (du). (3.32)

Because of the uniform convergence of the series
(∑N

n=0 k̄n(r−u)
)
N

on the set {(r, u) ∈ R2; |r−
u| > d} towards Kε and the weak convergence of the measure MN towards Y | · | (cf. Lemma
3.10), the random variable ∫

A×B
e
∑N
n=0 k̄n(r−u)MN (dr)MN (du)

almost surely converges towards

Y 2

∫
A×B

eK
ε(r−u)dr du.

The dominated convergence theorem then yields:

EY
[

min
(
R,M(A)M(B)

)]
6 EY

[
min

(
R, Y 2

∫
A×B

eK
ε(r−u)dr du

)]
.

By letting R→∞, the monotone convergence theorem yields

EY
[
M(A)M(B)

]
6 Y 2

∫
A×B

eK
ε(r−u)dr du.

On the other hand, we also have

EY
[
M(A)M(B)

]
= EY

[
M̃N (A)M̃N (B)

]
= EY

[
E
[
M̃N (A)M̃N (B)|G

]]
. (3.33)

By gathering (3.32) and (3.33) and by using the Fatou’s lemma, we deduce

EY
[
M(A)M(B)

]
> Y 2

∫
A×B

eK
ε(r−u)dr du.

This completes the proof.

Lemma 3.12. We have
sup
|r| > d

|Kε(r)| → 0 as d→∞.

Proof. By using (3.28), we have for |r| > d:

|Kε(r)| 6 Cε
− ln ε

∫ +∞

εd
θ(u) ln

u

εd
du

Now, if εd > 1, we have:

sup
|r| > d

|Kε(r)| 6 Cε
− ln ε

∫ +∞

εd
θ(u) lnu du

Hence the result follows from the convergence of the last integral.
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Proposition 3.13. The measure M possesses the following mixing property: given two disjoint
sets A,B such that dist(A,B) = d > 0 we have:∣∣EY [M(A)M(B)]− Y 2|A||B|

∣∣ 6 Y 2ξ(d)|A||B| (3.34)

for some function ξ : R+ → R+ such that limd→∞ ξ(d) = 0.

As a consequence, for any Lebesgue integrable function φ on R2 and d > 0, we have:∣∣∣EY [ ∫
|u−r|>d

φ(u, r)M(dr)M(du)]− Y 2

∫
|u−r|>d

φ(u, r) du dr
∣∣∣ 6 Y 2ξ(d)

∫
|u−r|>d

|φ(u, r)| du dr.

(3.35)

Proof. From Lemma 3.11, we have

∣∣EY [M(A)M(B)]− Y 2|A||B|
∣∣ = Y 2

∫
A×B

(eK
ε(r−u) − 1)dr du

6 Y 2ε(d)|A||B|

where we have set ξ(d) = sup|r| > d |eK
ε(r) − 1|. From Lemma 3.12, we have limd→∞ ξ(d) = 0. It

is then plain to derive (3.35).

As a direct consequence, we obtain:

Corollary 3.14. For any Lebesgue integrable function φ on R2 and d > 0, we have for all
N ∈ N \ {0}:

∣∣ ∫
|u−r|>d

φ(u, r)EY
[
MN (dr)MN (du)]− Y 2

∫
|u−r|>d

|φ(u, r)| du dr
∣∣

6 Y 2ξ
( d
εN
) ∫
|u−r|>d

|φ(u, r)| du dr.

3.5.3 Characterization of the measure M

Having in mind that the measure MN weakly converges towards Y | · | as N goes to infinity, it is
very tantalizing to think that the solution of our problem reduces to taking the limit in (3.29)
as N → ∞. However, multiplicative chaos badly behaves with respect to weak convergence of
measures. So we want to get rid of the measure MN and have the Lebesgue measure instead in
order to deal with a multiplicative chaos in the sense of Kahane. This is the main difficulty of
the proof. For that purpose, it is appropriate to take the conditional expectation of M̃N with
respect to the σ-algebra FN = σ(X0, . . . , XN , Y ). Therefore, for any Borelian subset A of R,
we define

GN (A) = E[M̃N (A)|FN ]

and we claim

Lemma 3.15. The following relation holds for each N > 0:

GN (A) = Y

∫
A

exp
( N∑
n=0

Xn
r −

1

2
E[(Xn

r )2]
)
dr. (3.36)

Furthermore, for each bounded Borelian set A, the sequence (GN (A))N is a positive martingale
bounded in L1+δ.

Proof. If A has infinite Lebesgue measure, both sides of (3.36) are infinite. So we focus on the
case when A has finite Lebesgue measure. First observe that for each s < t and A ∈ FN , we
have from Lemma 3.10

E[

∫
R

1[s,t](r)1AM
N (dr)|FN ] = 1AEY [MN ([s, t])] = 1AY (t− s).
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By using density arguments and Fatou’s lemma, we establish that, for each positive FN ⊗B(R)-
measurable function ϕ ∈ L1(Ω× R;P⊗ dt), we have

E
[ ∫

R
ϕ(ω, r)MN (dr)

∣∣FN ] =

∫
R
ϕ(ω, r)Y dr.

So (3.36) is proved.
Finally, for each bounded set A we have E[M(A)1+δ] < +∞ for some δ > 0. The Jensen

inequality then yields

E[(GN (A))1+δ] = E[(E[M̃N (A)|FN ])1+δ] 6 E[(M̃N (A))1+δ] = E[M(A)1+δ] < +∞.

The martingale (GN (A))N is thus bounded in L1+δ.

Being bounded in L1+δ, the martingale converges almost surely and in L1+δ towards a
random variable Q(A), which can be formally thought of as

Q(A) = Y

∫
A

exp

(
Xr −

1

2
E[X2

r ]

)
dr

where (Xr)r∈R is a ”Gaussian process” with covariance kernel Kε(r), that is a Gaussian mul-
tiplicative chaos. The remaining part of our argument can be roughly summed up as follows.
First, we obtain estimates on the kernel Kε derived from the fact that the Gaussian multiplica-
tive chaos Q admits a moment of order 1 + δ. Second, we use these estimates to prove that Q
has the same law as M . Finally, since Q has the same law as M , which does not depend on ε,
the kernel Kε should not depend on ε either. This is a strong constraint on Kε, from which we
derive the specific structure of Kε given by (3.12).

So we claim

Proposition 3.16. For each 0 < γ < δ, we can find ρ > 0 such that:

sup
n
n1+ρE[M([0,

1

n
])1+γ ] < +∞. (3.37)

Proof. The proof relies on the following bound (see the proof below):

Lemma 3.17. The existence of a moment of order 1+δ for the measure M implies the following
bound:

kε(0) 6
2

1 + δ
ln

1

ε
.

Since we have for all r ∈ R: kε(r) 6 kε(0), the covariance kernel of the process ωε is dominated
by that of the constant process ωε(0). Hence, by using (3.5) and Lemma 3.24, it is plain to see
that, for each γ > 0:

E[M([0,
1

n
])1+γ ] = E

[(∫ 1/n

0
eω1/n(r)M1/n(dr)

)1+γ
]

6 E

[(∫ 1/n

0
eω1/n(0)M1/n(dr)

)1+γ
]

6 E
[
e(1+γ)ω1/n(0)

]
E
[(
M1/n([0,

1

n
])
)1+γ

]
= e

(1+γ)2

2
k1/n(0)− 1+γ

2
k1/n(0)E

[(
M([0, 1])

)1+γ] 1

n1+γ
.

Since k1/n(0) 6 2
1+δ lnn, we deduce

E[M([0,
1

n
])1+γ ] 6 e

(
γ2+γ
1+δ
−γ−1

)
lnnE

[(
M([0, 1])

)1+γ]
=

1

n1+ρ
E
[(
M([0, 1])

)1+γ]
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where we have set

ρ
def
= −γ

2 + γ

1 + δ
+ γ.

Clearly, we have ρ > 0 provided that 0 < γ < δ. The proof of Proposition 3.16 is complete.

Proof of Lemma 3.17. Let n ∈ N.

E
[
M [0; t]1+δ

]
= E

[(
M [0;

t

n
] +M [

t

n
;
2t

n
] + · · ·+M [

(n− 1)t

n
; t]

)1+δ
]

(3.38)

> E

[(
M [0;

t

n
]

)1+δ

+

(
M [

t

n
;
2t

n
]

)1+δ

+ · · ·+
(
M [

(n− 1)t

n
; t]

)1+δ
]

(3.39)

= nE

[(
M [0;

t

n
]

)1+δ
]

(3.40)

We used the stationarity of the measure M in the second line. Now write, for h > 0:

g(h) = sup
r 6 h

| k1/n(0)− k1/n(r) | (3.41)

We have, for every r ∈ (0, t/n] and n large enough:

| k1/n(0)− g(t/n) | 6 k1/n(r).

So, using classical Gaussian inequality (see Lemma 3.24):

E
[
M [0;

t

n
]1+δ

]
= E

(∫ t/n

0
eω1/n(r)M1/n(dr)

)1+δ


> E

(∫ t/n

0
e
√
|k1/n(0)−g(t/n)|Zn− 1

2
|k1/n(0)−g(t/n)|M1/n(dr)

)1+δ


= E
[(
e
√
|k1/n(0)−g(t/n)|Zn− 1

2
|k1/n(0)−g(t/n)|

)1+δ
]
E

[(
M1/n[0;

t

n
]

)1+δ
]

= e−
1+δ

2
|k1/n(0)−g(t/n)|e

(1+δ)2

2
|k1/n(0)−g(t/n)| 1

n1+δ
E
[
(M [0; t])1+δ

]
(3.42)

We used Lemma 13 in the second line. Using equations (3.40) and (3.42), one gets

e−
1+δ

2
|k1/n(0)−g(t/n)|e

(1+δ)2

2
|k1/n(0)−g(t/n)| 1

nδ
6 1 (3.43)

As h goes to 0, g(h) goes to 0 (the function k1/n is continuous). Letting t goes to 0 in (3.43),
one gets

k1/n(0) 6
2

1 + δ
lnn.

and the lemma is proved.

We are now in position to tackle the main step of the proof:

Proposition 3.18. The random measures (Q(A))A∈B(R) and (M(A))A∈B(R) have the same law.

Proof. Let F be some function defined on R+ such that:

• F is convex,

• F (x) 6 Cx1+γ for some constants C > 0 and 0 < γ < δ,

• F ◦
√

is concave, nondecreasing and sub-additive.
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Let f be a lower semi-continuous positive function on R with compact support. We have by
Jensen’s inequality:

E
[
F
( ∫

R
f(x)M(dx)

)]
= E

[
F
( ∫

R
f(x) M̃N (dx)

)]
= E

[
E
[
F
( ∫

R
f(x) M̃N (dx)

)
|FN

]]
> E

[
F
( ∫

R
f(x)GN (dx)

)]
.

We let N go to +∞. By using the weak convergence of GN (dr) towards Q(dr), we obtain:

E
[
F
( ∫

R
f(r)M(dr)

)]
> E

[
F
( ∫

R
f(r)Q(dr)

)]
. (3.44)

Now we want to establish the converse inequality. We set F̃ = F ◦
√

. For any τ > 0, we
have by using the sub-additivity of F̃ :

E
[
F
( ∫

R
f(r)M(dr)

)]
=E
[
F̃
(( ∫

R
f(r) M̃N (dr)

)2)]
=E
[
F̃
(∫

R

∫
R
f(r)f(u) M̃N (dr)M̃N (du)

)]
6 E

[
F̃
(∫
|r−u| 6 τ

f(r)f(u) M̃N (dr)M̃N (du)
)]

+ E
[
F̃
(∫
|r−u|>τ

f(r)f(u) M̃N (dr)M̃N (du)
)]
.

Then, by conditioning with respect to FN and by using the Jensen inequality in the second term
of the latter inequality, we deduce:

E
[
F
( ∫

R
f(r)M(dr)

)]
(3.45)

6 E
[
F̃
(∫
|r−u| 6 τ

f(r)f(u) M̃N (dr)M̃N (du)
)]

+ E
[
F̃
(∫
|r−u|>τ

f(r)f(u) exp
( N∑
k=0

Xn
r +Xn

u − kn(0)
)
EY [MN (dr)MN (du)]

)]
def
= C(1, τ,N) + C(2, τ,N). (3.46)

We claim:

Lemma 3.19. For each fixed τ > 0, C(2, τ,N) converges as N →∞ towards

E
[
F̃
(∫
|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]
.

Furthermore, this latter quantity converges, as τ → 0, towards

E
[
F
(∫

f(r)Q(dr)
)]
.

Finally, the quantity C(1, τ,N) converges to 0 as τ → 0 uniformly with respect to N ∈ N∗.

Let us admit for a while the above lemma to finish the proof of Proposition 3.18. By gathering
(3.46) and Lemma 3.19, we deduce

E
[
F
( ∫

R
f(r)M(dr)

)]
6 lim inf

τ→0
E
[
F̃
(∫
|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

=E
[
F
(∫

f(r)Q(dr)
)]
.
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Hence we have proved

E
[
F
( ∫

R
f(r)M(dr)

)]
= E

[
F
( ∫

R
f(r)Q(dr)

)]
. (3.47)

The basic choice for F is the function x 7→ x1+γ with 0 < γ < δ. Thus we have proved that
the mappings

E
[

exp
(
z ln

∫
R
f(r)M(dr)

)]
and E

[
exp

(
z ln

∫
R
f(r)Q(dr)

)]
coincide for z ∈]1, 1+δ[. By analyticity arguments, we deduce that

∫
R f(x)M(dx) and

∫
R f(x)Q(dx)

have the same law. This is enough to prove that the random measures M and Q have the same
law. Indeed, if we consider two families (λi)1 6 i 6 n of positive real numbers and (Ai)1 6 i 6 n of
bounded open subsets of R, we define the lower semi-continuous function

f(x) =
n∑
i=1

λi1Ai(x)

and we obtain
n∑
i=1

λiM(Ai)
law
=

n∑
i=1

λiQ(Ai).

It turns out that the law of a random vector (Y1, . . . , Yn) made up of positive random variables
is characterized by the combinations

n∑
i=1

λiYi

where (λi)1 6 i 6 n is a family of positive real numbers. The proof of Proposition 3.18 is complete.

Proof of Lemma 3.19. Let us first investigate the quantity C(1, τ,N). Assume the function
f has its support included in the ball B(0, R) for some R > 0. We can cover the set

{(x, y) ∈ R2; |x− y| 6 τ and max(|x|, |y|) 6 R}

by the squares

Anj = [tnj , t
n
j+2]× [tnj , t

n
j+2] where tnj = −R+ 2τj, for j = 0, . . . , E(

R

τ
).

We set S = supR f . Because F̃ is sub-additive and increasing, we have:

C(1, τ,N) 6 E
[
F̃
( ∑

0 6 j 6 E(R
τ

)

∫
Anj

f(r)f(u) M̃N (dr)M̃N (du)
)]

6
∑

0 6 j 6 E(R
τ

)

E
[
F̃
(∫

Anj

f(r)f(u) M̃N (dr)M̃N (du)
)]

6
∑

0 6 j 6 E(R
τ

)

E
[
F̃
(
S2

∫
Anj

M̃N (dr)M̃N (du)
)]

=
∑

0 6 j 6 E(R
τ

)

E
[
F̃
(
S2(M̃N ([tnj , t

n
j+2]))2

)]
=

∑
0 6 j 6 E(R

τ
)

E
[
F
(
SM([tnj , t

n
j+2])

)]
.

By stationarity, we deduce

C(1, τ,N) 6
2R

τ
E
[
F
(
SM([0, 2τ ])

)]
6

2R

τ
S1+γE

[
M([0, 2τ ])1+γ

]
.
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It results from Proposition 3.16 that the last quantity converges towards 0 as τ goes to 0
uniformly with respect to N .

Now we investigate the quantity C(2, τ,N). Since F̃ is sub-additive and increasing, we have
|F̃ (a) − F̃ (b)| 6 F̃ (|b − a|) for all positive real numbers a, b. This together with Corollary 3.14
yields ∣∣∣C(2, τ,N)−E

[
F̃
(∫
|r−u|>τ

f(r)f(u) exp
( N∑
k=0

Xn
r +Xn

u − kn(0)
)
Y 2dr du

)]∣∣∣
6 E

[
F̃
(
Y 2ξ

( τ
εN
) ∫
|r−u|>τ

f(r)f(u) exp
( N∑
k=0

Xn
r +Xn

u − kn(0)
)
dr du

)]
6 E

[
F̃
(
ξ
( τ
εN
)
S2GN ([−R,R])2

)]
6 E

[
F
(
Sξ
( τ
εN
)1/2

GN ([−R,R])
)]

6 ξ
( τ
εN
) 1+γ

2 S1+γE
[
GN ([−R,R])1+γ

]
.

Obviously, the last quantity converges to 0 as N goes to ∞. Furthermore, the quantity

F̃
(∫
|r−u|>τ

f(r)f(u) exp
( N∑
k=0

Xn
r +Xn

u − kn(0)
)
Y 2dr du

)
almost surely converges towards

F̃
(∫
|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)

and is uniformly integrable because F (x) 6 Cx1+γ and Q is a multiplicative chaos admitting a
moment of order 1 + δ with δ > γ. The Lebesgue convergence theorem then yields:

E
[
F̃
(∫
|r−u|>τ

f(r)f(u) exp
( N∑
k=0

Xn
r +Xn

u − kn(0)
)
Y 2dr du

)]
→ E

[
F̃
(∫
|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

as N →∞.

Gathering the above relations yields

C(2, τ,N)→ E
[
F̃
(∫
|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

as N →∞.

Similar arguments as those used above allow to establish that

lim inf
τ→0

E
[
F̃
(∫
|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

=E
[
F̃
(∫

R2

f(r)f(u)Q(dr)Q(du)
)]

=E
[
F
(∫

R
f(r)Q(dr)

)]
.

Indeed, by proceeding as for C(1, τ,N), we can prove that the ”diagonal contribution” goes to
0 as τ → 0. Details are left to the reader. The proof of the Lemma is complete.

The final step of our argument is now to prove that the kernel Kε defined by (3.27) does
not depend on ε. Expressing the kernel Kε as a function of the marginals of the measure M is
enough for that purpose. So we remind the reader of Lemma 3.11, which states

EY [M(A)M(B)] = Y 2

∫
A×B

eK
ε(r−u) drdu.

We deduce that, for any s 6= 0 and on the set {Y > 0},

Kε(s) = lim
h→0

ln
( 1

h2
EY [M([0, h])M([s, s+ h])]

)
− 2 lnY. (3.48)
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As a straightforward consequence, the kernel Kε defined by (3.27) does not depend on ε
since the left-hand side in (3.48) does not either. So we can define the quantity

∀r 6= 0, K(r) = Kε(r)

for some ε ∈ (0, 1) and this relation is also valid for any ε ∈ (0, 1). It is also plain to see that for
each ε ∈ (0, 1) we have:

∀r 6= 0, K(r) = kε(r) +K(
r

ε
) (3.49)

since Kε satisfies such a relation. Such a specific functional equation implies a precise structure
for the function K:

Proposition 3.20. For r > 0, we have

K(r) =

∫ +∞

r

k(u)

u
du (3.50)

where k(u) is a positive-definite continuous function R+ → R.

Proof. Because K is Lipschitzian on the compact subsets of R \ {0}, there exists a locally
bounded measurable function f on (0; +∞) such that for all r, s > 0,

K(s)−K(r) =

∫ s

r
f(t)dt.

Define, for r ∈ R,
φ(r) = K(er)

It is straightforward to derive from (3.49) that, for all r ∈ R, α > 0,

φ(r + α)− φ(r) = −ke−α(er) (3.51)

Note that k1(er) = 0. From equation (3.51), one obtains :

1

α

∫ r+α

r
euf(eu)du = −ke−α(er)

α
(3.52)

For almost every r, the left-hand side of equation (3.52) tends to erf(er) when α goes to 0.
Thus, the right-hand side of (3.52) converges also for almost every r to erf(er) when α goes to
0.

We define the function g by the following limit for almost every r:

g(r) = lim
α→0
− 1

α

∫ r+α

r
euf(eu)du = lim

α→0

ke−α(er)

α
(3.53)

As defined, the function g is measurable with respect to the Borelian σ-field of R. For almost
every x ∈ (0,+∞), define

h(x) = g(ln(x)),

and h(0) by h(0) =
ke−α (0)

α for some α > 0. Note that the definition of h(0) does not depend on
α because:

Lemma 3.21. We have the following asymptotic behaviour of K around 0:

K(r) ' kε(0)

ln ε
ln r as r → 0.

Thus h is well defined at 0 and we can now prove that it is positive definite:

Lemma 3.22. The function h(|.|) is positive definite (as a tempered distribution in the sense
of Schwartz, see [80] or [139]). One can also find a symmetric positive measure µ on R (with
µ(R) <∞) such that for almost every x ∈ R:

h(|x|) =

∫
R
eixξµ(dξ)
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Proof. For almost every x ∈ R, h(|x|) = lim
α→0

ke−α (|x|)
α and

ke−α (|x|)
α 6 h(0) uniformly in α.

Thus, if ϕ is a smooth function with compact support, we get using the dominated convergence
theorem: ∫

R

∫
R
h(|y − x|)ϕ(x)ϕ(y)dxdx = lim

α→0

∫
R

∫
R

ke−α(|y − x|)
α

ϕ(x)ϕ(y)dxdx > 0.

We conclude that h(|.|) is positive definite. By the Bochner-Schwartz theorem, the Fourier
transform of h(|.|) is a symmetric positive measure µ(dξ) such that there exists p > 0 with:∫

R

µ(dξ)

(1 + |ξ|)p
<∞.

In order to conclude, it is sufficient to prove that µ(R) < ∞. We note θ(x) = e−x
2/2

√
2π

and

θε = 1
ε θ(./ε) for ε > 0. By the inverse Fourier theorem, we get:

(θε ∗ h)(0) =

∫
R
e−ε

2ξ2/2µ(dξ).

Thus the right hand side of the above equality is bounded by h(0) and we conclude by letting ε
go to 0.

Integrating with respect to the Lebesgue measure the relation g(t) = −etf(et) which is true
for almost every t ∈ R, one gets

K(s)−K(r) = −
∫ s

r

h(u)

u
du.

Because K(s)→ 0 as s→ +∞, the function u 7→ h(u)
u is integrable at the vicinity of +∞ in the

generalized sense. We deduce:

K(r) =

∫ +∞

r

h(u)

u
du.

By the previous lemma, there exists a finite symmetric positive measure µ on R such that,
for almost every x ∈ R,

h(x) =

∫
R
eixξµ(dξ)

For simplicity, define for all x ∈ R, k(x) =
∫
R e

ixξµ(dξ). The function k is continuous on R. We
get finally,

K(r) =

∫ +∞

r

k(u)

u
du. (3.54)

The proof of Proposition 3.20 is complete.

Proof of Proposition 3.7. This is just a direct consequence of Theorem 3.3 and equation (3.48).

3.6 Proofs of some auxiliary lemmas

Lemma 3.23. Let F : Rn 7→ R be a measurable function. Then, for all bounded Borelian sets
A1, . . . , An ⊂ R, the following relation holds almost surely:

EY [F (M(A), . . . ,M(An))] = EY
[
F (M̃N (A), · · · , M̃N (An))

]
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Proof. By using the Jensen inequality, we have

E
[∣∣∣ 1

T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣]
=E
[(∣∣∣ 1

T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣2)1/2]
6 E

[(
E
[∣∣∣ 1

T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣2|M])1/2]
=E
[( 1

T 2

∫ T

0

∫ T

0
E
[(
e
∑N
n=0X

n
r − 1

2
E[(Xn

r )2] − 1
)(
e
∑N
n=0 X

n
u− 1

2
E[(Xn

u )2] − 1
)]
MN (dr)MN (du)

)1/2]
=E
[( 1

T 2

∫ T

0

∫ T

0

(
e
∑N
n=0 k̄n(r−u) − 1

)
MN (dr)MN (du)

)1/2]

The integrand in the above expectation converges almost surely towards 0 because, for each
0 6 n 6 N , k̄n is bounded and converges to 0 in the vicinity of ∞. Furthermore, it is uniformly
integrable because

sup
T

E
[( 1

T
MN ([0;T ])

)1+δ]
< +∞.

We deduce that

E
[∣∣∣ 1

T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣]→ 0 as T → +∞.

As a consequence, 1
T M̃

N [0;T ] converges almost surely along a subsequence towards Y .

One has, for any function h bounded and continuous,

E
[
F (M(A1), . . . ,M(An))h

(
1

T
M [0;T ]

)]
= E

[
F (M̃(A1), . . . , M̃(An))h

(
1

T
M̃N [0;T ]

)]
Sending T to +∞ along the subsequence, we get by the bounded convergence theorem

E [F (M(A1), . . . ,M(An))h (Y )] = E
[
F (M̃(A1), . . . , M̃(An))h (Y )

]
and the lemma is proved.

Lemma 3.24. Let F : R+ → R be some convex function such that

∀x ∈ R+, |F (x)| 6M(1 + |x|β),

for some positive constants M,β, and σ be a Radon measure on the Borelian subsets of R.
Given a < b, let (Xr)a 6 r 6 b, (Yr)a 6 r 6 b be two continuous centered Gaussian processes with
continuous covariance kernels kX and kY such that

∀u, v ∈ [a, b], kX(u, v) 6 kY (u, v).

Then

E
[
F
(∫ b

a
eXr−

1
2
E[X2

r ] σ(dr)
)]
6 E

[
F
(∫ b

a
eYr−

1
2
E[Y 2

r ] σ(dr)
)]
.

Proof. For each N ∈ N, we define the smooth subdivision tNp = a + p b−aN , p = 0, . . . , N , of the
interval [a, b]. We also introduce the random variables

SXN =
N−1∑
p=0

e
X
tNp
− 1

2
E[X2

tNp
]
σ([tNp , t

N
p+1)) and SYN =

N−1∑
p=0

e
Y
tNp
− 1

2
E[Y 2

tNp
]
σ([tNp , t

N
p+1)).

By classical Gaussian inequalities (see [129, corollary 6.2] for instance), we have

∀N > 1, E
[
F
(
SXN

)]
6 E

[
F
(
SYN

)]
.
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So it just remains to pass to the limit as N → ∞ by using the dominated convergence theo-
rem. By continuity of the processes X,Y the random variables SXN , S

Y
N converge almost surely

respectively towards
∫ b
a e

Xr− 1
2
E[X2

r ] σ(dr),
∫ b
a e

Yr− 1
2
E[Y 2

r ] σ(dr). Clearly, we have:

|F (SXN )| 6M
(
1 + |SXN |β

)
,

so that we just have to prove that |SXN |β is uniformly integrable (the same argument holds for
|SYN |β). It is enough to establish that for each d ∈ N,

sup
N

E
[
(SXN )d

]
< +∞.

We have

E
[
(SXN )d

]
=E
[(N−1∑

p=0

e
X
tNp
− 1

2
E[X2

tNp
]
σ([tNp , t

N
p+1))

)d]

=

N−1∑
p1,...,pd=0

E
[
e
X
tNp1

+···+X
tNpd

]
e
− 1

2
(E[X2

tNp1

]+···+E[X2

tNpd

])
σ([tNp1

, tNp1+1))× · · · × σ([tNpd , t
N
pd+1))

=
N−1∑

p1,...,pd=0

e
1
2

∑d
i,j=1 kX(tNpi ,t

N
pj

)
e
− 1

2
(E[X2

tNp1

]+···+E[X2

tNpd

])
σ([tNp1

, tNp1+1))× · · · × σ([tNpd , t
N
pd+1))

→
∫ b

a
. . .

∫ b

a
e

1
2

∑d
i6=j kX(ui,uj)σ(du1) · · ·σ(dud)

as N →∞. This completes the proof.

Proof of Lemma 3.21. We choose any ε < 1 and consider |r| 6 1. Since kε is continuous at 0,
we can find, for α > 0, some η > 0 such that kε(0) − α 6 kε(u) 6 kε(0) for |u| 6 η. Then we
decompose K as

Kε(r) =

+∞∑
n=0

kε(
r

εn
)

=

ln r
η

ln ε
−1∑

n=0

kε
( r
εn
)

+

+∞∑
n=

ln r
η

ln ε

kε
( r
εn
)

def
=

ln r
η

ln ε
−1∑

n=0

kε
( r
εn
)

+ gε(r)

Let us prove that gε is bounded over a neighborhood of 0. By using (3.10) and following the
computations of (3.28), we have for p ∈ N:

+∞∑
n=p

|kε
( r
εn
)
| 6 2Cε
− ln ε

∫ +∞

r
εp−1

θ(u) lnu du.

We deduce by taking p =
ln r
η

ln ε :

|gε(r)| 6
2Cε
− ln ε

∫ +∞

ηε
θ(u) lnu du.

Hence gε is bounded. By noticing that r
εn 6 η ⇔ n 6

ln r
η

ln ε , we deduce

ln r
η

ln ε
(kε(0)− α) + gε(r) 6 K

ε(r) 6
ln r

η

ln ε
kε(0) + gε(r).
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By taking the lim sup and lim inf in the above inequality, we have proved that for each α > 0:

kε(0)− α
ln 1

ε

6 lim inf
r→0

Kε(r)

ln 1
r

6 lim sup
r→0

Kε(r)

ln 1
r

6
kε(0)

ln 1
ε

,

which completes the proof.
Proof of Corollary 3.5. By stationarity, it is enough to prove that, almost surely, the measure
M does not possess any atom on the segment [0, 1]. From [61, Corollary 9.3 VI], it is enough to
check that for each α > 0:

n∑
k=1

P
(
M [

k − 1

n
;
k

n
] > α

)
= nP

(
M [

0

n
;

1

n
] > α

)
→ 0 as n→∞.

This is a direct consequence of the Markov inequality and Lemma 3.16:

nP
(
M [

0

n
;

1

n
] > α

)
6

n

α1+γ
E[M([0,

1

n
])1+γ ]→ 0 as n→∞.

Proof of Proposition 3.8. Otherwise, if M is a good lognormal ?-scale invariant random measure,
then using Theorem 3.3, we know that there exists k a continuous covariance function such that,
for all |r| 6 R:

K(r) =

∫ ∞
|r|

k(u)

u
du = λ2 ln

T

|r|
+ C. (3.55)

By differentiating this equality with respect to r, we obtain k(r) = λ2 for all |r| 6 R. Then,
let (Xt)t∈R be a centered stationary Gaussian process with covariance kernel k. For all s, t ∈ R
such that |t − s| < R, we have cov(Xt, Xs) = k(|t − s|) = k(0) = var[Xt] which implies (by
Cauchy-Schwarz inequality) that Xt = Xs almost surely. The process X being stationary, this
shows that it is a constant process. Hence k(r) = λ2 for all r ∈ R. Because of equation (3.55),
this is a contradiction since it would imply K(r) = +∞ for all r.
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Chapter 4

Invariant β-ensembles and the
Gauss-Wigner crossover

Résumé

Cet article est publié dans le journal Physical Review Letters et est écrit en col-
laboration avec Jean-Philippe Bouchaud et Alice Guionnet. Nous définissons un
nouveau modèle de diffusion matricielle qui converge vers le mouvement Brownien
de Dyson avec un paramètre β ∈ [0, 2]. En temps long, le modèle limite donne une
construction explicite de matrices aléatoires appartenant aux ensembles β qui sont
invariantes par conjugaison par des matrices orthogonales ou unitaires. Pour des
petites valeurs de β, la densité limite en grande dimension des valeurs propres de
ces matrices définit une interpolation continue entre la distribution Gaussienne et le
demi-cercle de Wigner. Cette famille de distribution est une famille à un paramètre
et les distributions admettent des densités explicitement calculables. Un prolonge-
ment de ce calcul nous permet de trouver les corrections de tailles finies (quand la
dimension est grande mais pas infinie) dans la convergence vers la loi du demi cercle
de Wigner.

Abstract

We define a new diffusive matrix model converging towards the β -Dyson Brownian
motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of
random matrices that is invariant under the orthogonal/unitary group. For small
values of β, our process allows one to interpolate smoothly between the Gaussian
distribution and the Wigner semi-circle. The interpolating limit distributions form
a one parameter family that can be explicitly computed. This also allows us to
compute the finite-size corrections to the semi-circle.

Since Wigner’s initial intuition that the statistical properties of the eigenvalues of random
matrices should provide a good description of the excited states of complex nuclei, Random
Matrix Theory has become one of the prominent field of research, at the boundary between
atomic physics, solid state physics, statistical mechanics, statistics, probability theory and num-
ber theory [3, 20, 15]. It is well known that the joint distribution of the eigenvalues of a large
Gaussian random matrix can be expressed as the Boltzmann-Gibbs equilibrium weight of a
one-dimensional repulsive Coulomb gas confined in an harmonic well. However, the effective
“inverse temperature” β of the system cannot take arbitrary values but is quantized (in units
of the repulsive Coulomb potential). Depending on the symmetry of the random matrix, only
three values are allowed β = 1 for symmetric real matrices, β = 2 for Hermitian matrices and
β = 4 for the symplectic ensemble. This is known as Dyson’s “threefold way”. The existence of
matrix ensembles that would lead to other, possibly continuous, values of β, is a very natural
question, and the quest for such ensembles probably goes back to Dyson himself. Ten years
ago, Dumitriu and Edelman [68] have proposed an explicit construction of tri-diagonal matri-
ces with non-identically distributed elements whose joint law of the eigenvalues is the one of
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β-ensembles for general β. Another construction is proposed in [3, p. 426-427] (see also [74])
and uses a bordering procedure to construct recursively a sequence of matrices with eigenvalues
distributed as β-ensembles. This construction gives not just the eigenvalue probability density
of one matrix of the sequence but also the joint eigenvalue probability density of all matrices.
This has lead to a renewed interest for those ensembles, that have connections with many prob-
lems, both in physics and in mathematics, see e.g. [72, 15]. The aim of the paper is to provide
another construction of β-ensembles that is, at least to our eyes, natural and transparent, and
respects by construction the orthogonal/unitary symmetry [149]. Another motivation for our
work comes from the recent development of free probability theory. “Freeness” for random ma-
trices is the natural extension of independence for classical random variables. Very intuitively,
two real symmetric matrices A,B are mutually free in the large N limit if the eigenbasis of B
can be thought of as a random rotation of the eigenbasis of A (see e.g. [145] for an accessible
introduction to freeness and for more rigorous statements). “Free convolution” then allows one
to compute the eigenvalue distribution of the sum A + B from the eigenvalue distribution of A
and B, much in the same way as convolution allows one to compute the distribution of the sum of
two independent random variables. In this context, the Wigner semi-circle distribution appears
as the limiting distribution for the sum of a large number of free random matrices, exactly as
the Gaussian is the limiting distribution for the sum of a large number of iid (independent and
identically distributed) random variables. A natural question, from this perspective, is whether
one can build a natural framework that interpolates between these two limits.

Let us first recall Dyson’s Brownian motion construction of the GOE [69] (for the sake of
simplicity, we will only consider here extensions of the β = 1 ensemble, but similar considerations
hold for β = 2 Hermitian matrices see [10] for full details). It is defined as the real N × N
symmetric matrix process M(t) solution of the stochastic differential equation (SDE):

dM(t) = −1

2
M(t)dt+ dH(t) (4.1)

where dH(t) is a symmetric Brownian increment (i.e. a symmetric matrix whose entries above
the diagonal are independent Brownian increments with variance 〈dH2

ij(t)〉 = 1
2(1 + δij)dt).

Standard second order perturbation theory allows one to write the evolution equation for the
eigenvalues λi of the matrix M(t):

dλi = −1

2
λidt+

1

2

∑
j 6=i

dt

λi − λj
+ dbi, (4.2)

where bi(t) are independent standard Brownian motions. This defines Dyson’s Coulomb gas
model, i.e. “charged” particles on a line, with positions λi, interacting via a logarithmic poten-
tial, subject to some thermal noise and confined by a harmonic potential. One can deduce from
the above equation the Fokker-Planck equation for the joint density P ({λi}, t), for which the
stationary joint probability density function (pdf) is readily found to be:

P ∗({λi}) = Z
∏
i<j

|λi − λj |β exp

[
−1

2

∑
i

λ2
i

]
, (4.3)

with β ≡ 1 and where Z is a normalization factor. The above expression is the well known joint
distribution of the eigenvalues of an N ×N random GOE matrix. The Wigner distribution can
be recovered either by a careful analysis of the mean marginal univariate distribution ρ(λ) =∫
. . .
∫

dλ2 . . . dλNP
∗(λ = λ1, λ2, . . . , λN ) in the large N limit [114], or by using the above SDE

(4.2) to derive a dynamical equation for the Stieltjes transform G(z, t) of ρ(λ, t):

G(z, t) =
1

N

N∑
i=1

1

λi(t)− z
, z ∈ C. (4.4)

With this scaling, the spectrum is spread out in a region of width of order
√
N and therefore

z ∼
√
N and G ∼ 1/

√
N . Applying Itô’s formula to G(z, t) and using (4.2), we obtain the

following Burgers equation for G [130]:

2
∂〈G〉
∂t

=
αN

2

∂〈G〉2

∂z
+
∂z〈G〉
∂z

+ (2− α)
1

2

∂2〈G〉
∂z2

(4.5)
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where α is introduced for later convenience, with α = 1 for now. Note that we have neglected
in Eq. (4.5) a term of order N−5/2. Indeed in agreement with [20]: 〈G2〉 − 〈G〉2 ∼ N−3. The
neglected term is thus 1/N smaller than the diffusion term in Eq. (4.5).

For large N , the last (diffusion) term of Eq. (4.5) is of order 1/N smaller than the other
ones. To leading order, the stationary solution (where the time derivative is set to 0) can be
integrated with respect to z:

1

2
αNG2

∞(z) + zG∞(z) = −1 , (4.6)

where the integration constant comes from the boundary condition G(z) ∼ −1/z when z →∞.
It is then easy to solve this equation to find the Stieltjes transform that indeed corresponds to
the Wigner semi-circle density:

G∞(z) =
1

αN

[√
z2 − 2αN − z

]
−→ ρ(λ) =

1

παN

√
2αN − λ21{|λ| 6

√
2αN}. (4.7)

Now let us turn to the central idea of the present paper. In Dyson’s construction, the
extra Gaussian slice dM(t) that is added to H(t) is chosen to be independent of M(t) itself.
The eigenbasis of dH(t) is a random rotation, taken uniformly over the orthogonal group. As
mentioned above, this corresponds to free addition of matrices, and Eq. (4.5) can indeed be
derived (for N =∞) using free convolution [145]. If instead we choose to add a random matrix
dY(t) that is always diagonal in the same basis as that of M(t), the process becomes trivial. The
diagonal elements of M(t) are all sums of iid random variables, and the eigenvalue distribution
converges towards the Gaussian. The construction we propose is to alternate randomly the
addition of a “free” slice and of a “commuting” slice. More precisely, our model is defined as
follows: we divide time into small intervals of length 1/n and for each interval [k/n; (k+1)/n], we
choose independently Bernoulli random variables εnk , k ∈ N such that P[εnk = 1] = p = 1−P[εnk =
0]. Then, setting εnt = εn[nt], our diffusive matrix process simply evolves as:

dMn(t) = −1

2
Mn(t)dt+ εnt dH(t) + (1− εnt )dY(t) (4.8)

where dH(t) is a symmetric Brownian increment as above and where dY(t) is a symmetric matrix
that is co-diagonalizable with Mn(t) (i.e. the two matrix have the same eigenvectors) but with
a spectrum given by N independent Brownian increments of variance dt. It is clear that the
eigenvalues of the matrix Mn(t) will cross at some points but only in intervals [k/n; (k+1)/n] for
which εnk = 0 (in the other intervals where they follow Dyson Brownian motion with parameter
β = 1, it is well known that the repulsion is too strong and that collisions are avoided). In such
a case, the eigenvalues are re-numbered at time t = (k + 1)/n in increasing order.

Now, using again standard perturbation theory, it is easy to derive the evolution of the
eigenvalues of Mn(t) denoted as λn1 (t) 6 . . . 6 λnN (t):

dλni = −1

2
λni dt+

εnt
2

∑
j 6=i

dt

λni − λnj
+ dbi (4.9)

where the bi are independent Brownian motions also independent of the εnk , k ∈ N.
A mathematically rigorous derivation provided in [10] allows one to show that the scaling

limits λi(t), when n→∞, of the eigenvalues λni (t) obey the following modified Dyson SDE:

dλi = −1

2
λidt+

p

2

∑
j 6=i

dt

λi − λj
+ dbi, (4.10)

with the additional ordering constraint λ1(t) 6 . . . 6 λN (t) for all t. One of the difficulty of
the proof comes from the fact that when p < 1, there is a positive probability for eigenvalues
to collide in finite time (the ordering constraint is therefore useful at those points to re-start).
The idea is then to show that collisions are in a sense sufficiently rare for the above SDE to
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make sense (see [10, 54] for further details). Using the SDE (4.10), one can derive as above
the stationary distribution for the joint distribution of eigenvalues, which is still given by Eq.
(4.3) but with now β = α = p 6 1. A very similar construction can be achieved in the GUE
case, leading to β = 2p. As announced, our dynamical procedure, that alternates standard and
free addition of random matrices, can lead to any β-ensemble with β 6 2. The corresponding
matrices M(t) are furthermore invariant under the orthogonal (or unitary) group. This is intu-
itively clear, since both alternatives (adding a free slice or adding a commuting slice) respect this
invariance, and lead to a Haar probability measure for the eigenvectors (i.e. uniform over the
orthogonal/unitary group). We have also proved that a collision leads to a complete random-
ization of the eigenvectors within the two-dimensional subspace corresponding to the colliding
eigenvalues, see again [10].

It is well known that the eigenvalue density corresponding to the measure P ∗ given by
(4.3) is the Wigner semi-circle for any β > 0. In fact, using (4.5) with now α = β = p,
one immediately finds that the eigenvalue density is a semi-circle with edges at ±

√
2βN . We

simulated numerically the matrix Mn(t) with N = 200 for a very small step 1/n and until a
large value of t so as to reach the stationary distribution for the eigenvalues. Then we started
recording the spectrum and the nearest neighbor spacings (NNS) every 100 steps so as to sample
the ensemble. We verified that the spectral density of Mn(t = ∞) is indeed in very good
agreement with the Wigner semi-circle distribution for β = 1/2. Our sample histogram for
the NNS distribution is displayed in Fig.4.1. We also added the corresponding Wigner surmise
(which is expected to provide a good approximate description of the NNSD).

s

p(
s)

0 1 2 3 4 5

0.
0

0.
1
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4
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Figure 4.1: Empirical NNSD P (s) for the matrix Mn(t =∞) for β = p = 1/2 with the Wigner
surmise (red curve) corresponding to β = 1

2 , which behaves as sβ when s→ 0.

From the point of view of a cross-over between the standard Gaussian central limit theorem
for random variables and the Wigner central limit theorem for random matrices, we see that as
soon as the probability p for a non-commuting slice is positive, the asymptotic density is the
Wigner semi-circle, with a width of order

√
pN . A continuous cross-over therefore takes place

for p = 2c/N with c strictly positive and independent of N . When c = 0, ρ(λ) is a Gaussian of
rms 1, which indeed corresponds to the solution of Eq. (4.5) for α = 0. The SDE for the system
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(λi(t)) becomes

dλi = −1

2
λidt+

c

N

∑
j 6=i

dt

λi − λj
+ dbi, (4.11)

with the additional ordering constraint λ1(t) 6 . . . 6 λN (t) and the stationary joint pdf is
still given by (4.3) but with now a vanishing repulsion coefficient β = 2c/N . In order to
elicit the cross-over, we study Eq. (4.5) with α = 2c/N . The stationary differential equation
corresponding to (4.5) (note this time that all terms are of the same order and the second
derivative term is not negligible) can be integrated with respect to z again as:

cG2 + zG+
dG

dz
= −1, (4.12)

where the integration constant comes from the boundary condition G ∼ −1/z for z →∞. Note
that (4.12) can be recovered directly from the saddle point equation route: under the measure
P ∗ with β = 2c/N , the energy of a configuration of the λi’s can be expressed in term of the
continuous state density ρ, neglecting terms � 1, as:

E [ρ] =
1

2

∫
λ2ρ(λ)dλ− c

∫ ∫
ln(|λ− λ′|)ρ(λ)ρ(λ′)dλdλ′ .

The probability density P ∗ therefore rewrites in term of ρ as:

P ∗[ρ] = Z exp

(
−N

[
E [ρ] +

∫
ρ ln(ρ)

])
δ(

∫
ρ− 1) ,

where the entropy term, which is negligible when β = p is of order 1, is now of the same order
as the energy term (see [62] for a detailed discussion on the origin of the entropy term). We
now need to minimize the quantity E [ρ] +

∫
ρ ln(ρ) with respect to ρ. It is easy to see that the

unique minimizer ρc satisfies:∫
λρc(λ)

λ− z
dλ− 2c

∫ ∫
ρc(λ)ρc(λ

′)

(λ− z)(λ− λ′)
dλdλ′

+

∫
ρ′c(λ)

λ− z
dλ+ ν = 0

where ν is an integration constant. It is now straightforward to derive (4.12) from this last
equation by identifying each term and choosing the constant ν so as to have the correct boundary
condition for the Stieltjes transform of a probability measure. As expected physically, the
diffusion term in (4.12) corresponds exactly to the entropy contribution to the saddle-point.

Eq. (4.12) was studied in detail by Askey & Wimp [17] and Kerov [92] (see also [31]). Set
G(z) := u′(z)/cu(z) to obtain a second order equation on u:

u′′(z) + zu′(z) + cu(z) = 0 . (4.13)

It follows from the asymptotic behavior of G(z) that, for |z| → ∞,

u(z) ∼ A1

zc
. (4.14)

Eq. (4.13) can in turn be transformed with the change of function u(z) := e−z
2/4y(z) into a

Schrodinger equation on y(z):

y′′(z) + [c− 1

2
− 1

4
z2]y(z) = 0 . (4.15)

The solutions of (4.15) are known (see [83]) to write as y(z) = A2Dc−1(z) + A3D−c(iz) where
Dc−1, D−c are parabolic cylinder functions and where A2 and A3 are two constants. The general
solution for u therefore is u(z) = e−z

2/4(A2Dc−1(z) + A3D−c(iz)) and the correct asymptotic
behavior of u is fulfilled for A2 = 0. Now, one can recover the spectral density ρc(λ) associated
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to G by the classical inversion formula and various elegant tricks [106]. The final result for ρ(λ)
reads, for all c > 0:

ρc(λ) =
1√

2πΓ(1 + c)

1

|D−c(iλ)|2
; (4.16)

D−c(z) =
e−z

2/4

Γ(c)

∫ ∞
0

dxe−zx−
x2

2 xc−1.

Expression (4.16) was again checked with numerical simulations with very good agreement. The
integral representation for D−c(z) does not hold for c = 0, but the function D−c(iu) is still well
defined for all c ∈ (−1; 0] (see [17]). It is easy to check that ρ0(u) = e−u

2/2/
√

2π when c = 0, as
expected. When c→∞, the Wigner semi-circle law is recovered

ρc(u) ≈ 1

2πc

√
4c− u2 . (4.17)

Standard results [83] on D−c enable to find the tails of ρc:

ρc(u) ∼ u2ce−u
2/2 (|u| → ∞). (4.18)
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Figure 4.2: Density ρc(u) for c = 0, 1, 2, 3, 4, showing the progressive deformation of the Gaussian
towards Wigner’s semi-circle.

Let us return to (4.5) for β = α ∈ (0; 2). Interestingly, our method allows us to compute the
correction to the Wigner semicircle inside the support of the spectral density for large but finite
N due to the last diffusion term, which is usually neglected. Indeed one can solve as above the
stationary equation of (4.5) keeping every term. This leads to the following corrected spectral
density, valid for large but finite N :

ρ(λ) =

√
α√

2πΓ(1 + c)

1

|D−c(i
√
αλ)|2

, (4.19)

where α = 2/(2 − β) and c = βN/(2 − β). Note that this correction is valid only inside the
spectrum and does not describe the edge scaling behavior nor the Tracy-Widom tails.

The above discussion can also be formally extended to −1 6 c < 0, corresponding to a weakly
attracting Coulomb gas (also mentioned in [149]; see also [77] for an application). We conjecture
that the stationary density for large system is again given by the above Askey-Wimp-Kerov
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distributions ρc but for the parameter range c ∈ (−1; 0]. For c = −1, the stationary density
ρ−1 is a Dirac mass at 0. Beyond this level, the attraction is too strong and the gas completely
collapses on itself.

As a conclusion, we have provided here the first explicit construction of invariant β-ensembles
of random matrices, for arbitrary β 6 2. The stationary distribution for the eigenvectors is the
Haar probability measure on the orthogonal group if 0 < β 6 1, respectively unitary group
if 1 < β 6 2. We have found a natural scaling limit that allows one to interpolate smoothly
between the Gaussian distribution, relevant for sums of independent random variables, and the
Wigner semi-circle distribution, relevant for sums of free random matrices. The interpolating
limit distributions form a one parameter family that can be explicitly computed. The statistics of
the largest eigenvalue is also very interesting (and now well known for β > 0, see [67, 41, 42, 73]):
one should be able to interpolate smoothly, as a function of c, between the well-known Gumbel
distribution of extreme value statistics and the Tracy-Widom(β) distributions. Whether this
can be mapped into a generalized KPZ/Directed polymer problem remains to be seen.
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Chapter 5

A diffusive matrix model for
invariant β-ensembles

Résumé

Cet article est soumis dans le journal Electronic Journal of probability et est écrit en
collaboration avec Alice Guionnet. Nous définissons un nouveau modèle de diffusion
matricielle qui converge vers le mouvement Brownien de Dyson avec un paramètre β
quelconque appartenant à l’intervalle [0, 2]. En temps long, le modèle limite donne
une construction explicite de matrices aléatoires appartenant aux ensembles β qui
sont invariantes par conjugaison par des matrices orthogonales ou unitaires. Nous
décrivons aussi la dynamique des vecteurs propres du processus matriciel limite; nous
montrons que lorsque β < 1 et que deux valeurs propres collisionnent, les vecteurs
propres associés à ces deux valeurs propres fluctuent très fortement et finissent par
être distribués uniformément sur le sous-espace supplémentaire orthogonal du sous
espace engendré par les vecteurs propres associés aux autres valeurs propres.

Abstract

We define a new diffusive matrix model converging towards the β-Dyson Brownian
motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of ran-
dom matrices that is invariant under the orthogonal/unitary group. We also describe
the eigenvector dynamics of the limiting matrix process; we show that when β < 1
and that two eigenvalues collide, the eigenvectors of these two colliding eigenvalues
fluctuate very fast and take the uniform measure on the orthocomplement of the
eigenvectors of the remaining eigenvalues.

5.1 Introduction

It is well known that the law of the eigenvalues of the classical Gaussian matrix ensembles are
given by a Gibbs measure of a Coulomb gas interaction with inverse temperature β = 1 (resp.
2, resp. 4) in the symmetric (resp. Hermitian, resp. symplectic) cases;

dPβ(λ) =
1

Zβ

∏
i<j

|λi − λj |βe−
1
2

∑
λ2
i

∏
dλi .

Such measures are associated with symmetric Langevin dynamics, the so-called Dyson Brownian
motion, which describe the random motion of the eigenvalues of a symmetric (resp. Hermitian,
resp. symplectic) Brownian motion. They are given by the stochastic differential system

dλi(t) =
√

2dbi(t)− λi(t)dt+ β
∑
j 6=i

1

λi(t)− λj(t)
dt (5.1)

with iid Brownian motions (bi). These laws and dynamics have been intensively studied, and
both local and global behaviours of these eigenvalues have been analyzed precisely, starting from
the reference book of Mehta [114].
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More recently, the generalization of these distributions and dynamics to all β ≥ 0, the so-
called β-ensembles, was considered. As for β = 1, 2, 4, the Langevin dynamics converge to their
unique invariant Gibbs measure Pβ as times goes to infinity. Indeed, the stochastic differential
system under study is a set of Brownian motions in interaction according to a strictly convex
potential. Thus, one can then show by a standard coupling argument that two solutions driven
by the same Brownian motion but with different initial data will soon be very close to each
others. This entails the uniqueness of the invariant measure as well as the convergence to this
Gibbs measure. It turns out that the case β ∈ [0, 1) and the case β ∈ [1,∞) are quite different,
as in the first case the eigenvalues process can cross whereas in the second the repulsion is strong
enough so that the eigenvalues do not collide with probability one in finite time. However, the
diffusion was shown to be well defined, even for β < 1, by Cépa and Lépingle [54], at list once
reordered.

The goal of this article is to provide a natural interpretation of β-ensembles in terms of
random matrices for β ∈ [0, 2]. Dumitriu and Edelman [68] already proposed a tridiagonal matrix
with eigenvalues distributed according to the β-ensembles. However, this tridiagonal matrix
lacks the invariant property of the classical ensembles. Our construction has this property and
moreover is constructive as it is based on a dynamical scheme. It was proposed by JP Bouchaud,
and this article provides rigorous proofs of the results stated in [?]. The idea is to interpolate
between the Dyson Brownian motion and the standard Brownian motion by throwing a coin at
every infinitesimal time step to decide whether our matrix will evolve according to a Hermitian
Brownian motion (with probability p) or will keep the same eigenvectors but has eigenvalues
diffusing according to a Brownian motion. When the size of the infinitesimal time steps goes to
zero, we will prove that the dynamics of the eigenvalues of this matrix valued process converges
towards the β-Dyson Brownian motion with β = 2p. The same construction with a symmetric
Brownian motion leads to the same limit with β = p. This result is more precisely stated in
Theorem 5.2. We shall not consider the extension to the symplectic Brownian motion in this
paper, but it is clear that the same result holds with β = 4p. Our construction can be extended
to other matrix models such as Wishart matrices, Circular and Ginibre Gaussian Ensembles and
will lead to similar results.

We thus deduce from our construction that β-ensembles can be interpreted as an interpola-
tion between free convolution (obtained by adding a Hermitian Brownian motion) and standard
convolution (arising when the eigenvalues evolve following standard Brownian motions). It is
natural to wonder whether a notion of β-convolution could be more generally defined.

Moreover we shall study the eigenvectors of our matrix-valued process. In the case where
β ≥ 1, their dynamics is well known and is similar to the dynamics of the eigenvectors of the
Hermitian or Symplectic Brownian motions, see e.g. [15]. When β < 1 the question is to
determine what happens at a collision. It turns out that when we approach a collision, the
eigenvectors of the non-colliding eigenvalues converge to some orthogonal family B of d − 2
vectors whereas the eigenvectors of the colliding eigenvalues oscillate very fast and take the
uniform distribution on the ortho-complement of B, see Proposition 5.6.

5.2 Statement of the results

Let Hβd be the space of d×d symmetric (respectively Hermitian) matrices if β = 1 (resp. β = 2)

and Oβd be the space of d× d orthogonal (respectively unitary) matrices if β = 1 (resp. β = 2).

We consider the matrix-valued process defined as follows. Let γ be a positive real number
and Mβ

0 ∈ H
β
d with distinct eigenvalues λ1 < λ2 < · · · < λd. For each n ∈ N, we let (εnk)k∈N be

a sequence of i.i.d {0, 1}-valued Bernoulli variables with mean p in the sense that

P[εnk = 1] = p = 1− P[εnk = 0] .

Furthermore, for t > 0, we set εnt := εn[nt].

In the following, the process (Hβ(t))t > 0 will denote a symmetric Brownian motion, i.e. a
process with values in the set of d × d symmetric matrices (respectively Hermitian if β = 2)

with entries Hβ
ij(t), t > 0, i 6 j constructed via independent real valued Brownian motions
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(Bij , B̃ij , 1 6 i 6 j 6 d) by

Hβ
ij(t) =

{
Bij(t) + i(β − 1)B̃ij(t) if i < j√

2Bii(t) otherwise
(5.2)

Definition 5.1. For each n ∈ N, we define a diffusive matrix process (Mβ
n (t))t > 0 such that

Mβ
n (0) := Mβ

0 and for t > 0

dMβ
n (t) = −γMβ

n (t)dt+ εnt dH
β
t + (1− εnt )dYt (5.3)

where (Hβ
t )t > 0 is a d× d symmetric (resp. Hermitian) as defined in (5.2) whereas

dYt =
√

2

d∑
i=1

χni

(
[nt]

n

)
dBi

t

with i.i.d Brownian motions (Bi
t)t > 0 and where χni ([nt]/n) is the spectral projector associated

to the i-th eigenvalue λi([nt]/n) of the matrix Mβ
n ([nt]/n) if the eigenvalues are numbered as

λ1([nt]/n) < λ2([nt]/n) < · · · < λd([nt]/n) (we shall see that the above is possible as the eigen-
values are almost surely distinct at the given times {k/n, k ∈ N}).

As for all t, the matrix Mβ
n (t) is in the space Hβd , we know that it can be decomposed as

Mβ
n (t) = Oβn(t)∆β

n(t)Oβn(t)∗

where ∆β
n(t) is the diagonal matrix whose diagonal is the vector of the ordered eigenvalues of

Mβ
n (t) and where Oβn(t) is in the space Oβd for all t ∈ R+. We also introduce a matrix Oβ(0)

to be the initial orthogonal matrix (resp. unitary if β = 2) such that Mβ
0 (t) = Oβ(0)∆0O

β(0)
∗

where ∆0 := diag(λ1, . . . , λd).

The evolution of the eigenvalues of Mβ
n (t) during the time interval [k/n; (k + 1)/n] is given

by independent Brownian motions if εnk = 0 and by Dyson Brownian motions if εnk = 1.

The eigenvectors of Mβ
n (t) do not evolve on intervals [k/n; (k + 1)/n] such that εnk = 0 and

evolve with the classical diffusion of the eigenvectors of Dyson Brownian motions if εnk = 1 (see
[15] for a review on Dyson Brownian motion).

Our main theorems describe the asymptotic properties of the ordered eigenvalues of the
matrix Mβ

n (t) denoted in the following as

(λn1 (t) 6 λn2 (t) 6 · · · 6 λnd (t)) (5.4)

and also those of the matrix Oβn(t) defined above, as n goes to infinity.
Let (bit)t > 0, i ∈ {1, . . . , d} be a family of independent Brownian motions on R. Recall that

Cépa and Lépingle showed in [54] the uniqueness and existence of the strong solution to the
stochastic differential system

dλi(t) = −γλi(t)dt+
√

2dbit + βp
∑
j 6=i

1

λi(t)− λj(t)
dt (5.5)

starting from λ(0) = (λ1 6 λ2 6 · · · 6 λd) and such that for all t > 0

λ1(t) ≤ λ2(t) ≤ · · · ≤ λd(t) a.s. (5.6)

For the scaling limit of the ordered eigenvalues, we shall prove that

Theorem 5.2. Let Mβ
0 be a symmetric (resp. Hermitian) matrix if β = 1 (resp. β = 2)

with distinct eigenvalues λ1 < λ2 < · · · < λd and (Mβ
n (t))t≥0 be the matrix process defined in

Definition 5.1. Let λn1 (t) 6 . . . 6 λnd (t) be the ordered eigenvalues of the matrix Mβ
n (t). Let

also (λ1(t), . . . , λd(t))t > 0 be the unique strong solution of (5.5) with initial conditions in t = 0
given by (λ1, λ2, . . . , λd).

Then, for any T <∞, the process (λn1 (t), . . . , λnd (t))t∈[0,T ] converges in law as n goes to infin-

ity towards the process (λ1(t), . . . , λd(t))t∈[0,T ] in the space of continuous functions C([0, T ],Rd)
embedded with the uniform topology.
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In the case where βp > 1, the eigenvalues almost never collide and we will see (see section
5.6.1) in this case that it is easy to construct a coupling of λ and λn so that λn almost surely
converges towards λ.

We shall also describe the scaling limit of the matrix Oβn(t) (the columns of Oβn(t) are the

eigenvectors of Mβ
n (t)) when n tends to infinity, at least until the first collision time for the

eigenvalues, i.e. until the time T1 defined as T1 := inf{t > 0 : ∃i ∈ {2, . . . , d}, λi(t) = λi−1(t)}.
Let wβij(t), 1 6 i < j 6 d be a family of real or complex (whether β = 1 or 2) standard

Brownian motions (i.e. wβij(t) = B1
ij(t) +

√
−1 (β − 1)B2

ij(t) where the B1
ij , B

2
ij are standard

Brownian motions on R), independent of the family of Brownian motions (bit)t > 0, i ∈ {1, . . . , d}.
For i < j, set in addition wβji(t) := w̄βij(t) and define the skew Hermitian matrix (i.e. such that

Rβ = −(Rβ)∗) by setting for i 6= j,

dRβij(t) =
dwβij(t)

λi(t)− λj(t)
, Rβij(0) = 0 .

Then, with λi(t), 0 6 t 6 T1, i ∈ {1, . . . , d} being the solution of (5.5) until its first collision
time, there exists a unique strong solution (Oβ(t))0 6 t 6 T1 to the stochastic differential equation

dOβ(t) =
√
pOβ(t)dRβ(t)− p

2
Oβ(t)d〈(Rβ)∗, Rβ〉t (5.7)

This solution exists and is unique since it is a linear equation in Oβ and Rβ is a well defined
martingale at least until time T1. It can be shown as in [15, Lemma 4.3.4] that Oβ(t) is indeed
an orthogonal (resp. unitary if β = 2) matrix for all t ∈ [0;T1].

We mention at this point that the matrix Oβn(t) is not uniquely defined, even when we impose
the diagonal matrix to have a non-decreasing diagonal λn1 (t) 6 . . . 6 λn(t). Indeed, the matrix

Oβn(t) can be replaced, for example, by −Oβn(t) (other possible matrices exist). The following
proposition overcomes this difficulty.

Define Tn(1) to be the first collision time of the process (λn1 (t), . . . , λnd (t)).

Proposition 5.3. There exists a continuous process (Oβn(t))0 6 t 6 T1 in Oβd with a uniquely
defined law and such that for each t ∈ [0;Tn(1)], we have

Oβn(t)∆β
n(t)Oβn(t)∗

law
= Mβ

n (t) ,

where ∆β
n(t) is the diagonal matrix of the ordered (as in (5.4)) eigenvalues of Mβ

n (t).

Proposition 5.3 is proved in Section 5.7. We are now ready to state our main result for the
convergence in law of the matrix Oβn(t).

Theorem 5.4. Let η and T be positive real numbers. Then, conditionally on the sigma-algebra
generated by (λn1 (s), . . . , λnd (s)),

0 6 s 6 T1∧T , the matrix process (Oβn(t))0 6 t 6 (T1−η)∧T introduced in Proposition 5.3 converges

in law in the space of continuous functions C([0;T ],Oβd ) towards the unique solution of the
stochastic differential equation (5.7).

Theorem 5.4 gives a convergence result as n goes to infinity for the eigenvectors of the matrix
process (Mβ

n (t)) but only until the first collision time T1. If pβ > 1, the result is complete as one
can show (see [15] and section 5.6.1) that the process (λ1(t), . . . , λd(t)) is a non colliding process
(i.e. almost surely T1 =∞). However, if pβ < 1, it would be interesting to have a convergence
on all compact sets [0;T ] even after collisions occurred. Our next results describe the behavior
of the columns of the matrix Oβ(t) denoted as (φ1(t), . . . , φd(t)) when t→ T1 with t < T1.

We first need to describe the behavior of the eigenvalues (λ1(t), . . . , λd(t)) in the left vicinity
of T1.

Proposition 5.5. If pβ < 1 then almost surely T1 < ∞ and there exists a unique index i∗ ∈
{2, . . . , d} such that λi∗(T1) = λi∗−1(T1). While we have, for all t > 0 and almost surely,∫ t

0

ds

(λi∗ − λi∗−1)(s)
< +∞ ,
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the following divergence occurs almost surely∫ T1

0

ds

(λi∗ − λi∗−1)2(s)
= +∞ . (5.8)

The first part of Proposition 5.5 is proved in subsections 5.3.1 and 5.3.2, the last statement
is proved in 5.7. Hence equality (5.8) implies the existence of diverging integrals in the SDE
(5.7). Because of this singularity, we will show

Proposition 5.6. Conditionally on (λ1(t), . . . , λd(t)), 0 6 t 6 T1, we have:

1. For all j 6= i∗, i∗− 1, the eigenvector φj(t) for the eigenvalue λj(t) converges almost surely

to a vector denoted φ̃j as t grows to T1. The family {φ̃j , j 6= i∗, i∗ − 1} is an orthonormal
family of Rd (respectively Cd) if β = 1 (resp. β = 2). We denote by V the corresponding
generated subspace and by W its two dimensional orthogonal complementary in Rd (resp.
Cd).

2. The family {φi∗(t), φi∗−1(t)} converges weakly to the uniform law on the orthonormal basis
of W as t grows to T1.

The paper is organized as follows. In Section 5.3, we review and establish some new properties
for the limiting eigenvalues process (λ1(t), . . . , λd(t)) defined in 5.5 that will be useful later in
our proof of Theorems 5.2 and 5.4. We also introduce, in subsection 5.3.4, a process with fewer
collisions that approximates the limiting eigenvalue process. In fact this gives a new construction
of the limiting eigenvalues process already constructed in [54], perhaps simpler and more intuitive
using only standard Itô’s calculus. We give some useful estimates on the processes of eigenvalues
and matrix entries of Mβ

n in Section 5.4. In Section 5.5, we prove the almost sure convergence
of the process (λn1 , . . . , λ

n
d ) to the limiting eigenvalues process (λ1, . . . , λd) until the first hitting

time of two particles with a coupling argument. In Section 5.6, we finish the proof of Theorem
5.2 by approximating in the same way the process (λn1 , . . . , λ

n
d ) with the same idea of separating

the particles which collide by a distance δ > 0. At this point, it suffices to apply that the result
of Section 5.5 to show that the two approximating processes are close in the large n limit. In
Section 5.7, we prove Theorem 5.4, the last statement of Proposition 5.5 and Propositions 5.3
and 5.6.

5.3 Properties of the limiting eigenvalues process

In this section we shall study the unique strong solution of (5.5) introduced by Cépa and Lépingle
in [54]. We first derive some boundedness and smoothness properties. In view of proving the
convergence of λn towards this process, and in particular to deal with possible collisions, we
construct it for pβ < 1 as the limit of a process which is defined similarly except when two
particles hit, when we separate them by a (small) positive distance, see Definition 5.12.

5.3.1 Regularity properties of the limiting process

Lemma 5.7. Let λ = (λ1 6 λ2 6 · · · 6 λd). Then there exists a unique strong solution of
(5.5). Moreover, it satisfies

• For all T <∞, there exists α,M0 > 0 finite so that for M >M0

P
[

max
1≤i≤d

sup
0 6 t 6 T

|λi(t)| >M
]
6 e−α(M−M0)2

. (5.9)

• For all T <∞, all i, j ∈ {1, . . . , d}, i 6= j,

E
[∫ T

0

ds

|λi(s)− λj(s)|

]
<∞ .

Furthermore, there exists α,M0 > 0 finite so that for M >M0 and i 6= j, we have

P
[∫ T

0

ds

|λi(s)− λj(s)|
>M

]
6 e−α(M−M0)2

.
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Proof. The existence and unicity of the strong solution is [54, Proposition 3.2].

For the first point, we choose a twice continuously differentiable symmetric function φ,
increasing on R+, which approximates smoothly |x| in the neighborhood of the origin so that
φ(0) = 0, xφ′(x) ≥ 0, |φ′(x)| ≤ c and |φ′′(x)| ≤ c, whereas |φ(x)| ≥ |x| × |x| ∧ 1 (take e.g
φ(x) = x2(1 + x2)−1/2) to obtain by Itô’s Lemma

d(φ(λi(t))) = −γλi(t)φ′(λi(t))dt+
√

2φ′(λi(t))db
i
t

+ pβ
∑
j 6=i

φ′(λi(t))
dt

λi(t)− λj(t)
+ φ′′(λi(t))dt.

For all t, we have λi(t)φ
′(λi(t)) > 0, and also

d∑
i=1

∑
j 6=i

φ′(λi(t))

λi(t)− λj(t)
=

1

2

d∑
i=1

∑
j 6=i

φ′(λi(t))− φ′(λj(t))
λi(t)− λj(t)

6
d(d− 1)

2
|| φ′′ ||∞ .

We deduce from the above arguments that there exists C > 0 such that

d∑
i=1

φ(λi(t)) 6
√

2
d∑
i=1

∫ t

0
φ′(λi(s))db

i
s + Ct+

d∑
i=1

φ(λi) .

By usual martingales inequality, as φ′ is uniformly bounded we know that, see e.g. [15, Corollary
H.13],

P

[
sup

0≤t≤T
|

d∑
i=1

∫ t

0
φ′(λi(t))dbi(t) |≥M

]
6 exp(−M

2

2cT
)

and therefore using the fact that |φ(x)| ≥ |x| × |x| ∧ 1, we deduce the first point with M0 =
|
∑d

i=1 φ(λi)|+ CT and α = 1/2CT .

For the second point, we first remark as in the proof of [54, Lemma 3.5] that for all i < d

pβ

∫ T

0

dt

| λd(t)− λi(t) |
6 pβ

∑
j<d

∫ T

0

dt

| λd(t)− λj(t) |

= pβ
∑
j<d

∫ T

0

dt

λd(t)− λj(t)

= λd(T )− λd(0)−
√

2bdT + γ

∫ T

0
λd(t)dt .

so that the first point gives the claim fo j = d. We then continue recursively.

5.3.2 Estimates on collisions

To obtain regularity estimates on the process λ, we need to control the probability that more
than two particles are close together. We shall prove, building on an idea from Cépa and Lépingle
[55], that

Lemma 5.8. For r ≥ 3 and I ⊂ {1, . . . , d} with |I| = r, set

SIt =
∑
i,j∈I

(λi(t)− λj(t))2 .

We let, for ε > 0,

τ rε := inf{t ≥ 0 : min
|I|=r

SIt ≤ ε}

Then, for any T > 0 and η > 0, for any r ≥ 3 there exists εr > 0 which only depends on
{SI0 , |I| ≥ 3} so that

P
(
τ rεr ≤ T

)
≤ η .
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Proof. The proof is done by induction over r and we start with the case r = d, I = {1, . . . , d}.
Then, S verifies the following SDE (see e.g. [55, Theorem 1]):

dSt = −2γStdt+ 4
√
d
√
Stdβt + adt

where βt is a a standard brownian motion and a = 2d(d − 1)(2 + pβd). The square root of
ρt :=

√
St verifies the SDE

dρt = −γρtdt+ 2
√
d dβt + (

a

2
− 2d)

dt

ρt
.

In particular, one can check that, if α = 2− a
4d = 2− (d− 1)(1 + pβd/2)

dραt = −αγραt dt+ 2
√
dαρα−1

t dβt.

Thus, as α < 0 for d ≥ 3, for any ε > 0, ρα−1
t∧τdε

is bounded so that
∫ .

0 ρ
α−1
s∧τdε

dβs is a martingale

and therefore

E[ραT∧τdε
] ≤ ρα0 − αγ

∫ T

0
E[ραt∧τdε

]dt

By Gronwall’s lemma, since supt E[ρα
t∧τdε

] is finite, we deduce that

E[ραT∧τdε
] ≤ ρα0 (1− 1

αγ
)e−αγT +

ρα0
αγ

.

As a consequence, since α < 0, we have

εα/2P(τdε ≤ T ) 6 E[S
α/2

T∧τdε
] = E[ραT∧τdε

] 6 ρα0 (1− 1

αγ
)e−αγT +

ρα0
αγ

.

We can take ε small enough to obtain the claim for r = d.
We next assume that we have proved the claim for u > r + 1 and choose εr+1 so that the

probability that the hitting time is smaller than T is smaller than η/2. We can choose I to be
connected without loss of generality as the λi are ordered. We let R = min{τ Iε , τ r+1

εr+1
} when τ Iε

is the first time where SI reaches ε. Again following [55], we have

logSIT∧R = logSI0 − 2γT + 4
√

2
∑
k,j∈I

∫ T∧R

0

λj(t)− λk(t)
SIt

dbjt

+2βp
∑
j,k∈I

∑
l /∈I

∫ T∧R

0

λj(t)− λk(t)
SIt

[
1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt

+4r[(r − 1)(
pβ

2
r + 1)− 2]

∫ T∧R

0

dt

SIt
(5.10)

Note that Mt = 4
√

2
∑

k,j∈I
∫ t∧R

0
λj(s)−λk(s)

SIs
dbjs is a martingale with bracket At = 16r

∫ t∧R
0

ds
SIs

.

For r ≥ 3, 4r[(r − 1)(rpβ/2 + 1)− 2] ≥ 2pβ > 0 and therefore we deduce

E[logSIT∧R] > logSI0 − 2γT + 2βpE
[∫ T∧R

0

dt

SIt

]

+ E

2βp
∑
j,k∈I

∑
l /∈I

∫ T∧R

0

λj(t)− λk(t)
SIt

[
1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt



For j, k ∈ I, we cut the last integral over times

Ωj,k = {t ≤ T ∧R :
∑
l /∈I

1

λj(t)− λl(t)
1

λk(t)− λl(t)
≤ 1

SIt
}
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so that

−
∑
j,k∈I

∫
Ωj,k

(λj(t)− λk(t))2

SIt

∑
l /∈I

[
1

(λj(t)− λl(t))(λk(t)− λl(t))
]dt ≥ −

∫ T∧R

0

dt

SIt

This term will therefore be compensated by the third term in (5.10). For the remaining term, if
l /∈ I is such that mini∈I |λl − λi| ≤ mini∈I |λk − λi| for all k /∈ I then if t ∈ Ωc

j,k and i∗ ∈ I is so
that mini∈I |λl − λi| = |λl − λi∗ |, we get

d− r
(λl(t)− λi∗(t))2

≥ 1

SIt

and therefore on τ r+1
εr+1
≥ t,

εr+1 ≤ SIt +
∑
j∈I

(λj(t)− λl(t))2 ≤ SIt + 2r(λi∗(t)− λl(t))2 + 2SIt ≤ (3 + 2r(d− r))SIt .

As a consequence, we have the bound for all j, k ∈ I, all t ∈ Ωc
j,k, t ≤ R,

λj(t)− λk(t)
SIt

> − 1/
√
SIt > −

√
3 + 2r(d− r)/√εr+1

which entails the existence of a finite constant c so that∑
j,k∈I

∑
l /∈I

∫
Ωcj,k

λj(t)− λk(t)
SIt

[
1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt

> − c
√
εr+1

∑
i∈I

∑
l /∈I

∫ T

0

dt

| λi(t)− λl(t) |
.

Using Lemma 5.7 we hence conclude that there exists a universal finite constant c′ depending
only on T so that

E[logSIT∧R] > logSI0 − 2γT − c′
√
εr+1

. (5.11)

On the other hand, we have

E[logSIT∧R] 6 P(τ Iε ≤ T ) log(ε) + E[ sup
0≤t≤T

logSIt ]

where the last term is bounded above by (5.9). We deduce that

P(τ Iε ≤ T ) ≤ | logSI0 |
| log(ε)|

+
c′′

√
εr+1| log(ε)|

+
c

| log(ε) |
+

2γT

| log(ε) |
.

We finally choose ε small enough so that the right hand side is smaller than η/2 to conclude.
We next show that not only collisions of three particles are rare but also two collisions of

different particles rarely happen around the same time.

Lemma 5.9. For all i, j such that i+ 1 < j, set

τ ijε′ = inf{t > 0 : (λi(t)− λi−1(t))2 + (λj(t)− λj−1(t))2 6 ε′}.

Then, for any T > 0 and η > 0, there exists ε′ such that

P
[
τ ijε′ 6 T

]
6 η.

Proof. Using Itô’s formula, it is easy to see that

d
(
(λi − λi−1)2 + (λj − λj−1)2

)
= 8(1 + pβ)dt

− 2γ
[
(λi − λi−1)2 + (λj − λj−1)2

]
dt

+ 2
√

2
[
(λi − λi−1)(dbit − dbi−1

t ) + (λj − λj−1)(dbjt − db
j−1
t )

]
− 2pβ

 ∑
k 6=i−1,i

(λi − λi−1)2

(λi − λk)(λi−1 − λk)
+

∑
k 6=j−1,j

(λj − λj−1)2

(λj − λk)(λj−1 − λk)

 dt .
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Set Xt := (λi(t)− λi−1(t))2 + (λj(t)− λj−1(t))2 and note that the quadratic variation of∫ t

0

(λi − λi−1)(dbis − dbi−1
s ) + (λj − λj−1)(dbjs − dbj−1

s )√
Xs

is 2t. Thus there exists a standard Brownian motion B so that

dXt = 8(1 + pβ)dt− 2γXtdt+ 4
√
XtdBt

− 2pβ

 ∑
k 6=i−1,i

(λi − λi−1)2

(λi − λk)(λi−1 − λk)
+

∑
k 6=j−1,j

(λj − λj−1)2

(λj − λk)(λj−1 − λk)

 dt .
Note that, by the previous Lemma 5.8, we can choose ε such that

P[τ3
ε < T ] 6

η

2
. (5.12)

Moreover, for all t 6 τ3
ε such that Xt 6 ε/4, we have for all k 6= i− 1, i,

(λi − λk)(λi−1 − λk)(t) >
ε

8
.

The same property holds for j. To finish the proof, we will use the fact that the sum in the last
term is bounded for all t 6 τ3

ε such that Xt 6 ε/4. We thus need to introduce the process Yt
defined by Yt = min(Xt,

ε
4). Let us set f(x) := min(x, ε/4)−pβ. Note that f is a convex function

R+ → R+ and that the left-hand derivative of f is given by

f ′−(x) = −pβx−pβ−11{x 6 ε
4
}.

Its second derivative in the sense of distributions is the positive measure

f ′′(dx) = pβ
(ε

4

)−pβ−1
δ ε

4
+
pβ(pβ + 1)

xpβ+2
1{x 6 ε

4
} dx .

Thus, by Itô-Tanaka formula, see e.g. [91, Theorem 6.22], we have

Y −pβt = Y −pβ0 − pβ
∫ t

0
X−pβ−1
s 1{Xs 6 ε

4
}dXs

+
1

2

(
pβ
(ε

4

)−pβ−1
L
ε
4
t (X) +

∫ ε
4

0

pβ(pβ + 1)

xpβ+2
Lxt (X)dx

)
,

where Lxt (X) is the local time of X in x. By definition we have∫ ε
4

0

pβ(pβ + 1)

xpβ+2
Lxt (X)dx =

∫ t

0

pβ(pβ + 1)

Xpβ+2
s

1{Xs 6 ε
4
}d〈X,X〉s,

and thus, we obtain

Y −pβt = Y −pβ0 +

∫ t

0
1{Xs 6 ε

4
}

(
pβγY −pβs dt+ 4Y

−pβ− 1
2

s dBs

)
(5.13)

+ 2p2β2

∫ t

0
Y −pβ−1
s

[ ∑
k 6=i−1,i

((λi − λi−1)(s))2

((λi − λk)(s))((λi−1 − λk)(s))

+
∑

k 6=j−1,j

((λj − λj−1)(s))2

((λj − λk)(s))((λj−1 − λk)(s))

]
1Xs≤ε/4ds+

1

2
pβ
(ε

4

)−pβ−1
L
ε
4
t (X) .

The definition of local time implies that, almost surely, Lxt (X) 6 t. We thus deduce from (5.13)
that

E
[
Y −pβ
T∧τ ij

ε′ ∧τ
3
ε

]
6 Y −pβ0 +

1

2
pβ
(ε

4

)−pβ−1
T + C

∫ T

0
E
[
Y −pβ
t∧τ ij

ε′

]
dt .
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with C = (pβγ + 4p2β2(d− 1)8
ε ). Gronwall’s Lemma implies that

E
[
Y −pβ
T∧τ ij

ε′ ∧τ
3
ε

]
6

(
Y −pβ0 +

1

2
pβ
(ε

4

)−pβ−1
T

)
exp(CT ). (5.14)

If ε′ < ε/4, equation (5.14) implies that

(ε′)−pβP
[
τ ijε′ 6 T ∧ τ

3
ε

]
6 Y −pβ0 exp(CT ), (5.15)

Taking ε′ small enough gives the result with (5.12).
As a direct consequence, we deduce the uniqueness of the i∗ of Proposition 5.5.

Lemma 5.10. With the same notations as in the previous Lemma 5.9, we have almost surely

inf
(k,`):k+1<`

τk`0 = +∞.

In particular, this gives the unicity of the i∗ in Proposition 5.5.

Proof. It is enough to write that for all ε > 0

P
(

inf
k+1<`

τk`0 ≤ T
)
≤ d2{max

k+1<`
P
(
τk`0 ≤ T ∧ τ3

ε

)
+ P

(
τ3
ε ≤ T

)
}

and deduce from Lemmas 5.9 and 5.8 that the right hand side is as small as wished when ε goes
to zero.

5.3.3 Smoothness properties of the limiting process

Lemma 5.11. We have the following smoothness properties:

• For all T < ∞ and ε > 0, there exists C, c′, c finite positive constants so that for all δ, η
positive real numbers so that η ≤ c′(ε2 ∧ δε) we have

P

max
1≤i≤d

sup
s≤t≤(s+η)∧τ3

ε
0 6 t 6 T

|λi(s)− λi(t)| ≥ δ

 ≤ C

η

(
e−cδ

4/2η + e−cε
4/η
)
. (5.16)

• For all T < ∞ and ε > 0, there exists C, c′, c finite positive constants so that for all δ, η
positive real numbers so that η ≤ c′(ε2 ∧ δε) we have

P

max
i 6=j

sup
s≤t≤(s+η)∧τ3

ε
0 6 t 6 T

∫ t

s

du

|λi(u)− λj(u)|
≥ δ

 ≤ C

η

(
e−cδ

4/2η + e−cε
4/η
)
. (5.17)

Proof. Let us first fix s ∈ [0, T ] and set I = {i ∈ {2, . . . , d} : |λi(s) − λi−1(s)| 6 ε/3} and
note that on the event {s 6 τ3

ε }, the connected subsets of I contain at most one element. Let
Tε = inf{t ≥ s : infi/∈I |λi(t)−λi−1(t)| 6 ε/4}. The continuity of the λi implies that Tε is almost
surely strictly positive.

If i 6∈ I ∪ {I − 1}, then we have, for t ∈ [s; (s+ η) ∧ τ3
ε ∧ Tε]

|λi(t)− λi(s)| 6 γ
∫ t

s
|λi(u)|du+

√
2|bit − bis|+ pβ

∫ t

s

∑
j 6=i

du

|λi(u)− λj(u)|

6 γ
∫ t

s
|λi(u)|du+

√
2|bit − bis|+ 4pβ(d− 1)

t− s
ε

.

Using (5.9) and [15, Corollary H.13], it is easy to deduce that there exists a constant c > 0 such
that for η < εδ/(8pβ(d− 1))

P

[
max

i 6∈I∪{I−1}
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|λi(t)− λi(s)| > δ

]
6 cde−

δ2

2η . (5.18)
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Now, if i ∈ I, with the same argument as for (5.18) (the drift term in the SDE satisfied by
λi + λi−1 is also bounded), we can show that there exists a constant c > 0 such that

P

[
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|(λi + λi−1)(t)− (λi + λi−1)(s)| > δ

]
6 ce−c

δ2

2η . (5.19)

On the other hand, the process xi(t) := (λi − λi−1)(t) verifies

dx2
i (t) = 4(1 + pβ)dt− γx2

i (t)dt+ 2xi(t)(db
i
t − dbi−1

t )

− 2pβ
∑

k 6=j−1,j

(λi(t)− λi−1(t))2

(λi(t)− λk(t))(λi−1(t)− λk(t))
dt .

The denominator in the last term of the above r.h.s is bounded below on the interval t ∈
[s; (s + η) ∧ τ3

ε ∧ Tε] by 2pβ(d − 2)1
ε . Thus, using again (5.9) and [15, Corollary H.13], we can

show that for δ > cη/ε,

P

[
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|xi(t)− xi(s)| >
√
δ

]
≤ P

[
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|x2
i (t)− x2

i (s)| > δ

]
6 ce−c

δ2

2η

(5.20)
where the first inequality is due to the fact that xi is non-negative. Using (5.19) and (5.20) gives
for η < δε/c

P

[
max

i∈I∪{I−1}
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|λi(t)− λi(s)| > δ

]
6 2cde

−c δ
4

2η .

Thus, with (5.18), we deduce that for η < δε/c

P

[
max
i

sup
t∈[s;(s+η)∧τ3

ε∧Tε]
|λi(t)− λi(s)| > δ

]
6 2cde

−c δ
4

2η .

In particular, there exists c′ > 0 so that if ε2 > cη,

P
[
Tε < (s+ η) ∧ τ3

ε

]
≤ P

[
max
i

sup
s≤t≤(s+η)∧Tε∧τ3

ε

|λi(t)− λi(s)| > 5ε/12

]
≤ 4cdT

η
e−c

′ε4/2η ,

which is as small as wished provided η is chosen small enough. This allows to remove the
stopping time and get for any fixed s < T , and δ > cη/ε

P

[
max
i

sup
s≤t≤(s+η)∧τ3

ε

|λi(t)− λi(s)| > δ

]
≤ 2cde−cδ

4/2η + 2dce−c
′ε4/2η .

The uniform estimate on s is obtained as usual by taking s in a grid with mesh η/2 up to divise
δ by two and to multiply the probability by 2T/η. Thus we find constant c, c′, and C so that if
η ≤ c(ε2 ∧ δε) we have

P

max
i

sup
s≤t≤(s+η)∧τ3

ε
0≤s,t≤T

|λi(t)− λi(s)| > δ

 ≤ CT

η

(
e−cδ

4/2η + e−c
′ε4/η

)
.

The second control is a direct consequence of the first as we can first consider the cas j = d to
deduce that for i < d

|
∫ t

s

du

λd(u)− λi(u)
| ≤ |λd(t)− λd(s)|+

√
2|bd(t)− bd(s)|

where the right hand side is continuous. We then consider recursively the other indices.
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5.3.4 Approximation by less colliding processes

When pβ > 1, it is well known [15, Lemma 4.3.3] that the process λ has almost surely no
collision. In this case, the singularity of the drift which defines the SDE is not really important
as it is almost always avoided. In the case pβ < 1, we know that collisions occur and in fact
can occur as much as for a Bessel process with small parameter. The singularity of the drift
becomes important, in particular when we will show the convergence in law of the process of
the eigenvalues λn towards λ. To this end, we show that λ can be approximated by a process
which does not spend too much time in collisions.

For δ > 0, we define a new process (λδi (t))t > 0 as follows.

Definition 5.12. Let T1 := inf{t > 0 : ∃i 6= j, λi(t) = λj(t)} and for all t < T1, set λδi (t) :=
λi(t). For t > T1, we define the process recursively by setting for all ` > 2, λδi (T

δ
` ) := λδi (T

δ
` −)+iδ

and for t > T δ` , the process λδi (t) is defined up to time T δ`+1 := inf{t > T δ` : ∃i 6= j, λδi (t) = λδj(t)}
as the unique strong solution of the system

dλδi (t) = −γλδi (t)dt+
√

2dbit + pβ
∑
j 6=i

dt

λδi (t)− λδj(t)
. (5.21)

The main result of this section is that

Theorem 5.13. Construct the process λ with the same Brownian motion b. Then, for any time
T > 0, any ξ ∈ (0, pβ/4)

lim
δ↓0

P

(
sup

0≤t≤T
max
1≤i≤d

|λi(t)− λδi (t)| ≤ δξ
)

= 1 .

The theorem is a direct consequence of the following lemma and proposition.

Lemma 5.14. Let δ > 0. Construct the process λ with the same Brownian motion b than λδ.
There exists a constant c > 0 such that, almost surely, for all ` ∈ N

max
1 6 i 6 d

sup
0 6 t 6 T δ`

|λδi (t)− λi(t)| 6 cδ` .

To finish the proof it is enough to show that T δ` goes to infinity for ` � 1/δ. This is the
content of the next proposition.

Proposition 5.15. Let T < ∞, 0 < ξ < pβ/4 and L = [1/δ1−ξ]. Then the probability
P
[
T δL 6 T

]
vanishes when δ goes to zero.

Proof of Lemma 5.14. We proceed by induction over ` to show that, for each `,

sup
0 6 t 6 T δ`

(
d∑
i=1

(λδi − λi)2(t)

)1/2

6 cδ`

with c = (
∑d

i=1 i
2 = d(d+ 1)(2d+ 1)/6)

1
2 .

• We treat the case ` = 1. By definition of the processes, λδ = λ on [0, T δ1 ). At time t = T δ1 ,
the separation procedure implies that

d∑
i=1

(λδi − λi)2(T δ1 ) =
d∑
i=1

((λδi − λi)(T δ1−) + iδ)2 = c2δ2 .

The property is true for ` = 1.
• Suppose it is true for `. For t ∈ [T δ` , T

δ
`+1), since λδ and λ are driven by the same Brownian

motion, we get

d
d∑
i=1

(λδi (t)− λi(t))2 = −2γ
d∑
i=1

(λδi (t)− λi(t))2dt

+ 2pβ
d∑
i=1

∑
j 6=i

(λδi (t)− λi(t))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)
dt .
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Observe that

d∑
i=1

∑
j 6=i

(λδi (t)− λi(t))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)
(5.22)

=
1

2

d∑
i=1

∑
j 6=i

(λδi (t)− λδj(t)− (λi(t)− λj(t)))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)

=
1

2

d∑
i=1

∑
j 6=i

(
λδi (t)− λδj(t)− (λi(t)− λj(t))

)2 1

(λδi (t)− λδj(t))(λi(t)− λj(t))

6 0

as the (λi)1≤i≤d and the (λδi )1≤i≤d are ordered. Thus,

sup
t∈[T δ` ,T

δ
`+1)

d∑
i=1

(λδi (t)− λi(t))2 6
d∑
i=1

(λδi (T
δ
` )− λi(T δ` ))2. (5.23)

In addition, because of the separation procedure at time T δ`+1, we have(
d∑
i=1

(λδi − λi)2(T δ`+1)

)1/2

=

(
d∑
i=1

(
(λδi − λi)(T δ`+1−) + iδ

)2
)1/2

6

(
d∑
i=1

(λδi − λi)2(T δ`+1−)

)1/2

+ δc 6 δ(`+ 1)c ,

where we used the induction hypothesis in the last line. The proof is thus complete.

Proof of Proposition 5.15. In the case pβ ≥ 1, it is well known [15, p. 252] that T1

is almost surely infinite and therefore the proposition is trivial. We hence restrict ourselves to
pβ ≤ 1. Let η > 0. Let us define the stopping times

τ3,δ
ε := inf{t > 0 : min

|I|=3
SI,δt 6 ε} ,

τ2,δ
ε := inf{t > 0 : min

1 6 i,j 6 d
((λδi − λδi−1)2 + (λδj − λδj−1)2)(t) 6 ε},

where SI,δt :=
∑

i,j∈I(λ
δ
i − λδj)2(t). Set also τ δε := τ2,δ

ε ∧ τ3,δ
ε . We know from Lemmas 5.8 and 5.9

that we can choose ε small enough so that

P
[
τ3

2ε ∧ τ2
2ε 6 T

]
6 η.

The number ε being fixed, it is then straightforward to see from Lemma 5.14 that there exists
δ0 small enough so that for all δ 6 δ0, we have

P
[
τ δε 6 T

]
6 η.

Now, we have

P
[
T δL 6 T

]
6 η + P

[
δξ

L∑
`=1

1{T δ`+1−T
δ
` > δ

ξ} 6 T ; τ δε > T
δ
L

]
.

We need to show that the second term goes to 0 when δ → 0. Let {Ft}t≥0 be the filtration of
the driving Brownian motion. We will prove in Lemma 5.18, there exists a constant c > 0 such
that, on the event {τ δε > T δL}, almost surely

L∑
`=1

P
[
T δ`+1 − T δ` > δξ | FT δ`

]
> c δ−pβ+ξ .
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In the following, we suppose that δ is small enough so that c δ−pβ+ξ > δ−pβ+2ξ and δ−ξ T −
δ−pβ+ξ 6 − δ−pβ+2ξ. For such δ, we have

P

[
L∑
`=1

1{T δ`+1−T
δ
` > δ

ξ} 6 δ
−ξ T ; τ δε > T

δ
L

]

6 P

[
L∑
`=1

1{T δ`+1−T
δ
` > δ

ξ} − P
[
T δ`+1 − T δ` > δξ | FT δ`

]
6 − δ−pβ+2ξ; τ δε > T

δ
L

]

6 P

[∣∣∣∣∣
L∑
`=1

1{T δ`+1−T
δ
` > δ

ξ} − P
[
T δ`+1 − T δ` > δξ | FT δ`

]∣∣∣∣∣ > δ−pβ+2ξ; τ δε > T
δ
L

]

6 δ2pβ−4ξ
L∑
`=1

P
[
T δ`+1 − T δ` > δξ; τ δε > T δL

]
where we used the Tchebychev inequality in the last line. Using Lemma 5.16, we get that there
exists a constant C > 0 such that

P

[
L∑
`=1

1{T δ`+1−T
δ
` > δ

ξ} 6 δ
−ξ T ; τ δε > T

δ
L

]
6 C δ2pβ−4ξ Lδ(1−pβ)(1−2−1ξ) 6 C δpβ−4ξ

which goes to 0 when δ goes to 0. The proposition is proved.

Lemma 5.16. Let ξ ∈ (0; 2). Then there exists a constant C > 0 such that, almost surely, on ;
τ δε > T

δ
L

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
6 Cδ(1−pβ)(1−2−1ξ) . (5.24)

Proof. We know that there are no multiple collisions nor simultaneous collisions (because of
Lemmas 5.8 and 5.9) and therefore we can denote by i the unique element such that λδi (T

δ
` −) =

λδi−1(T δ` −) and (λδi − λδi−1)(T δ` ) = δ. We have by Itô’s formula

d(λδi − λδi−1)(t) = −γ(λδi − λδi−1)(t)dt+
√

2(dbit − dbi−1
t ) (5.25)

+ 2pβ
dt

(λδi − λδi−1)(t)
− βp

∑
k 6=i,i−1

(λδi − λδi−1)(t)

(λδi − λδk)(t)(λδi−1 − λδk)(t)
dt .

Let us define the Bessel like process (Xt)t > 0 by X0 = δ and for t > 0,

dXt =
√

2(dbi
T δ` +t

− dbi−1
T δ` +t

) + 2pβ
dt

Xt
. (5.26)

Using the comparison theorem for SDE [91, Proposition 2.18] (note that the drifts are smooth
before T δ`+1 − T δ` ), we know that for all t ∈ [0, T δ`+1 − T δ` ), we have almost surely

(λδi − λδi−1)(T δ` + t) 6 Xt. (5.27)

Let us define T δX := inf{t > 0 : Xt = 0}. It is clear that almost surely T δ`+1 − T δ` 6 T δX . We thus

have on τ δε > T
δ
L

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
6 P

[
T δX > δ

ξ
]
.

We finally conclude using a classical result for Bessel process, see e.g. [?, (13)]; the density with
respect to the Lebesgue measure on R+ of the law of the random variable T δX is

pδ(t) =
1

Γ(1−pβ
2 )

1

t

(
δ2

2t

) 1−pβ
2

e−
δ2

2t .

Hence we deduce that for ξ ≤ 2 there exists a constant c > 0 such that

P
[
T δX > δ

ξ
]
6 c δ(1−pβ)(1−2−1ξ).
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For time t ∈ [0;T ], we define the random set

It := {i ∈ {2, . . . , d} : |λδi − λδi−1|(t) 6
√
ε/3}. (5.28)

Note that, on the event Ω := {τ δε > T}, for each t 6 T , the set It contains at most one element.
For each ` ∈ {1, . . . , L}, and i ∈ {1, . . . , d}, we define the stopping times

tδ`(
√
ε/3) := inf{t > T δ` : min

j
|λδj − λδj−1|(t) >

√
ε/3} ,

t̄δ`(i,
√
ε/6) := inf{t > T δ` : min

j 6=i
|λδj − λδj−1|(t) 6

√
ε/6} .

If i denotes the unique index such that λδi (T
δ
` −) = λi−1(T δ` −), note that if T δ` 6 τ δε then

minj 6=i |λδj − λδj−1|(T δ` ) >
√
ε/3.

Lemma 5.17. If T δ` 6 τ δε and if i denotes the (unique) index such that λδi (T
δ
` −) = λδi−1(T δ` −)

, then there exists a constant c > 0 and δ0 > 0 such that for all δ 6 δ0, we have

cδ1−pβ 6 P
[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1|FT δ`

]
. (5.29)

Proof. Note that i is the unique element of the set IT δ`
defined by (5.28) for which |λδi −

λδi−1|(T δ` ) = δ. For α = 1− pβ and t ∈ [T δ` ;T δ`+1), we have by Itô’s formula

d(λδi − λδi−1)α(t) = −γα(λδi − λδi−1)α(t)dt (5.30)

+ α(λδi − λδi−1)α−1(t)
√

2(dbit − dbi−1
t )− βp

∑
k 6=i,i−1

(λδi − λδi−1)α(t)

(λδi − λδk)(t)(λδi−1 − λδk)(t)
dt .

For t ∈ [T δ` , τ
δ
ε ], we deduce that

d(λδi − λδi−1)α(t) ≥ α(λδi − λδi−1)α−1(t)
√

2(dbit − dbi−1
t )− c′(λδi − λδi−1)α(t)dt

where c′ = αγ + βp(d − 2)36/ε. Let T δ,κ`+1 be the first time after T δ` so that λδi − λ
δ−1
i reaches

κ < δ. Then, as
∫ .∧T δ,κ`+1

0 (λδi − λδi−1)α−1(t)
√

2(dbit − dbi−1
t ) is a martingale, we find that

E
[
(λδi − λδi−1)α(tδ`(

√
ε/3) ∧ t̄δ`(i,

√
ε/6) ∧ T δ,κ`+1) | F

T δ,κ`

]
> δα exp

(
−c′ T

)
. (5.31)

Before time t̄δ`(i,
√
ε/6), (λδj − λδj−1)(t) can not cancel if j 6= i. Therefore we can choose κ small

enough so that the last inequality implies

E
[
(λδi − λδi−1)α(tδ`(

√
ε/3) ∧ t̄δ`(i,

√
ε/6)) 1{tδ` (

√
ε/3)∧t̄δ` (i,

√
ε/6) 6 T δ`+1}

| FT δ`
]
>

1

2
δα exp

(
−c′ T

)
.

which can be rewriten using the fact that |λδi − λδi−1|(tδ`(
√
ε/3)∧ t̄δ`(i,

√
ε/6)) 6

√
ε/3, as follows

P
[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1 | FT δ`

]
> δα

(
3√
ε

)α
exp(−c′ T ) .

The lemma follows with c = ( 3√
ε
)α exp(−c′ T ).

Lemma 5.18. Let ξ, T > 0. There exists a constant c > 0 and δ0 > 0 so that if δ ≤ δ0, on
T δ` 6 τ

δ
ε ∧ T ,

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
> cδ1−pβ . (5.32)



96 CHAPTER 5. INVARIANT β-ENSEMBLES

Proof.We assume in the sequel that δ ≤ 1. The proof is based on Lemma 5.17. It implies

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
> P

[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1; δξ 6 T δ`+1 − T δ` ≤ 1 | FT δ`

]
.

By Lemma 5.17, we deduce that

P
[
δξ 6 T δ`+1 − T δ` ≤ 1 | FT δ`

]
> cδ1−pβ − P

[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1 6 T + 1; δξ > T δ`+1 − T δ` | FT δ`

]
.

But

P
[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1 ≤ T + 1;T δ`+1 − T δ` 6 δξ | FT δ`

]
6 P

[
tδ`(
√
ε/3) 6 ∧ T + 1;T δ`+1 − tδ`(

√
ε/3) 6 δξ | FT δ`

]
+ P

[
t̄δ`(i,
√
ε/6) 6 tδ`(

√
ε/3); t̄δ`(i,

√
ε/6)− T δ` 6 δξ | FT δ`

]
.

Let us handle the first term of the previous right hand side

P
[
tδ`(
√
ε/3) 6 T δ`+1 ∧ (T + 1);T δ`+1 − tδ`(

√
ε/3) 6 δξ | Ftδ` (

√
ε/3)

]
6 P

[
max
j

sup
tδ` (
√
ε/3) 6 s 6 (tδ` (

√
ε/3)+δξ)∧tδ` (

√
ε/12)∧(T+1)

|λδj(s)− λδj(tδ`(
√
ε/3))| >

√
ε

24
| Ftδ` (

√
ε/3)

]

6 C exp(−cε
2

δξ
)

where we used Lemma 5.11 for the last line (actually the proof since we used the estimate for a
fixed s). For the second term, the idea is similar

P
[
t̄δ`(i,
√
ε/6) 6 tδ`(

√
ε/3); t̄δ`(i,

√
ε/6)− T δ` 6 δξ | FT δ`

]
6 P

[
max
j 6=i

sup
T δ` 6 s 6 (T δ` +δξ)∧t̄δ` (i,

√
ε/6)∧(T+1)

|λδj(s)− λδj(T δ` )| >
√
ε

12
| FT δ`

]

6 C exp(−cε
2

δξ
) ,

by Lemma 5.11. As for all ξ > 0, exp(− c
δξ/4

)� δ1−pβ for small enough δ, the proof is complete.

5.4 Properties of the eigenvalues of Mβ
n

In this section, we will study the regularity and boundedness properties of the eigenvalues of
Mβ
n .

Definition 5.19. Let Mβ
0 be a symmetric (resp. Hermitian) matrix if β = 1 (resp. β = 2)

with distinct eigenvalues λ1 < λ2 < · · · < λd and (Mβ
n (t))t > 0 be the matrix process defined in

Definition 5.1. For all t > 0, the ordered eigenvalues of the matrix Mβ
n (t) will be denoted by

λn1 (t) 6 λn2 (t) 6 . . . 6 λnd (t).

The following proposition characterizes the evolution of the process λn(t) until its first col-
lision time.

Proposition 5.20. Let (λn1 (t), . . . , λnd (t)) be the process defined in Definition 5.19 and set
Tn(1) := inf{t > 0 : ∃i 6= j, λni (t) = λnj (t)}. Then, almost surely, the process (λn1 (t), . . . , λnd (t))
verifies for every k ∈ N, the following strict inequality

λn1 (k/n) < λn2 (k/n) < · · · < λnd (k/n) . (5.33)
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In addition, there exist a sequence of Bernoulli random variables (εnk)k∈N with mean p and a
sequence of independent (standard) Brownian motions (bit)t > 0, i ∈ {1, . . . , d} also independent
of the Bernoulli random variables (εnk)k∈N such that, the process (λn1 (t), . . . , λnd (t))t > 0 is the
re-ordering of the process (µn1 (t), . . . , µnd (t))t > 0 defined for t > 0 by

dµni (t) = −γµni (t) dt+
√

2dbit + β
∑
j 6=i

εnt
µni (t)− µnj (t)

dt . (5.34)

with initial conditions in t = 0 given by (µn1 (0), . . . , µnd (0)) = (λ1, . . . , λd). In particular, up to
time Tn(1), the process λn verifies

dλni (t) = −γλni (t) dt+
√

2dbit + β
∑
j 6=i

εnt
λni (t)− λnj (t)

dt .

Remark here that we use the property that εnt = (εnt )2.
Proof. Let us show first that for each k ∈ N such that k/n < Tn(1), we have almost surely the
strict inequality (5.33). We will proceed by induction over k. Note that under our assumptions,
it is true for k = 0. Suppose it is true at rank k and let us show it is then true at rank k+1. From
Definition 5.1, if the eigenvalues of Mβ

n (k/n) are denoted as λn1 (k/n) < · · · < λnd (k/n), then,
depending on the value of the Bernoulli random variable εnk , the dynamic for t ∈ [k/n; (k+1)/n]
is

• if εnk = 1, the process (λn1 (t), . . . , λnd (t)) follows the Dyson Brownian motion with initial
conditions (λn1 (k/n), . . . , λnd (k/n)) (see [15, Theorem 4.3.2]); More precisely, we have for
t ∈ [k/n; (k + 1)/n)

dλni (t) = −γλni (t) dt+
√

2dW i
t + β

∑
j 6=i

dt

λni (t)− λnj (t)
.

where the (W i
t )t > 0, i ∈ {1, . . . , d} are independent Brownian motions. In particular, this

process is non-colliding in the sense that the λni (t) will almost surely remain strictly ordered
for all t ∈ [k/n; (k + 1)/n) (see [15, Theorem 4.3.2]). Thus, we will almost surely have
λn1 ((k + 1)/n) < · · · < λnd ((k + 1)/n).

• on the other hand, if εnk = 0, we need to define a new process (µn1 (t), . . . , µnd (t)) of indepen-
dent Ornstein-Uhlenbeck processes with initial conditions (λn1 (k/n), . . . , λnd (k/n)); More
precisely, the evolution for t ∈ [k/n; (k + 1)/n] is given by

dµni (t) = −γµni (t)dt+
√

2dBi
t (5.35)

where the Brownian motions Bi are the ones of Definition 5.1. Note that, before time
Tn(1), the two processes λn and µn coincide. In this case, the µni (t) can cross and the
ordering can be broken in the interval [k/n; (k+1)/n]. However, if crossing for the process
µn happen before time t = (k+ 1)/n still we know that eγ(k+1)/nµni ((k+ 1)/n) are almost
surely distinct. The re-ordering of the µni thus always gives λn1 ((k+ 1)/n) < · · · < λnd ((k+
1)/n) a.s.

The induction is complete and proves equality (5.33) for all k ∈ N. We deduce from the above
arguments that for k such that k/n < Tn(1), the evolution of λn(t) for t ∈ [k/n; (k+1)/n∧Tn(1))
is

dλni (t) = −γλni (t) dt+
√

2(εnt dW
i
t + (1− εnt )dBi

t) + β
∑
j 6=i

εnt
λni (t)− λnj (t)

dt .

with initial conditions in t = k/n given by (λn1 (k/n), . . . , λnd (k/n)). Let us define the process

bi for t > 0 by bit :=
∫ t

0 (εns dW
i
s + (1 − εns )dBi

s). Using the fact that the Brownian motions
(W i

t )t > 0, i ∈ {1, . . . , d} are mutually independent and independent of the Brownian motions
(Bi

t)t > 0, i ∈ {1, . . . , d} (also mutually independent), it is straightforward to check that the



98 CHAPTER 5. INVARIANT β-ENSEMBLES

processes (bit)t > 0, i ∈ {1, . . . , d} are mutually independent Brownian motions. It is also easy to
see that, for all s, t ∈ [k/n; (k + 1)/n], the random variables εnk(W i

t −W i
s) + (1 − εnk)(Bi

t − Bi
s)

and εnk are independent. Therefore, we deduce that the brownian motions (bit)t > 0, i ∈ {1, . . . , d}
are independent of the sequence (εnk)k∈N.

The following regularity properties will be useful later on.

Lemma 5.21. Let T < ∞. Then there exist constants C,A0, c, c
′, α > 0 which depend only on

T, d such that for all n ∈ N, all A > A0 and all ε > 0

P
[

max
1 6 i,j 6 d

sup
0 6 t 6 T

|Mβ
n (t)ij | > A

]
6 C exp(−αA2) , (5.36)

P

 max
1 6 i,j 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|Mβ
n (t)ij −Mβ

n (s)ij | > ε

 6 c

δ
exp(− ε

2

c′δ
) . (5.37)

Proof. Using Itô’s formula, we can check that

eγtMβ
n (t)− eγsMβ

n (s) =

∫ t

s
eγs

(
εns dH

β
s + (1− εns )

√
2

d∑
i=1

χni (
[ns]

n
)dBi

s

)
.

Let us set ∆n(s, t) := eγtMβ
n (t)−eγsMβ

n (s). The entries of ∆n(s, .) are martingales with respect
to the filtration of the Brownian motions conditionally to the Bernoulli random variables (εnk)k∈N
(this is due to the independence between the Brownian motions (Bi

t)t > 0, (H
β
t (ij))t > 0, 1 6 i, j 6 d

and the sequence of Bernoulli random variables (εnk)k∈N. Using the fact that |χni ([ns]/n)ij | 6 1
for all i, j, we can check that there exists a constant C(d, T ) which does not depend on n such
that for all n ∈ N

|〈∆n(s, ·)ij ,∆n(s, ·)kl〉t| 6 C(T, d)|t− s| .

Let A > 0, using [15, corollary H.13], we have

P
[

max
1 6 i,j 6 d

sup
0 6 t 6 T

|(eγtMβ
n (t))ij | > A

]
6 d2 max

1≤i,j≤d
P
[

sup
0 6 t 6 T

|(eγtMβ
n (t)−Mβ

0 )ij | > A−max
i,j
|Mβ

0 (i, j)|
]

= d2 max
1 6 i,j 6 d

P
[

sup
0 6 t 6 T

|∆n(0, t)ij | > A−max
i,j
|Mβ

0 (i, j)|
]

6 d2 exp

(
−(A−maxi,j |Mβ

0 (i, j)|)2

C(d, T )T

)
. (5.38)

Similarly, for any given s ∈ [0, T ], for ε > 0, using [15, Corollary H.13], we have, for each entry
ij and for every δ > 0:

P

[
max

1 6 i,j 6 d
sup

t∈[s−δ,s+δ]
|(eγtMβ

n (t)− eγsMβ
n (s))ij | > ε

]
6 d2 exp

(
− ε2

2Cδ

)
.

and therefore there exists a positive constant c′ so that

P

 max
1 6 i,j 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|(eγtMβ
n (t)− eγsMβ

n (s))ij | > ε


6

[2T/δ]+1∑
i=1

P

 max
1≤i,j≤d

sup
|t− iδ

2
| 6 δ/2

|(eγtMβ
n (t)− eγiδ/2Mβ

n (iδ/2))ij | > ε/2


6 d2 2T

δ
exp

(
− ε

2

c′δ

)
.
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Lemma 5.22. Let T <∞. Then there exist constants C ′, A0, c
′, c′′, α, ε0 > 0 which depend only

on T, d such that for all n ∈ N, all A > A0 and all ε > 0

P
[

max
1 6 i 6 d

sup
0 6 t 6 T

|λni (t)| > A

]
6 C ′ exp(−αA2) , (5.39)

P

 max
1 6 i 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|λni (t)− λni (s)| > ε

 6 c′′

δ
exp(− ε

2

c′δ
) . (5.40)

Proof. This lemma is a consequence of Lemma 5.21 and the inequalities

max
1≤k≤d

|λnk(t)− λnk(s)| 6

(
d∑
i=1

|λni (t)− λni (s)|2
) 1

2

=

 d∑
i,j=1

|Mβ
n (t)ij −Mβ

n (s)ij |2
1/2

(5.41)

6 d max
1≤i,j≤d

|Mβ
n (t)ij −Mβ

n (s)ij |

where, for the second inequality, we used [15, lemma 2.1.19] and the fact that the λni are
ordered.

5.5 Convergence till the first hitting time

Proposition 5.23. Take λ(0) = (λ1 < λ2 < · · · < λd). Construct µn, strong solution of (5.34),
with the same Brownian motion than λ, strong solution of (5.5), both starting from λ(0). λn

equals µn till Tn(1). For all T > 0, we have the following almost sure convergence

lim
n→∞

max
1 6 i 6 d

sup
t 6 T∧Tn(1)∧τ3

ε

|λni (t)− λi(t)| = 0 .

As a consequence, if we let T1 = inf{t > 0, ∃i 6= j, λi(t) = λj(t)}, we have almost surely

T1 6 lim inf Tn(1) .

We point out that this convergence does not happen on a trivial interval since we have

Remark. For any η > 0, there exists τ(η) > 0 so that

lim
n→∞

P [Tn(1) > τ(η)] > 1− η .

Proof of Remark 5.5. By the same arguments developed in (5.41), we find that

P
[

sup
t 6 T

max
1 6 i 6 d

|λni (t)eγt − λi(0)| > ε
]
6 P

[
sup
t 6 T

|tr((Mn(t)eγt −M0)2)| > ε2
]

6 d2 exp(− ε2

2C(d, T )T
) .

But since also the λni are uniformly bounded with high probability, we can choose for any η > 0
the parameter T small enough so that

P
[

max
1 6 i 6 d

sup
t 6 T

|λni (t)− λi(0)| ≥ min
1 6 i 6 d

|λi − λi+1|/3
]
6 η

This implies that P (Tn(1) ≤ T ) ≤ η.
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Proof of Proposition 5.23 Using Itô’s formula, we can compute

d∑
i=1

(λni (t)− λi(t))2 = −2γ

∫ t

0

d∑
i=1

(λni (s)− λi(s))2 ds (5.42)

+ 2β

∫ t

0
εns

d∑
i=1

∑
j 6=i

(λni (s)− λi(s))

(
1

λni (s)− λnj (s)
− 1

λi(s)− λj(s)

)
ds

+ 2β

∫ t

0
(εns − p)

d∑
i=1

∑
j 6=i

λni (s)− λi(s)
λi(s)− λj(s)

ds .

By the same argument as in (5.22) the second term in the right hand side is non positive. Thus
using equations 5.42, we find for t 6 Tn(1)

d∑
i=1

(λni (t)− λi(t))2 6 2β

∫ t

0
(εns − p)

d∑
i=1

∑
j 6=i

λni (s)− λi(s)
λi(s)− λj(s)

ds := Rn(t) .

We next prove that
lim
n→∞

sup
0 6 t 6 T∧τ3

ε

Rn(t) = 0 a.s. (5.43)

Write Rn(t) as Rn(t) = Pn(t) +Qn(t) where

Pn(t) :=

∫ t

0
(εns − p)

d∑
i=1

∑
j 6=i

λni ([ns]/n)− λi(s)
λi(s)− λj(s)

ds ,

Qn(t) :=

∫ t

0
(εns − p)

d∑
i=1

∑
j 6=i

λni (s)− λni ([ns]/n)

λi(s)− λj(s)
ds .

We first handle the convergence ofQn(t). Set Ω1 = {sup |s−t|≤1/n
t≤T

max1≤i≤d |λni (t)−λni (s)| 6 n−1/2+ε}.
On the event Ω1, we have

|Qn(t)| ≤ n−1/2+ε
d∑
i=1

∑
j 6=i

∫ t

0

ds

| λi(s)− λj(s) |
.

Following (5.41), we know that

P (Ωc
1) ≤ ce−cn2ε

.

We thus deduce from Lemma 5.7 that

P
[

sup
t 6 T

|Qn(t)| > δ

]
6 P

 d∑
i=1

∑
j 6=i

∫ T

0

ds

| λi(s)− λj(s) |
> δn1/2−ε

+ P [Ωc
1]

6 c e−c δ
2 n1−2ε

+ c e−c n
2ε
.

Hence, Borel Cantelli’s Lemma insures the almost sure convergence of Qn to zero. We now turn
to the convergence of Pn(t). Let η > 0 small and write

Pn(t) = −d(d− 1)

2

∫ t

0
(εns − p)ds+ P̃n(t)

with

P̃n(t) =

∫ t

0
(εns − p)

d∑
i=1

∑
j<i

λni ([ns]/n)− λnj ([ns]/n)

λi(s)− λj(s)
ds .

The process
∫ t

0 (εns − p)ds is a martingale and by Azuma-Hoeffding inequality, for any δ > 0

P
(

max
t≤T
|
∫ t

0
(εns − p)ds| ≥ δ

)
≤ 2 exp(−δ

2n

2
) .
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We now use the independence between the brownian motions (bit)0 6 t 6 T , i = 1, . . . , d and the
Bernoulli random variables εnk , k = 1, . . . , [nT ]. Conditionally on the (bit)0 6 t 6 T , i = 1, . . . , d,

the processes λi(t), i = 1, . . . , d are deterministic and the process P̃n is a martingale with respect
to the filtration of the εnk . We let

Ank =
d∑
i=1

∑
j<i

∫ k+1/n

k/n

λni ([ns]/n)− λnj ([ns]/n)

λi(s)− λj(s)
ds.

By Lemma 5.11 and Lemma 5.22, the set

Ω = { sup
k≤nT∧τ3

ε

|Ank | ≤ n−1/8}

has probability larger than 1− e−cn1/16
. Moreover, by martingale property it is easy to see that

for all λ ≥ 0,

E[1Ωe
λP̃n(k/n)− 1

2
λ2

∑k−1
`=0 (An

k/n
)2

] ≤ 1 .

Taking λ = n1/16, since on Ω, −n1/16|Ank |+ n1/8|Ank |2/2 ≤ 0, Tchebychev’s inequality yields

P

{|P̃n(k/n ∧ τ3
ε )| ≥ n−1/16(

[Tn]∑
`=0

|Ank |+ t)} ∩ Ω

 ≤ e−t
As by Lemma 5.7,

∑[Tn]
`=0 |A

n
k | is bounded by n1/32 with probability greater than 1− e−n1/16

we
conclude that

P
(
|P̃n(k/n ∧ τ3

ε )| ≥ n−1/32
)
≤ Ce−n1/32

.

The uniform estimate is obtained easily by controlling the increments of P̃n in between the times
k/n, k ≤ [nT ] by supk≤[nT ] |Ank | which we have already bounded.

5.6 Proof of Theorem 5.2

5.6.1 Non colliding case pβ > 1

It is straightforward to deduce Theorem 5.2 when pβ > 1. Indeed if βp > 1 we know that there
are no collisions for the limiting process and more precisely, see e.g [15, p. 252],

P(τ2
ε 6 T ) 6 c(λ0)T/| log ε|

with some finite constant c(λ0) which only depends on the spacings of the eigenvalues at the
initial time. This implies in particular that

lim
ε→0

lim
n→∞

P(Tnε 6 T ) = 0

from which we easily deduce Theorem 5.2 from Proposition 5.23.

5.6.2 Colliding case pβ < 1

We now define the process (λn,δi (t))t > 0 which will depend on the sequence (T δ` )`∈N defined in
Definition 5.12. To unify notations, set T δ1 := T1 and T δn(1) := Tn(1).

Definition 5.24. For t < T δ1 , set λn,δi (t) := λni (t). For time t > T δ1 , we define the process recur-

sively by setting for each ` > 1, λn,δi (T δ` ) = λn,δi (T δ` −) + iδ for all i ∈ {1, . . . , d} and for t > T δ` ,

the process λn,δi is defined up to time T δ`+1 by ordering the process (µn,δ1 (t), . . . , µn,δd (t))T δ` 6 t 6 T
δ
`+1

which is defined for t > T δ` as

dµn,δi (t) = −γµn,δi (t) dt+
√

2dbit + β
∑
j 6=i

εnt

µn,δi (t)− µn,δj (t)
dt . (5.44)

with initial conditions in t = T δ` given by (λn,δ1 (T δ` ), . . . , λn,δd (T δ` )).
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Lemma 5.25. Let T <∞ and δ > 0. We have the following convergence in probability, for all
` ∈ N,

lim
n→∞

max
1 6 i 6 d

sup
0 6 t 6 T δ` ∧T

|λδi (t)− λ
n,δ
i (t)| = 0 .

In particular, for every `, if T δn is the first collision time for λn,δ after T δ`−1,

T δ` ∧ T 6 lim inf T δn(`) ∧ T a.s.

Proof Again, we prove this Lemma by induction over `.
•We begin with the case ` = 1. Proposition 5.23 yields that the random variable max1 6 i 6 d sup0 6 t 6 Tn(1)∧T |λi(t)−

λni (t)| = 0 converges to 0 in probability as by Lemma 5.8, P (τ3
ε ≥ T ) goes to one as ε vanishes.

Since we have the almost sure inequality T δ1 6 lim inf T δn(1), the continuity of the λi, 1 6 i 6 d,
the regularity property of the λni given by Lemma 5.22, Lemma 5.11 and Proposition 5.23, we

can check that since before T δ1 λδi = λi and λn,δi = λni , if T δn(1) < T δ1 ∧ T ,

max
1 6 i 6 d

sup
T δn(1) 6 t<T δ1∧T

|λδi (t)− λ
n,δ
i (t)| (5.45)

6 max
1 6 i 6 d

sup
T δn(1) 6 t<T δ1∧T

{|λni (t)− λni (T δn(1))|+ |λi(t)− λi(T δn(1))|} (5.46)

+ |λni (T δn(1))− λi(T δn(1))|

goes to zero in probability, when n goes to infinity.
• Suppose the property is true for ` and let us show that it is then true for `+1. By the same

argument as in the proof of Proposition 5.23, we can show that, for all t ∈ [T δ` ;T δn(`+ 1)∧T δ`+1],
we have

d∑
i=1

(
λn,δi − λ

δ
i

)2
(t) 6

d∑
i=1

(
λn,δi − λ

δ
i

)2
(T δ` ) (5.47)

+ 2β

∫ t

T δ`

(εns − p)
d∑
i=1

∑
j 6=i

λn,δi (s)− λδi (s)
λδi (s)− λδj(s)

ds.

The same proof as in Proposition 5.23 shows that, if τ3,`
ε is the stopping time τ3

` for the process
λδ(t), t ≥ T δ` ,

lim
n→∞

sup
t∈[T δ` ;T δn(`+1)∧T δ`+1∧τ

3,`
ε ]

∫ t

T δ`

(εns − p)
d∑
i=1

∑
j 6=i

λn,δi (s)− λδi (s)
λδi (s)− λδj(s)

ds = 0 a.s. (5.48)

Thus, because of (5.47), the following convergence in holds

lim
n→∞

max
i

sup
t∈[T δ` ;T δn(`+1)∧T δ`+1∧τ3

ε ]

|λn,δi (t)− λδi (t)| = 0 a.s . (5.49)

Because of (5.49), we have T δ`+1 ∧ τ3
ε 6 lim infn→∞ T

δ
n(` + 1) ∧ τ3

ε . Since the probability that
τ3
ε is larger than T goes to one as ε vanishes, we can show as in (5.45) (note that Lemma 5.22,

Lemma 5.11 and Proposition 5.23 extend to {λn,δt , λδt , t ≥ T δ` }) that in probability,

lim
n→∞

max
1 6 i 6 d

sup
T δn(`+1) 6 t 6 T δ`+1

|λδi (t)− λ
n,δ
i (t)| = 0.

The property at rank `+ 1 is established. The Lemma is proved.

Lemma 5.26. There exists a constant c > 0 such that for all L ∈ N, we have the following
almost sure estimate

max
1 6 j 6 d

sup
0 6 t 6 T δL

|λn,δj (t)− λnj (t)| 6 δ L
√
c .
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Proof. Note that the estimate is striaghtforward on [0, T δ1 ]. We then proceed by induction
on the time intervals [T δ` , T

δ
`+1] as in the proof of Lemma 5.14 until the first collision time

t1 := inf{t > T δ` : ∃i, λni (t) = λni−1(t) orλn,δi (t) = λn,δi−1(t)} .

We next claim that, at a given time, almost surely the eigenvalues λn are different. Indeed,
this is clear if the eigenvalues follows Brownian motion and even more when they follow Dyson
Brownian motion. Moreover the probability that more than two eigenvalues collide at some time
vanishes. Indeed, this can only happen if the eigenvalues follow the Brownian motion. But the
probability that 3 Brownian motions collide vanishes and hence the result.

Hence, there are almost surely at most two eigenvalues which can collide. Hence, let i(t1)

be the unique integer in {1, . . . , d} such that λni (t1) = λni−1(t1) (respectively λn,δi (t1) = λn,δj (t1))
and let τ1 = ([nt1]+1)/n. Notice that, for t ∈ [[nt1]/n; ([nt1]+1)/n), we necessarily have εnt = 0.

Let µn,δi and µni for i ∈ {1, . . . , d} be the processes such that for t ∈ [t1; τ1]

dµn,δi (t) = −γµn,δi (t)dt+
√

2dbit

dµni (t) = −γµni (t)dt+
√

2dbit

with initial conditions at t = t1 respectively given by µn,δ(t1) = λn,δ(t1) and µn(t1) = λn(t1).

We know that the λn,δi , respectively the λni , are just a re-ordering of the processes µn,δi and µni
By definition, for t ∈ [t1; τ1], we find that :

(µn,δj − µ
n
j )(t) = e−γ(t−t1)(µn,δj − µ

n
j )(t1) .

As a consequence, we deduce that

d∑
j=1

(µn,δj − µ
n
j )2(t) 6

d∑
j=1

(λn,δj − λ
n
j )2(t1) .

Moreover, as the λ’s are ordered but the set of the values of the λ’s and the µ’s are the same,
using for instance [15, lemma 2.1.19], we have that

d∑
j=1

(λn,δj − λ
n
j )2(t) 6

d∑
j=1

(µn,δj − µ
n
j )2(t) .

Gathering the above inequalities, we have shown that

sup
t∈[0,τ1]

d∑
j=1

(λn,δj − λ
n
j )2(t) 6

d∑
j=1

(λn,δj − λ
n
j )2(T δ` ) .

We can continue inductively until we reach the time T δ`+1 to finish the proof.

5.7 Asymptotic properties of the eigenvectors

Recall that wβij , i < j are real (respectively complex) standard Brownian motions if β = 1 (resp.

β = 2) with quadratic variation βt and that we also set for i < j, wβji := w̄βij . In addition we

also defined the skew Hermitian matrix Rβ = −(Rβ)∗ by setting for i < j,

dRβij(t) =
dwβij(t)

λni (t)− λnj (t)
, Rβij(0) = 0 .

Proof of Proposition 5.3
It is classical to check that the unique strong solution of the stochastic differential equation

dOβn(t) = εnt O
β
n(t)dRβ(t)− εnt

2
Oβn(t)d〈(Rβ)∗, Rβ〉t , (5.50)
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with initial condition Oβn(0) := Oβ(0) (defined at the end of Section 5.1), is in the space Oβd for

all time t (see e.g. [15, Lemma 4.3.4]) and is such that, with ∆β
n(t) being the diagonal matrix

of the ordered (as in (5.4)) eigenvalues of Mβ
n (t), we have

Oβn(t)∆β
n(t)Oβn(t)∗

law
= Mβ

n (t) .

The law of the continuous process Oβn is uniquely determined as the unique strong solution of
(5.50).

One can thus define the eigenvectors of Mβ
n (t), denoted as φni (t), so that they satisfy the

stochastic differential system

dφni (t) = εnt
∑
j 6=i

dwβij(t)

λni (t)− λnj (t)
φnj (t)− εnt

2

∑
j 6=i

β

(λni (t)− λnj (t))2
dtφni (t) (5.51)

where wβij , i < j is a family of i.i.d. Brownian motions (on R if β = 1, C if β = 2), independent
of the eigenvalues λni , 1 6 i 6 d.

Proof of Theorem 5.4
This proof is classical and uses the theory of stability for stochastic differential equations.
For η > 0 fixed, we deduce from Proposition 5.23 and Lemma 5.8 that the process (λn1 (t), . . . , λnd (t))

converges almost surely in the space of continuous functions C([0; (T1−η)∧T ],Rd) (respectively
Cd) if β = 1 (resp. β = 2) endowed with the uniform norm towards (λ1(t), . . . , λd(t))0 6 t 6 (T1−η)∧T
where the λi’s are the unique strong solutions of (5.5) (with the same Brownian motions bi) and
where T1 is the first collision time of the λi, 1 6 i 6 d. In the sequel we will work conditionally
to the (λni , λi)’s satisfying the above convergence.

Define for i 6= j the processes wβ,nij by setting

wβ,nij (t) =

∫ t

0
εns dw

β
ij(s) . (5.52)

Note that the quadratic variation of this continuous martingale converges almost surely towards
βpt so that by Rebolledo’s theorem (wβ,nij , i < j) converges towards (

√
pwβij , i < j).

Moreover, if T ε1 is the first time at which two eigenvalues are at distance less than ε, the drift
coefficients being bounded, we see, with a proof similar to the proof of Proposition 5.23, that
for i 6= j ∫ t∧T ε1

0

εns
(λni − λnj )2(s)

ds

converges towards p
∫ t∧T ε1

0 (λi(s)−λj(s))−2ds uniformly almost surely. Since T ε1 converges towards
T1 as ε goes to zero, the convergence holds till (T1 − η) ∧ T for any η > 0.

Gathering the above arguments, the result follows from [86, Theorem 6.9, p. 578].
We now turn to the analysis of the behavior of the columns φi(t) of the matrix Oβ(t) when

t → T1 with t < T1. Those vectors φi(t) form an orthonormal basis of Rd (respectively Cd) if
β = 1 (resp. β = 2) and it is easy to check that they verify the following stochastic differential
system

dφi(t) =
∑
j 6=i

√
p

λi(t)− λj(t)
dwβij(t)φj(t)−

pβ

2

∑
j 6=i

dt

(λi(t)− λj(t))2
φi(t) . (5.53)

In the following of this section, we will denote by i∗ the unique (because of Lemma 5.10)
index such that λi∗(T1) = λi∗−1(T1).

The main issue we meet at this point in the presence of collisions (that will occur if pβ < 1;
see [54]) lies in the divergence of the integral 5.8 that we now prove.

We now describe the behavior of the d − 2 vectors φj(t), j 6= i∗, i∗ − 1 just before the first
collision time T1.

Proof of the first statement of Proposition 5.6
We will denote by φj`(t) the `-th entry of the d-dimensional vector φj(t). For 0 6 t < T1,

we have

dφj(t) =
∑
k 6=j

√
p

λj(t)− λk(t)
dwβjk(t)φk(t)−

p

2

∑
k 6=j

β

(λj − λk)2
φj(t)dt . (5.54)
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We recall from section 5.3.2 that there are no multiple collisions nor two collisions at the same
time for the system (λ1(t), λ2(t), . . . , λd(t))0 6 t 6 T1 verifying (5.5), and therefore we may assume
without loss of generality that for j 6= i∗, i∗−1, every diffusions and drift terms of (5.54) remains
almost surely bounded for t ∈ [0;T1]. To prove the lemma, we just need to prove that almost
surely

lim
s→T1;
s<T1

sup
s 6 t<T1

‖φj(t)− φj(s)‖2 = 0 .

The drift terms appearing in (5.54) are obvious to deal with since 1/(λj − λk)(t) is bounded in
the vicinity of T1 and that |φj`(t)| 6 1 for all t < T1. For the diffusion terms, we have for every
` ∈ {1, . . . , d} and for every s ∈ [0;T1] the following estimate

P

 sup
s 6 t<T1

|
∫ t

s

∑
k 6=j

√
p

λj(u)− λk(u)
dwβjk(u)φk`(u)| > η

 6 exp(− η2

2βp(d− 1)M(T1 − s)
) ,

where M = supt∈[0;T1] maxk 6=j
1

(λj−λk)2(t)
. Using the Borel-Cantelli Lemma, we deduce the result.

For δ > 0, we want to define a process (φ̃1(t), φ̃2(t), . . . , φ̃d(t))T1−δ 6 t<T1 that will be a good
approximation of the process (φ1(t), φ2(t), . . . , φd(t))T1−δ 6 t<T1 on the time interval [T1− δ;T1].

Hence for j 6= i∗, i∗ − 1, we set φ̃j(t) = φ̃j (the vectors do not depend of time). It remains to

define the evolution for (φ̃i∗−1(t), φ̃i∗(t)) that will depend of time t.
Let V be the (d − 2)-dimensional subspace spanned by the orthonormal family {φ̃j ; j 6=

i∗, i∗ − 1} and W its orthogonal complement in Rd. Let us define the“diffusive orthonormal
basis” in the space W that will describe the evolution of the two vectors (φ̃i∗−1(t), φ̃i∗(t)) on the
interval [T1 − δ;T1] (up to the initial conditions at time t = T1 − δ we will explicit later).

Lemma 5.27. Let δ > 0 and (u, v) an orthonormal basis of the two-dimensional subspace W .
We consider the following stochastic differential system

dφ̃i∗(t) =

√
p

(λi∗ − λi∗−1)(t)
dwβi∗−1,i∗(t) φ̃i∗−1(t)− pβ

2

dt

(λi∗ − λi∗−1)2(t)
φ̃i∗(t) , (5.55)

dφ̃i∗−1(t) = −
√
p

(λi∗ − λi∗−1)(t)
dw̄βi∗−1,i∗(t) φ̃i∗(t)−

pβ

2

dt

(λi∗ − λi∗−1)2(t)
φ̃i∗−1(t)

with initial conditions (φ̃i∗−1(T1 − δ), φ̃i∗(T1 − δ)) = (u, v).
This stochastic differential system has a unique strong solution defined on the interval [T1 −

δ;T1) such that for each t ∈ [T1 − δ;T1), {φ̃i∗−1(t), φ̃i∗(t)} is an orthonormal basis of W .

Proof. For all ε > 0, the function t→ 1/(λi∗ − λi∗−1)(t) is bounded on the interval [T1 − δ;T ε1 ]
and therefore there is a unique strong solution to the stochastic differential system (5.55) till
the time T ε1 where |λi∗ − λi∗−1| < ε as it is driven by bounded linear drifts. As T ε1 grows to T1

the proof is complete.
To show that for all t ∈ [T1 − δ;T1) the family {φ̃i∗−1(t), φ̃i∗(t)} is an orthonormal basis of

W , we proceed along the same line as in the proof of [15, Lemma 4.3.4].

In the following lemma, we show that we can choose a constant δ > 0 small enough and
an initial condition (u, v) ∈ W such that the processes (φ̃1(t), . . . , φ̃1(t))t∈[T1−δ;T1) defined by
Lemma 5.27 is indeed a good approximation of the process (φ1(t), . . . , φd(t))t∈[T1−δ;T1). The

advantage of the process (φ̃1(t), . . . , φ̃1(t))t∈[T1−δ;T1) is that it is simpler to study in the vicinity
of T1 (see Lemma 5.29 below).

Lemma 5.28. Let η > 0 and κ > 0. Then there exists an orthonormal basis (u, v) of W
and δ > 0 small enough such that if we denote by (φ̃i∗−1(t), φ̃i∗(t))t∈[T1−δ;T1) the unique strong
solution of the stochastic differential system (5.55) with initial conditions given in t0 = T1 − δ
by (φ̃i∗−1(t0), φ̃i∗(t0)) = (u, v), we have

P

(
sup

t∈[t0;T1)
||φi∗(t)− φ̃i∗(t)||22 + ||φi∗−1(t)− φ̃i∗−1(t)||22 > η

)
≤ κ .
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Proof. Using Itô’s formula, we find1 for all t ∈ [t0;T1),

||φi∗(t)− φ̃i∗(t)||22 + ||φi∗−1(t)− φ̃i∗−1(t)||22 = ||φi∗(t0)− u||22 + ||φi∗−1(t0)− v||22

− 2

∫ t

t0

∑
i∈{i∗,i∗−1}

∑
j 6=i∗,i∗−1

√
p

(λi − λj)(s)
dwβij(s)〈φ̃i(s), φj(s)〉 . (5.56)

As for i ∈ {i∗, i∗ − 1} and j 6∈ {i∗, i∗ − 1} the terms 1/(λi − λj)2(t) have almost surely a finite
integral with respect to Lebesgue measure on the interval [t0;T1) (in fact those terms are almost
surely bounded as the corresponding particles remain at finite distance), the quadratic variation
of the last term is of order δ and therefore is smaller than η/2 with probability greater that 1−κ
for δ small enough.

It remains to check that we can choose (u, v) an orthonormal basis of W and δ > 0 such that

||φi∗(T1 − δ)− u||22 + ||φi∗−1(T1 − δ)− v||22 6 η/2 . (5.57)

This is a straightforward: Indeed we can approximate the φj(T1 − δ) for j 6∈ {i∗, i∗ − 1} by the

φ̃j because of the first point of Proposition 5.6, thus we can choose two vectors {u, v} in the two
dimensional space W so that (5.57) holds. This completes the proof.

We now turn to the study of the couple (φ̃i∗−1(t), φ̃i∗(t)) for t ∈ [T1−δ;T1) and in particular
when t→ T1, t < T1. A crucial point is equation 5.8 which we now prove.

Itô’s Formula gives for t < T1

ln(λi − λi−1)(t) = (−γ + 2pβ)t+

∫ t

0

√
2
dbi
∗
s − dbi

∗−1
s

(λi∗ − λi∗−1)(s)

− pβ
∫ t

0

∑
j 6=i∗,i∗−1

ds

(λi∗ − λj)(λi∗−1 − λj)(s)
−
∫ t

0

2 ds

(λi∗ − λi∗−1)2(s)
.

If we suppose that
∫ T1

0 dt/(λi∗−λi∗−1)2(t) < +∞ and since T1 < τ3
ε for some ε > 0 small enough,

we obtain a contradiction letting t → T1: under this assumption, the right hand side tends to
−∞ whereas the left hand side is almost surely bounded in this limit.

The next Lemma 5.29 shows that the orthonormal basis (φ̃i∗−1(t), φ̃i∗(t)) of the subspace W
is in fact uniformly distributed in the set of all orthonormal basis of W in the limit t→ T1, t < T1.

As W is two dimensional, up to a change basis, we can suppose that the two vectors φ̃i∗−1(t)
and φ̃i∗(t) are two dimensional (we just study the evolution of their coordinates in an orthonormal
basis of W ). Let us define the two by two matrix φ̃(t) whose first line is the vector φ̃i∗(t) and
second line is the vector φ̃i∗−1(t):

φ̃(t) :=

(
φ̃i∗(t)

φ̃i∗−1(t)

)
.

Lemma 5.29. The matrix φ̃(t) converges in law when t → T1, t < T1 to the Haar probability
measure on the orthogonal group (respectively unitary group if β = 2.)

Proof. To simplify notations, we do the proof in the case β = 1.

Set t0 := T1 − δ and define for t ∈ [0; δ) the function

ϕ(t) :=

∫ t0+t

t0

ds

(λi∗ − λi∗−1)2(s)

and denote by ϕ−1 its functional inverse. We now proceed to a change of time by setting for
t ∈ [0; δ)

ψ̃i∗(t) = φ̃i∗(ϕ
−1(t)), ψ̃i∗−1(t) = φ̃i∗−1(ϕ−1(t)) .

1Note that all the diverging terms in T1 cancel in this expression.
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As ϕ−1(t) → +∞ when t → δ, t < δ (because of (5.8)), the two by two matrix ψ̃(t) whose first
line is ψ̃i∗(t) and second line is ψ̃i∗(t):

ψ̃(t) :=

(
ψ̃i∗(t)

ψ̃i∗−1(t)

)

is now defined for all t ∈ R+ and verifies the following stochastic differential equation

dψ̃(t) =
√
pA ψ̃(t) dBt −

pβ

2
ψ̃(t) dt . (5.58)

where B is a standard Brownian motion on R and where A is the two by two matrix defined by

A =

(
0 1
−1 0

)
.

Note in particular that A2 = −I.
It is clear that there is pathwise uniqueness in the stochastic differential equation (5.58) (it

is linear in ψ̃). Therefore to solve entirely this equation, we just need to exhibit one solution.
Using Itô’s Formula, one can check that the solution is

ψ̃(t) = exp (
√
pABt) ψ̃(0)

=

(
cos(
√
pBt) sin(

√
pBt)

− sin(
√
pBt) cos(

√
pBt)

)
ψ̃(0) .

Note that for all t ∈ R+, the matrix ψ̃(t) is indeed in the space of orthogonal matrices.
But (cos(

√
pBt), sin(

√
pBt)) converges in law as time goes to infinity towards the law of

(θ, ε
√

1− θ2) with θ uniformly distributed on [−1, 1] and ε = ±1 with probability 1/2, from
which the result follows.

Lemmas 5.28 and 5.29 give the second statement of Proposition 5.6.
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Chapter 6

Invariant β-Wishart ensembles,
crossover densities and asymptotic
corrections to the Marčenko-Pastur
law

Résumé

Cet article est à parâıtre dans Journal of Physics A: Mathematical and Theoretical
et est écrit en collaboration avec Jean-Philippe Bouchaud, Satya N. Majumdar et
Pierpaolo Vivo. Nous construisons un modèle de matrice diffusante dont l’équilibre
stationnaire correspond à des ensembles de matrices aléatoires invariantes par con-
jugaison orthogonale ou unitaire avec des valeurs propres distribuées suivant les en-
sembles β-Wishart (ou Laguerre) avec β quelconque appartenant à l’intervalle [0, 2].
Dans le régime où le paramètre β dépend de la plus grande dimension M de la ma-
trice des données par la relation β = 2c/M (où c est une constante positive), les
densités limites des valeurs propres forment une famille de distributions indéxée par
le paramètre c qui interpole continument entre la loi de Marčenko Pastur (correspon-
dant au cas où β > 0 ne dépend pas de M) et la loi Gamma (qui correspond au cas
β = 0). Un prolongement de ce calcul nous permet de trouver les corrections de
tailles finies (quand la dimension est grande mais pas infinie) dans le théoreème de
Marčenko Pastur.

Abstract

We construct a diffusive matrix model for the β-Wishart (or Laguerre) ensemble for
general β ∈ [0, 2], which preserves invariance under the orthogonal/unitary group.
Scaling the Dyson index β with the largest size M of the data matrix as β = 2c/M
(with c a fixed positive constant), we obtain a family of spectral densities interpolat-
ing continuously between the Marčenko-Pastur and the Gamma laws as c is varied.
Analyzing the full resolvent equation, we obtain as a byproduct the correction to
the Marčenko-Pastur density until order 1/M for all β and until order 1/M2 for the
particular cases β = 1, 2.

6.1 Introduction

The theory of matrices with random entries, originally devised as a tool to understand and pre-
dict the spectra of heavy nuclei for which a detailed account of the interactions between particles
is too complicated, has seen a spectacular resurgence of interest in recent years, with a number
of unexpected and often surprising applications (see [3, 15, 20, 72, 145] for a recent overview).
While Wigner and Dyson are usually regarded as the pioneers in the field, John Wishart had
already introduced random matrices in 1928 in his studies of multivariate populations [155]. The
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Wigner-Dyson (Gaussian) and Wishart ensembles (together with a few others) lie at the core of
the classical world of invariant matrices, characterized by the following main features:

1. The joint probability distribution (jpd) of matrix entries, collectively denoted by P [X], re-
mains unaltered if one performs a similarity transformation X→ UXU−1, with U being
orthogonal (real symmetric X), unitary (complex hermitian X) or symplectic (quater-
nion self-dual X) matrix. As a consequence, the eigenvectors of such matrices are Haar
(uniform) distributed in their respective groups.

2. The joint distribution of the N real eigenvalues P (λ1, . . . , λN ) can be generically written
in the Gibbs-Boltzmann form,

P (λ1, . . . , λN ) =
1

ZN
exp (−H(λ1, . . . , λN )) (6.1)

with the Hamiltonian H(λ1, . . . , λN ) given by:

H(λ1, . . . , λN ) =

N∑
i=1

V (λi)− β
∑
j<k

ln |λj − λk| (6.2)

where V (x) is a confining potential that depends on the precise form of the joint distri-
bution of matrix entries P [X]. For example, if the entries of X are independent, the only
allowed potential is quadratic V (x) = βx2/2, which correspond to the Gaussian ensembles.
If correlations among the entries are allowed, then different potentials (all corresponding to
rotationally invariant weights) are possible. For example, in the Wishart case, V (x) =∞
for x < 0 (so that all the eigenvalues are non-negative) and V (x) = x/(2σ2) − α log x for
x ≥ 0.

The normalization constant ZN is called the partition function and is simply given by the
multiple integral

ZN =

∫
· · ·
∫ ∏

i

dλi exp (−H(λ1, . . . , λN )) . (6.3)

From (6.1), one easily deduces that the system of N eigenvalues of a classically invariant
ensemble behaves as a thermodynamic system of charged particles arranged on the real
line, in equilibrium at inverse temperature β under competing interactions (the confining
potential V (x) and the logarithmic all-to-all repulsion term) in (6.2). In contrast with
the usual canonical ensemble in statistical mechanics, however, the so-called Dyson index
β is quantized and can only assume the values β = 1, 2, 4 for real symmetric, complex
hermitian and quaternion self-dual matrices respectively.

Lifting the quantization of β (Dyson’s threefold way) has been a major theoretical challenge
in view of possible applications e.g. to the quantum Hall effect. Dumitriu and Edelman [68]
were eventually able to construct ensembles of tridiagonal matrices with independent entries
whose eigenvalues are distributed as (6.1) with general β > 0. Their ensemble is however not
invariant under similarity transformations, and the eigenvectors are not Haar distributed in the
appropriate symmetry group. After an earlier attempt in the case of 2 × 2 matrices [149], the
explicit construction of an ensemble of N ×N matrices displaying at once rotational invariance
and a continuous β was put forward in [6, 10] for the Gaussian ensemble. It was further shown
in [6] that only by letting the Dyson index β of that ensemble scale with the matrix size N in
an appropriate way (namely β = c/N) one obtains a continuous family of deformed spectral
densities parametrized by c, interpolating between Wigner’s semicircle (typical for β ∼ O(1)
invariant ensembles) and a Gaussian law (properly describing the non-interacting limit β → 0).
This result can be established in two alternative ways:
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1. Starting from the stationary joint distribution of eigenvalues (eq. (6.1)), setting β = c/N ,
and then finding the average density of eigenvalues ρ(λ) = (1/N)〈

∑
i δ(λ − λi)〉. In the

limit of large N , this average density can be obtained by a saddle point analysis of the
partition function Eq. (6.3) in a standard way. Usually, when β ∼ O(1), only the energy
term ∼ O(N2) dominates and the entropy term ∼ O(N) is subleading. However, when
β ∼ c/N , both the energy and the entropy terms are of the same order (∼ O(N)), which
leads to a nontrivial modification of the density. The complicated nonlinear singular
integro-differential equation for the saddle density, reduces very nicely to a Riccati equation
for the Stieltjes transform of the density, which can then be subsequently solved exactly.
Finally one obtains the density by taking imaginary part of the Stieltjes transform (see
section 6.3.3 for a detailed discussion).

2. Starting from the dynamical equation of motion of the eigenvalues, one first derives directly
the equation of motion of the Stieltjes transform of the density via Itô’s calculus, finds the
stationary solution and then obtains the average density by taking the imaginary part of
the Stieltjes transform (see detailed discussion in section 6.3.4).

In section 6.3.3 and 6.3.4, in the context of our model, we show that both methods lead
to the same solution.

In this paper, we handle the Wishart case, i.e. the case where the confining potential
introduced above is given by V (x) = x/(2σ2) − α log x for x ≥ 0. We first explicitly construct
a random matrix model which is invariant under similarity transformations and whose jpd of
eigenvalues is exactly given by the β-Wishart ensemble of random matrices with a continuous
β > 0. Then, letting the Dyson index β of the ensemble scale inversely with the size of the
matrix, we analytically derive the density of states for this crossover model, written in terms
of the Whittaker hypergeometric function (see eq. (6.59)), and we show that it continuously
interpolates between the Marčenko-Pastur law1 (corresponding to constant values of β > 0) and
a certain type of Gamma distribution (see subsection 6.3.3). Finally, for any constant Dyson
index β > 0 (and not necessarily quantized to β = 1, 2, 4), we analyze the full Stieltjes transform
equation and we can compute the 1/N correction to the Marčenko-Pastur asymptotic density
for the β-Wishart ensemble. Furthermore, using results obtained by Pastur and Lytova in [105]
on the noise in the Marčenko-Pastur law, we are also able to derive the 1/N2 correction term in
the particular cases β = 1 and 2.

The rest of the paper is outlined as follows. In section 6.2 we introduce the main features
of the classical Wishart ensemble along with the evolution law for the eigenvalue process. In
section 6.3, we construct a 3-parameters matrix model (and the respective evolution law for the
eigenvalues) that at large times interpolates between the Wishart ensemble and so-called CIR
processes whose stationary pdf is a certain Gamma distribution. The corresponding parametrical
density of states is computed exactly in the two ways described above (from the saddle point
route on the partition function in section 6.3.3 and from Itô’s calculus in section 6.3.4) and
constitutes a continuous deformation of the Marčenko-Pastur distribution (see below). In section
6.4 we compute the systematic 1/N (for all β > 0) and 1/N2 (for β = 1, 2) corrections to the
Marčenko-Pastur law for the smoothed density in the bulk for the (scaled) β-Wishart ensemble.
For the special cases β = 1, 2 and 4, the O(1/N) correction term was computed in [75, 73].
Our result generalizes this to arbitrary β for the O(1/N) term and in addition, we obtain the
O(1/N2) correction for β = 1 and β = 2. We conclude with a summary and discussion in section
6.5.

1Some other types of deformations of the Marčenko-Pastur distribution for Wishart-like matrix models were
reported in the literature (see e.g. [4, 51])
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6.2 Wishart ensembles

6.2.1 Real and complex Wishart ensembles

Let X be a real (respectively complex) Gaussian random matrix of size M ×N , i.e. a random
matrix chosen in the space of M ×N real (resp. complex) matrices according to the law:

P (X)dX ∝ exp

(
− 1

2σ2
Tr(X†X)

)
dX , (6.4)

where X† is the Hermitian conjugate of X. In the following, we will denote the real (resp.
complex) Wishart ensemble by Wβ with β = 1 in the real case (resp. β = 2 in the complex
case).

The real (resp. complex) Wishart Ensemble is the ensemble of (N × N) square matrices
of the product form W := X†X where X is a real (resp. complex) Gaussian random matrix
of size N × M . They have appeared in many different applications such as communication
technology [134], nuclear physics [78], quantum chromodynamics [148], statistical physics of
directed polymers in random media [88] and non intersecting Brownian motions [135, 117, 125],
as well as Principal Component Analysis of large datasets [108, 107].

The spectral properties of the Wishart matrices have been studied extensively and it is known
[87] that for M > N , all N positive eigenvalues of W are distributed via the joint probability
density function (pdf)

Pβ(λ1, . . . , λN ) =
1

Z
e−

1
2σ2

∑N
i=1 λi

N∏
i=1

λ
β
2

(M−N+1)−1

i

∏
i<j

|λi − λj |β (6.5)

where Z is a constant normalization factor and where β = 1 in the real case (resp. β = 2 in the
complex case). Note that the joint distribution Pβ defined in (6.5) is in fact well behaved for
every β > 0.

Another classical result of Random Matrix Theory concerns the asymptotic density of states
(or spectral measure) for the eigenvalues (λ1, λ2, . . . , λN ) of a real Wishart matrix W ∈ W1 in
the limit of large matrices, i.e. when N,M → ∞ with N/M = q ∈ (0; 1] where q is a fixed
parameter. Let us recall that the density of states of the matrix W is simply the probability
measure ρβN defined as

ρβN =
1

N

N∑
i=1

δ(λ− λi) (6.6)

where β is introduced for later convenience (β ≡ 1 in the present case) and where (λ1, . . . , λN )
are the eigenvalues of W. Setting λ = Mλ̂, the Marčenko-Pastur Theorem (see [113]) states
that, in the limit N,M →∞ with N/M = q ∈ (0; 1], the spectral measure of a Wishart matrix
W ∈ W1 converges to a continuous probability density (with compact support) given by

ρβ(λ̂) =
1

2πσ2βq

√
(b− λ̂)(λ̂− a)

λ̂
, a < λ̂ < b (6.7)

where the edges a, b of the spectrum are given by

a = σ2β (1−√q)2, b = σ2β (1 +
√
q)2

with again β = 1.
For general β > 0, the probability measure ρβN is defined again as in (6.6) where this time

the vector (λ1, . . . , λN ) is distributed according to the law Pβ in (6.5). The Marčenko-Pastur

theorem remains in fact valid for all β > 0 in the sense that the probability law ρβN converges
when N,M → ∞ with N/M = q ∈ (0; 1] to the continuous probability density ρβ in (6.7) for
every β > 0.

The probability measure ρβN will sometimes be referred to as the spectral density as it
corresponds to the spectral density of random matrices W ∈ Wβ at least when β = 1 or 2.
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6.2.2 Continuous processes for real and complex Wishart ensembles

We wish to define here a diffusive matrix process depending on a fictitious time t > 0 that will
converge to the Wishart Ensembles in the limit of large time. The idea is simply to set

Wt := X†tXt (6.8)

where Xt is a real (resp. complex) random matrix diffusion process (of size M × N), starting
at time t = 0 from an initial arbitrary real (resp. complex) fixed matrix X0 and then evolving
for t > 0 as

dXt = −1

2
Xtdt+ σ dBt

where Bt is a real Brownian (resp. complex) random matrix, i.e. a matrix whose entries are
given by independent standard Brownian motions. By a standard Brownian motion, one means
a centered (zero-mean) Gaussian process with covariance function 〈BtBt′〉 = min(t, t′). Note
that the entries of the matrix process Xt are independent one dimensional Ornstein Uhlenbeck
processes.

It is well known that the stationary law of a Ornstein-Uhlenbeck process is the Gaussian
law and therefore, the real (resp. complex) matrix process Xt converges in law when t → ∞
to the law of a Gaussian real (resp. complex) random matrix. Hence, we deduce that the real
(resp. complex) matrix process Wt defines a diffusive matrix process that converges in law to
W ∈ Wβ with β = 1 or β = 2.

It is also easy to check that the positive definite matrix process Wt has initial condition
W0 = X†0X0 in t = 0 and satisfies, for t > 0, the following stochastic differential equation
studied by Bru [49]:

dWt = −Wtdt+ σ
√

Wt dBt + σ dB†t
√

Wt +Mσ2β I dt (6.9)

where Bt is a real (resp. complex) Brownian random matrix and with β = 1 in the real (resp.
β = 2 for complex) case.

The evolution of the eigenvalue process λ1(t) 6 λ2(t) . . . 6 λN (t) is also easy to derive [50]
using perturbation theory to second order

dλi = −λidt+ 2σ
√
λi dbi + σ2β

M +
∑
k 6=i

λi + λk
λi − λk

 dt (6.10)

where bi’s are independent standard Brownian motions and with β = 1 in the real (resp. β = 2
for complex) case. The stationary distribution of the process (λ1, . . . , λN )(t) is necessarily the
jpdf Pβ(λ1, . . . , λN ) defined in (6.5) (this is true for any β > 0 and can also be recovered using
the Fokker-Planck equation for the multivariate diffusion (6.10)).

6.3 Crossover between Wishart and CIR processes

Following [6, 10], we aim at defining a diffusive matrix process Wt which converge in the limit
of large time to a general β-Wishart matrix, i.e. a matrix whose eigenvalues are distributed
according to Pβ in (6.5) for general β > 0 and with Haar distributed eigenvectors. In this paper,
we will restrict ourselves to the description of the eigenvalues process but the interested reader
can find a study of the eigenvectors for a related model in [10]. To simplify notations, we will
take in this section σ = 1.

6.3.1 Preliminary definition: CIR diffusion process

We first need to introduce a family of real diffusion processes. Let δ > 0 be a fixed parameter.
The CIR process (named after its creators Cox, Ingersoll, and Ross [?] and widely used in finance
to model short term interest rate) is a diffusion process x(t) defined by x(0) := x0 > 0 and for
t > 0 by

dx(t) = −x(t) dt+ 2
√
x(t) dbt + δ dt . (6.11)
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Using the assumption δ > 0, it is easy to see that the process x(t) will remain non negative for
all times t > 0. It is also easy to verify that the stationary pdf of the Langevin equation (6.11)
is the Gamma distribution with shape and scale parameters k = δ/2 and θ = 2 defined as

pδ(x) =
1

2
δ
2 Γ( δ2)

x
δ
2
−1e−

x
2 . (6.12)

This stationary pdf pδ is in fact the unique stationary pdf for the process x(t) and hence does
not depend on the initial condition x0. In analogy with squared Bessel processes, the parameter
δ will be called the dimension of the process x(t).

6.3.2 Diffusive matrix process for general β-Wishart matrices

Following [6, 10], our goal in this paragraph is to construct a diffusive matrix process whose
eigenvalues process is asymptotically distributed according to Pβ for general β ∈ [0, 1]. This
construction can be extended respectively for general β ∈ [0, 2] (resp. β ∈ [0, 4]) by using complex
(resp. symplectic) Brownian motions instead of real Brownian motions in the following.

The idea is to slice the time interval into small chops of length 1/n and for each interval
[k/n; (k+ 1)/n], to choose independently Bernoulli random variables εnk , k ∈ N such that P[εnk =
1] = p = 1− P[εnk = 0]. Then, setting εnt = εn[nt], our diffusive matrix process evolves as:

dWn
t = −Wn

t dt+ d∆n
t (6.13)

where the increment matrix d∆n
t now depends on the value of the additional random process

εnt :

• if εnt = 1, then
d∆n

t =
√

Wn
t dBt + dB†t

√
Wn

t +M I dt.

where dBt is an N ×N real 2 Brownian increment matrix whose entries have variance dt.

• if εnt = 0, then
d∆n

t =
√

Wn
t dYt + dY†t

√
Wn

t + δ I dt.

with δ > 0 and where dYt is a symmetric matrix that is co-diagonalizable with Wn
t (i.e.

the two matrix have the same eigenvectors) but with a spectrum given by N independent
real Brownian increments of variance dt.

An algorithmic description of how to build (approximatively on a discrete grid) the matrix
process Wn

t can be found in Appendix 6.5.
It is clear that the eigenvalues of the matrix Wn

t will cross at some points but only in
intervals [k/n; (k + 1)/n] for which εnk = 0 (in the other intervals where they follow the SDE
(6.10) with parameter β = 1, it is well known that the repulsion is too strong and thus collisions
are avoided). In this case, the eigenvalues are re-numbered at time t = (k + 1)/n in increasing
order. With this procedure, when ordered λn1 (t) 6 . . . 6 λnN (t), we can again check as in [6, 10],
using perturbation theory, that the eigenvalues will remain always non-negative and will verify
the Stochastic Differential System (SDS):

dλni = −λni dt+ 2
√
λni dbi +

εntM + (1− εnt )δ + εnt
∑
k 6=i

λni + λnk
λni − λnk

 dt (6.14)

where the bi are independent standard Brownian motions, which are also independent of the
process εnt .

Note that when εnt = 0, the particles λni are evolving as independent CIR processes of
dimension δ > 0 as defined in paragraph 6.3.1. Therefore, the particles can cross in those time
intervals, breaking the increasing order so that they will be re-ordered at time ([nt] + 1)/n but
they will remain non-negative as the dimension δ is strictly positive. Therefore the SDS (6.14)
remains well defined at all times t > 0.

2Here one can use use complex Brownian motions instead to extend the interval of β to [0, 2].
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One can follow the proof of [10] to prove that the scaling limit (i.e. the limiting process when
n→∞) of the process (λn1 (t) 6 . . . 6 λnN (t)) satisfies the following SDS

dλi = −λidt+ 2
√
λi dbi +

pM + (1− p)δ + p
∑
k 6=i

λi + λk
λi − λk

 dt . (6.15)

One can deduce from the above equation (6.15) the Fokker-Planck equation for the joint
density P ({λi}, t), for which the stationary jpdf is readily found to be [see the derivation in
appendix 6.5]

P ∗(λ1, . . . , λN ) =
1

Z
e−

1
2

∑N
i=1 λi

N∏
i=1

λ
p
2

(M−N+1−δ)−(1− δ
2

)

i

∏
i<j

|λi − λj |p . (6.16)

The probability Pβ introduced in (6.5) is recovered here by taking the values p = β and δ =
0. The corresponding large N,M -limit spectral probability density is therefore given by the
Marčenko-Pastur law in the case where p = β > 0 independent of M . Note that with the above
normalizations, the spectrum is spread over a region of R+ of width of order pM = βM . On
the other hand, if p = 0, the large N,M -limit of the spectral density is the Gamma distribution
with shape and scale parameters k = δ/2 and θ = 2 (recall that it is the stationary pdf of the
CIR process of dimension δ):

ρ0(λ)dλ =
1

2δ/2Γ( δ2)
λ
δ
2
−1e−

λ
2 dλ . (6.17)

It is quite natural to ask whether a crossover regime may be found, interpolating between the
Marčenko-Pastur density (p independent of M) and the Gamma distribution (p = 0). A good
candidate for triggering such a transition is clearly a parameter p vanishing with M as p = 2c/M
where c is a positive fixed constant. We discuss this case in the following subsection.

In the next two subsections we compute the crossover density interpolating between the
Marčenko-Pastur law and the Gamma distribution with shape parameter δ/2. This family of
probability densities is indexed by the three parameters c (such that p = 2c/M), q = N/M
and δ > 0. More precisely, we compute the limiting density of the probability measure ρN =
1
N

∑N
i=1 δλi , when N,M → ∞ with N/M = q ∈ (0; 1] and where (λ1, . . . , λN ) is distributed

according to the law P ∗ defined in (6.16) with p = β = 2c/M . As mentioned in the introduction,
the crossover density can be computed via two alternative methods: (1) by a saddle point
method as shown in subsection 6.3.3 and (2) by analyzing directly the stochastic differential
systems introduced in 6.3.2 above following the analogous route for the Gaussian case in Ref.
[6]. This is done in section 6.3.4. We will see that both methods yield identical result.

6.3.3 Crossover for the spectral density via the saddle point method

Our starting point in the joint probability law of eigenvalues in Eq. (6.16), where the normal-
ization constant (partition function) Z is given by the N -fold integral

Z =

∫
[0,∞]N

∏
i

dλie
− 1

2

∑
i λi
∏
i<j

|λi − λj |p
∏
i

λ
p
2

(M−N+1−δ)−(1−δ/2)

i

=

∫
[0,∞]N

∏
i

dλie
−E[{λi}] (6.18)

where the energy function E[{λi}] is given by

E[{λi}] =
1

2

∑
i

λi −
(p

2
(M −N + 1− δ)− (1− δ/2)

)∑
i

lnλi −
p

2

∑
i 6=j

ln |λi − λj |. (6.19)

Written in this form, Eq. (6.18) is the Gibbs-Boltzmann canonical weight of a system of charged
particles on the positive half-line in equilibrium at inverse temperature β = 1 under the effect
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of competing interactions. We wish to compute the average density of states 〈 1
N

∑N
i=1 δ(λ−λi)〉

where 〈O〉 denote the expectation value of O with respect to the probability distribution P ∗ in
(6.16). There are many ways to compute this average density, but the one rather convenient
for large N is the saddle point route. This was originally done by Dyson [69] for the Gaussian
random matrices and a physically more transparent derivation can be found in Ref. [62].

The main idea behind the saddle point method is as follows. In the large N limit, the most
dominant contribution to the partition function emerges indeed from a set of configurations
of λi’s that correspond to a particular density ρ∗(λ). Naturally then, the average computed
over the ensemble of λi’s, in this large N limit, will also be given by the saddle point density
〈 1
N

∑N
i=1 δ(λ−λi)〉 ≈ ρ∗(λ). It thus suffices to analyze just the partition function Z in the large

N limit and find, in particular, the saddle point density ρ∗(λ) that maximizes the partition
function Z for large N .

To analyze Z in the large N limit, one first defines a ‘local’ smooth density function

ρ(λ) =
1

N

N∑
i=1

δ (λ− λi) (6.20)

which is normalized to unity. The main idea then is to split the multiple integration in Eq. (6.18)
in two parts: First fix the local density ρ(λ) and sum over all microstates (i.e., configurations
of λi’s consistent with the local density defined in (6.20)) and then, sum (functionally) over all
possible local density functions. Roughly speaking, the first step corresponds to a partial tracing
over microstates by fixing the local density. Notationally, on can express this by

Z =

∫
D[ρ]

∫
[0,∞]N

∏
i

dλie
−E[{λi}] I [ρ(λ), {λi}] (6.21)

where D[ρ] denotes a functional integration over the function space and I [ρ(λ), {λi}] is an
indicator function that is 1 if the microstate {λi} is compatible with a given ρ(λ), normalized
to unity, as defined in (6.20) and otherwise I = 0. The energy function E[{λi}] associated
with a microstate can then be expressed in terms of the local density ρ(λ) using the identity∑

i f(λi) = N
∫
dλf(λ)ρ(λ) and one gets [62]

E[ρ(λ)] =
N

2

∫
dλλρ(λ)−

[
p

2

(
(
1

q
− 1)N + 1− δ

)
−
(

1− δ

2

)]
N

∫
dλρ(λ) lnλ

− p

2
N2

∫ ∫
dλdλ′ρ(λ)ρ(λ′) ln |λ− λ′|+ p

2
N

∫
dλρ(λ) ln

1

ρ(λ)
+ C1

(∫
dλρ(λ)− 1

)
(6.22)

where the last term includes a Lagrange multiplier C1 that enforces the normalization of the
local density to 1. The next-to-last term accounts for the self-energy term (λ→ λ′) that needs to
be subtracted. Note indeed that in the original discrete sum

∑
i 6=j ln |λi−λj |, the eigenvalues do

not coincide. This means that the integral over λ and λ′ should exclude the region where |λ−λ′|
is less than the typical spacing between eigenvalues, which is proportional to 1/Nρ(λ) [69]. The
contribution of this thin sliver is the next-to-last term, up to an additional contribution that
can be absorbed into C1.

Once this is done, equation (6.21) simplifies further and one gets

Z ≈
∫
D[ρ] e−E[ρ(λ)] J [ρ(λ)] (6.23)

where J [ρ(λ)] =
∫

[0,∞]N
∏
i dλiI [ρ(λ), {λi}] is an entropic factor that just counts how many

microstates are compatible with a given local density function ρ(λ). This can be estimated
very simply by the following combinatorial argument involving arrangement of N particles in K
boxes. Let us first divide our one dimensional line into K small boxes of equal width. We have N
particles that need to be distributed into the K boxes with occupation numbers {n1, n2, . . . , nK}.
The number of ways this can be done is simply

N !

n1!n2! · · ·nK !
. (6.24)
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Setting ρi = ni/N (the local density in box i) and using Stirling’s approximationN ! ∼ NN+1/2 e−N

(using the fact that
∑

i ni = N), we have:

N !

n1!n2! · · ·nK !
∼ e−

∑
i ni lnni (6.25)

which in the continuum limit, becomes ∼ e−N
∫
dλρ(λ) ln ρ(λ). Thus, the entropic factor can also

be expressed as a simple functional of the local density ρ(λ). Inserting this expression in the
functional integral over the density, yields:

Z =

∫
D[ρ]e−E[ρ(λ)]e−N

∫
dλρ(λ) ln ρ(λ) =

∫
D[ρ]e−NF [ρ(λ)] (6.26)

where the free energy F [ρ(λ)] is given by:

F [ρ(λ)] =
1

2

∫
dλλρ(λ)−

[
p

2

(
(
1

q
− 1)N + 1− δ

)
−
(

1− δ

2

)]∫
dλρ(λ) lnλ

− p

2
N

∫ ∫
dλdλ′ρ(λ)ρ(λ′) ln |λ− λ′|+

(
1− p

2

)∫
dλρ(λ) ln ρ(λ) + C1

(∫
dλρ(λ)− 1

)
(6.27)

Note that for p ∼ O(1/N) the entropy term becomes of the same order of the energy term,
while in the usual case p ∼ O(1) the entropy contribution is subdominant in the large N limit
and is therefore disregarded.

Setting now p = 2c/M = 2cq/N , we get:

F [ρ(λ)] =
1

2

∫
dλλρ(λ)−

[
cq

(
1

q
− 1

)
−
(

1− δ

2

)]∫
dλρ(λ) lnλ

− cq
∫ ∫

dλdλ′ρ(λ)ρ(λ′) ln |λ− λ′|+
(

1− cq

N

)∫
dλρ(λ) ln ρ(λ) + C1

(∫
dλρ(λ)− 1

)
(6.28)

We set a = cq(1/q−1)−(1−δ/2) and take N →∞ (so that the term cq/N drops out). Now,
the saddle point density ρ∗(λ) is obtained by minimizing the free energy F [ρ(λ), i.e., by taking
the functional derivative δF

δρ = 0 and ρ(λ) == ρ∗(λ). This gives the saddle point equation

λ

2
− a lnλ− 2cq

∫
dλ′ρ∗(λ′) ln |λ− λ′|+ ln ρ∗ + C2 = 0 (6.29)

where C2 = C1 + 1 is just a constant. For notational simplicity, in the rest of the subsection we
will denote the saddle point density ρ∗(λ) simply by ρ(λ).

Differentiating Eq. (6.29) with respect to λ, we get

1

2
− a

λ
− 2cq Pr

∫
ρ(λ′)

λ− λ′
dλ′ +

ρ′(λ)

ρ(λ)
= 0 (6.30)

where Pr stands for Principal Value.
Next, we define the Stieltjes transform:

H(z) =

∫
ρ(λ)

λ− z
dλ (6.31)

for z complex and outside the support of ρ. By definition, for large |z|, H(z) → −1/z. Multi-
plying eq. (6.30) by ρ(λ)/(λ− z) and integrating over λ, we have:

1

2

∫
ρ(λ)

λ− z
dλ− a

∫
ρ(λ)dλ

λ(λ− z)
− 2cq Pr

∫
ρ(λ)dλ

λ− z

∫
ρ(λ′)

λ− λ′
dλ′ +

∫
ρ′(λ)dλ

λ− z
= 0 (6.32)

and we analyze each of the four contributions separately.
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1. T1 = 1
2

∫ ρ(λ)
λ−zdλ = 1

2H(z)

2. T2 = −a
∫ ρ(λ)dλ
λ(λ−z) . We rewrite this as:

T2 = −a
∫
ρ(λ)dλ

[
1

λ− z
− 1

λ

]
1

z
(6.33)

implying:

T2 = −a
z
H(z) +

b1
z

(6.34)

where b1 = a
∫
dλρ(λ)

λ .

3. T3 = −2cq Pr
∫ ρ(λ)dλ

λ−z
∫ ρ(λ′)
λ−λ′dλ

′ which we rewrite as:

T3 = 2cq

{
Pr

∫
dλdλ′ρ(λ)ρ(λ′)

[
1

λ− z
− 1

λ− λ′

]
1

λ′ − z

}
(6.35)

= 2cqH2(z)− 2cq Pr

∫
dλdλ′ρ(λ)ρ(λ′)

(λ− λ′)(λ′ − z)
(6.36)

By renaming λ→ λ′ and λ′ → λ, we get:

T3 = 2cqH2(z) + 2cqPr

∫
dλdλ′ρ(λ)ρ(λ′)

(λ− λ′)(λ− z)
(6.37)

= 2cqH2(z)− T3 (6.38)

Solving for T3 we get:

T3 = cqH2(z) (6.39)

4. T4 =
∫ ρ′(λ)dλ

λ−z , which we integrate by parts, obtaining:

T4 =
1

λ− z
ρ(λ)

∣∣∣∞
0

+

∫
ρ(λ)

(λ− z)2
dλ

=
c1

z
+H ′(z) (6.40)

In the derivation above, we assumed b1 and c1 to be finite. This is not completely obvious,
because ρ(λ) at an edge point may diverge. However, by imposing that for large z, H(z)→ −1/z,
it is immediate to derive that b1 + c1 = 1/2. Thus, one may regularize the density near the edge
points so that b1 and c1 exist individually, but eventually their sum is universally 1/2 and hence
is independent of the specific regularization near the edge.

Adding up the four contributions, we get the equation:

dH

dz
− a

z
H +

b1 + c1

z
+ cq H2 +

1

2
H = 0

Thus we find the following differential equation for the Stieltjes transform H:

dH

dz
+ γ H2 +

1

2

(
1 +

α

z

)
H +

1

2z
= 0 (6.41)

where we have set

α = (2− δ)− 2c(1− q), γ = cq .

In the next subsection, we will derive the same equation via Itô’s stochastic calculus route.

The density ρ(λ) (normalized to unity) can then be read off from

ρ(λ) =
1

π
Im[H(z → λ)] (6.42)
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where z → λ occurs inside the cut on the real axis.
To solve the Riccati equation (6.41), we make a standard substitution

H(z) =
1

γ

u′(z)

u(z)
=

1

γ
∂z lnu(z) . (6.43)

This gives a second order differential equation for u(z)

u′′(z) +
1

2

[
1 +

α

z

]
u′(z) +

γ

2z
u(z) = 0 . (6.44)

It follows from Eq. (6.43) and the asymptotic behavior of H(z) that

u(z) −−−−→
|z|→∞

A1

zγ
(6.45)

where A1 is a constant.
To reduce Eq. (6.44) to a Schrödinger like differential equation, we make the substitution

u(z) = e−z/4 zα/4 ψ(z) , (6.46)

and we find the following equation for ψ

ψ′′(z) +

[
− 1

16
+

1

z

4γ − α
8

+
α

4

(
1− α

4

) 1

z2

]
ψ(z) = 0 .

Making further a rescaling ψ(z) = y(z/2), it reduces to the standard form of the Whittaker
differential equation [83]

y′′(z) +

[
−1

4
+
λ

z
+

1
4 − µ

2

z2

]
y(z) = 0 , (6.47)

where

ζ = γ − α

4
, µ =

1

2
|1− α

2
| . (6.48)

Note that the solution of this differential equation does not depend on the sign of µ, hence
we take the absolute value. The differential equation (6.47) has two linearly independent so-
lutions Wζ,µ(z) and W−ζ,µ(−z). The Whittaker function Wζ,µ(z) has the following asymptotic
behavior [83]

Wζ,µ(z) −−−−→
|z|→∞

zζ e−z/2 . (6.49)

Thus the general solution of u(z), using Eq. (6.46), reads

u(z) = e−z/4 zα/4 [C1Wζ,µ(z/2) + C2W−ζ,µ(−z/2)] (6.50)

where C1 and C2 are arbitrary constants. Using the asymptotic behavior in Eq. (6.49) it is easy
to check that only the second solution has the right asymptotic behavior in Eq. (6.45). Thus,
finally, we have our solution

u(z) = C2 e
−z/4 zα/4W−ζ,µ(−z/2) (6.51)

where ζ and µ are given in Eq. (6.48).
By plugging this solution (6.51) into Eq. (6.43) and using Eq. (6.42), we find the following

expression

ρ(λ) =
C2

2πγ

(Im(W ′−ζ,µ)Re(W−ζ,µ)− Im(W−ζ,µ)Re(W ′−ζ,µ))(−λ/2)

|W−ζ,µ(−λ/2)|2
. (6.52)

where Re and Im denote respectively the real and imaginary parts. Using the linear differential
equation verified by the Whittaker functions (6.47), it is easy to see that the derivative with
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respect to λ of the Wronskian type function (Im(W ′−ζ,µ)Re(W−ζ,µ) − Im(W−ζ,µ)Re(W ′−ζ,µ)) is
equal to 0. Hence the Wronskian appearing in the numerator in (6.52) is simply a constant.

Collecting all the constants together, we get:

ρ(λ) =
A

|W−ζ,µ(−λ/2)|2
. (6.53)

The overall normalization constant A has to be fixed from
∫∞

0 ρ(λ) dλ = 1. Thus we get, after
rescaling λ/2→ λ,

1

A
= 2

∫ ∞
0

dλ

|W−ζ,µ(−λ)|2
. (6.54)

This integral in Eq. (6.54) can be done in closed form. First, we first use the well known
identity [1]

Wζ,µ(z) = zµ+1/2 e−z/2 U(µ− ζ + 1/2, 1 + 2µ; z) (6.55)

where U(a, b; z) is the Tricomi hypergeometric function (or Kummer function) that behaves for
large z as U(z) ∼ z−a. Using this in Eq. (6.54) gives

1

A
= 2

∫ ∞
0

dλλ−2µ−1 e−λ |U(µ+ ζ + 1/2, 1 + 2µ;−λ)|−2 . (6.56)

It turns out that there exists an interesting integral representation in a paper by Ismail and
Kelker [85]∫ ∞

0

dt e−t t−b

z + t
|U(a, b;−t)|−2 = Γ(a)Γ(a− b+ 2)

1

z

U(a, b− 1; z)

U(a, b; z)
; for a > 0, 1 < b < a+ 1

(6.57)
Note that in Ref. [85] they use the notation ψ(a, b, z) instead of U(a, b; z), but it is the same
function. Our µ and ζ satisfy the condition of validity of this identity: a > 0 and 1 < b < a+ 1.
Taking z → ∞ limit on both sides and using U(z) ∼ z−a, we arrive at the following exact
expression of the normalization constant

1

A
= 2 Γ(µ+ ζ + 1/2)Γ(ζ − µ+ 3/2) . (6.58)

This leads to the following final expression for the spectral density, which is the central result
of our work3:

ρc(λ) =
1

2Γ(µ+ ζ + 1
2)Γ(ζ − µ+ 3

2)

1

|W−ζ,µ(−λ
2 )|2

(6.59)

with the following values for the parameters

α = (2− δ)− 2c(1− q); ζ = cq − α

4
; and µ =

1

4
|α− 2| .

The above expression is the analogue, in the present context, of the Askey-Wimp-Kerov one-
parameter family of models found in [6], that smoothly interpolates between the Gaussian dis-
tribution and Wigner’s semi-circle.

Let us now consider the limiting case c → 0 first. In this case, we have α = (2 − δ),
ζ = δ/4−1/2 and µ = δ/4. Thus, W−ζ,µ(−λ/2) = W1/2−δ/4,δ/4(−λ/2). It turns out that for these
special values of the indices, the Whittaker function simply reduces to W1/2−δ/4,δ/4(−λ/2) ∝
λ−δ/4+1/2 eλ/4 up to a proportionality constant [83]. Substituting this in (6.59), we then recover
the CIR density in Eq. (6.12). The limit c→∞ is more tricky as one needs to rescale λ→ λ̂ c
and take the large c limit carefully. This can be done and one recovers the Marčenko-Pastur
law. This can be rewritten (without rescaling λ) as

ρc(λ) ∼c→∞
1

4πcq

√
(γ+ − λ)(λ− γ−)

λ
1{γ−<λ<γ+} , (6.60)

3We add the subscript c in the notation of the density ρ to recall the dependence in c; the density ρ depends
also on the two parameters δ and q but we omit to subscript those.
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where γ± = 2c (1±√q)2.
Using standard results on Whittaker functions (see e.g. [83, 1]), it is easy to compute the

asymptotic behavior of ρc(λ) for λ→ 0 and λ→ +∞. Up to multiplicative constants, we have

ρc(λ) ∼λ→+∞ λ2ζ e−
λ
2 ,

and
ρc(λ) ∼λ→0+ λ2µ−1 .

We plotted in Fig. 6.1 the density ρc for c = 0, 1, 2, 3, 4, 5, 10 and q = 1/2, δ = 1, showing
the progressive deformation of the Gamma distribution with shape parameter δ/2 towards the
Marčenko-Pastur distribution (6.60) with parameter q = 1/2. The critical value of c at which
the divergence at λ→ 0+ changes to convergence is c∗ = (2− δ)/(2(1− q)) = 1. As expected, in
Fig. 6.1, the curve with second highest value at the origin corresponds to c = 1 and converges
when λ → 0+ to 1/2. The curve with highest value at the origin is the Gamma distribution
with shape parameter δ/2 = 1/2 and diverges at 0+ to +∞. The other curves corresponding to
c = 2, 3, 4, 5, 10 converge to 0 when λ→ 0+.

We have also verified our analytical result for the crossover density in (6.59) numerically for
the sample value c = 1 and found very good agreement (see Fig. 6.2).

0 5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

0.5

Figure 6.1: Density ρc(λ) for c = 0, 1, 2, 3, 4, 5, 10 of Eq. (6.59) showing the progressive defor-
mation of the Gamma distribution (6.12) with parameter δ = 1 towards the Marčenko-Pastur
distribution with parameter q = 1/2. The value ρc(0) at the origin decreases when c increases.

6.3.4 Crossover for the spectral density via Itô’s stochastic calculus

In this subsection, we want to re-obtain the result Eq. (6.41) of the previous subsection via
Itô’s calculus. We therefore consider the process (λ1(t), · · · , λN (t)) which verifies the stochastic
differential system (6.15) with the scaling relation p = 2c/M . The idea is to work out the
evolution equation of the probability measure

ρtN (dx) :=
1

N

N∑
i=1

δ(x− λi(t)) (6.61)

in the large N limit. We expect the equilibrium of this evolution equation to be the solution of
(6.41).
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λ

ρ(
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Figure 6.2: Numerical simulations of the state density of the random matrix Wn
t=∞ defined in

Eq. (6.13) for c = 1, p = β = 2c/M,M = 100, N = 50, δ = 1, q = 1/2.

In the following, f is a smooth function. Using Itô’s formula for
∫
f(x)ρtN (dx), Eq. (6.15)

and the scaling relation p = 2c/M , we obtain (see [130] for similar calculations)

d

∫
f(x)ρtN (dx) =

∫ (
−x+ 2c+

(
1− 2c

M

)
δ

)
f ′(x)ρsN (dx)dt (6.62)

+ 2
(

1− c

M

)∫
xf ′′(x)ρsN (dx)dt

+ cq

∫ t

0

∫ ∫
f ′(x)− f ′(y)

x− y
(x+ y)ρsN (dx)ρsN (dy)dt+ dMN

t ,

where dMN
t = 2

N

∑N
i=1

√
λi f

′(λi)dbi is a noise term of variance 4
N

∫
λf ′(λ)2ρtN (dλ)dt. When

N,M →∞ with N/M = q, this noise term is of order 1/
√
N .

In the large N,M limit, the stationary probability measure ρ solution of Eq. (6.62) therefore
satisfies to leading order (keeping only the terms of order 1)∫

(−x+ 2c+ δ) f ′(x)ρ(dx) + 2

∫
xf ′′(x)ρ(dx) (6.63)

+cq

∫ ∫
f ′(x)− f ′(y)

x− y
(x+ y)ρ(dx)ρ(dy) = 0

Applying Eq. (6.63) to the particular function f(x) = 1
x−z for z ∈ C \R and denoting H(z) the

Stieltjes transform of the probability measure ρ, we obtain the following differential equation
for H [

H(z) + zH ′(z)
]
− (2c+ δ)H ′(z) + 2

[
2H ′(z) + zH ′′(z)

]
+2cq

[
H ′(z) +H2(z) + 2zH(z)H ′(z)

]
= 0 . (6.64)

Eq. (6.64) can be rearranged as

2cqH(z)[H(z) + 2zH ′(z)] +
1

2
[H(z) + 2zH ′(z)] +

1

2
H(z) + [3H ′(z) + 2zH ′′(z)]

+ [(1− δ)− 2c(1− q)]H ′(z) = 0 . (6.65)
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Eq. (6.65) can be integrated easily by doing the change of function G(z) = zH(z2). Indeed, we
just need to write (6.65) for z2 instead of z and then multiply the corresponding equation by z
to obtain the following equation

2cqG(z)G′(z) +
1

2
[zG′(z) +G(z)] +

1

2
G′′(z) +

[
1− δ

2
− c(1− q)

]
2zH ′(z2) = 0 ,

which can be integrated as

2cqG2(z) +

[
z +

(1− δ)− 2c(1− q)
z

]
G(z) +G′(z) = −1 (6.66)

where the integration constant is chosen so that zG(z) ∼ −1 when |z| → ∞. Note that the
asymptotic behavior for H is therefore also zH ∼ −1 when |z| → ∞ as is expected for the
Stieltjes transform of a probability measure. Rewriting now Equation (6.66) in term of the
function H, we obtain exactly Eq. (6.41).

6.4 Correction to the Marčenko-Pastur law for large but finite
dimension

In this section, we come back to the case of generalized Wishart matrices for which particles are
distributed according to the jpdf Pβ with general parameter β > 0 (not scaling with M). We

want to compute the first correction terms to the Marčenko-Pastur density ρβN (defined in Eq.
(6.6)) for large but finite N,M with N/M = q ∈ (0; 1].

We are therefore interested in computing functionals of the form 〈
∫
f(λ)ρβN (dλ)〉 where f is

a test function and where (λ1, λ2, . . . , λN ) is distributed according to the jpdf Pβ defined in Eq.
(6.5) for β > 0. The idea is to use the stochastic process λ1(t) 6 . . . 6 λN (t) following the SDE
(6.10) that converges in law when t → ∞ to the vector (λ1 6 . . . 6 λN ) distributed according
to Pβ.

Note that in order to have a well behaved limiting spectral distribution with edges that do
not depend on M or on β, we will choose in this section σ = 1/

√
Mβ (or alternatively rescale

all eigenvalues by 1/Mβ).
Using again Itô’s formula for

∫
f(λ)ρtN (dλ) (where ρtN is still defined by Eq. (6.61)) and Eq.

(6.10), we obtain

d

∫
f(x)ρtN (dx) =

∫
(−x+ 1) f ′(x)ρtN (dx)dt+

1

Mβ
(2− β)

∫
xf ′′(x)ρsN (dx)dt (6.67)

+
q

2

∫ ∫
f ′(x)− f ′(y)

x− y
(x+ y)ρtN (dx)ρtN (dy)dt+ dMN

t

where dMN
t = 1

N

∑N
i=1 2

√
λi
Mβ f

′(λi)dbi is a noise term of variance 4
qβM2

∫
λf ′(λ)2ρtN (dλ)dt.

Let us introduce the Stieltjes transform Ht(z) of the probability measure ρtN defined as

Ht(z) =

∫
ρtN (dx)

x− z
.

We now apply (6.67) to the particular function f(x) = 1/(x − z) and we take the expectation
with respect to the bi; Eq. (6.67) rewrites as

∂〈Ht〉
∂t

=

[
〈Ht〉+ z

∂〈Ht〉
∂z

]
− ∂〈Ht〉

∂z
+

1

Mβ
(2− β)

[
2
∂〈Ht〉
∂z

+ z
∂2〈Ht〉
∂z2

]
(6.68)

+ q

[
∂〈Ht〉
∂z

+ 〈Ht〉2 + 2z〈Ht〉
∂〈Ht〉
∂z

]
+ q

[
〈H2

t 〉 − 〈Ht〉2
]

+ zq
∂

∂z

[
〈H2

t 〉 − 〈Ht〉2
]

where 〈·〉 denotes the expectation with respect to the Brownian motions bi. The two last terms
come from the replacement of 〈H2

t 〉 by 〈Ht〉2 in the third term of the right hand side of (6.68).
By setting

Ft(z) = 〈Ht(z)
2〉 − 〈Ht(z)〉2 , (6.69)
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Eq. (6.68) can be rewritten as

∂〈Ht〉
∂t

=

[
〈Ht〉+ z

∂〈Ht〉
∂z

]
− ∂〈Ht〉

∂z
+

1

Mβ
(2− β)

[
2
∂〈Ht〉
∂z

+ z
∂2〈Ht〉
∂z2

]
(6.70)

+ q

[
∂〈Ht〉
∂z

+ 〈Ht〉2 + 2z〈Ht〉
∂〈Ht〉
∂z

]
+ q

[
Ft + z

∂Ft
∂z

]
.

To simplify notations, we will now omit the 〈·〉 and write H instead of 〈H〉. The stationary
solution of (6.70) writes simply as[

H + z
dH

dz

]
− dH

dz
+

1

Mβ
(2− β)

[
2
dH

dz
+ z

d2H

dz2

]
(6.71)

+q

[
dH

dz
+H2 + 2zH

dH

dz

]
+ q

[
F + z

dF

dz

]
= 0 .

which can be rewritten as

qH(z)[H(z) + 2z
dH

dz
] +

1

2
[H(z) + 2z

dH

dz
] +

1

2
H(z) +

1

2Mβ
(2− β)[3

dH

dz
+ 2z

d2H

dz2
] (6.72)

+

[
1

2Mβ
(2− β) + (−1 + q)

]
dH

dz
+ q

[
F + z

dF

dz

]
= 0 .

Eq. (6.72) can be integrated easily by doing the change of function G(z) = zH(z2). Indeed,
we just need to write (6.72) for z2 instead of z and then multiply the corresponding equation
by z to obtain the following equation

qG
dG

dz
+

1

2

[
z
dG

dz
+G

]
+

1

4Mβ
(2− β)

d2G

dz2
(6.73)

+
1

2

[
1

2Mβ
(2− β) + (−1 + q)

]
2z
dH

dz
(z2) + qz

[
F (z2) + z2dF

dz
(z2)

]
= 0 .

Equation (6.73) can be straightforwardly integrated with respect to z as

qG2 + zG+
1

2Mβ
(2− β)

dG

dz
+

[
1

2Mβ
(2− β) + β(−1 + q)

]
G(z)

z
+ qz2F (z2) = −1 (6.74)

where the integration constant is chosen so that zG(z) ∼ −1 when |z| → ∞. Note that the
asymptotic behavior for H is therefore also zH ∼ −1 when |z| → ∞ as is expected for the
Stieltjes transform of a probability measure. Rewriting now Equation (6.74) in term of the
function H, we obtain

qH2 +H

[
1 +

1

z

(
q − 1 +

1

M

2− β
β

)]
+

1

M

2− β
β

dH

dz
+

1

z
+ q F (z) = 0 . (6.75)

Now, using the result about the noise in the Marčenko-Pastur law obtained in [105] by Lytova
and Pastur, we know that in the limit of large M , we have for β = 1 or 2,

F (z) ∼M→∞ (6.76)

1

M2

1

q2

1

2βπ2

∫ γ+

γ−

∫ γ+

γ−

dλdµ

(λ− z)2(µ− z)2

4q − (λ− (1 + q))(µ− (1 + q))√
4q − (λ− (1 + q))2

√
4q − (µ− (1 + q))2

with γ± = (1±√q)2.
The idea to obtain the correction to the Marčenko-Pastur law is to use perturbation theory

in Eq. (6.75). More precisely, we want to compute explicitly the coefficients ρ0, ρ1 and ρ2 such
that the eigenvalue density of a β-Wishart matrix writes under the form, in the limit of large
N,M with N/M = q,

ρ(λ) = ρ0(λ) +
1

M
ρ1(λ) +

1

M2
ρ2(λ) + o

(
1

M2

)
. (6.77)
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Note that this asymptotic expansion (6.77) is obtained by perturbation theory and therefore
is valid only for the values of λ such that the correction terms ρ1(λ)/M and ρ2(λ)/M2 are
negligible compared to the leading term ρ0(λ) in the limit of large M , i.e. for the values of λ
such that ρ0(λ) 6= 0. The expansion (6.77) is not valid outside the Marčenko-Pastur sea, i.e.,
it breaks down near the edges (see below). In addition, here we are talking about smoothed
density, hence it contains no oscillatory term in the finite N bulk corrections [75].

To this purpose, we first write H(z) under the form

H(z) = H0(z) +
1

M
H1(z) +

1

M2
H2(z) + o

(
1

M2

)
(6.78)

and we plug Eq. (6.78) into Eq. (6.75). By solving the equation to leading order, we find the
following expression for H0(z)

H0(z) =
1

2q

−(z + q − 1) +
√

(z − γ−)(z − γ+)

z
(6.79)

=
1

2q

−(z + q − 1) +
√

(z − (1 + q))2 − 4q

z
.

We deduce from this the famous Marčenko-Pastur result: the eigenvalue density converges in
the limit of large N,M with N/M = q to the Marčenko-Pastur density as expected given by

ρ0(λ) =
1

2πq

√
(λ− γ−)(γ+ − λ)

λ
.

For all value of β > 0, we can now compute the 1/M correction to the Marčenko-Pastur density
by plugging Eq. (6.78) into Eq. (6.75) and solve to order 1/M . This gives the following
expression for H1(z)

H1(z) = −
(

1

β
− 1

2

)
1

q

[
1

2

(
1

z − γ+
+

1

z − γ−

)
− 1√

(z − γ+)(z − γ−)

]

and the corresponding 1/N correction to the density is then given (for all β) by

ρ1(λ) =

(
1

β
− 1

2

)
1

q

[
1

2
(δ(λ− γ+) + δ(λ− γ−))− 1

π

dλ√
(λ− γ−)(γ+ − λ)

]
. (6.80)

Comparing H1(z)/M with H0(z), we see that the correction term ceases to be negligible when
|λ− γ±| ∼M−2/3, as expected: this is indeed the standard edge scaling that defines the Tracy-
Widom region. Note that this O(1/N) correction term was derived earlier [[75] and references
therein] for β = 1, 2 and 4, but our result is valid for general β.

For the particular value β = 1 or 2, we can use the result of Lytova and Pastur stated above
in Eq. (6.76) to compute the 1/M2 correction with the same method by solving the equation
until order 1/M2.

Let us first compute an explicit expression for F (z) from the integral representation in Eq.
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(6.76)

q2M2F (z) =
1

2βπ2

[
4q

(∫ γ+

γ−

1

(λ− z)2

dλ√
4q − (λ− (1 + q))2

)2

−

(∫ γ+

γ−

dλ

(λ− z)2

λ− (1 + q)√
4q − (λ− (1 + q))2

)2 ]
+ o(1)

=
1

2βπ2

[
4q

(
− π

(z − γ−)(z − γ+)

2z − γ− − γ+√
(z − γ−)(z − γ+)

)2

− π2

(z − γ−)(z − γ+)

(
1− 1

2

(2z − γ− − γ+)2

(z − γ−)(z − γ+)

)2
]

+ o(1)

=
1

2β

1

(z − γ−)(z − γ+)

[
4q

(2z − γ− − γ+)2

(z − γ−)2(z − γ+)2
−
(

1− 1

2

(2z − γ− − γ+)2

(z − γ−)(z − γ+)

)2
]

+ o(1)

=
1

2β

1

(z − γ−)(γ+ − z)
+ o(1) .

Then we can turn to compute H2(z) and deduce from this computation the expression for
ρ2(λ)

ρ2(λ) = −2

(
1

2
− 1

β

)2 1

q

1√
(λ− γ−)(γ+ − λ)

[
1

2

(
1

λ− γ−
+

1

λ− γ+

)

− λ

2

(
1

(λ− γ−)2
+

1

(λ− γ+)2

)]
+

1

2qβ

λ

(λ− γ−)3/2(γ+ − λ)3/2
.

Again, the comparison of this correction term with the dominant term indicates that our
perturbation expansion breaks down when |λ− γ±| ∼M−2/3.

6.5 Conclusions

In summary, we proposed a random matrix model (invariant under similarity transformations)
whose joint density of eigenvalues is given by the classical β-Wishart ensemble where the quan-
tization of the Dyson index β is lifted. The procedure is constructive and is described in section
6.3.2. The resulting ensemble is by construction invariant under similarity transformations with
Haar distributed eigenvectors The diffusive evolution equation for the eigenvalues involves the
Dyson index of the ensemble as a free parameter. Letting it scale with the size M of the matrix,
the spectral density of the ensemble becomes a one-parameter continuous family interpolating
between the familiar Marčenko-Pastur distribution and a certain type of Gamma distribution.
On the other hand, keeping the Dyson index unscaled but not quantized, we showed that a care-
ful analysis of the full Stieltjes transform equation lead naturally to 1/N and 1/N2 corrections
(and possibly systematically to any order) to the average spectral density (Marčenko-Pastur)
for all β 6= 2. This then extends the previous work [75, 73] on the O(1/N) correction term
for β = 1, 2 and 4. To order O(1/N2), our result is valid for β = 1 and β = 2. It would be
interesting to see (or conjecture) if this formula to O(1/N2) term is valid for general β.

In this work, we have computed the crossover density as a function of the interpolating
parameter c. In the limit c→∞, it reduces to the standard Marčenko-Pastur density, whereas
the opposite limit c → 0 corresponds to the Gamma laws associated with the CIR process. It
would be interesting to extend our analysis to the distribution of the largest eigenvalue. As in
the case of bulk density, we would expect a c-dependent distribution for the largest eigenvalue,
properly centered and scaled, interpolating between the Tracy-Widom distribution (c → ∞
limit) and Gumbel distribution (as c→ 0).
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Derivation of (6.16)

The Fokker-Planck equation for the transition probability density P (λ1, · · · , λN ; t) of the process
(λ1(t), · · · , λN (t)) which satisfies the stochastic differential system (6.15) reads

∂P

∂t
= −

N∑
i=1

∂

∂λi

P
−λi + pM + (1− δ)p+ p

∑
k 6=i

λi + λk
λi − λk

+ 2
N∑
i=1

∂2

∂λ2
i

[λiP ] . (6.81)

The stationary solution is the solution which does not depend on time t, satisfying

−
N∑
i=1

∂

∂λi

P
−λi + pM + (1− δ)p+ p

∑
k 6=i

λi + λk
λi − λk

+ 2
N∑
i=1

∂2

∂λ2
i

[λiP ] = 0 . (6.82)

It is easy to check using elementary algebra that the jpdf P ∗ defined in (6.16) verifies Eq. (6.81)
as in fact we can verify that for all i,

2
∂

∂λi
[λiP

∗] = P ∗

−λi + pM + (1− δ)p+ p
∑
k 6=i

λi + λk
λi − λk

 . (6.83)

Algorithmic description of how to build the process Wn
t in prac-

tice

Let us describe shortly an algorithmic description of how to build the process Wn
t in practice,

on a discrete grid. First note that this algorithmic description needs a discrete grid and that it
does not reproduce exactly the process Wn

t but only a discretized approximation of it. Choose
a large value of n and an initial symmetric matrix W0. The construction is iterative. Suppose
that the process is constructed until time k/n and let us explain how to compute the matrix
Wn

(k+1)/n at the next discrete time of the grid, (k + 1)/n.

1. Step 1. We first need to compute the matrix
√

Wn
k/n. It suffices to compute the orthogonal

matrix On
k/n such that

Wn
k/n = On

k/nΣ
n
k/nO

n
k/n
†

where Σn
k/n is the diagonal matrix composed of the eigenvalues of Wn

k/n (in increasing

order). The eigenvalues of the matrix Wn
k/n should be non negative as the eigenvalues

process of Wn
t are almost surely non negative at all time t. However, due to the dis-

cretization scheme necessary for algorithmic procedure, the non-negativity can fail. To

avoid this problem, we define
√

Wn
k/n as

√
Wn

k/n = On
k/n

√
Σn
k/nO

n
k/n
† (6.84)

where
√

Σn
k/n is the diagonal matrix composed of the square roots of the absolute values

of the eigenvalues of Wn
k/n (again in increasing order).

2. Step 2. We sample the Bernoulli random variable εnk with P[εnk = 1] = p = 1− P[εnk = 0].

3. Step 3. It depends on the value of εnk :

• if εnk = 1, we sample a N ×N matrix Gn filled with independent Gaussian variables
with mean 0 and variance 1/n and then we compute the matrix Wn

(k+1)/n by the
formula

Wn
(k+1)/n =

(
1− 1

n

)
Wn

k/n +
√

Wn
k/n Gn + G†n

√
Wn

k/n +
1

n
M I .
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• if εnk = 0, we sample N independent Gaussian variables (z1, · · · , zN ) with mean 0 and
variance 1/n. We then compute the matrix Yn, which is co diagonalizable with the
matrix Wn

k/n, defined as the product

Yn := On
k/nDiag (z1, z2, . . . , zN ) On

k/n
† . (6.85)

Finally we obtain the matrix Wn
(k+1)/n by

Wn
(k+1)/n =

(
1− 1

n

)
Wn

k/n +
√

Wn
k/n Yn + Y†n

√
Wn

k/n +
1

n
δ I .
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Chapter 7

Eigenvector dynamics: general
theory and some applications

Résumé

Cet article est publié dans Physical Review E et est écrit en collaboration avec Jean-
Philippe Bouchaud. Nous proposons un cadre de travail général pour étudier la sta-
bilité du sous espace engendré par P vecteurs propres associés à des valeurs propres
consécutives d’une matrice symmétrique H0 sous l’effet d’une petite perturbation
additive. Ce problème intervient dans divers contextes, notamment la dissipation
quantique (dans ce cas, H0 est l’Hamiltonien du système) et le contrôle du risque en
finance (dans ce cas la matrice H0 est la matrice de covariance des rendements des
actions). L’idée est de calculer les valeurs singulières de la matrice des chevauche-
ments p̀artir desquelles on peut calculer une distance mesurant le chevauchement
de deux sous-espaces vectoriels. Nous nous concentrons sur le cas particulier où la
matrice H0 est une matrice aléatoire de l’ensemble orthogonal Gaussien. Dans ce
cas, le spectre des valeurs singulières admet une forme limite explicite dans la limite
des grandes matrices. Nous nous intéressons aussi au cas où H0 est une matrice de
covariance et nous illustrons l’utilité pratique de nos résultats par des applications en
finance. Le cas particulier où cette matrice de covariance a une valeur propre beau-
coup plus grande que toutes les autres est traité très précisément. En particulier,
la dynamique de l’angle entre les plus grands vecteurs propres de la vraie matrice
de covariance et de la matrice de covariance empirique fait apparâıtre une nouvelle
classe de processus stochastiques.

Abstract

We propose a general framework to study the stability of the subspace spanned by
P consecutive eigenvectors of a generic symmetric matrix H0, when a small pertur-
bation is added. This problem is relevant in various contexts, including quantum
dissipation (H0 is then the Hamiltonian) and financial risk control (in which case
H0 is the assets return covariance matrix). We argue that the problem can be formu-
lated in terms of the singular values of an overlap matrix, which allows one to define
an overlap distance. We specialize our results for the case of a Gaussian Orthogonal
H0, for which the full spectrum of singular values can be explicitly computed. We
also consider the case when H0 is a covariance matrix and illustrate the usefulness of
our results using financial data. The special case where the top eigenvalue is much
larger than all the other ones can be investigated in full detail. In particular, the
dynamics of the angle made by the top eigenvector and its true direction defines an
interesting new class of random processes.

7.1 Introduction

Random Matrix Theory (RMT) is extraordinarily powerful at describing the eigenvalues statis-
tics of large random, or pseudo-random, matrices [145, 3, 15, 114]. Eigenvalue densities, two-
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point correlation functions, level spacing distributions, etc. can be characterized with exquisite
details. The “dynamics” of these eigenvalues, i.e. the way these eigenvalues evolve when the
initial matrix H0 is perturbed by some small matrix εP, is also well understood [140]. The
knowledge of the corresponding eigenvectors is comparatively much poorer (but see [153]). One
reason is that many RMT results concern rotationally invariant matrix ensembles, such that by
definition the statistics of eigenvectors is featureless. Still, as we will show below, some inter-
esting results can be derived for the dynamics of these eigenvectors. Let us give two examples
for which this question is highly relevant.

One problem where the evolution of eigenvectors is important is Quantum Dissipation [154]
(see also the related recent strand of the literature on Quantum “Fidelity” [71]). As the pa-
rameters of the Hamiltonian Ht = H0 + εPt of a system evolve with time t, the average energy
changes as well. One term corresponds to the average (reversible) change of the Hamiltonian
which leads to a shift of the energy levels (the eigenvalues). But if the external perturbation
is not infinitely slow, some transitions between energy levels will take place, leading to a dis-
sipative (irreversible) term in the evolution equation of the average energy of the system. The
adiabaticity condition which ensures that no transition takes place amounts to comparing the
speed of change of the perturbation εPt with a quantity proportional to the typical spacing
between energy levels. For systems involving a very large number N of degrees of freedom, the
average level spacing of the N ×N Hamiltonian H goes to zero as N−1. For N →∞, any finite
speed of change therefore corresponds to the “fast” limit, where a large number of transitions
between states is expected. In fact, if the quantum system is in state |φ0

i 〉 at time t = 0, which
corresponds to the ith eigenvector of H0, the probability to jump to the jth eigenvector of H1,
|φ1
j 〉, at time t = 1 is given by |〈φ1

j |φ0
i 〉|2, where we use the bra-ket notation for vectors and

scalar products. The way energy is absorbed by the system will therefore be determined by the
perturbation-induced distortion of the eigenvectors. More precisely, if |φ0

i 〉 is different from |φ1
i 〉,

some transitions must take place in the non-adiabatic limit, which involve all the states j that
have a significant overlap with the initial state.

Another very relevant situation is Quantitative Finance, where the covariance matrix C
between the returns of N assets (for example stocks) plays a major role in risk control and
portfolio construction [44]. More precisely, the risk of a portfolio which invests wα in asset α is
given by R2 =

∑
αβ wαCαβwβ. Constructing low risk portfolios requires the knowledge of the n

largest eigenvalues of C (n is often chosen empirically, keeping only the statistically meaningful
eigenvalues which lie outside the Marchenko-Pastur sea, see [45] for details), λ1 > . . . > λn and
their corresponding eigenvectors |φ1〉, . . . , |φn〉. The top eigenvalues and eigenvectors represent
the most risky directions in a financial context. A portfolio such that the vector of weights |w〉
has zero overlap with the first n eigenvectors of C has a risk which is bounded from above by
λn+1. The problem with this idea is that it relies on the assumption that the covariance matrix
C is perfectly known and constant in time. The observation of a sufficiently long time series of
past returns would thus allow one, in such a stable world, to determine C and to immunize the
portfolio against risky investment modes.

Unfortunately, this idea is thwarted by two (inter-related) predicaments: a) time series are
always of finite length, and lead to substantial “noise” in empirical estimates of C [44] and b) the
world is clearly not stationary and there is no guarantee that the covariance matrix corresponding
to the pre-crisis period 2000-2007 is the same as the one corresponding to the period 2008-2011.
For one thing, some companies disappear and others are created in the course of time. But even
restricted to companies which exist throughout the whole period, it is by no means granted that
the correlation between stock returns do not evolve in time. This is why it is common practice in
the financial industry to restrict the period used to determine the covariance matrix to windows
of a few years into the recent past. This leads to the measurement noise problem alluded above.
Now, if the “future” large eigenvectors do not coincide with the past ones, a supposedly low
risk portfolio will in fact be exposed to large risks directions in the future. Denoting as |φ0

i 〉
the past eigenvectors and |φ1

j 〉 the future ones, the total risk of the portfolio |w〉 = |φ0
i 〉 can be

defined as
∑N

j=1 λ
1
j 〈φ1

j |φ0
i 〉2. Therefore, as for the quantum dissipation problem, the statistics

of the overlaps 〈φ1
j |φ0

i 〉 is a crucial piece of information.

In practice, one computes the empirical covariance matrix E using past stock returns, which
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is defined as:

Eij =
1

T

T∑
t=1

rtir
t
j ,

where T is the length of the period on which the measurement is done and rti is the return of
stock number i on day t. If the true covariance matrix C exists and is stable in this period, the
empirical matrix E can be seen as a perturbation of C, since one can write E = C + E where E
is a matrix whose elements are of order 1/

√
T (by the central limit theorem) to be considered

small as T is usually quite large. In this sense, the problem falls in the more general context
introduced above.

The paper is organized as follows. In the next section 7.2, we introduce the main statistical
tools and objects studied in different contexts in the following sections and we also briefly recall
standard perturbation theory. In the next two sections, we turn to two explicit illustrations, first
in the context of matrices in the Gaussian Orthogonal ensemble (GOE), and then in the context
of covariance matrices. More precisely, in section 7.3, we study the stability of the eigenvectors
for a matrix H0 in the GOE by computing the “overlap distance” between the perturbed space
and the non-perturbed space in the limit of large matrices H0 when the perturbation matrix P is
also in the GOE. Furthermore, we are able to compute the full spectrum of the overlap matrix in
this limit, which gives a precise idea of the perturbation induced distortion for the eigenvectors.
In section 7.4, we go through the same steps in the context of covariance matrices. We study the
link between the population eigenvectors (the eigenvectors of the true covariance matrix) and
the sample eigenvectors (the eigenvectors of the empirical covariance matrix). Then, in section
7.5, we analyse more precisely the case of a population covariance matrix with an isolated top
eigenvalue much larger than the other ones. We measure the empirical covariance matrix with
an exponential moving average estimator and characterize the temporal evolution of the angle
made by the top eigenvector and its true direction which defines an interesting new class of
random processes. Finally, in section 7.6, we apply our ideas to the analysis of financial market
correlations. Our purpose here is to study whether correlations between stock returns evolve
or not. In particular, is there a constant in time correlation matrix (population correlation
matrix)? Do the economical sectors (eigenvectors of the correlation matrix) evolve or not ?
We find that there is indeed a genuine evolution of the correlation matrix of stocks returns for
different markets in the U.S, in Europe and in Japan, a result which confirms recent studies (see
e.g. [27, 8, 116]). We also give a partial description of this temporal evolution.

7.2 Perturbation theory and Statistical tools

In this section, we first recall the perturbation theory for the eigenvalues and eigenvectors (see
Eq. (7.3) and (7.2)) when the perturbed matrix H1 writes as in Eq. (7.1). Then we define the two
main objects of the paper, the overlap matrix G and the overlap distance D (see Eq. (7.4) and
(7.5)) useful for the comparison of the two perturbed and non perturbed eigen subspaces, that
will be studied in different contexts in sections 7.3, 7.4 and also in 7.6 for financial applications.
At the end of this section, we compute asymptotic expressions for the two objects G and D using
the perturbation theory’s equation for the eigenvectors, when the perturbation is of the form
(7.1) (see Eq. (7.7), (7.8) for the matrix G†G and (7.9) for the distance D). Those computations
will be very useful later in sections 7.3 and 7.4. The last definition of the matrix Σ defined in
Eq. (7.10) and the expression (7.11) for its entries in the perturbative regime will be convenient
and used later.

In the whole paper, we will mainly be interested in the eigenvectors of a matrix H1 which
can be written as

H1 = H0 + εP (7.1)

where H0 and P are two N × N symmetric matrices and ε a small (positive) parameter. The
matrix H0 is the true signal which is perturbed by the adding of the small term εP. The matrix
H1 will be referred as the perturbed matrix. The eigenvalues of the matrix Hi, i = 0, 1 will be
denoted as λi1 > λ

i
2 > . . . > λiN and the corresponding eigenvectors |φi1〉, . . . , |φiN 〉.
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Our aim is to describe the relation between the perturbed eigenvectors |φ1
i 〉 and the non-

perturbed eigenvectors |φ0
i 〉 when the parameter ε tends to 0.

When trying to follow the evolution of a given eigenvector |φi〉 when the small perturbation
εP is added, one immediately faces a problem if the neighbouring eigenvalues of λ0

i are too
close to λ0

i . For example, if the distance between the eigenvalues λ0
i and λ0

i+1 is very small, the
eigenvectors |φi〉 and |φi+1〉 will strongly hybridize (this phenomenon was observed for example
in [147, Fig. 1]). The eigenvector |φ0

i 〉 will in fact hybridize with all the perturbed eigenvectors
|φ1
j 〉, with stronger overlaps for those associated to eigenvalues λ0

j , j 6= i which are close to λ0
i .

This idea can be made precise by using standard perturbation theory to second order in ε: the
perturbed eigenvectors can be expressed in terms of the initial eigenvectors, for small ε, as:

|φ1
i 〉 =

1− ε2

2

∑
j 6=i

(
Pij

λ0
i − λ0

j

)2
|φ0

i 〉+ ε
∑
j 6=i

Pij
λ0
i − λ0

j

|φ0
j 〉 (7.2)

+ ε2
∑
j 6=i

1

λ0
i − λ0

j

∑
`6=i

Pj`P`i
λ0
i − λ0

`

− PiiPij
λ0
i − λ0

j

 |φ0
j 〉

where Pij ≡ 〈φ0
j |P|φ0

i 〉. The denominators λ0
i − λ0

j remind us that the eigenvector |φ0
i 〉 can have

very large overlaps with the eigenvectors associated to the closest eigenvalues to λ0
i . This fact

makes difficult to follow the evolution of one single eigenvector in the case of small spacings
between the eigenvalues (this will happen when the dimension of the matrix is large, see below).
We mention in passing that perturbation theory to second order in ε for the eigenvalues gives

λ1
i = λ0

i + εPii + ε2
∑
j 6=i

P 2
ij

λ0
i − λ0

j

. (7.3)

The reader can find a study of perturbed eigenvalues statistics in [150, 79].
It is important to note at this point that equations (7.2) and (7.3) are a priori only valid in

the perturbative regime, i.e. when the entries of the perturbation matrix εP are small compared
to the level spacing of the non-perturbed matrix H0. This condition ensures that the asymptotic
correction terms appearing in (7.2) and (7.3) are small compared to the leading term of order 1
corresponding to the non-perturbed system.

The idea is then to study the stability of a whole subspace V0 spanned by 2p + 1 several
consecutive eigenvalues: {|φ0

k−p〉, . . . |φ0
k〉, . . . , |φ0

k+p〉}. Motivated by the above examples, we ask
the following question: how should one choose q > p such that the subspace V1 of dimension
2q + 1 spanned by the set {|φ1

k−q〉, . . . |φ1
k〉, . . . , |φ1

k+q〉} has a significant overlap with the initial
subspace? In order to answer this question, we consider the (2q + 1) × (2p + 1) rectangular
matrix of overlaps G with entries:

Gij := 〈φ1
i |φ0

j 〉 . (7.4)

The (2p+1) non zero singular values 1 > s1 > s2 > . . . > s2p+1 > 0 of G give full information
about the overlap between the two spaces. For example, the largest singular value s1 indicates
that there is a certain linear combination of the (2q + 1) perturbed eigenvectors that has a
scalar product s1 with a certain linear combination of the (2p+ 1) unperturbed eigenvectors. If
s2p+1 = 1, then the initial subspace is entirely spanned by the perturbed subspace. If on the
contrary s1 � 1, it means that the initial and perturbed eigenspace are nearly orthogonal to one
another since even the largest possible overlap between any linear combination of the original
and perturbed eigenvectors is very small. A good measure of what can be called an overlap
distance D(V0, V1) between the two spaces V0 and V1 is provided by the average of the logarithm
of the singular values:

D(V0, V1) := −
∑

i ln si
2p+ 1

, (7.5)

but alternative measures, such as 1 −
∑

i si/(2p + 1), can be considered as well. Since the
singular values s are obtained as the square-root of the eigenvalues of the matrix G†G, one has
D ≡ − ln det G†G/2P , where we henceforth introduce for convenience the notations P = 2p+1,
Q = 2q + 1. The overlap distance D was originally studied for P = Q in [14], see e.g. [84, 147],
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where a fundamental effect observed in many body systems, called the Anderson Orthogonality
catastrophe (AOC) is introduced. Anderson [14] addressed the ground state of a finite system
consisting of P noninteracting electrons. Upon the introduction of a finite rank perturbation
matrix εP, this ground state gets modified. It is then shown that the overlap between the original
and the modified P -electron ground state, which is in fact exactly given by our overlap distance
D(V0, V1) between the two subspaces V0 and V1 (with P = Q), is proportional to a negative
power of P , and vanishes in the thermodynamic P → +∞ limit, hence the catastrophe. We
will see that our idea of introducing a rectangular Q×P overlap matrix G enables to avoid this
orthogonality catastrophe. Our objects introduced here will also allow us to revisit the AOC
in the case of square matrices G showing that it occurs for the random matrix model studied
in section 7.3 (AOC for this RM model is also studied in [147]). In [84, 147], the AOC is also
investigated through random matrix models as in our paper. The main difference with [84] is
that we consider here full rank perturbation instead of a localized perturbation of rank 1, for
which one can do explicit computations (and so treat the non-perturbative regime).

As an interesting benchmark, consider the case when two subspaces W0 and W1 respectively
of dimensions P and Q are constructed using randomly chosen orthonormal vectors in a space
of dimension N . In this case, one expects accidental overlaps, such that the si are in fact non
zero, and therefore D(W0,W1) is finite. This distance can be calculated exactly using Random
Matrix Theory tools in the limit N,P,Q → ∞, with α = P/N and β = Q/N held fixed. The
result is [46]:

DRMT (W0,W1) = −
∫ 1

0
ds ln(s)

√
(s2 − γ−)+(γ+ − s2)+

βπs(1− s2)

where γ± = α+β−2αβ±2
√
αβ(1− α)(1− β). In other words, in that limit, the full density of

singular values is known; all singular values are within the interval [
√
γ−,
√
γ+]. This provides

a benchmark to test whether the two eigenspaces are accidentally close (D ≈ DRMT ), or if they
are genuinely similar (D � DRMT ).

Endowed with the above formalism, we can now proceed to compute D(V0, V1) in the case
where the perturbation is small. Indeed equation (7.2) allows us to obtain the overlap matrix
G. Keeping only the relevant terms to order ε2, we find:1

Gij =


1− ε2

2

∑
` 6=i

(
Pi`

λ0
i−λ0

`

)2
if i = j,

ε Pij
λ0
i−λ0

j
+ ε2

λ0
i−λ0

j

(∑
`6=i

Pj`P`i
λ0
i−λ0

`
− PiiPij

λ0
i−λ0

j

)
if i 6= j.

(7.6)

Using (7.6), we can also compute the matrix G†G to second order in ε, we obtain for i 6= j:

(G†G)ij = −ε2
∑

6̀∈{k−q;...;k+q}

P`iP`j
(λ0
i − λ0

` )(λ
0
j − λ0

` )
, (7.7)

and, for i = j:

(G†G)ii = 1− ε2
∑

j 6∈{k−q;...;k+q}

(
Pij

λ0
i − λ0

j

)2

. (7.8)

It is then easy to derive the central result of our study: to second order in ε, the distance
D(V0, V1) between the initial and perturbed eigenspaces is:

D(V0, V1) =
ε2

2P

k+p∑
i=k−p

∑
j /∈{k−q,...,k+q}

(
Pij

λ0
j − λ0

i

)2

. (7.9)

The matrices G and G†G are both close to the identity matrix as they should. Let us define
the matrix Σ by

Σ =
1

ε2

(
I−G†G

)
(7.10)

1see [153] for similar calculations.



134 CHAPTER 7. EIGENVECTORS DYNAMICS

whose elements write, using the previous perturbation equations for G†G (Eq. (7.7) and (7.8)),
as

Σij =
∑

` 6∈{k−q;...;k+q}

P`iP`j
(λ0
i − λ0

` )(λ
0
j − λ0

` )
. (7.11)

One can note that the matrix Σ is positive definite and that its matrix elements are of order 1
when ε goes to 0.

7.3 Eigenvector stability in the GOE ensemble

We will now define a random matrix model for which we will apply the results of the previous
section. Let H0 be a random matrix of the Gaussian Orthogonal Ensemble (GOE), i.e. a matrix
of size N ×N with gaussian entries randomly chosen with the probability measure on the space
of real symmetric matrices

P (dH0) = exp(− N

2σ2
tr(H2

0 )) dH0 .

This definition implies that the matrix H0 is symmetric with independent Gaussian entries
above the diagonal with variance σ2/N on the diagonal and σ2/2N off diagonal.

The perturbation matrix is similarly defined as a random matrix of the GOE, independent
of H0 with the same variance profile for the entries.

We then define the perturbed matrix H1 as before:

H1 = H0 + εP. (7.12)

It is very well known that the density of H0-eigenvalues ρN (λ) := 1/N
∑N

i=1 δλi tends in the
large N limit to the Wigner semi-circle law

ρ(dλ) ≡ 1

2π

√
4σ2 − λ2dλ . (7.13)

For simplicity, we take σ2 = 2 in the following.

Remark. Here the choice of a GOE random matrix for H0 is made to get an explicit expression
for the density of states in the limit of large matrices. But our theory developed in the following
would apply for sequences of matrices (H0(N))N such that the density of states converges to
a general (not necessarily the semi-circle density) continuous density ρ(λ)dλ. Moreover, the
sequence (H0(N))N can be supposed deterministic or random. The matrix H0 can be seen as
the true signal to which a small noisy perturbation εP is added.

In this whole current section, · · · denotes an averaging over the random matrix P 2.

In the following subsection 7.3.1, we study the overlap distance D(V0, V1) between two
eigenspaces V0 and V1 (see below for definition) of the matrices H0 and H1 and we consider in
particular its limit when the dimension N of the (GOE) random matrices H0, H1 and P tends
to infinity. In subsection 7.3.2, we study the spectrum of the matrix G†G introduced above in
this context, and we characterize the limiting eigenvalue empirical distribution of G†G in the
limit of large N . The characterization appears in equation (7.20) which is an equation (with
a unique solution) satisfied by the Stieltjes transform (or resolvent) of the limiting probability
measure. Then, in the following subsection 7.3.3, we analyse equation (7.20) and its solution in
great details so as to extract informations on the density of this distribution (it has a compact
support, values of its edges,... ).

2There is no need in averaging over the random matrix H0 for the following results to be valid.
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7.3.1 Distance between subspaces of perturbed and non-perturbed eigenvec-
tors

We consider the subspace V0 of initial eigenvectors corresponding to all the eigenvalues λ con-
tained in a certain finite interval [a, b] included in the Wigner sea [−2, 2]. We want to compute
the mean overlap distance D(V0, V1) between V0 and the subspace V1 spanned by the perturbed
eigenvectors of H1, corresponding to all eigenvalues contained in [a − δ, b + δ], where δ is a
positive parameter.

Using formula (7.9), which is valid if the entries of the perturbation matrix εP (of order
εN−1/2) are much smaller than the mean level spacing of the matrix H0, of order (Nρ(λ))−1,
we can write for ε� N−1/2:

D(V0, V1) =
ε2

2P

∑
λ0
i∈[a;b]

∑
λ0
j 6∈[a−δ;b+δ]

1

(λ0
j − λ0

i )
2
. (7.14)

It is easily seen that Eq. (7.14) becomes, in the large N limit:

D(V0, V1) =
ε2

2
∫ b
a ρ(λ)dλ

∫ b

a
dλ

∫
[−2;2]\[a−δ;b+δ]

dλ′
ρ(λ)ρ(λ′)

(λ− λ′)2
, (7.15)

where ρ is the Wigner semicircle density (7.13).
Formula (7.15) is a priori only rigorously valid in the perturbative regime where ε� N−1/2.

We argue that in fact it remains valid in a wider regime where ε� 1. Indeed although pertur-
bation theory for the eigenvectors fails for H0 eigenvalues which are at distance of order of the
mean level spacing of H0, it remains valid in the limit ε � 1 for eigenvalues at distance large
compared to the order of the perturbation entries εN−1/2 and in particular for two eigenvalues
lying respectively in the two well separated intervals [a; b] and [a−δ; b+δ] for which this distance
is larger than δ (which indeed is � εN−1/2). We see that every terms appearing in (7.2) corre-
sponding to overlap between eigenvectors associated to eigenvalues which are at distance smaller
than δ disappear in formulas (7.9) (and also in (7.7), (7.8)). Therefore, we expect (7.15), as
well as our results below, to remain valid in the regime N−1/2 � ε� 1, provided the computed
distance D(V0, V1) itself remains much smaller3 than unity. We checked formula (7.15) using
numerical simulations, with very good agreement for different values of a, b, δ,N, ε. In those
numerical tests we chose the parameters N, ε, δ so as to approach the regime N−1/2 � ε � 1
(for example, N = 4000, ε = 0.1, δ = 0.5).

We will now write D(a, b; δ, ε) instead of D(V0, V1).
It is interesting to study the above expression in the double limit δ → 0 and ∆ = b− a→ 0.

One finds:
1

ε2
D(a, a+ ∆; δ, ε) ≈

{
ρ(a) ln(∆/δ)

∆ if δ � ∆� 1,
ρ(a)
δ if ∆� δ � 1.

(7.16)

In the second case where ∆ � δ � 1, this last expression shows that when the width ∆ of
interval [a, b] tends to zero, the corresponding eigenvectors are scattered in a region of width δ
much larger than ∆ itself as soon as ε �

√
δ. In the first case, it shows that for fixed ∆, the

distance D diverges logarithmically when δ → 0. This is a consequence of the small spacings
between the (non-perturbed) eigenvalues close to the boundaries of the two intervals [a; b] and
[a − δ; b + δ]. When δ > 0, these spacings remains larger than the fixed distance δ > 0 and D
remains finite.

When δ = 0, we can do a more precise analysis of the right hand side of (7.14). One can
show, for large N , that the following result holds at least in the regime ε� N−1/2:

1

ε2
D(a, b; δ = 0, ε) ≈ lnN

ρ(a)2 + ρ(b)2

2
∫ b
a ρ(λ)dλ

+A(a, b) (7.17)

where A(a, b) is a constant independent of N which can be explicitly computed, and involves
the well known two-point function g(r) which describes the level-level correlations in the GOE

3For this condition to be valid, δ has to be fixed independent of ε, or at least such that ε2| ln(δ)| � 1.
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(see Appendix A for the details of this computation). The lnN term can be guessed from the
logarithmic behavior of D when δ → 0, since one indeed expects the divergence to be cut off
when δ becomes of the order of the level spacing, i.e. δ ∼ (Nρ)−1. Eq. (7.17) is precisely
the Anderson orthogonality catastrophe as first introduced in [14] in the case of finite rank
perturbation matrices. We recover here exactly the result of [147] (see their Eq. (31)) by taking
a = −2, b = 0 in our Eq. (7.17). 4

As a side remark, we note that Eq. (7.16) predicts that when δ � ∆, a fraction ε2/δ of
the original eigenspace gets shoved away at distances larger than δ (in eigenvalue space). In the
context of the non adiabatic evolution of a quantum system [30], this implies that the energy of
the system makes jump with a power-law distribution of sizes that decays as δ−2, since by the
above argument the cumulative distribution decays as δ−1. This means that under an extreme
non-adiabatic process, the energy is not diffusive but rather performs a “Cauchy flight” (i.e. a
Lévy flight with a tail exponent equal to 2), see [154].

7.3.2 Full distribution of the singular values of the overlap matrix

To order ε2, the distance D computed in the previous subsection is proportional to the mean
position of the singular values. One can actually be much more precise and compute, for N →∞,
the full distribution of all singular values, giving an indication of their scatter around the mean
position 〈s〉. The computation of the density of states (DOS) can be straightforwardly performed
using free random matrices techniques.

We have already seen in Eq. (7.11) that the entries of the matrix Σ, defined in (7.10), write
in the perturbative regime ε

√
N � 1 as: 5

Σij =
∑

6̀∈{k−q;...;k+q}

P`iP`j
(λi − λ`)(λj − λ`)

(7.18)

Denote, for each ` 6∈ {k − q; . . . ; k + q} by v` the random Gaussian vectors of RP

v` =

(
P`,k−p

λk−p − λ`
,

P`,k−p+1

λk−p+1 − λ`
, . . . ,

P`,k+p

λk+p − λ`

)†
.

It is easily seen that in fact (changing to the equivalent notation for the summation on ` in
term of a, b)

Σ =
∑

`:λ` 6∈[a−δ;b+δ]

v`v
†
`

This matrix v`v
†
` is clearly the matrix of a projector on v` and has only one non-zero

eigenvalue which is equal to

σ(λ`) = ||v`||22 =
∑

j∈{k−p;...;k+p}

(
P`j

λj − λ`

)2

which can be approximated in the limit of large matrices (P →∞) by

σ(λ`)→
∫ b

a
dλ

ρ(λ)

(λ− λ`)2
.

The resolvent Z`(z) ≡ 1
P tr((z − v`v

†
`)
−1) of the matrix v`v

†
` is equal to: 6

Z`(z) =
1

P

(
1

z − σ(λ`)
+
P − 1

z

)
.

4The authors of [147] expect deviations in (7.17) when the parameter x := ε
√
N (which has to be � 1 for

(7.17) to be fully valid) is increased. However their numerical results (presented in Fig. 2 of [147]) show that
the discrepancies are only noticeable for x close to 1. In addition, the authors of [147] explain that the failure of
(7.17) for not small enough x is due to the first-order perturbation theory estimate that breaks down when used
for levels in the vicinity of the edges a, b of the initial interval. This problem was avoided previously by the use
of rectangular matrices with Q > P and the introduction of the δ margin at the edges a and b.

5We skip the subscript 0 on the eigenvalues λis.
6Resolvents are usually denoted by the letter G, but we do not want to confuse the reader with the overlap

matrix G of which we compute the singular value spectrum.
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The Blue function, which by definition is the functional inverse of the resolvent B`(Z`(z)) = z,
can be computed to first order in 1/P :

B`(z) =
1

z
+

1

P

σ(λ`)

1− σ(λ`)z

Finally, the Red function, defined as R`(z) ≡ B`(z)− 1
z , is given by:

R`(z) =
1

P

σ(λ`)

1− σ(λ`)z

The trick, coming from the theory of free matrices, is to use the additive property of the Red
function (also called R-transform) for the asymptotically free matrices v`v

†
` . Essentially, the

R-transform of the matrix Σ can be computed as the sum of the R-transforms of the matrices
v`v

†
` :

R(z) =
∑

6̀∈{k−q;...;k+q}

R`(z) =
1

P

∑
`6∈{k−q;...;k+q}

σ(λ`)

1− σ(λ`)z

Finally, the Blue function of Σ is:

B(z) =
1

z
+

1

P

∑
` 6∈{k−q;...;k+q}

σ(λ`)

1− σ(λ`)z

which can be approximated in the limit of large P as:

B(z) =
1

z
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dλ
ρ(λ)σ(λ)

1− σ(λ)z
. (7.19)

where we note here and below N b
a :=

∫ b
a ρ(λ)dλ. Rewriting equation (7.19) in terms of the

resolvent gives our central result:

z =
1

Z(z)
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dλ
ρ(λ)σ(λ)

1− σ(λ)Z(z)
. (7.20)

Equation (7.20) characterizes the density of states of the matrix Σ in the limit of large dimension.
We ran numerical simulations to test the validity of Eq. (7.20) in the regime 1/

√
N � ε � 1,

see Fig. 7.1. The agreement is excellent. It would be interesting to run this numerical test for
very large values of N (here we took N = 4000) so as to fully reach the regime 1/

√
N � ε� 1.

However, this becomes numerically demanding, and we leave this study for future work.
We now want to extract the qualitative informations about the distribution of all singular

values of the matrix G from this equation. In particular, we will show in the next subsection
that the density of singular values has a compact support for which we characterize the left and
right edges. We also study the shape of this distribution in the two asymptotic regimes ∆� δ
and δ � ∆� 1.

7.3.3 Qualitative properties of the spectrum of Σ

Right and Left edges

The relation between the resolvent Z and the density of states r(s) of the matrix Σ is limω→0=Z(s−
iω) = πr(s), s ∈ R. Note that one should not confuse the density of states ρ(λ) of the original
matrix H0 with the density of eigenvalues r(s) of Σ.

From equation (7.20), we can derive a system of equations for the real (g(s)) and imaginary
(r(s)) parts of Z(s), for ω → 0:

s =
g(s)

g(s)2 + π2r(s)2
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)(1− σ(x)g(s))

(1− σ(x)g(s))2 + σ(x)2π2r(s)2
, (7.21)

0 = r(s)

 −1

g(s)2 + π2r(s)2
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)2

(1− σ(x)g(s))2 + σ(x)2π2r(s)2

 . (7.22)
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Figure 7.1: The histogram represents a numerical simulation of the density of states of the matrix Σ
(computed with 15 independent samples). The red curve is the theoretical corresponding density for r(s)
obtained by solving numerically (7.20). For this figure, we chose a = 0, b = 0.5, δ = 0.5. We chose the
parameters N and ε so as to approach the ”less perturbative” regime where 1/

√
N � ε � 1 for this

figure as N = 4000 and ε = 0.1.

The second equation (7.22) always admits the solution r = 0. Plugging r = 0 into the first
equation gives:

s =
1

g(s)
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)

1− σ(x)g(s)
(7.23)

Equation (7.23) implies the asymptotic relation g(s) ∼s→∞ 1/s and therefore large positive
values of s correspond to small values of g(s). Set

m0 ≡ max
x∈[−2;2]\[a−δ;b+δ]

σ(x), (7.24)

the Right Hand Side (RHS) of the above equation is well defined provided g(s) ∈ (0; 1/m0) .
However, when g(s) → 0+ or when g(s) → (1/m0)−, the RHS tends to +∞. Thus, on the
interval g(s) ∈ (0; 1/m0), the RHS must reach a minimum which corresponds to the right edge
of the density of states. The point ḡ ∈ (0; 1/m0) for which this minimum is reached verifies:

− 1

ḡ2
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)2

(1− σ(x)ḡ)2
= 0 , (7.25)

and we can compute the right edge of the spectrum smax from:

smax =
1

ḡ
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)

1− σ(x)ḡ
. (7.26)

We can now turn to the left edge of the spectrum. Equation (7.23) implies also the asymptotic
relation g(s) → −∞ when s → 0 and therefore small positive values of s correspond to large
negative values of g(s). The RHS of equation (7.23) is well defined for negative values of g(s);
it goes to 0− for very large and negative values of g(s), and goes to −∞ for g(s) = 0−, so it has
a positive maximum somewhere in between. The value of this maximum corresponds to the left
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edge of the density of states and can be computed numerically like for the right edge. The point
g̃ ∈ (−∞; 0) for which this maximum is reached verifies the same equation as ḡ above, and the
left edge smin is now given by:

smin =
1

g̃
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)

1− σ(x)g̃
. (7.27)

Small fluctuations regime ∆� δ

We first consider the case where ∆ ≡ b − a � δ, corresponding to P � Q, in particular the
dimension of the perturbed subspace is much larger than the dimension of the unperturbed
space and so the perturbed space almost surely spans the unperturbed subspace. We therefore
expect small fluctuations in this regime. Equation (7.20) can be solved explicitly in this case.
It is in fact possible to perform an asymptotic expansion in σ(x), which is very small compared
to 1 for all x ∈ [−2; 2] \ [a− δ; b+ δ] and then to solve equation (7.20).

More precisely, in this regime, we have for all x ∈ [−2; 2] \ [a− δ; b+ δ]:

σ(x) ≈ ρ(a)

(x− a)2
∆ .

We plug this approximation in equation (7.20) to obtain

z =
1

Z(z)
+

∆× ρ(a)

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)

(x− a)2 −∆× ρ(a)Z(z)

≈ 1

Z(z)
+

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)

(x− a)2
+ ∆× ρ(a)Z(z)

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)

(x− a)4
.

Now setting A ≡
∫

[−2;2]\[a−δ;b+δ] dx
ρ(x)

(x−a)2 and B ≡ ∆×ρ(a)
∫

[−2;2]\[a−δ;b+δ] dx
ρ(x)

(x−a)4 , we see that

Z(z) is solution of the polynomial equation of degree two:

BZ(z)2 + (A− z)Z(z) + 1 = 0. (7.28)

For z = s ∈ R, this equation has solutions with non-zero imaginary part only if s ∈ [A −
2
√
B;A+ 2

√
B], which are given by

Z(z) =
−A+ s± i

√
4B − (A− s2)

2B
.

Using the relation limω→0=Z(s− iω) = πr(s) for s ∈ R, we find that r(s) in this regime is given
by the semi-circle law

r(s) =
1

2Bπ

√
4B − (A− s)2, A− 2

√
B < s < A+ 2

√
B. (7.29)

This result is consistent with (7.15) since, in this regime, D(a, b; δ) = ε2A.
Note that in the particular regime ∆� δ � 1, the quantity B is proportional to ∆/δ3 and is

therefore much smaller than A2 ∝ 1/δ2, meaning that r(s) becomes concentrated around s = A,
with fluctuations of order

√
∆/δ3. This result is also consistent with the direct calculation of

the root-mean squared fluctuations of s, as obtained in Appendix B, see equation (7.61).

Strong fluctuations regime δ � ∆� 1

To simplify notations, we will suppose in the following that a and b are such that ρ(a) > ρ(b).
Let us first consider the right edge smax as given by (7.26). We need to find an asymptotic
expansion in this regime of the ḡ ∈ (0; 1/m0) which verifies (7.25). So we start by defining
α := ḡm0 ∈ (0; 1) and investigate its behavior when δ � ∆ � 1. Since m0 ∼δ→0 ρ(a)/δ,
equation (7.25) now rewrites as

α2δ2

ρ(a)2N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)2

(1− ασ(x)
m0

)2
∼ 1 . (7.30)
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Figure 7.2: The histogram represents a numerical simulation of the density of states of the matrix Σ
(computed with 100 independent samples). The red curve is the theoretical corresponding density for
r(s) in small fluctuations regime given by (7.29). The blue curve represents also the theoretical density
r(s) but computed numerically by solving directly the system (7.21) and (7.22). For this figure, we chose
a = 0, b = 0.01,∆ = 0.01, δ = 1.

In the limit ∆� 1, it is easy to see that the function σ can be written for x < a as

σ(x) =
ρ(a)

a− x
f

(
a− x

∆

)
, (7.31)

where the function f verifies f(u) ∼u→0 1 and f(u) ∼u→∞ 1/u. Using (7.31), we can write∫ a−δ

−2
dx

ρ(x)σ(x)2

(1− ασ(x) δ
ρ(a))2

= ρ(a)2

∫ a−δ

−2
dx

ρ(x)f2(a−x∆ )

(a− x− αf(a−x∆ )δ)2

=
ρ(a)2

∆

∫ a+2
∆

δ
∆

du
ρ(a− u∆)f2(u)

(u− α δ
∆f(u))2

,

where we did the change of variables u = (a − x)/∆ for the last line. In the limit δ � ∆ � 1,
this last integral is dominated by the region where u is small and f(u) ∼ 1. We thus have∫ a−δ

−2
dx

ρ(x)σ(x)2

(1− ασ(x) δ
ρ(a))2

∼ ρ(a)3

∆

∫ +∞

0

du

(u− α δ
∆)2

∼ ρ(a)3

δ

1

1− α
.

Then, using (7.30) and with the same argument now for x > b, we get

α = 1− 2δ

∆
.

The corresponding ḡ is ḡ = δ/ρ(a)(1− 2δ/∆) and plugging this value of ḡ in (7.26) gives

smax ∼
ρ(a)

δ
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)

1− σ(x)ḡ
.

But, it is plain to check that the second term is of order at most ln(δ/∆)/∆� 1/δ in the limit
δ � ∆� 1.

The determination of smin proceeds similarly, and the calculations are detailed in Appendix
C. The final result is that

smin =
cρ(a)

∆
,
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Figure 7.3: The histogram represents a numerical simulation of the density of states of the matrix Σ
(computed with 20 independent samples). The red curve is the theoretical corresponding density for r(s),
it is computed numerically by solving the system (7.21) and (7.22). The red dotted vertical lines show
the left and right edges of the density r(s). The blue dotted curve is the graph of the function 8/x2. For
this figure, we chose a = 0, b = 0.1,∆ = 0.1, δ = 0.01.
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Figure 7.4: The points represent the function smax(δ) as a function of δ. They are computed numerically
through equations (7.25) and (7.26). The blue dotted line is the function δ → ρ(a)/δ. In this figure, we
chose a = 0, b = 0.1,∆ = 0.1.
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where c > 0 is a number of order unity which can be determined if needed.

To summarize, in this regime, the minimum and maximum eigenvalues smin and smax of the
random matrix Σ are asymptotically given by:

smin ∼
cρ(a)

∆
� smax ∼

ρ(a)

δ
.

We verified the result for smax(δ) with numerical simulations (see Fig. 7.4).

Together with the exact result on the average value of r(s) in this regime (given by D(a, a+
∆; δ)/ε2) and its variance computed in Appendix B, we conjecture that the asymptotic behaviour
of r(s) in the region smin � s� smax is given by:

r(s) ∝ smin
s2

. (7.32)

Since the integral of sr(s) is logarithmically divergent (but cut-off at smin and smax), it is
easy to see that this form reproduces exactly the logarithmic behavior of D(a, a+ ∆; δ) in this
regime, see equation (7.16). On the other hand, the integral of s2r(s) is dominated by its upper
bound, leading to a variance of the spectrum given by smin× smax, in agreement with the exact
result obtained in Appendix B, see equation 7.60. Therefore, in this regime, the situation is
particularly interesting: while most eigenvalues are close to smin, there is a slow power-law tail
in r(s) which makes the average of s logarithmically divergent when δ → 0. This is why we
call this a strong fluctuation regime: the ‘overlap’ distance D between the initial and the target
spaces is large because a relatively small number of directions are completely lost.

7.4 Eigenvector stability for covariance matrices

In the next subsection, we do essentially the same study as in the previous section 7.3 for another
random matrix model. There is a small difference with the previous study as the spectrum of the
matrices introduced below has some isolated eigenvalues as well as a continuous part. The study
of the eigenvectors associated to eigenvalues in the continuous part (that we call the ”sea”) is
very similar to the previous study. The isolated eigenvectors have to be treated separately (see
the paragraph Isolated eigenvectors).

In the next subsection 7.4.2, we compute the overlap distance D between two eigenspaces
generated by the top isolated eigenvectors of the empirical covariance matrix and the true
covariance matrix. The formulas that we obtain are (7.38) and (7.39) and will be used later in
the section 7.6 on application to financial data.

We end this subsection 7.4.2 by doing a different analysis of the stability of eigenspaces
through the spectral projectors. The formulas that we will use later for applications are about
the spectrum of the mean spectral projectors (7.42) and (7.43).

7.4.1 Eigenvectors of Spiked matrices

In this subsection, we will assume that (CN ) is a sequence of positive definite matrices. We will
denote by λN1 , . . . , λ

N
N the eigenvalues of (CN ) in decreasing order and we will suppose that

• there exists a fixed number k < N , q ∈ (0; 1) and (λ1 > · · · > λk > (1 +
√
q)2) such that

(λN1 , . . . , λ
N
k )→N→∞ (λ1, . . . , λk).

• the empirical measure µN ≡ 1
N

∑N
i=k+1 δλi converges in the limit of large N,T with N/T =

q to the Marchenko-Pastur distribution whose density with respect to Lebesgue measure
is given by

ρ(x) ≡ 1

2πqx

√
(γ+ − x)(x− γ−), a < x < b,

where γ− ≡ (1−√q)2 and γ+ ≡ (1 +
√
q)2.
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For each N , CN is the true covariance matrix (also called “population covariance matrix”). This
particular choice for the shape of the matrices CN is rather natural in view of applications. For
example, in financial market, the correlation (or covariance) matrix has k isolated eigenvalues
well separated from the other eigenvalues which form the noisy part of the spectrum (Marchenko-
Pastur sea or the bulk).

We now consider the associated empirical covariance matrix EN defined as:

EN,ij ≡
1

T

T∑
t=1

rtir
t
j

where the (rt1, . . . , r
t
N ), 1 6 t 6 T are i.i.d. Gaussian vectors of covariance CN .

The question we ask in this subsection is: how close are the eigenvectors of EN to those of
the matrix CN ? In the following two paragraphs, we treat the two cases of the eigenvectors
associated to eigenvalues in the Marchenko-Pastur sea and of those associated to the isolated
eigenvalues λ1, . . . , λk.

This question falls under the scope of section 7.2 since the matrix EN can be written as a
perturbation of the matrix CN . Indeed we have:

EN = CN + EN , with EN,ij =
1

T

T∑
t=1

rtir
t
j − CN,ij . (7.33)

and the matrix elements of E are (because of the Central Limit Theorem) of order 1/
√
T which

is much smaller than 1 as T is large. However, this problem is of different nature than the one
treated in section 7.3 because of the non-trivial dependance structure for the matrix elements
of the perturbation matrix E . It is given by

EN,ijEN,k` = (CN,ikCN,j` + CN,i`CN,jk)/T. (7.34)

In the whole current section, · · · denotes an averaging over the rti .

Eigenvectors in the Marchenko-Pastur sea

The results of subsections 7.3.1, 7.3.2 and 7.3.3 can be extended to this context. We consider
the subspace of eigenvectors of CN corresponding to all the eigenvalues λ contained in a certain
finite interval [a, b] included in the Marchenko-Pastur sea [γ−, γ+]. We want to compute the
distance D between this subspace and the subspace spanned by the perturbed eigenvectors
of EN corresponding to all eigenvalues of EN contained in [a − δ, b + δ], where δ is a positive
parameter. Using formula (7.9) as before, we find that in the limit of large N,T (with N/T = q),
as soon as δ > 0, the mean overlap distance D is given (using (7.34) for the averaging) by:

D(a, b; δ) ∼ 1

2TN b
a

∫ b

a
dλ

∫
[−2;2]\[a−δ;b+δ]

dλ′
λλ′ρ(λ)ρ(λ′)

(λ− λ′)2
, (7.35)

where ρ(λ) is now the Marchenko-Pastur distribution of parameter q = N/T . Obviously, when
T is infinite, D = 0 since EN = CN .

For the singular value density of states r(s), the resolvent of the matrix Σ defined as Σ ≡
T (I−GG†) now verifies:

z =
1

Z(z)
+

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dλ
ρ(λ)ν(λ)

1− ν(λ)Z(z)
(7.36)

where ν is defined as ν(λ) ≡ λ
∫ b
a dx

ρ(x)
(x−λ)2 . As before, it is easy to show that the density of states

of Σ is compactly supported and to find numerical evaluations of the left and right edges. One
can also study the limit shape of the density of states in the two regimes ∆� δ and δ � ∆� 1,
with results very similar to the GOE ones above.

The matrix GG† in this case gives a precise information on the relationship between the
eigenvectors of the population covariance matrix (or true covariance matrix) CN and the eigen-
vectors of the sample covariance matrix EN. Previous works along these lines can be found in
[99, 20].
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Isolated eigenvectors

In this paragraph, we now consider the case of eigenvectors associated to isolated eigenval-
ues λ1, . . . , λk. We denote by |φ1〉, |φ2〉, . . . , |φk〉 the corresponding eigenvectors of CN and by
|φ′1〉, |φ′2〉, . . . , |φ′k〉 7 the corresponding eigenvectors of EN .

To understand precisely how the |φ′i〉 decompose in the basis of the |φj〉 in the limit of
large N , we want to compute the limit of the average local density of states for each state |φ′i〉
(1 6 i 6 k), that is the probability measure

ν
(i)
N (λ) ≡ 1

N

N∑
j=1

〈φ′i|φj〉2 δ(λ− λj)

where · · · denotes an average over EN . This expresses the way |φ′i〉 is scattered over the unper-
turbed eigenvectors.

Perturbation theory again allows to compute the quantities 〈φ′i|φj〉2 for i 6= j:

〈φ′i|φj〉2 =
〈φi|E|φj〉2

(λNi − λNj )2
=

1

T

λNi λ
N
j

(λNi − λNj )2
∼N→∞

1

T

λiλj
(λi − λj)2

,

and for i = j,

〈φ′i|φi〉2 = 1−
∑
k 6=i

〈φi|E|φk〉2
(λNi − λNk )2

∼N→∞ 1− 1

T

∑
k 6=i

λiλk
(λi − λk)2

.

Note that the random variables 〈φi|E|φj〉, i 6= j are uncorrelated. Thus, the local density of

states ν
(i)
N has k atoms and (for large N,T with N/T = q) admits a continuous density in

the Marchenko-Pastur sea. The atom are localized on the λj , j = 1, . . . , k and have weights
1
T

λiλj
(λi−λj)2 for j 6= i. The continuous density in the Marchenko-Pastur sea [γ−, γ+] is given by:

1

T

λiλ

(λi − λ)2
ρ(λ)dλ, γ− < λ < γ+. (7.37)

This asymptotic for the probability measure ν
(i)
N has been verified with numerical simulations.

7.4.2 Stability of eigenspaces

We now want to characterize the stability of the subspace spanned by the eigenvectors associated
to the (largest) isolated eigenvalues. The theory we develop here provides a precise estimate of
the amount of eigenspace instability induced by measurement noise. This sets a benchmark that
will allow us to detect any extra dynamics of the eigenvectors of the correlation matrix of stock
returns in financial markets not explained by measurement noise and therefore attributable to
a genuine evolution of the market (see section 7.6).

As shown by Eq. (7.33) above, the sample covariance matrix E8 is a perturbed version of C.
Using again the framework of section 7.2, one can calculate the distance (or overlap) between the
top P eigenvectors of the true correlation matrix C and the top Q9 eigenvectors of the empirical
correlation matrix E.

Provided T is large enough for the above perturbation theory to be valid, and upon averaging
over the measurement noise, one gets the following expression for the overlap distance D:

D(P,Q) =
1

2TP

P∑
i=1

N∑
j=Q+1

λiλj
(λi − λj)2

, (7.38)

where the λis are the eigenvalues of C, in decreasing order.

7The vectors |φi〉 and |φ′i〉 depend on N but to simplify notations, we drop the subscript.
8As N does not have to be necessarily large in this subsection and in the next section, we drop the subscript

N for the matrices C and E.
9We take Q > P as before in section 7.2 .
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Note that one can extend the previous result (7.38) to the case where the vectors (rt1, . . . , r
t
N ), t > 0

are distributed according to a multivariate Student distribution with ν-degrees of freedom and
covariance matrix C. In this case10, Eq. (7.38) becomes

D(P,Q) =

(
ν − 2

ν − 4

)
1

2TP

P∑
i=1

N∑
j=Q+1

λiλj
(λi − λj)2

. (7.39)

Note that the Gaussian case corresponds to ν →∞. For ν → 4+, on the other hand, fluctuations
become divergent.

In practice for applications (see section 7.6), one does not know the true correlation matrix
C and thus it is in fact not possible to compute empirically the overlap distance between the
eigenvectors of C and the eigenvectors of the empirical correlation matrix E. However, if one is
given a time series of empirical correlation matrix (Et)t > 0 defined for all t as

Etij =
1

T

T∑
u=1

rt+ui rt+uj , (7.40)

where, (rv1 , . . . , r
v
N ), v > 0 are independent Gaussian vectors of covariance matrix C, one can

similarly define the distance between the eigenspaces of two independent sample covariance
matrices Es and Et (determined on two non overlapping time periods, i.e. such that |t−s| > T ).
In this case, the above formula Eq. (7.38) is simply multiplied by a factor 2.

For the comparison between the eigenvalues of Es and Et, one can show using perturbation
theory (see equation (7.3) and also equation (7.34) for the averaging) that the measurement
noise is, for T large enough, given by:

(λsi − λti)
2
|t−s|>T ≈

4λ2
i

T
. (7.41)

where the λi are the eigenvalues of the matrix C measured empirically using the whole period
of time and where · · ·|t−s|>T denotes an empirical average over all s, t such that |t− s| > T .
As before, if the vectors (rv1 , . . . , r

v
N ), v > 0 are distributed according to a multivariate Student

distribution with ν-degrees of freedom and covariance matrix C, one finds an extra multiplicative
term (ν − 2)/(ν − 4) in (7.41).

Another characterization of the stability of eigenspaces was proposed by Zumbach [157]. The
idea here is to study the stability of the spectral projectors associated to the top k eigenvalues.
The spectral projector of rank k associated to the top k eigenvalues is defined as follows:

χk =
k∑
i=1

|φi〉〈φi| ,

where the |φi〉, i ∈ {1, . . . , k} are the eigenvectors of C. As before the true spectral projector χk
is measured through an empirical covariance matrix E and the resulting spectral projector χ′k
will be affected by measurement noise. The aim is again to compute properties of this spectral
projector χk, so as to be able to separate the measurement noise effect from a true temporal
evolution of the matrix C.

Using perturbation theory in Eq. (7.33), we have:

χ′k =

k∑
i=1

|φ′i〉〈φ′i| =
k∑
i=1

1−
∑
j 6=i

〈φi|E|φj〉2

(λi − λj)2

 |φi〉〈φi|
+

k∑
i=1

∑
j 6=i

〈φi|E|φj〉
λi − λj

(|φi〉〈φj |+ |φj〉〈φi|)

+
k∑
i=1

∑
j 6=i

αi,j(|φi〉〈φj |+ |φj〉〈φj |) +
k∑
i=1

∑
j 6=i

∑
`6=i

〈φi|E|φj〉〈φi|E|φ`〉
(λi − λj)(λi − λ`)

|φj〉〈φ`|

10see e.g. Eq. (9.28) p. 154 of [45] that replaces Eq. (7.34) above.
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where

αi,j =
1

λi − λj

∑
6̀=i

〈φj |E|φ`〉〈φ`|E|φi〉
λi − λ`

− 〈φi|E|φi〉〈φi|E|φj〉
λi − λj

 .

Using again equation (7.34),

〈φj |E|φi〉〈φ`|E|φi〉 =


0 if ` 6= j,

λjλi/T if j = `, j 6= i,

2λ2
i /T otherwise,

we get:

χ′k =
k∑
i=1

1− 1

T

∑
j 6=i

λiλj
(λi − λj)2

 |φi〉〈φi|+ 1

T

k∑
i=1

∑
j 6=i

λiλj
(λi − λj)2

|φj〉〈φj | .

We see that the vectors φi, i ∈ {1, . . . , N} are also eigenvectors of χ′k, but with shifted
eigenvalues. More precisely, we have, for i 6 k

χ′k|φi〉 =

1− 1

T

N∑
j=k+1

λiλj
(λi − λj)2

 |φi〉 , (7.42)

and, for i > k,

χ′k|φi〉 =
1

T

k∑
j=1

λiλj
(λi − λj)2

|φi〉 . (7.43)

Therefore, in the absence of measurement noise (i.e. for T →∞), χ′k has k eigenvalues exactly

equal to unity, and N − k eigenvalues equal to zero, as expected since in this case χ′k = χk.
All the above results will be compared with empirical data (for the case of financial markets) in
section 7.6.1 below.

7.5 The case of an isolated top eigenvalue

In the first subsection 7.5.1, we consider the case where the covariance matrix C has only one
isolated eigenvalue much larger than all the other ones. By measuring the covariance matrix
through an exponential moving average estimator along a time series of multivariate gaussian
vectors with covariance matrix C, we find the time evolution of the angle θt between the top
eigenvector of the empirical covariance matrix and the top eigenvector of the covariance matrix
C. The result is a Langevin equation for xt ≡ 1 − cos θt given in (7.48), for which we can
compute the stationary distribution and even more information on the transition probability
density. We also find the Langevin equation for the top eigenvalue of the empirical covariance
matrix (see Eq. (7.46)). This enables to compute variograms of different related quantities in
subsection 7.5.2, which will be useful later on for applications. In the final subsection (7.5.3),
we analyse the transverse fluctuations of the top eigenvector of the empirical covariance matrix
through a random matrix.

7.5.1 A Langevin equation for the top eigenvalue and eigenvector

A more detailed characterization of the dynamics of the top eigenvalue and eigenvector can
be given in the case where this top eigenvalue is well separated from all the others, as is well
known to be the case for financial covariance matrices. The financial interpretation of this large
eigenvalue is the so-called ‘market mode’: in a first approximation, all stocks move together,
up or down. In this subsection, we assume that the true covariance matrix C has one large
eigenvalue λ1 of order N well separated from the other ones, which are all equal to λ2. We
suppose that λ1 � λ2.
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Let
(
rti
)

1 6 i 6 N , 1 6 t 6 T be i.i.d. Gaussian vectors of covariance C. Both for technical
convenience and to follow market practice, we suppose that the covariance matrix is now mea-
sured through an exponential moving average of the rti . This means that the matrix E evolves
in time as:

Eij,t = (1− ε)Eij,t−1 + εrtir
t
j . (7.44)

We address the following question: what is the dynamics of the top eigenvalue λ1(t) and of
the top eigenvector φt1 of the empirical covariance matrix Et? Of course, the largest eigenvalue
and eigenvector of the empirical covariance matrix will be, as discussed at length above, affected
by measurement noise. Can one make predictions about the fluctuations of both the largest
eigenvalue and the corresponding eigenvector induced by measurement noise? We shall see that
such a decomposition is indeed possible in the limit where λ1 � λ2. The calculations in this
section and in Appendix D follow closely those made in [124] which were slightly incorrect (see
below).

We keep the same notations as in the previous section for the eigenvalues of C. The eigen-
values and eigenvectors of Et will be respectively denoted as λt1, . . . , λ

t
N and φt1, . . . , φ

t
N .

Standard perturbation theory, valid for ε� 1, gives:

λt1 = (1− ε)λt−1
1 + ε〈φt−1

1 |C|φt−1
1 〉+ ε〈φt−1

1 |ηt|φt−1
1 〉,

with ηij = rirj −Cij . Because the returns are Gaussian, we have:

ηijηk` = CikCj` + Ci`Cjk.

In the limit where λ1 becomes much larger than all other eigenvalues, the above equation sim-
plifies to:

λt1 ≈ (1− ε)λt−1
1 + ε cos2(θt−1)λ1 [1 + ξt] , (7.45)

where cos(θt) ≡ 〈φt1|φ1〉 and ξt is a random noise term of mean zero and variance equal to 2. In
the limit of large matrices and ε→ 0, the above difference equation can be written as a Langevin
(or stochastic differential) equation, in the Itô sense:

dλt1 = ε
[
(λ1 − cos2(θt)λ

t
1)dt+

√
2λ1 cos2(θt) dBt

]
. (7.46)

where Bt is a standard Brownian motion. We have neglected in the above equation a determin-
istic term equal to ε sin2(θt)λ2, which will turn out to be a factor λ2/λ1 smaller than the terms
retained in Eq. (7.46). As we shall show below, the angle θt turns out to be small, so that one
can replace cos(θt) by unity in the above equation, which becomes a simple Ornstein-Uhlenbeck
process. We therefore find for the variogram of λ1:〈(

λs1 − λt1
)2〉 ≈ 2ελ2

1 (1− exp(−ε|t− s|)) , (7.47)

a result that we mentioned in the above section 7.4.2.
A similar SDE can be written for the projection of the instantaneous eigenvector |φt1〉 on

the true eigenvector |φ1〉. This can again be done using perturbation theory, as is detailed
in Appendix D. The quantity cos(θt) is found to be close to 1 when ε is small, so we set
xt ≡ 1− cos(θt).

Keeping only the leading term in the three small parameters ε, λ2/λ1 and xt, we finally find
the following Langevin equation for xt (in the Itô sense):

dxt = 2ε (µ− xt) dt+ ε

√
2xt(4xt +

λ2

λ1
) dBt (7.48)

with, for N →∞, ε→ 0,

µ :=
q

4

λ2

λ1
, with q ≡ εN.

Equation (7.48) defines a very interesting class of random processes, that we call “Pöschl-Teller”
processes, on which we say more in Appendix E.
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In the continuous time limit, we have therefore established two coupled Langevin equations
(SDEs) for the top eigenvalue λt1 and xt. To leading order and for N →∞, ε→ 0, the stationary
solution for the “angle” xt can be computed to be:

P (x) ∝

(
4x

4x+ λ2
λ1

)N
2
(

1

4x+ λ2
λ1

) 1
2ε

,

which corrects the result obtained in [124], and is plotted in Fig. 7.5. From the above Langevin
equation, it is immediate to see that the average value of x is given by x = µ. It is nicer
to rewrite the stationary distribution in terms of x̂ = x/µ. The interesting regime is when q
remains of order unity when N →∞ and ε→ 0, in which case:

P (x̂) ≈ Ze−
Nf(x̂)

2 , f(x̂) =
ln(1 + qx̂)

q
+ ln

(
1 +

1

qx̂

)
,

where Z is a normalisation. It is easy to see that f(x̂) has a minimum for x̂ = 1, or x = µ
(corresponding to the most probable value), and that f ′′(1) = 1/(1 + q). This shows that the
fluctuations of x̂ around x̂ = 1 are of order

√
(1 + q)/N and thus very small in the large N

limit.

Note finally that according to Eq. (7.46), the largest eigenvalue is on average shifted upwards
compared to the true value λ1, by a factor ≈ (1 + 2µ) = (1 + q

2
λ2
λ1

). This is the analogue of a
similar well-known result for flat-window averages of empirical covariance matrices – see [19, 29].
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Figure 7.5: A picture of the stationary probability density P (x) of the process xt verifying (7.48). The
parameters are: ε = 1/50, N = 200 (corresponding to q = 4) and λ2/λ1 = 0.02. The vertical blue dotted
line shows the position of µ ≈ 0.02 for this choice of parameters.

7.5.2 Variograms

From the Langevin equation one can easily compute the second moment x2
t with as initial

condition x0 = 0. Indeed, using Itô’s formula and taking expectations, we get:

x2
t = x2

0 + 4ε

(
µ+ ε

λ2

2λ1

)∫ t

0
xsds− 4ε(1− 2ε)

∫ t

0
x2
s ds .
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Computing xt with the same technique, we can solve this ordinary differential equation to obtain
that

x2
t = x2

0e
−4ε(1−2ε)t +

µ(µ+ ε λ2
2λ1

)

1− 2ε

(
1− e−4ε(1−2ε)t

)
+

(2µ+ ελ2
λ1

)(x0 − µ)

1− 4ε

(
e−2εt − e−4ε(1−2ε)t

)
.

In order to characterize the dynamics of the angle fluctuations, we want to compute the var-
iogram of xt, defined as υ(τ) := (xt+τ − xt)2 for τ > 0, and in the limit t → ∞. Using the
previous computations, we obtain, in the scaling limit:

υ(τ) ≈ q2(1 + q)

4N

(
λ2

λ1

)2 (
1− e−2ετ

)
.

We show in Fig. 7.6 a numerical simulation of the dynamics of the top eigenvector of a fixed
matrix C such that λ2/λ1 = 0.033. The resulting variogram compares very well with the above
prediction.
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Figure 7.6: The plain line represents the function υ(τ) as a function of τ for ε = 0.002, N = 200 (q = 0.4)
and λ2/λ1 = 0.033 = 30. The dotted line is a numerical simulation of the semivariogram of xt in the
benchmark case where there is a constant in time correlation matrix C.

However, the above calculation is not particularly useful for financial applications, since the
“true” top eigenvector |φ1〉, needed to define the angle θt, is in general not known. A more
appropriate quantity to describe the dynamical fluctuations of |φ1〉 is, as suggested in [124], the

function τ → 〈φt1|φ
t+τ
1 〉, which we now study analytically. Let us write |φt1〉 as

|φt1〉 = cos(θt)|φ1〉+ |ϕt⊥〉, (7.49)

where ϕt2 is a vector in the eigenspace corresponding to the small eigenvalues λ2. Therefore:

〈φt1|φt+τ1 〉 = cos(θt) cos(θt+τ ) + 〈ϕt⊥|ϕt+τ⊥ 〉 .

Now, it is easy to have an explicit expression for ϕt2 by considering the empirical covariance
(or correlation) matrix Et as a perturbation of the true covariance matrix C, as we did above.
Standard perturbation theory then gives

|φt1〉 =

1− 1

2

∑
i 6=1

〈φ1|E t|φi〉2

(λ1 − λ2)2

 |φ1〉+
∑
i 6=1

〈φ1|E t|φi〉
λ1 − λ2

|φi〉
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where

E tij = ε

+∞∑
s=0

(1− ε)s
(
rt−si rt−sj − Cij

)
.

It is clear that the last term of the above expression is exactly |ϕt2〉, which enables us to obtain:

〈ϕt⊥|ϕt+τ⊥ 〉 =
1

(λ1 − λ2)2

∑
i 6=1

〈φ1|E t|φi〉〈φ1|E t+τ |φi〉 .

But, by noting that:

E t+τij = (1− ε)τE tij + ε
τ−1∑
s=0

(1− ε)s
(
rt+τ−si rt+τ−sj − Cij

)
and with the fact that 〈φ1|E t|φi〉2 = ελ1λ2/2, we get that:

〈ϕt⊥|ϕ
t+τ
⊥ 〉 ≈ 2µ e−ετ ,

and hence, our final result, to lowest order in µ:

〈φt1|φ
t+τ
1 〉 = (1− xt)(1− xt+τ ) + 〈ϕt⊥|ϕ

t+τ
⊥ 〉 (7.50)

≈ 1− 2µ
(
1− e−ετ

)
. (7.51)

which is similar to the result obtained in [124], except that the coefficient µ was a factor N too
small in that paper. This result will be compared with empirical data in section 7.6.2.

7.5.3 Transverse fluctuations of the top eigenvector

In order to go further and describe the evolution of the top eigenvector of E (the so-called
“market mode” in the context of financial markets), we need to study the statistics of the
transverse component |ϕt⊥〉. In order to make sense of the pattern created by these transverse
fluctuations, we propose to introduce the correlation matrix of the components of |ϕt⊥〉 in the
eigen-basis of the true correlation matrix. We therefore define the following N − 1 × N − 1
matrix:

Fij =
1

T

T∑
t=1

〈ϕt⊥|φi〉〈ϕt⊥|φj〉 (i, j > 2)

The eigenvalues and eigenvectors of this new correlation matrix (not to be confused with the
empirical correlation matrix E needed to define |ϕt2〉!) will entirely characterize the transverse
fluctuations of the “market mode”.

In the benchmark case where there is a true correlation matrix C stable in time, one can
check that:

Fij =
1

T

T∑
t=1

〈φ1|E t|φi〉
λ1 − λi

〈φ1|E t|φj〉
λ1 − λj

.

What is the eigenvalue spectrum of F for this benchmark case? In our case where for all i 6= 1,
λi = λ2, the density of states of this type of random matrix has been studied before in the
literature (see [121]). Indeed the random variables 〈φ1|E t|φi〉 are uncorrelated for i 6= j, their
mean is 0 and their variance is given by:

〈φ1|E t|φi〉2 =
ελ1λ2

2
. (7.52)

However, the random variables 〈φ1|E t|φi〉 are correlated in time and thus the density of states
in the limit of large matrices will not be given by the usual Marchenko-Pastur law. Rather,
〈φ1|E t|φi〉 follows an auto-regressive linear process, for which the authors of [121], give a precise
way to compute the density of states in the limit of large matrices by mean of its Stieltjes
transform. This probability density depends as expected on the parameter N/T but also on the
parameter ε of the auto-regression. In the case where λi>1 = λ2, one furthermore expects that
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the eigenvectors of F are isotropically distributed in the N − 1 dimensional subspace spanned
by |φ2〉, . . . |φN 〉. This means that the transverse fluctuations |ϕ⊥〉 of the top eigenvector have
no particular structure.

In the more general context where the λi for i 6= 1 are not all equal to λ2, the eigenvalue
spectrum of F must be characterized numerically, see below.

7.6 Empirical results

For the following analysis, we have used the daily returns of several pools of stocks belonging
to 4 major indices: SP500, Nikkei, DAX & CAC 40. The number of stocks are respectively
N = 500, 204, 30, 39 and the period of interest is 2000 − 2010 (11 years of data, corresponding
to ≈ 2750 days). The main issue, as alluded to above, is that the empirical determination of
correlation11 matrices requires some measurement time T . If this time is too short, the empirical
correlation matrix will appear to evolve with time, but this may just be due to the measurement
noise which one would like to distinguish from a genuine evolution of the underlying structure
of correlation. If the measurement time is too long, on the other hand, one may miss important
correlation shifts and get exposed to unwanted sources of risk.

7.6.1 Stability of eigenspaces

We first determined the empirical variograms 〈(λsi−λti)2〉|t−s|=τ for i = 1, 2, the result (for i = 1)
is shown in Figure 7.7 and is found to be much larger than the above theoretical prediction,
i.e. 4λ2

i /T , shown as a horizontal plain line. The fact that the empirical (red) curve starts from
0 for τ = 0 and increases to reach the stationary noise level at time τ = T is simply due to
the overlapping between the sliding periods. For those figures, we computed the time series of
correlation matrices using a sliding window of size T = N (recall N is the number of stocks).
Thus, for small markets like DAX and CAC40, this value is quite small (respectively 30 and 40)
and we find that the first eigenvalue of the correlation matrix does not evolve too much during
the following (non overlapping) period τ ∈ [T ; 250] days. After this time period, the evolution
appears and from this point, the difference between the two non overlapping periods increases
significantly with the time lag. For larger markets such as SPX and Nikkei, the value of T is
quite large as N is respectively equal to 500 and 200. So it is not very surprising the temporal
evolution shows up immediately. This clearly shows that there is a genuine evolution of the
eigenvalues of C with time. For the top eigenvalue, this is a well known effect (see [124] and
section 7.5.2, Fig. 7.6 below): both the volatility of individual stocks and the average correlation
between stocks are indeed time dependent, and tend to increase in crisis periods [8, 27]. We
see that the same is true for smaller eigenvalues too, reflecting the instability of intra-sector
correlations (data not shown).

But what about the eigenvectors? One could be in a “mixed” situation where the eigenvectors
of the true underlying covariance C keep a fixed direction through time12 while its eigenvalues
are moving around. But if the eigenvalues of the matrix C (which was always supposed not
to depend of time in the previous sections) themselves are evolving with time, the formulas
derived in the theoretical section above need to be upgraded. Let us assume that the true
covariance matrix Ct has time dependent eigenvalues λt1, . . . , λ

t
N but with constant eigenvectors

which will be denoted |φ1〉, . . . , |φN 〉 as above. For times s < t with |t − s| > T , we define the
overlap matrix Gs,t as: Gs,tij = 〈φsi |φtj〉. Under the assumption that the eigenvalues are varying

11Our results in the previous sections hold for empirical covariance matrices. Hence we centered and normalized
our empirical time series of returns so as to use them.

12Here we mean that the non-perturbed (or population) eigenvectors do not evolve with time; obviously we do
not talk about the sample eigenvectors of the empirical covariance matrix E which will be affected by measurement
noise, evolving around the population eigenvectors.
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Figure 7.7: Plot of 〈(λs1−λt1)2〉|t−s|=τ as a function of τ for the four different indexes of our sample. The
empirical correlation matrices are computed on a sliding window of size T = N . The red line corresponds
to the empirical datas from our pools of stocks, the plain blue line is the theoretical prediction 4λ21/T
(valid in the limit of large T ) and the dotted blue line represents a numerical simulation of the benchmark
case. Very similar curves hold for the second and third eigenvalues as well.
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sufficiently slowly with time, one now finds that:

D(P,Q; s, t) = − 1

2P

〈
ln |det(Gs,t†Gs,t)|

〉
≈ 1

2TP

P∑
i=1

N∑
j=Q+1

(
λsiλ

s
j

(λsi − λsj)2
+

λtiλ
t
j

(λti − λtj)2

)
. (7.53)

Up to corrections of order T−3/2, one can replace in the above formulas the λs,t by their empirical
estimates. We finally compute the theoretical distance Dth(P,Q, τ) as an average over all s, t
such that |t− s| = τ of the above quantity.

We now compare our null hypothesis formula, Eq. (7.53) with (a) an empirical determination
of Demp(P,Q, τ) using financial data and (b) a numerical determination of Dnum(P,Q, τ) using
synthetic time series of returns which abide to the hypothesis of a covariance matrix Ct with
fixed eigenvectors, but time dependent eigenvalues. To achieve this, we choose an arbitrary (but
fixed) set of orthonormal vectors |ψ1〉, . . . , |ψN 〉 and define Ct as Ct =

∑N
i=1 λ

t
i|ψi〉〈ψi|, where

the λt are the empirical eigenvalues obtained on the financial return time series. We then use Ct

to generate synthetic Gaussian multivariate returns {ri(u)}. We show the corresponding results
in Fig. 7.8, with the choice P = 5, Q = 10, as a function of τ and for T = N days. As above,
the study concerns the same 4 different pools of stocks corresponding to 4 major indices: SP500,
Nikkei, DAX, CAC 40. We conclude that (i) the theoretical formula Eq. (7.53) is indeed in very
good agreement with the numerical results obtained with synthetic data: Dnum ≈ Dth; whereas
(ii) the financial data clearly departs from the null hypothesis of constant eigenvectors, since
Demp > Dth. The same conclusion holds for different values of P,Q.

We have also computed the value Demp(τ = T ) for different values of T for every pool of
stocks, the result is shown in Fig. 7.9. We compare the empirical function T → Demp(T ) with
the theoretical value Dth(T ) in the benchmark case where the stock returns are distributed as
Gaussian vectors of constant covariance matrix C. At first sight, the noise contribution appears
to be too small to explain the value of Demp(T ) at small T s, at least for the pool of the CAC40
and DAX indices. Nevertheless, if we now compare the value of Demp(τ = T ) for small value of T
with the value of Dth(τ = T ) in the benchmark case where the stock returns are distributed with
a multivariate Student distribution with ν-degrees of freedom and with a constant covariance
matrix C, we see that we can make the two curves coincide for small values of T . Therefore, the
initial decline as T increases indeed follows from a reduction of the measurement noise. However,
when T becomes very large, the “true” evolution of the eigenvectors starts being visible, and
leads to an increase of Demp. This plot suggests that the optimal time scale to measure the
empirical eigenspaces is around T ∗ = 600 days for the stocks from the Nikkei index, T ∗ = 400
days for the ones from CAC40, T ∗ = 450 days for the ones from DAX and T ∗ = 700 days for
the ones from the SP500 index.

The above results are fully confirmed, and made more precise, by the spectral projector
analysis proposed by Zumbach. In Fig. 7.10 we plot, as in [157], the eigenvalues of the average
spectral projector χ′k as a function of its theoretical rank k, for several values of k. We show

in plain lines the eigenvalues of the empirically determined χ′k for the Nikkei idex, where the
averaging is made over (overlapping) periods of length T = 600 days, and in dotted lines the
corresponding theoretical predictions Eqs. (7.42) and (7.43) for the benchmark case where the
eigenspaces are fixed in time, but are blurred by measurement noise. Here again we find clear
signals of a true evolution of the eigenspaces. The results for other stock indices are very similar.

7.6.2 The dynamics of the top eigenvector

As explained above, one expects in general the top eigenvector to wobble around its “true”
direction |φ1〉. The fluctuations around |φ1〉 have two possible origins: one is measurement
noise, the other is the presence of a systematic rotation of the top eigenvector due to some
financial mechanism.

As a further check that measurement noise is not enough to explain the observed dynamics
of |φt1〉, we have studied numerically the average overlap of the top eigenvector measured a time

τ apart: 〈φt1|φ
t+τ
1 〉. This is an interesting quantity because it does not require the knowledge
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Figure 7.8: Plot of Dth, Dnum, Demp for T = N , P = 5, Q = 10 for the four indices considered here.
The blue lines are theoretical benchmark results for fixed eigenvector directions (plain line: analytical
result, dotted line: numerical simulations, while the red line is the empirical result). These plots clearly
show that the subspace spanned by the 5 top eigenvectors evolve with time.
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Figure 7.9: Plot of Demp(τ = T ) (red line) and Dth(τ = T ) as a function of T , P = 5, Q = 10 for the four
indices considered here. The dotted green line represents Dth(τ = T ) in the benchmark case where the
returns are Gaussian with constant covariance matrix C and the dotted blue line represents Dth(τ = T )
in the benchmark case where the returns are distributed with a multivariate Student distribution with
ν-degrees of freedom and with a constant covariance matrix C. The constant ν is chosen equal to 5.5 for
the CAC40 and DAX indexes and to 18 for the Nikkei index. The initial decline as T increases follows
from reducing the measurement noise. However, when T becomes very large, the “true” evolution of the
eigenvectors is being felt, and leads to an increase of Demp. This plot suggests that the optimal time
scale to measure the empirical eigenspaces is around two years (T ∗ = 500 days).
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correlation matrix C is not evolving but dressed by measurement noise. The plain lines represent the same
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the ideal case (constant correlation matrix, T →∞), these functions should be step functions: εi 6 k = 1
and εi>k = 0.
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of the true direction |φ1〉. As shown above, this quantity should be approximately given by
1− 2µ (1− e−ετ ) if measurement noise is the only source of fluctuations. We show in Fig. 7.11
a comparison between this prediction and empirical data on the market mode of the Nikkei
index. Here again, we find that the decorrelation of the top eigenvector is much stronger than
the benchmark. The deviation from unity is, for τ = 350, more than three times larger than the
benchmark case, with no signs of saturation.
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Figure 7.11: The plain line represents the empirical function 〈φt1|φt+τ1 〉 as a function of τ . The period on
which the average is performed has 2336 days starting 01/01/2000. There are N = 204 stocks from the
Nikkei index. The exponential moving average is made with a parameter ε = 1/50. The true empirical
correlation matrix C is chosen to be the empirical correlation matrix computed using the data on the
whole period. For this C, we have λ1 ≈ 73 and λ2 ≈ 0.7. The beginning of the period is used to initialize
the exponential moving average. The plain blue is a numerical simulation in the benchmark case. The
dotted line represents the function τ → 1− 2µ(1− exp(−ετ)) which corresponds to the benchmark case
when there is a constant in time correlation matrix.

So there is a genuine motion of the top eigenvector in time. This was already pointed out
in [8], where we established empirically that the top eigenvector rotates towards the uniform
vector |e〉 = (1, 1, . . . , 1)/

√
N when the market goes down, and away from |e〉 when the market

goes up. In order to be more comprehensive and understand in details the dominant transverse
fluctuations of the top eigenvector, we have studied the correlation matrix F defined in subsec-
tion 7.5.3 above. We first determined the eigenvalue spectrum of F numerically, both for the
benchmark case (with only measurement noise) and for real empirical data, see Fig. 7.12. From
this figure, we conclude that, for the Nikkei index during the period 2000 − 2010, there are 3
(maybe 4) eigenvalues of the empirical matrix F that reside outside the spectrum of the corre-
sponding benchmark matrix. This suggests that these 3 or 4 modes are real and correspond to
true fluctuations of the market mode, which contribute to the discrepancy displayed in Fig. 7.11
above. We are now in a position to identify the corresponding eigenvectors, i.e. the directions
in which the market mode most likely to tilt.

It is natural to think that these directions should themselves correspond to large eigenvectors
of the correlation matrix C. Therefore we look for the decomposition of the top three eigenvectors
of F (that we call |ω1〉, |ω2〉, |ω3〉) in terms of |φi〉, i ∈ {2, 3, 4, 5}. A singular value analysis of
the 3 × 4 overlap matrix shows that one can indeed explain ≈ 85% of these three eigenvectors
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in this way, with:

|ω1〉 ≈ −0.34 |φ2〉+ 0.29 |φ3〉+ 0.30 |φ4〉+ 0.84 |φ5〉
|ω2〉 ≈ 0.53 |φ2〉+ 0.45 |φ3〉+ 0.47 |φ4〉 − 0.54 |φ5〉 (7.54)

|ω3〉 ≈ 0.77 |φ2〉+ 0.40 |φ3〉+ 0.48 |φ4〉 .

This means that all the four top eigenvectors of C contribute to the “tilt motion” of the market
mode. To check that this result is significant, we ran numerical simulations for this singular
value decomposition in the benchmark case with a constant correlation matrix C chosen as
before to be the empirical correlation matrix computed using the whole period of time (here
the decade 2000 − 2010). The 3 × 4 singular values analysis now give an explanatory power of
≈ 70%, which is clearly less than the 85% obtained above. Still, a large part of this explanatory
power seems to trivially come from the non random structure of C itself.

In order to revisit the result found in [8], we need to understand the link between the uniform
vector |e〉 and the eigenvectors |φ2〉, . . . , |φ5〉 of the correlation matrix C. Thus, we look at the
orthogonal projection |e⊥〉 := (|e〉 − 〈e|φ1〉|φ1〉)/N (N is chosen such that 〈e⊥|e⊥〉2 = 1 ) of the
uniform vector |e〉 in the space generated by the |φi〉, i > 2. The overlap 〈e⊥|φi〉 for all i > 2
are shown in fig. 7.13 for the Nikkei index during the period 2000 − 2010. We see that |e⊥〉
has indeed very strong overlap with |φ2〉, |φ3〉, |φ4〉, |φ5〉, and hence, from the above results, also
with |ω1〉, |ω2〉, |ω3〉. Therefore, the fact that the main fluctuation modes of |φ1〉 are along these
three ω directions is compatible with the tilt motion towards |e〉. However, other modes, not
mentionned in [8], are detected by the present analysis.
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Figure 7.12: The red curve represents the cumulative distribution of the density of states of the matrix
F for the Nikkei index with N = 204 stocks, in the period 2000 − 2010, with ε = 1/50. The blue curve
is a numerical simulation for the benchmark case with the true correlation matrix C chosen to be the
empirical correlation matrix using the whole period. For this period and pool of stocks, we have λ1 ≈ 73
and λ2 ≈ 0.7.

7.7 Conclusion & Open problems

Let us try to summarize what we have achieved in this paper. We have developed general tools
to describe the dynamics of eigenvectors under the influence of small random perturbations
and to study the stability of the subspace spanned by P consecutive eigenvectors of a generic
symmetric matrix. This problem is relevant in various contexts, including quantum dissipation
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Figure 7.13: Plot of the overlap |〈e⊥|φi〉| as a function of i for i > 2. This graph shows that the main
contribution to |e⊥〉 comes from the top eigenvectors of the correlation matrix C.

and financial risk control, but hopefully the ideas and methods introduced here can be used in
a much broader context.

We argue that the problem can be formulated in terms of the singular values of the overlap
matrix between the initial eigenspace and the target eigenspace, which allows one to define an
overlap distance, which is small if most of the initial information is conserved. We first specialize
our results for the case of a Gaussian Orthogonal Ensemble, for which the full spectrum of
singular values can be explicitly computed in the limit of large matrices under the regime where
the entries of the perturbation are very small compared to the mean level spacing of the non-
perturbed matrix. We argue that our setting with rectangular Q×P overlap matrices G allows
to extend our results to perturbations with entries larger than the mean level spacing. We
provide some numerical evidences that it is indeed true. We find two regimes, depending on the
dimension of the target space Q compared to that of the initial space P . If Q� P , all singular
values are close to one another, and their distribution is given by Wigner’s semi-circle. If on the
other hand (Q− P )/P � 1, the singular values s are distributed according to a very broad law
which decays as s−2. These results are actually universal, and apply for other matrix ensemble
as well – for example the case of empirical covariance matrices – provided one is interested in
eigenspaces deep in the bulk.

We have also studied the case of isolated eigenvalues, which are usually very important for
applications, for example in finance. In most cases, empirical correlation matrices are noisy
measurements of the true covariance matrix and this can lead to an apparent evolution of the
top eigenspace, whereas in reality the underlying process is stationary. We have derived exact
expressions both for the overlap distance and for the average spectral projectors (introduced by
Zumbach [157]) which can be directly compared to empirical results. The special case where
the top eigenvalue is much larger than all the other ones can be investigated in full detail. In
particular, the dynamics of the angle made by the top eigenvector and its true direction defines
an interesting new class of random processes, for which we have provided explicit analytical
results.

When compared to empirical correlation matrices of several major stock markets, our results
allow us to unambiguously conclude that there is a genuine evolution in time of the true underly-



160 CHAPTER 7. EIGENVECTORS DYNAMICS

ing correlation matrix: measurement noise in itself is unable to explain the observed variability
(in time) of the top eigenspaces. We have found that the overlap distance is minimized when the
measurement time is on the order of two to three years. Both for shorter and longer averaging
times, measurement noise and the genuine evolution of the market leads to an instability of the
correlation matrix, and to exposure to unwanted sources of risk.

The case of the top eigenvector of the correlation matrix, usually called the market mode, is
particularly interesting. We have suggested a characterization of the evolution of its direction
through a new correlation matrix, which measures the amplitude of its fluctuations transverse
to its average direction. We found that the dominant modes are in the space spanned by the
largest eigenvectors of the correlation matrix itself.

Now the genuine evolution of the correlation structure of stock returns is well characterized,
one should aim at devising quantitative models for this evolution. As usual, there are two ways
to do this. One is to postulate an econometric model and try to calibrate it on data. In this line
of thought, extensions of the GARCH framework have been proposed: multivariate GARCH,
BEKK model, etc.[28], but they often lack intuition (to say the least) and are very hard to
calibrate (the a priori number of parameters is of order N4!).

The second approach is to think about mechanisms which can lead to changes of the corre-
lation structure. For example, market drops may lead to panic sell-offs, which increase the top
eigenvalue of the correlation matrix and tilt the top eigenvector towards uniformity, as reported
in [27, 8]. The impact of rebalancing or deleveraging complex portfolios can also lead to sub-
stantial changes in the correlation matrix – see the insightful work of Cont and Wagalath [60] in
this direction. We hope that the tools provided in this paper will help building financially moti-
vated, more efficient models of dynamical correlations and, correspondingly, second generation
risk models where impact and feedback effects are accounted for [47].

7.8 Proof of the formula for δ = 0

We need to introduce the two level density of states

ρN2 (λ, λ′) =
1

N2

N∑
i,j=1

δ(λ− λi, λ′ − λj),

and to note from equation (7.9) that

D(V0;V1) =
Nε2

2P

∫ b

a

∫
[−2;2]\[a;b]

ρN2 (λ, λ′)

(λ− λ′)2
. (7.55)

From [114], we know the asymptotic behavior of the two level density of states in the limit of
large matrices; more precisely, there exists a function g such that, in the limit of large N ,

ρN2 (λ, λ′) = g(Nρ(λ)|λ− λ′|)ρ(λ)ρ(λ′)dλdλ′ (7.56)

which is defined as g(r) = 1 −
(

1
2 −

∫ r
0 s(t)dt

)
s′(r) + s(r)2 with s(r) = sin(πr)

πr . One can check
that:

• g(r) 6 1 for all r,

• in the neighborhood of 0, g(r) ∼ π2

2 r,

• g(r) tends to 1 when r goes to ∞,

• g′(r) = O(1/r2) in the neighborhood of ∞.

We can write:

D(a, b; δ = 0) =
Nε2

2P

∫ b

a

∫
[−2;2]\[a;b]

g(Nρ(x)|x− y|)
(x− y)2

ρ(x)ρ(y)dxdy.

We want to do an asymptotic expansion of the right hand side when N →∞.
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First, note that N/P tends to 1/
∫ b
a ρ.

For the integral, we begin by doing an integration by part, we get for x ∈ [−2; a]:∫ b

a

g(Nρ(x)|x− y|)
(x− y)2

dy =
ρ(a)g(Nρ(x)(a− x))

a− x
− ρ(b)g(Nρ(x)(b− x))

b− x
(7.57)

+

∫ b

a

dy

y − x
[
ρ′(y)g (Nρ(x)(y − x)) +Nρ(x)ρ(y)g′ (Nρ(x)(y − x))

]
. (7.58)

We need to integrate equation (7.57) between −2 and a and between b and 2 and to compute
the asymptotic of every integrals of the right hand side. We will decompose each integral into
two terms so as to take advantages of the asymptotic property of g around 0 and ∞.

Set η = N−1+α with α > 0. First we consider the integral:∫ a

a−η
ρ(x)

g(Nρ(x)(a− x))

a− x
dx =

∫ Nα

0

dx

x
ρ(a− x

N
)g(ρ(a− x

N
)x)

∼ ρ(a)

∫ Nα

0

dx

x
g(ρ(a)x) = ρ(a)

[
ln (ρ(a)Nα)−

∫ ∞
0

ln(x)g′(x)dx

]
.

Using the fact that g(r) tends to 1 when r goes to ∞, we easily get that, in the limit N →∞:∫ a−η

−2
ρ(x)

g(Nρ(x)(a− x))

a− x
dx

∼
∫ a−δ

−2

ρ(x)

a− x
dx = −ρ(a) ln(N−1+α) +

∫ a

−2
ρ′(x) ln(a− x)dx .

Moreover, we easily find that, when N tends to ∞:∫ a−η

−2
ρ(x)

g(Nρ(x)(b− x))

b− x
dx→

∫ a

−2

ρ(x)

b− x
dx ,

and ∫ a

a−η
ρ(x)

g(Nρ(x)(b− x))

b− x
dx 6

∫ a

a−η

ρ(x)

b− x
dx ,

which goes to 0 as η goes to 0.

The next term is easy to control using the fact that g(r) goes to 1 when r goes to ∞; as
N →∞: ∫ a−η

−2
dxρ(x)

∫ b

a

ρ′(y)dy

y − x
g (Nρ(x)(y − x))→

∫ a

−2
dxρ(x)

∫ b

a

ρ′(y)dy

y − x
.

Using the fact that g′(r) is of order 1/r2 for large r, it is easy to check that

N

∫ a−η

−2
dxρ(x)

∫ b

a

dy

y − x
ρ(y)g′ (Nρ(x)(y − x))

is of order N−α.

The remaining term∫ a

a−η
dxρ(x)

∫ b

a

dy

y − x
[
ρ′(y)g (Nρ(x)(y − x)) +Nρ(x)ρ(y)g′ (Nρ(x)(y − x))

]
is of order N−1+α.

One has to go through the same steps to compute the asymptotic of the integrals between b
and 2.

Finally, we get:

D(a, b; δ = 0) ≈ lnN ε2 ρ(a)2 + ρ(b)2

2
∫ b
a ρ(λ)dλ

+A(a, b) (7.59)
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where

A(a, b) =
ε2

2
∫ b
a ρ

[ (
ρ(a)2 + ρ(b)2

)(
1−

∫ ∞
0

ln(x)g′(x)dx

)
+ ρ(a)2 ln(ρ(a)) + ρ(b)2 ln(ρ(b))

+ ρ(a)

∫ a

−2
ρ′(x) ln(a− x)dx− ρ(b)

∫ 2

b
ρ′(x) ln(x− b)dx

− ρ(b)

∫ a

−2

ρ(x)dx

b− x
− ρ(a)

∫ 2

b

ρ(x)dx

x− a

+

∫ a

−2
dxρ(x)

∫ b

a

ρ′(y)dy

y − x
−
∫ 2

b
dxρ(x)

∫ b

a

ρ′(y)dy

x− y

]
.

7.9 Derivation of the standard deviation σ(r)

We have

σ2(r) = 〈r(s)2〉 − 〈r(s)〉2

≈ 1

P
〈tr
(
Σ2
)
〉 − 〈

(
1

P
tr(Σ)

)2

〉 .

But the two quantities are computable easily in the limit of large matrices using the convergence
of the density of states for H0; We obtain

1

P
〈tr
(
Σ2
)
〉 ≈ ε4

N b
a

∫
[a;b]

dλ

∫
[−2;2]\[a−δ;b+δ]

dλ′
∫

[−2;2]\[a−δ;b+δ]

dλ′′
ρ(λ)ρ(λ′)ρ(λ′′)

(λ− λ′)2(λ− λ′′)2

+
ε4

N b
a

∫
[a;b]

dλ

∫
[a;b]

dλ′
∫

[−2;2]\[a−δ;b+δ]

dλ′′
ρ(λ)ρ(λ′)ρ(λ′′)

(λ− λ′′)2(λ′ − λ′′)2

and

〈
(

1

P
tr(Σ)

)2

〉 ≈ ε4

N b
a

2

∫
[a;b]

dλ

∫
[a;b]

dλ′
∫

[−2;2]\[a−δ;b+δ]

dλ′′
∫

[−2;2]\[a−δ;b+δ]

dλ′′′
ρ(λ)ρ(λ′)ρ(λ′′)ρ(λ′′′)

(λ− λ′′)2(λ′ − λ′′′)2
.

Those two expressions give in the regime δ � ∆� 1

σ(r) ≈ ρ(a)√
δ∆

, (7.60)

and in the regime ∆� δ � 1,

σ(r) ≈ ρ(a)

√
2∆

3δ3
. (7.61)

7.10 smin in the strong fluctuation limit

It is given by (7.27) and we have to compute the g̃ ∈ (−∞; 0) which verifies (7.25). For simplicity,
we set ĝ = −g̃ and we aim to compute ĝ > 0 such that

1

N b
a

∫
[−2;2]\[a−δ;b+δ]

dx
ρ(x)σ(x)2

(1 + σ(x)ĝ)2
=

1

ĝ2
,

As ĝ is non-negative, the integral on the left hand side converges when δ goes to 0 and hence ĝ
verifies in fact

1

N b
a

∫
[−2;2]\[a;b]

dx
ρ(x)σ(x)2

(1 + σ(x)ĝ)2
=

1

ĝ2
, (7.62)



7.11. SDE FOR XT 163

We now need to estimate the integral in the limit ∆� 1. As before, we can write using (7.31)∫ a

−2
dx

ρ(x)σ(x)2

(1 + σ(x)ĝ)2
=
ρ(a)2

∆

∫ a+2
∆

0
du

ρ(a− u∆)f2(u)

(u+ ρ(a)ĝ
∆ f(u))

.

In the limit ∆� 1, this integral is dominated by the region where u is small and f(u) ∼ 1 and
hence we have the following estimate∫ a

−2
dx

ρ(x)σ(x)2

(1 + σ(x)ĝ)2
∼ ρ(a)3

∆

∫ +∞

0

du

(u+ ρ(a)ĝ
∆ )2

∼ ρ(a)2

ĝ
.

Then we deduce from (7.62) and with the same argument for the integral between b and 2 that

ĝ =
∆

2ρ(a)
.

Now we have to plug this ĝ into equation (7.27) to obtain

smin = −2ρ(a)

∆
+

1

N b
a

∫
[−2;2]\[a;b]

dx
ρ(x)σ(x)

1 + σ(x) ∆
2ρ(a)

.

To evaluate the integral, we need to cut it into two parts. The first part is handled by∫ a

−2

ρ(x)σ(x)

1 + σ(x) ∆
2ρ(a)

= ρ(a)

∫ a+2
∆

0
du

ρ(a− u∆)f(u)

u+ f(u)/2

→ ρ(a)2

∫ +∞

0
du

f(u)

u+ f(u)/2
.

Finally, we can deduce that

smin =
2ρ(a)

∆

(∫ +∞

0
du

f(u)

u+ f(u)/2
− 1

)
.

7.11 SDE for xt

Using perturbation theory, one gets, in braket notation:

|φt1〉 =

1− ε2

2

∑
i 6=1

〈φt−1
1 |rtrt∗|φt−1

i 〉2

(λt−1
1 − λt−1

i )2

 |φt−1
1 〉+ ε

∑
i 6=1

〈φt−1
1 |rtrt∗|φt−1

i 〉
λt−1

1 − λt−1
i

|φt−1
i 〉

≈

1− ε2

2(λt−1
1 )2

∑
i 6=1

〈φt−1
1 |rtrt∗|φt−1

i 〉
2

 |φt−1
1 〉+

ε

λt−1
1

∑
i 6=1

〈φt−1
1 |rtrt∗|φt−1

i 〉|φ
t−1
i 〉

=

(
1− ε2

2(λt−1
1 )2

(
〈φt−1

1 |(rtrt∗)2|φt−1
1 〉 − 〈φt−1

1 |rtrt∗|φt−1
1 〉2

))
|φt−1

1 〉

+
ε

λt−1
1

(
rtrt

∗|φt−1
1 〉 − 〈φt−1

1 |rtrt∗|φt−1
1 〉|φt−1

1 〉
)
.

Since cos(θt) = 〈φt1|φ1〉, we can write

φt1 = cos(θt)|φ1〉+ sin(θt)|ϕt⊥〉

where |ϕ⊥〉 is a vector lying in the subspace spanned by the vectors |φ2〉, . . . , |φN 〉. We want to
describe the dynamic of cos(θt); we deduce from the previous equation that

cos(θt) =

(
1− ε2

2(λt−1
1 )2

(
〈φt−1

1 |(rtrt∗)2|φt−1
1 〉 − 〈φt−1

1 |rtrt∗|φt−1
1 〉2

))
cos(θt−1) (7.63)

+
ε

λt−1
1

(
〈φ1|rtrt

∗|φt−1
1 〉 − 〈φt−1

1 |rtrt∗|φt−1
1 〉 cos(θt−1)

)
. (7.64)
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Since we have:

〈φ1|C|φt−1
1 〉 = λ1 cos(θt−1) ,

〈φt−1
1 |C|φt−1

1 〉 = λ1 cos2(θt−1) + λ2 sin2(θt−1) ,

〈φ1|ηt|φt−1
1 〉2 = 2 cos2(θt−1)λ2

1 + sin2(θt−1)λ1λ2 ,

〈φt−1
1 |ηt|φt−1

1 〉2 = 2
(
λ1 cos2(θt−1) + λ2 sin2(θt−1)

)2
,

〈φt−1
1 |rtrt∗|φt−1

1 〉2 = λ2
1 cos4(θt−1) + 2 cos2(θt−1)λ2

1 + sin2(θt−1)λ1λ2 ,

〈φt−1
1 |(rtrt∗)2|φt−1

1 〉 = cos2(θt−1)(3λ2
1 + (N − 1)λ1λ2) + sin2(θt−1)((N + 1)λ2

2 + λ1λ2) ,

equation (7.63) can be rewritten, in the asymptotic regime where ε � 1, N � 1 with q = εN
fixed and λ2 � λ1, keeping up to terms of order 2 for “drift” terms and of order 1 for noise
terms in ε and λ2/λ1

13:

d(cos(θt)) = −ε
2

2

1

λ2
1

[
(λ2

1 +Nλ1λ2) cos2(θt)− λ2
1 cos4(θt)

]
cos(θt)dt

+ ε cos(θt) sin2(θt)dt+ σtdBt

where

σ2
t =

ε2

λ2
1

[
2λ2

1 cos2(θt) sin2(θt) + λ1λ2 cos2(2θt)
]

sin2(θt). (7.65)

When θt � 1, this leads to Eq. 7.48 given in the main text for xt = 1− cos(θt).

7.12 Transition probability of xt

In this appendix, we show that the function P (x, t) giving the probability that the “particle” xt
verifying (7.48) is in x at time t can be computed explicitly. More generally, we will show that
one can compute explicitly this transition density P (x, t) for a process xt with initial condition
in t = 0 given by x0 > 0 verifying the Langevin equation

dxt = θ(µ− xt)dt+ σ
√
xt(xt + b)dBt (7.66)

where θ, µ, σ and b are positive constants and Bt a standard Brownian motion. One can proceed
to the change of variables

yt = cosh−1

(
2

b
xt + 1

)
⇔ xt =

b

2
(cosh(yt)− 1) ,

and find that the process yt verifies

dyt =

(
θ(1 +

2µ

b
)

1

sinh(yt)
− (θ +

σ2

2
)
cosh(yt)

sinh(yt)

)
dt+ σ dBt . (7.67)

We will denote by F (y) the drift coefficient of the previous stochastic differential equation (7.67)
and denote by U its potential, which verifies U ′ = −F . The transition density P̄ (y, t) verifies
the Fokker-Planck equation

∂P̄

∂t
= −∂(FP̄ )

∂y
+
σ2

2

∂2P̄

∂y2
.

By setting P̄ (y, t) := e−U(y)/σ2
ψ(y, t), this equation becomes a Schrodinger equation:

∂ψ

∂t
=
σ2

2

∂2ψ

∂y2
− V (y)ψ ,

13Note that sin2(θt) ≈ 2µ is of order λ2/λ1 and that 1− cos(θt) ≈ µ is also of order λ2/λ1.
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with the so-called Pöschl-Teller potential V (y):

V (y) =
1

2

(
F 2(y)

σ2
+ F ′(y)

)
=

1

2

(
α

sinh2(y)
− β cosh(y)

sinh2(y)
+ γ

)
with:

α =

(
θ +

σ2

2

)(
3

2
+

θ

σ2

)
+
θ2

σ2

(
1 +

2µ

b

)2

,

β = 2θ

(
1 +

2µ

b

)(
1 +

θ

σ2

)
,

γ =
1

σ2

(
θ +

σ2

2

)2

.

Since the evolution of ψ(y, t) is governed by a self adjoint operator

H :=
σ2

2

∂2·
∂y2
− V (y)·

we can use its eigenfunctions to construct an orthonormal basis (ψn) with corresponding eigen-
values (−λn). The general solution ψ(y, t) can thus be expanded in the following form

ψ(y, t) =
∑
n

cnψn(y)e−λnt .

The general solution for P̄ is thus given by

P̄ (y, t) = e−U(y)/σ2
∑
n

cnψn(y)e−λnt .

The initial conditions for yt determines the sequence (cn). In particular, if at time t = 0, the
probability P̄ (y, 0) = δ(y − y0) with y0 := arg cosh(2

bx0 + 1), then it is straightforward to see
that

cn = eU(y0)/σ2
ψn(y0) .

The spectrum of H consists of a discrete and a continuous branch. The discrete energy levels
(eigenvalues) are computed in, e.g. [64] and are given for all n ∈ N, n 6 g/2 with g = 1 + 2θσ2,
by

λn =
σ2

2
n (g − n) . (7.68)

The corresponding eigenvectors are also computed in [64] and are expressed in terms of Jacobi
polynomials. To the best of our knowledge, the continuous branch of the spectrum has not
been fully characterized in the literature. We should also mention that in the limit b → 0 the
corresponding process has been studied in details (see [136] and the appendix of [115]). The
problem can now be mapped into the Morse potential, which has exactly the same discrete
spectrum as above (as expected since b does not appear), with eigenfunctions that can be
expressed in terms of Laguerre polynomials. However, we have not been able to directly match
the eigenfunctions in the two cases, and understand the b→ 0 limit in details. The limit b→∞
with σ2b fixed, on the other hand, boils down to the standard Bessel process with mean-reversion.
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Chapter 8

Marčenko Pastur theorem for
independent MRW

Résumé

Cet article est soumis au journal Annals of Applied Probability et est écrit en collab-
oration avec Rémi Rhodes et Vincent Vargas. Nous prouvons la convergence de la
densité empirique des valeurs propres d’une matrice de covariance empirique constru-
ite à partir des accroissements de marches aléatoires multifractales indépendantes.
Nous caractérisons la mesure de probabilité limite par sa transformée de Stieltjes,
qui vérifie une équation explicite admettant une unique solution. Nous illustrons nos
résultats numériquement.

Abstract

We study the asymptotic of the spectral distribution for large empirical covariance
matrices composed of independent Multifractal Random Walk processes. The asymp-
totic is taken as the observation lag shrinks to 0. In this setting, we show that there
exists a limiting spectral distribution whose Stieltjes transform is uniquely charac-
terized by equations which we specify. We also illustrate our results by numerical
simulations.

8.1 Introduction

Since the seminal work of Marc̃enko and Pastur [113] in 1967, there has been growing interest
in studying the asymptotic of large empirical covariance matrices. These studies have found
applications in many fields of science: physics, telecommunications, information theory and
finance, etc... The main motivation of this work stems from finance: the study of covariance
matrices is a crucial tool for minimizing the risk Rw of a portfolio w that invests wi in asset
number i. Indeed, if we denote by ri the price variation of asset i, Rw can be defined as the
variance of the random variable

∑
iwiri and can be computed in terms of the covariance matrix

R of the ri (defined as Rij = E[rirj ]):

Rw = wtRw .

Of course, practitioners do not have access to R; instead, they must consider a noisy empirical
estimator of R, which consists of a large empirical covariance matrix. A key tool in distinguishing
noise from real correlations is the study of the eigenvalues of the empirical covariance matrix: we
refer to [44], [124] for more extended discussions on the applications of large empirical covariance
matrices in finance and in particular in portfolio theory.

We will work in a high frequency setting: we consider N stock price processes Xi(t) for
i = 1, . . . , N that evolve continuously with respect to time t ∈ [0; 1] but we observe those prices
only on a discrete finite grid {j/T, j = 1, . . . , T} where T is the number of observations. Using

167



168 CHAPTER 8. MARČENKO PASTUR THEOREM FOR I.I.D. MRW

this discrete grid, we can compute the price variations ri(j) (that we will abusively call returns)
for each asset price Xi on every time interval [(j − 1)/T ; j/T ] by:

ri(j) := Xi(
j

T
)−Xi(

j − 1

T
).

Then, we define the N × T matrix XN such that XN (ij) = ri(j) that enables to define the
empirical covariance matrix RN as follows

RN := XNX
t
N .

In this work, we will be interested in the statistics of the symmetric matrix RN and in particular
in its spectrum, or more precisely, in its limiting spectral distribution in the limit of large
matrices (i.e. when N → ∞) for different models of the i.i.d. random continuous processes
(Xi(t)), i ∈ {1, . . . , N} (see below for precise definitions). For this purpose, the Marc̃enko-
Pastur paper enables to deal with the case where stock prices follow independent Brownian
motions. More precisely, in this case, the matrix XN is defined as:

XN (ij) = Bi

(
j

T

)
−Bi

(
j − 1

T

)
(8.1)

where the Bi are i.i.d. standard Brownian motions.

If λ1, . . . , λN are the eigenvalues of RN , the empirical spectral distribution of the matrix RN
is the probability measure defined by:

µRN =
1

N

N∑
i=1

δλi . (8.2)

The Marc̃enko-Pastur (MP) result states that, in the limit of large matrices N,T → ∞ with
N/T → q ∈ (0, 1], the empirical spectral distribution µRN weakly converges (almost surely) to
a probability measure whose density ρ(x) is:

ρ(x) =
1

2πq

√
(γ+ − x)(x− γ−)

x
1[γ−,γ+]dx (8.3)

where γ± = 1 + q ± 2
√
q.

Independently of the aforementioned work on random matrix theory, much work has been
devoted to studying the statistics of financial stocks. It turns out that most financial assets
(stocks, indices, etc...) possess universal features, called stylized facts. In short, one can observe
empirically the following properties (the list below is obviously non exhaustive) for asset returns
on financial markets:

• The returns are multifractal; in particular on short scales, they are heavy tailed but tend
to have distribution closer to the Gaussian law on larger scales.

• The volatility fluctuates randomly and follows approximately a lognormal distribution.

• While the returns are rapidly decorrelated, the volatility exhibits long range correlations
following a power law.

We refer to the references [45, 60] for a discussion on this topic. Many models have been proposed
in the literature that take into account these stylized facts. Among them, there has been growing
interest in the lognormal Multifractal Random Walk (MRW) model introduced in [?] (see also
[21, ?]). The lognormal MRW model satisfies several of the so-called stylized facts, but a few
of them remain unchecked such as asymmetry of returns and Leverage effect (see [48]). The
lognormal MRW is simply defined as:

X(t) = B (M [0, t]) (8.4)
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where B is a standard Brownian motion and M is an independent lognormal multifractal random
measure (MRM for short) formally defined, for t > 0, by:

M [0; t] =

∫ t

0
eω(x)− 1

2
E[ω(x)2]dx ,

where (ω(x))x∈R is a ”gaussian field” whose covariance kernel K is

K(x, y) = γ2 ln+

(
τ

|t− s|

)
,

where ln+ x = max(lnx, 0). The two parameters γ2 and τ are respectively called intermit-
tency parameter and integral scale (or correlation length) of the lognormal random multifractal
measure M .
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Figure 8.1: Simulated path of a multifractal random walk with intermittency parameter γ2 = 1
and with integral scale τ = 1/4. Note the intermittent bursts in volatility.

Fig. 8.1 represents a simulated path of a lognormal MRW X(t) = B(M([0; t])) where
B is a standard Brownian motion independent of the multifractal random measure M with
intermittency parameter γ2 = 1 and integral scale τ = 1/4. The reader can find a more precise
reminder of the construction/definition of a more general class of Multifractal Random Measure
(MRM), as well as (standard) notations used throughout the paper in section 8.2.1.

We thus aim at studying the large sample covariance matrices where the underlying price pro-
cesses evolve as lognormal MRW. More precisely, the matrixXN is defined, for 1 6 i 6 N, 1 6 j 6 T ,
as:

XN (ij) = Bi(M i(0,
j

T
))−Bi(M i(0,

j − 1

T
)) (8.5)

where the Bi are i.i.d. Brownian motions and the Mi are i.i.d. lognormal MRM independent
of the Bi. Let us mention the work [100] which considers high frequency covariance matrices
in the context of diffusion processes (see also [128] for studies of high frequency large empirical
covariance matrices motivated by financial applications). The processes described by (8.5) are
typically not diffusions.

In the spirit of the MP Theorem, the purpose of this work is to characterize the limit of
the empirical spectral measure µRN when N,T → ∞ with N/T → q ∈ (0, 1]. It is interesting
to understand how the long-memory volatility process affects the covariance matrix in the limit
of large matrices. In particular, we will see that the intermittent volatility has the effect to
spread the spectrum of the covariance matrix RN in a wider region of R+. Indeed the spectral
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density has a compact support [γ−; γ+] in the Marc̃enko-Pastur setting (in which the prices
follow Brownian motions) whereas it has an infinite support with a tail that gets heavier as the
intermittency parameter grows. We mention that our results can be extended to many different
auto-correlated volatility processes.

The effect of the integral scale τ on the empirical covariance matrix RN is also very inter-
esting in the context of price variations measured on a very short scale (high frequency). The
high frequency case corresponds to large values of the parameter τ while low frequency case
corresponds to small values of τ . Indeed, if X is a lognormal MRW with integral scale τ , then
the process X̂(t) defined on [0; 1] as X̂(t) = X(t/2) is a lognormal MRW with integral scale
2τ . Note that this discussion on high freqency measurement is irrelevant in the MP case when
asset prices follow independent Brownian motions since, in this model, the distribution of price
variations is the same on any scale: it is Gaussian, only the variance will change with the scale
and up to the variance parameter the limiting spectral distribution will always be the same at
different scales. However, if asset prices follow lognormal MRW (or even another process with
a correlated in time volatility process), the price variations measured on small scales will have
a distribution with higher kurtosis (i.e. the probability mass of the tail is heavier) and there-
fore the spectrum of the empirical covariance matrix RN should be affected by decreasing the
measurement scale. We therefore expect stronger right tail for the spectral distribution. The
numerical analysis of our results indeed confirms this guess: the larger the integral scale is, the
heavier is the right tail.

Here, we are mainly interested in the case where asset prices follow lognormal MRW but we
will also present our results for two other related models where asset prices follow independent
Brownian motions with a time change, which can be thought of as a volatility process with
memory (i.e. the volatility process is correlated in time).

The next sections are organized as follows. In section 2, we remind the definition of MRW
and introduce the main notations of the paper. In section 3, we state our main theorems which
are characterizations of the limiting spectral measure of RN through its Stieltjes transform for
different types of underlying processes X. These equations are tedious to invert analytically
and it is hard to extract the properties (continuity, tails of the distribution) of the associated
spectral density. In section 4, we invert these equations numerically so as to get informations
on the spectral measure of the covariance matrix RN as N →∞ and we check the validity and
applicability of our results using numerical simulations. The proofs appear in section 5 with
some auxiliary lemmas proved in the appendix. The strategy of our proofs is classical among
the random matrix literature (the so-called resolvent method) as it relies on the Schur recursion
formula for the Stieltjes transform; in particular, we follow the approach of [33]. The main
difficulty lies in handling the Stieltjes transforms in a multifractal setting.

8.2 Background, notations and main results

8.2.1 Reminder of the construction of MRM

To fix precisely the notations that we will use throughout the paper, we quickly remind the
main steps of the construction of Multifractal Random Measures (MRM). The description is
necessarily concise and the reader is referred to [24] for further details. In particular, we use
the same notations as in [24] to facilitate the reading. We consider the characteristic function
of an infinitely divisible random variable Z, which can be written as E[eipZ ] = eϕ(p) where
(Lévy-Khintchine’s formula):

ϕ(p) = imp− 1

2
γ2p2 +

∫
R∗

(eipx − 1) ν(dx) (8.6)

and ν(dx) is a so-called Lévy measure (ie satisfying
∫
R∗ min(1, x2) ν(dx) < +∞) together with

the following additional assumption:∫
[−1,1]

|x| ν(dx) < +∞, (8.7)
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so that its characteristic function perfectly makes sense as written in (8.6). We also introduce
the Laplace exponent ψ of Z by ψ(p) = ϕ(−ip) for each p such that both terms of the equality
make sense, and we assume that the following renormalization condition holds: ψ(1) = 0.

We further consider the half-space S = {(t, y); t ∈ R, y ∈ R∗+}, with which we associate the
measure (on the Borel σ-algebra B(S)):

θ(dt, dy) = y−2dt dy. (8.8)

Then we consider an independently scattered infinitely divisible random measure µ associated
to (ϕ, θ) and distributed on S.

Then we define a process ωε for ε > 0 by the following. Given a positive parameter τ , let us
define the function f : R+ → R by:

f(r) =

{
r, if r 6 τ
τ if r > τ

.

The cone-like subset Aε(t) of S is defined by:

Aε(t) = {(s, y) ∈ S; y > ε,−f(y)/2 6 s− t 6 f(y)/2}. (8.9)

We then define the stationary process (ωε(t))t∈R by:

ωε(t) = µ (Aε(t)) . (8.10)

The Radon measure M is then defined as the almost sure limit (in the sense of weak con-
vergence of Radon measures) by:

M(A) = lim
ε→0+

Mε(A) = lim
ε→0+

∫
A
eωε(r) dr

for any Lebesgue measurable subset A ⊂ R. The convergence is ensured by the fact that the
family (Mε(A))ε>0 is a right-continuous positive martingale. The structure exponent of M is
defined by:

∀p > 0, ζ(p) = p− ψ(p)

for all p such that the right-hand side makes sense. The measure M is different from 0 if and
only if there exists ε > 0 such that ζ(1 + ε) > 1, (or equivalently ψ′(1) < 1). In that case, we
have:

Theorem 8.1. The measure M is stationary and satisfies the exact stochastic scale invari-
ance property: for any λ ∈]0, 1],

(M(λA))A⊂B(0,τ)
law
= (λeΩλM(A))A⊂B(0,τ),

where Ωλ is an infinitely divisible random variable, independent of (M(A))A⊂B(0,T ), the law of
which is characterized by:

E[eipΩλ ] = λ−ϕ(p).

8.2.2 Notations

Let N and T := T (N) be two integers, the aim of this paper is to compute the empirical spectral
measure of the matrix RN := XN

tXN as N →∞, where XN is a N × T real matrix the entries
of which are given by (8.5). Recall that the number N of sampled processes is supposed to be
comparable with the sample size T := T (N), and more precisely, we will suppose in the following
that there exists a parameter q ∈]0, 1] such that:

lim
N→∞

N

T
= q. (8.11)

We further set R̃N := tXNXN , and if M is a symmetric real matrix, we will denote by µM the
empirical spectral measure of M .
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Define the (T +N)× (T +N) matrix BN by:

BN =

(
0 tXN

XN 0

)
.

We also define for z ∈ C \ R,

AN (z) = (zIT+N −BN ) =

(
zIT −tXN

−XN zIN

)
.

Notice that

B2
N =

(
R̃N 0
0 RN

)
and that the eigenvalues of R̃N are those of RN augmented with T − N zero eigenvalues. We
thus have:

µB2
N

= 2
N

N + T
µRN +

T −N
N + T

δ0, (8.12)

where δx stands for the Dirac mass at x. Combining this equality with the relation∫
f(x)µB2

N
(dx) =

∫
f(x2)µBN (dx) (8.13)

true for all bounded continuous functions f on R, we see that it is sufficient to study the weak
convergence of the spectral measure of BN for the study of the convergence of the spectral
measure µRN .

We will thus work on the (weak) convergence of the spectral measures µBN and E [µBN ] in
the following. To that purpose, it is sufficient to prove the convergence of the Stieltjes transform
of these two measures. Recall that, for a probability measure µ on R, the Stieltjes transform
Gµ of µ is defined, for all z ∈ C \ R, as:

Gµ(z) =

∫
R

1

z − x
µ(dx). (8.14)

and one can note that:

GµBN (z) =
1

N + T
Trace(GN (z)), (8.15)

where we have set:

GN (z) = (AN (z))−1 . (8.16)

Hence, we have to investigate the convergence of the right-hand side of (8.15). Let us introduce
the two following complex measures L1,z

N and L2,z
N such that, for all bounded and measurable

function f : [0, 1]→ R:

L1,z
N (f) =

1

T

T∑
k=1

f

(
k

T

)
GN (z)kk

L2,z
N (f) =

1

N

N∑
k=1

f

(
k

N

)
GN (z)k+T,k+T

Clearly, we have the relation

1

N + T
Trace(GN (z)) =

T

N + T
L1,z
N ([0, 1]) +

N

N + T
L2,z
N ([0, 1]) (8.17)

so that it suffices to establish the convergence of the two complex measures L1,z
N and L2,z

N .
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8.3 Main results

8.3.1 Lognormal multifractal random walk

We first present our results when the process X(t) is a lognormal multifractal random walk,
i.e. X(t) = B(M [0; t]) where M is the MRM whose characteristic and structure exponent (see
section 8.2.1) are respectively given by:

ϕ(q) = −iγ
2

2
q − γ2

2
q2,

ζ(q) = (1 +
γ2

2
)q − γ2

2
q2.

We will make the assumption that the intermittency parameter γ2 is small enough so as to
overcome in our proofs the strong correlations of the model.

Assumption 8.2. More precisely, let us suppose that:

γ2 <
1

3
. (8.18)

Though we conjecture that our results hold as soon as the measure M is non degenerated,
i.e. γ2 < 2 (see [?]), Assumption 8.2 is largely sufficient to cover most practical applications. For
instance, in financial applications or in the field of turbulence, γ2 is found empirically around
2.10−2.

We can now state our main result about the convergence of the empirical spectral measures
and mean empirical spectral measures of the matrices BN and RN :

Theorem 8.3. i) There exists a probability measure υ on R such that the two mean spectral
measures E[µBN ] and E[µRN ] converge weakly respectively towards the two probability measures
2q

1+qυ+ 1−q
1+q δ0 and υ◦(x2)−1 as N goes to ∞, where υ◦(x2)−1 is the push-forward of the measure

υ by the mapping x 7→ x2.
ii) The two spectral measures µBN and µRN converge weakly in probability respectively to

the two probability measures 2q
1+qυ + 1−q

1+q δ0 and υ ◦ (x2)−1 as N goes to ∞. More precisely, for

any bounded and continuous function f ,
∫
f(x)µRN (dx) converges in probability to

∫
f(x)υ ◦

(x2)−1(dx).
iii) Let Nk be an increasing sequence of integers such that

∑∞
k=1N

−1
k < +∞, then the

two sequences µBNk and µRNk converge weakly almost surely to the two probability measures
2q

1+qυ + 1−q
1+q δ0 and υ ◦ (x2)−1 as k goes to ∞.

Theorem 8.3 is implied by (8.15), (8.17) and by Theorem 8.4:

Theorem 8.4. i) The measures E[L1,z
N ] and E[L2,z

N ] converge weakly towards two complex mea-
sures. More precisely, there exist a unique µ2

z ∈ C and a unique bounded measurable function
Kz(x) over [0, 1] such that, for all bounded and continuous function f on [0, 1], we have respec-
tively:

E
[
L1,z
N (f)

]
→N→∞

∫ 1

0
Kz(x)f(x) dx,

E
[
L2,z
N (f)

]
→N→∞ µ2

z

∫ 1

0
f(x) dx.

ii) In addition, we have the following relation between µ2
z ∈ C and Kz(x):∫ 1

0
Kz(x) dx = qµ2

z +
1− q
z

(8.19)

iii) Furthermore, there exists a unique probability measure υ on R whose Stieltjes transform
is µ2

z, meaning that for all z ∈ C \ R,

µ2
z =

∫
R

υ(dx)

z − x
. (8.20)
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It is important to state a characterization of the probability measure υ: it is done by means
of its Stieltjes transform µ2

z:

Theorem 8.5. The constant µ2
z and the bounded function Kz(x) are uniquely determined for

all z ∈ C \ R, by the following system of equations:

µ2
z = E

[(
z −

∫ 1

0
Kz(t)M(dt)

)−1
]
, (8.21)

Kz(x) =

(
z − qE

[(
z −

∫ 1

0

( τ

|t− x|

)γ2

+
Kz(t)M(dt)

)−1
])−1

(8.22)

where1 M is the MRM with structure exponent ζ(q) = (1 + γ2/2)q − q2γ2/2.

Let us notice that one can give a precise meaning to (8.22) for all γ2 ∈ [0, 2[. Indeed, we
can define for all x ∈ [0, 1] and all continuous function f , the following almost sure limit as a
definition: ∫ 1

0

( τ

|t− x|

)γ2

+
f(t)M(dt) = lim

η→0

∫
t∈[0,1];|t−x|>η

( τ

|t− x|

)γ2

+
f(t)M(dt) (8.23)

Note that the above limit exists almost surely since, for x fixed:

lnM [x− εk, x+ εk]

ln εk
→
k→∞

1 +
γ2

2
, a.s.

where εk = 1
2k

. One can also check with this definition that we have:∫ 1

0

( τ

|t− x|

)γ2

+
f(t)M(dt) = lim

ε→0

∫ 1

0
ecov(ωε(t),ωε(x))f(t)eωε(t)dt

Conjecture 8.6. With this extended definition, we conjecture that theorem 8.5 holds in the
lognormal multifractal case for all γ2 ∈ [0, 2[ and thus that the limiting equations can be obtained
by the ones of theorem 8.10 (see below) with 2W = ωε as ε→ 0.

8.3.2 General multifractal random walk

We now look at the more general case when the change of time is a measure M for which the
function ϕ(q) is given by (8.6) and the structure exponent by ζ(q) = q−ψ(q) with ψ(q) = ϕ(−iq).

We still have to make an assumption to avoid the issue of strong correlations. In this more
general setting, Assumption (8.2) becomes:

Assumption 8.7. Assume that the structure exponent of the MRM satisfies the condition:

ζ(2) > 5− 4ζ ′(1). (8.24)

and that there exists δ > 0 such that:

ζ(2 + δ) > 1. (8.25)

As in the previous section, we conjecture that our results hold as soon as the measure M is
non degenerated, i.e. (see [?]) ζ(1 + ε) > 1 for some ε > 0.

Theorems 8.3 and 8.4 remain unchanged for this more general context. Theorem 8.5 becomes:

Theorem 8.8. The constant µ2
z and the bounded function Kz(x) are uniquely determined for

all z ∈ C \ R, by the following system of equations:

µ2
z = E

[(
z −

∫ 1

0
Kz(t)M(dt)

)−1
]
, (8.26)

Kz(x) =

(
z − qE

[(
z −

∫ 1

0

( τ

|t− x|

)κ
+
Kz(t)Q(dt)

)−1
])−1

(8.27)

1The notation (·)+ is a shortcut for max(·, 1).
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with κ = ψ(2) and where M is the MRM whose characteristic and structure exponent are respec-
tively ϕ(q), ζ(q) and where the random Radon measure Q is defined, conditionally on M , as the
almost sure weak limit as ε goes to 0 of the family of random measures Qε(dt) := eωε(t)M(dt)
where, for each ε > 0, the random process ωε is independent of M and defined as ωε(t) = µ(Aε(t))
where µ is the independently scattered log infinitely divisible random measure associated to
(ϕ̄, θ(· ∩A0(x))) with:

ϕ̄(p) = ip(γ2 − κ) +

∫
R

(eipx − 1)(ex − 1)ν(dx). (8.28)

8.3.3 Lognormal random walk

Let us mention that one can easily adapt the methods used to prove the above theorems in the
simpler case (lognormal case) where X(t) is defined, for all t ∈ [0; 1], by:

X(t) = B

(∫ t

0
e2W (s)ds

)
, (8.29)

where (W (s))s∈[0;1] is a stationary gaussian process with expectationm and stationary covariance
kernel k. The normalization will be chosen such that: m = −k(0).

In this context, the entries of XN are given, for 1 6 i 6 N, 1 6 j 6 T by:

XN (ij) =
1√
T
eWi(

j
T

)Bi
j := ri(j) (8.30)

where the (Bi
j)ij are i.i.d standard centered Gaussian random variables and the Wi are i.i.d

stationary Gaussian processes with expectation m and stationary covariance kernel k. Indeed,
if one makes the following extra assumption:

Assumption 8.9. Assume that for some constants C > 0 and β > 0, the covariance kernel k
satisfies:

∀x ∈ R, |k(x)− k(0)| 6 C|x|β.

With the same notations as in the previous section, we can now state the following theorem
under assumption 8.9:

Theorem 8.10. The system of equations for µ2
z and Kz(x) becomes:

µ2
z = E

[(
z −

∫ 1

0
Kz(t)e

2W (t) dt

)−1
]

(8.31)

Kz(x) =

(
z − qE

[(
z −

∫ 1

0
Kz(t)e

4k(t−x)e2W (t) dt

)−1
])−1

. (8.32)

where (W (t))t∈[0;1] is a stationary gaussian process with expectation m and stationary covariance
kernel k.

8.4 Numerical results and computer simulations

In this section, we are interested in the case handled in sub-section 8.3.1, in which the price of
an asset evolves as a lognormal multifractal random walk. We want to extract informations on
the spectral density υ ◦ (x2)−1 of the covariance matrix RN in the limit of large matrices. This
section will also give evidence that our equations are easy to use in practice for applications.

The information on the measure υ is entirely contained in its Stieltjes transform µ2
z which is

the unique solution of the system of equations (8.21) and (8.22). Let us admit for clarity at this
point that the measure υ admits a continuous density, at least on the set R\{0}. One should be
able to show that this is indeed true using the two equations (8.21) and (8.22) that characterize
the probability measure υ. Under this continuity assumption for υ(x), we can re-find the density
υ(x) from µ2

z by the relation

lim
ε→0

1

π
=(µ2

x−iε) = υ(x) . (8.33)
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Note that we just need to find the unique family of functions (Kz(x))x∈[0;1] for z ∈ C \ R near
the real line, that verifies the fixed point equation (8.22). Indeed, knowing (Kz(x))x∈[0;1], we
can compute µ2

z by using equation (8.21), or even simpler, the additional relation that we stated
above ∫ 1

0
Kz(x) dx = qµ2

z +
1− q
z

. (8.34)

Let C([0; 1],C) be the space of bounded functions from [0; 1] to C. For z ∈ C \ R fixed, the
idea to find (Kz(x))x∈[0;1] is the fixed point method due to Picard. Let us introduce the operator
T : C([0; 1],C)→ C([0; 1],C) by setting, for g ∈ C([0; 1],C) and for all x ∈ [0, 1]:

Tg(x) =
1

z − qE

[(
z −

∫ 1
0

(
τ
|t−x|

)γ2

+
g(t)M(dt)

)−1
] . (8.35)

It can easily be shown (see sub-section 8.5.6) that if z ∈ C\R is sufficiently far from the real line,
then the operator T is contracting and therefore admits a unique fixed point Kz(·) in C([0; 1],C).
To find the fixed point Kz, we will iterate the operator T starting from any fixed initial function

K
(0)
z . We know that, for z such that the operator T is contracting, the n-th iteration of the

function K
(n)
z := T (K

(n−1)
z ) converges to the unique fixed point Kz. In fact, numerically, there

is no need in applying the iteration on T for z such that T is contracting (i.e. for z far from the
real line) and one can apply the Picard method directly near the real line2 and find the fixed
point after a reasonable number of iterations of the operator T .

The multifractal lognormal random measure M(dt) and multifractal random walk are sim-
ulated through the standard method by simulating first, with the use of fast Fourier transform,
a gaussian process with covariance function given for η > 0 small by

Kη(|t− s|) = γ2 ln+(
τ

|t− s|+ η
) .

The lognormal multifractal random measure and random walk are then constructed from this
gaussian process through the standard formulas (see e.g. [?, ?]).

The results are as follows. In Fig. 8.2, we show the comparison between the theoretical
value of the density υ ◦ (x2)−1(x) (computed numerically as described above) and an empirical
histogram of the eigenvalues of a sample of simulated covariance matrices RN (defined in the
introduction) for N = 1024 and q = 1. The upward plot is done with an intermittency parameter
γ2 = 1/4 and an integral scale τ = 1/4. The agreement is excellent as expected from Theorems
8.3, 8.4 and 8.5. The downward figure is done for an intermittency parameter γ2 = 1/2 and an
integral scale τ = 1/4, suggesting that our prediction remains true for γ2 > 1/3 (see conjecture
8.6 which also covers the case γ2 ∈ [1, 2[).

In Fig. 8.3, we represent three curves (axis are in log-log) corresponding to the theoretical
density υ ◦ (x2)−1(x) for a parameter q = 1, an integral scale τ = 1/4 and for three different
values of γ2. The black dashed curve corresponds to γ2 = 0, which in fact is the Marcenko-
Pastur case: asset prices are following independent Brownian motions with a trivial constant
volatility process. In this case, the support is compact and the right edge of the spectrum is
known to be equal to 4. The blue curve corresponds to an intermittency parameter equal to 1/4
and the red curve is for γ2 = 1/2. In this way, we see precisely the distortion of the spectrum
induced by the auto-correlated volatility process. The most interesting part for applications is
certainly about the tails of the distribution: the higher the intermittency parameter γ2 is, the
heavier the tail of the distribution is.

In Fig. 8.4, we represent four curves corresponding to the thoeretical density υ ◦ (x2)−1(x)
but varying the integral scale τ instead of the intermittency parameter γ2. We chose for this
plot q = 1 and γ2 = 1/4 and represented the density υ ◦ (x2)−1(x) for τ = 0 (corresponding
to the trivial MP case) and for τ = 1/4, 1, 2. The result on the right tail of the distribution is
the following: the higher the integral scale is, the heavier the right tail of the distribution is.

2Recall that, in view of equation (8.33), we are interested in the value of the Stieltjes transform near the real
line.
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As mentionned above, large integral scale corresponds to measuring price variations on small
scales. On small scales, it is known that price variations will have distribution with larger
kurtosis than price variations on larger scales and therefore it was expected to find heavier right
tail distribution for the spectral distribution of the corresponding covariance matrix.
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Figure 8.2: Comparison between the theoretical value of the density υ ◦ (x2)−1(x) and the
empirical histogram computed through a sample of simulated empirical covariance matrices RN
as defined in the introduction. For both plots, q = 1 but stock prices follow multifractal random
walks with intermittency parameter γ2 = 1/4 in the upward figure, γ2 = 1/2 in the downward
figure.

8.5 Proofs of the main results

In this section, we give the proofs of theorems 8.3, 8.4 and 8.5. The proof of Theorem 8.8 is very
similar and we will not explain it in every detail, except for the final part where we establish
the second equation of the system in Theorem 8.8 verified by Kz. We will give the details for
this part of the proof in the appendix. The proof of theorem 8.10 is an easy adaptation of our
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Figure 8.3: Log-log plot of the density υ ◦ (x2)−1 with q = 1, τ = 1/4 for three different
intermittency parameter: γ2 = 0 (black dashed line), γ2 = 1/4 (blue line) and γ2 = 1/2 (red
line).

Figure 8.4: Log-log plot of the density υ ◦ (x2)−1 with q = 1, γ2 = 1/4 for four different integral
scales τ : τ = 0 (black dashed line), τ = 1/4 (red line), τ = 1 (blue line) and τ = 2 (green line).
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proofs for theorems 8.3, 8.4 and 8.5; it is left to the reader. Furthermore, the proofs are very
similar when q = 1 or when q < 1. For the sake of clarity, we assume T = N and hence q = 1
in the proofs that follow.

Hence, in the following, we will suppose (unless otherwise stated) that:

ϕ(q) = −iq γ
2

2
+ q2γ

2

2
,

ψ(q) = ϕ(−iq),

ζ(q) = (1 +
γ2

2
)q + q2γ

2

2
,

γ2 <
1

3
,

and M will be the MRM whose structure exponent is ζ (see section 8.2.1 for a reminder).
Our approach to show the convergence of E[L1,z

N ] and E[L2,z
N ] consists in proving tightness

and characterizing uniquely the possible limit points. The classical Schur complement formula
is our basic linear algebraic tool to study E[L1,z

N ] and E[L2,z
N ] recursively on the dimension N ,

as is usual when the resolvent method is used. The original part of our proof is that we apply
the Schur complement formula two times in a row to find the second equation of the system
in theorem 8.5 involving the limit point Kz(x) of the measure E[L1,z

N ]. We will also show that

the limit points of the two complex measures E[L1,z
N ] and E[L2,z

N ] satisfy a fixed point system
(written in theorem 8.5).

We begin by showing tightness.

8.5.1 Tightness of the complex measures E[L1,z
N ],E[L2,z

N ] and limit points

Lemma 8.11. The two families of complex measures (E[Li,zN ])N∈N, i = 1, 2 are tight and bounded
in total variation.

Proof. Let us present the proof for (E[L1,z
N ])N∈N; the other proof is similar.

One has, for each N ∈ N:

| E[L1,z
N ] | [0, 1] =

1

N

N∑
k=1

| E[GN (z)kk] | 6
1

| =(z) |
, (8.36)

and so the family of complex measures (E[L1,z
N ])N∈N is bounded in total variation. It is obviously

tight since the support of all the complex measures in the family is included in [0, 1], which is a
compact set. �

Using Prokhorov’s theorem, we know that those two families of complex measures are se-
quentially compact in the space of complex Borel measure on [0, 1] equipped with the topology
of weak convergence. In particular, there exists a subsequence such that, for all bounded con-
tinuous function f , one has, when N goes to +∞ along this subsequence:

E
[
L1,z
N (f)

]
→
∫ 1

0
f(x)µ1

z(dx). (8.37)

Lemma 8.12. The complex measure µ1
z(dx) has Lebesgue density; more precisely, there exists

a bounded measurable function Kz(x) such that:

µ1
z(dx) = Kz(x)dx. (8.38)

Proof. One has:

∣∣∣E [L1,z
N (f)

]∣∣∣ 6 1

N

N∑
k=1

|f(k/N)|E [GN (z)kk] (8.39)

6
1

|=(z)|
1

N

N∑
k=1

|f(k/N)| (8.40)
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Letting N → +∞ along a subsequence, one obtains:∣∣∣∣∫ 1

0
f(x)µ1

z(dx)

∣∣∣∣ 6 1

|=(z)|

∫ 1

0
|f(x)|dx. (8.41)

This proves the lemma.

Thus, there exists a subsequence such that, as N tends to +∞ along this subsequence:

E
[
L1,z
N (f)

]
→
∫ 1

0
f(x)Kz(x)dx. (8.42)

Lemma 8.13. There exists a subsequence and a constant µ2
z ∈ C such that, as N goes to +∞

along this subsequence:

E
[
L2,z
N (f)

]
→ µ2

z

∫ 1

0
f(x)dx. (8.43)

Proof. It is easy to see that the GN (z)kk, k = N + 1, . . . , N are identically distributed. In
particular, these variables have the same mean µ2

z(N). One has, for all N :

|µ2
z(N)| 6 1

|=(z)|
. (8.44)

So there exists a subsequence and a complex number µ2
z such that, as N goes to +∞ along this

subsequence, µ2
z(N)→ µ2

z. One thus obtains, as N goes to +∞ along this subsequence:

E
[
L2,z
N (f)

]
→ µ2

z

∫ 1

0
f(x)dx. (8.45)

�
Following the classical method as in [33], [32], [93], we will show in the following that the

limit point µ2
z and Kz(x) are defined uniquely and do not depend on the subsequence. We will

first recall some preliminary results on resolvents.

8.5.2 Preliminary results on resolvents

We first recall the following standard and general result; the next lemmas of this section are also
standard but are applied to our particular case.

Lemma 8.14. Let A be a symmetric real valued matrix of size N . For z ∈ C \R, let us denote
by G(z) the matrix

G(z) = (z −A)−1. (8.46)

For z ∈ C \ R and k ∈ {1, . . . , N}, we have

=(z)=(G(z)kk) < 0 and |G(z)kk| 6
1

|=(z)|
. (8.47)

In particular, if F ⊂ {1, . . . , N} is a finite set and (ai)i∈F a finite sequence of positive number,
then:

=
(
z −

∑
i∈F aiG(z)ii

)
=(z)

> 1. (8.48)

and we also have:
1∣∣z −∑i∈F aiG(z)ii

∣∣ 6 1

|=(z)|
. (8.49)

Proof. Write A = Ū tDU where D is a diagonal matrix with diagonal real entries (λi)1 6 i 6 N .
Then

G(z)kk =

N∑
i=1

|Uki|2
1

z − λi
.
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Since <
(

1
z−λi

)
= <(z)−λi

(<(z)−λi)2+=(z)2 and =
(

1
z−λi

)
= −=(z)

(<(z)−λi)2+=(z)2 the relation (8.47) follows. It

is then straightforward to derive (8.48) from (8.47).

For i = 1, . . . , N , let X
(i)
N = (XN (kl))k,l 6=i be the matrix obtained from XN by taking off

the i-th column and row. Define, also for i = 1, . . . , 2N the (2N − 1)× (2N − 1) matrix A
(i)
N (z)

obtained from AN (z) by taking off the i-th column and row. In particular, for i = 1, . . . , N ,

A
(N+i)
N (z) =

(
zIN −tX(i)

N

−X(i)
N zIN−1

)
,

For i = 1, . . . , 2N , set:

G
(i)
N (z) = (A

(i)
N (z))−1. (8.50)

Let now X̂
(i)
N denote the matrix XN with the i-th column and row set to 0 and Â

(i)
N (z) denote

the matrix AN (z) with the i-th column and row set to 0 excepted the diagonal term. Again we
have, for i = 1, . . . , N :

Â
(N+i)
N (z) =

(
zIN −tX̂(i)

N

−X̂(i)
N zIN

)
,

For i = 1, . . . , 2N , set:

Ĝ
(i)
N (z) = (Â

(i)
N (z))−1. (8.51)

In the paper, we will also use the terms A
(k,i)
N (z), G

(k,i)
N (z), Â

(k,i)
N (z), Â

(k,i)
N (z). The double su-

perscript just means that you make the operations described above to the rows and columns i
and k.

Lemma 8.15. For all k ∈ {1, . . . , N} and all t 6= N + k, one has:

E
[∣∣∣GN (z)tt − Ĝ(N+k)

N (z)tt

∣∣∣] 6 1√
N |=(z)|2

. (8.52)

Proof. Multiply the identity:

Â
(N+k)
N (z)−AN (z) = Â

(N+k)
N (0)−AN (0) (8.53)

to the left by GN (z) and to the right by Ĝ
(N+k)
N (z) to obtain

GN (z)− Ĝ(N+k)
N (z) = GN (z)(Â

(N+k)
N (0)−AN (0))Ĝ

(N+k)
N (z). (8.54)

Then one has:

GN (z)tt − Ĝ(N+k)
N (z)tt =

(
GN (z)(Â

(N+k)
N (0)−AN (0))Ĝ

(N+k)
N (z)

)
tt

(8.55)

= Ĝ
(N+k)
N (z)N+k,t

N∑
i=1

GN (z)tirk(i) (8.56)

+GN (z)t,N+k

N∑
j=1

rk(j)Ĝ
(N+k)
N (z)jt (8.57)

= GN (z)t,N+k

N∑
j=1

rk(j)Ĝ
(N+k)
N (z)jt (8.58)

where we have noticed that, for all t 6= N + k, Ĝ
(N+k)
N (z)N+k,t = 0.

Therefore, we find that:

E
[∣∣∣GN (z)tt − Ĝ(N+k)

N (z)tt

∣∣∣] 6 E
[
|GN (z)t,N+k|2

]1/2
E

∣∣∣∣∣∣
N∑
j=1

rk(j)Ĝ
(N+k)
N (z)jt

∣∣∣∣∣∣
21/2

(8.59)
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by Cauchy-Schwartz’s inequality. Using then the independence of rk(j) and Ĝ
(N+k)
N (z), we get:

E
[∣∣∣GN (z)tt − Ĝ(N+k)

N (z)tt

∣∣∣] 6 E
[
|GN (z)t,N+k|2

]1/2
E
[
rk(1)2

]1/2 E
 N∑
j=1

∣∣∣Ĝ(N+k)
N (z)jt

∣∣∣2
1/2

6
1√

N |=(z)|2
.

The proof is complete.

Lemma 8.16. There exists a constant C > 0 such that, for all k ∈ {1, . . . , N} and all t 6= k:

E
[∣∣∣GN (z)tt − Ĝ(k)

N (z)tt

∣∣∣] 6 C

|=(z)|2
1

N
1−γ2

4

. (8.60)

Proof. Again, we start from the relation:

GN (z)− Ĝ(k)
N (z) = GN (z)(Â

(k)
N (0)−AN (0))Ĝ

(k)
N (z).

Thus we have

GN (z)tt − Ĝ(k)
N (z)tt =

(
GN (z)(Â

(k)
N (0)−AN (0))Ĝ

(k)
N (z)

)
tt

(8.61)

= Ĝ
(k)
N (z)k,t

N∑
i=N+1

GN (z)tiri(k) (8.62)

+GN (z)t,k

N+1∑
j=1

rj(k)Ĝ
(k)
N (z)jt (8.63)

= GN (z)t,k

N+1∑
j=1

rj(k)Ĝ
(k)
N (z)jt (8.64)

where we have noticed that, for all t 6= k, Ĝ
(k)
N (z)k,t = 0.

Therefore, we find that:

E
[∣∣∣GN (z)tt − Ĝ(k)

N (z)tt

∣∣∣] 6 E
[
|GN (z)t,k|2

]1/2
E

∣∣∣∣∣∣
N∑
j=1

rj(k)Ĝ
(k)
N (z)jt

∣∣∣∣∣∣
21/2

(8.65)

by Cauchy-Schwartz’s inequality. We want to expand the square in the above expression. To that
purpose, we first observe that, conditionally to the M i, the variables (rj(k))j are independent

from Ĝ
(k)
N (z) and centered. Hence we have for j 6= j′,

E
[
rj(k)rj′(k)Ĝ

(k)
N (z)jtĜ

(k)
N (z)j′t

]
= 0.

Thus we get:

E
[∣∣∣GN (z)tt − Ĝ(k)

N (z)tt

∣∣∣] 6 E
[
|GN (z)t,k|2

]1/2

N+1∑
j=1

E
[
rj(k)2

∣∣∣Ĝ(k)
N (z)jt

∣∣∣2]
1/2

6 E
[
|GN (z)t,k|2

]1/2

N+1∑
j=1

E
[
rj(k)4

]1/2 E [∣∣∣Ĝ(k)
N (z)jt

∣∣∣4]1/2
1/2

6
E[r1(k)4]1/4

|=(z)|

N+1∑
j=1

E
[∣∣∣Ĝ(k)

N (z)jt

∣∣∣4]1/2
1/2

6
E[r1(k)4]1/4

|=(z)|
(N + 1)1/4

N+1∑
j=1

E
[∣∣∣Ĝ(k)

N (z)jt

∣∣∣4]
1/4
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Now we use the scaling properties of the MRM to obtain, for some positive constant C,

E[rj(k)4] = 3E[M(0,
1

N
)2] 6 CN−ζ(2).

Furthermore, by using Lemma 8.26 which assures that, almost surely:

N+1∑
j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣2 6 1

|=(z)|2
(8.66)

and the fact that:
N+1∑
j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣4 6
N+1∑

j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣2
2

, (8.67)

we finally obtain

E
[∣∣∣GN (z)tt − Ĝ(k)

N (z)tt

∣∣∣] 6 C

|=(z)|2
( 1

N

) ζ(2)−1
4 .

It just remains to check that ζ(2) = 2− γ2.

Lemma 8.17. For each k ∈ {1, . . . , 2N}, if t 6= k, then

G
(k)
N (z)tt = Ĝ

(k)
N (z)tt, (8.68)

and if t = k, then Ĝ
(k)
N (z)k,k = z−1.

Proof. It is straightforward to see that the two matrices G
(k)
N (z) and Ĝ

(k)
N (z) have the same

eigenvalues except that Ĝ
(k)
N (z) has one more zero eigenvalue. In addition, the eigenvectors look

also very similar since you can obtain 2N eigenvectors of Ĝ
(k)
N (z) by adding a zero entry to the

eigenvectors of G
(k)
N (z) (between the entries k − 1 and k). The last eigenvector of Ĝ

(k)
N (z) is the

vector of RN for which all entries are zero except the entry number k.

Now observe that with G
(k)
N (z) = Udiag(z − λ)U∗ and Ĝ

(k)
N (z) = V diag(z − λ̃)V ∗,

G
(k)
N (z)tt =

2N∑
i=1

|uti|2
1

z − λi
(8.69)

Ĝ
(k)
N (z)tt =

N∑
i=1

|vti|2
1

z − λ̃i
. (8.70)

The result follows since, for t 6= k,

2N−1∑
i=1

|uti|2
1

z − λi
=

2N∑
i=1

|vti|2
1

z − λ̃i
(8.71)

and, for t = k, Ĝ
(k)
N (z)k,k = z−1.

Lemma 8.18. For all z ∈ C and Lebesgue almost every point x ∈ [0, 1], we have

=(z)=(Kz(x)) 6 0 (8.72)

and

|=(Kz(x))| 6 1

=(z)
(8.73)

Proof. This is a straightforward consequence of Lemma 8.14. Indeed, we have for all positive
continuous function f on [0, 1] and N ∈ N:

=(z)=
(∫ 1

0
f(x)E[L1,z

N ](dx)
)
6 0.

We pass to the limit as N goes to ∞ along some suitable subsequence and obtain:

=(z)=
(∫ 1

0
f(x)Kz(x) dx

)
6 0.

The result follows.
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8.5.3 Concentration inequalities

This lemma is adapted to our case from Lemma 5.4 in [33].

Lemma 8.19. Let f : [0, 1] → R be a bounded measurable function. For each i ∈ {1, 2}, we
have the following concentration results:

E
[
| Li,zN (f)− E[Li,zN (f)] |2

]
6

8

N

|| f ||2∞
| =z |4

. (8.74)

Proof. Define two functions F 1
N and F 2

N such that:

F 1
N

((
X

(N)
ij

)
1 6 j 6 N+1

, 1 6 i 6 N

)
=

1

N

N∑
k=1

f

(
k

N

)
GN (z)kk (8.75)

F 2
N

((
X

(N)
ij

)
1 6 j 6 N+1

, 1 6 i 6 N

)
=

1

N

N+1∑
k=1

f

(
k

N + 1

)
GN (z)k+N,k+N (8.76)

We will prove the Lemma for L1,z
N ; the proof for L2,z

N is a straightforward adaptation.
Let, for k ∈ {1, . . . , N + 1},

Fk = σ

((
X

(N)
ij

)
1 6 j 6 N

, 1 6 i 6 k

)
(8.77)

If P denotes the law of the vector
(
X

(N)
1j

)
1 6 j 6 N

,

E
[
| F 1

N − E[F 1
N ] |2

]
=

N∑
i=0

E
[
| E[F 1

N | Fi+1]− E[F 1
N | Fi] |2

]
=

N∑
i=0

∫
|
∫

(FN (x1, x2, . . . , xi+1, yi+2, . . . , yN+1)− FN (x1, x2, . . . , xi, yi+1, . . . , yN+1)) dP⊗N+1(y) |2

dP⊗i+1(x)

6
N∑
i=0

∫
|
∫

(FN (x1, x2, . . . , xi, xi+1, xi+2, . . . , xN+1)− FN (x1, x2, . . . , xi, y, xi+2, . . . , xN+1)) dP (y) |2

dP⊗N+1(x)

6
N∑
i=0

sup
R(N+1)2

|| ∇xi+1FN ||2
∫
|| x− y ||2 dP⊗2(x, y).

The quantity ∇xi+1F
1
N refers to the gradient of F 1

N in the direction of the vector xi+1.

If we consider a couple of processes (B̃1, M̃1) independent from (B1,M1) with the same law,
it is easy to see that:∫

|| x− y ||2 dP ⊗ dP (x, y) =

N∑
j=1

E
[
(B1

M1(0, j
N

)
−B1

M1(0, j−1
N

)
− B̃1

M̃1(0, j
N

)
+ B̃1

M̃1(0, j−1
N

)
)2
]
.

= 2− 2
N∑
j=1

E
[
(B1

M1(0, j
N

)
−B1

M1(0, j−1
N

)
)(B̃1

M̃1(0, j
N

)
B̃1
M̃1(0, j−1

N
)
)
]

= 2.

In our case, we have, for i ∈ {1, . . . , N + 1}, j ∈ {1, . . . , N}:

∂GN (z)kk
∂Xij

= GN (z)k,jGN (z)N+i,k +GN (z)k,N+iGN (z)j,k (8.78)
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Thus,

∇xi+1FN =
1

N

N∑
k=1

f

(
k

N

)
∇xi+1GN (z)kk (8.79)

It is now plain to compute:

|| ∇xi+1FN ||2 =
1

N2

N∑
j=1

|
(
GN (z)D1(f)GN (z)

)
N+i+1,j

+
(
GN (z)D1(f)GN (z)

)
j,N+i+1

|2

where D1(f) is the (2N)-dimensional diagonal matrix of entries:

D1(f)kk = f

(
k

N

)
1{1 6 k 6 N}.

One thus has:

|| ∇xi+1F
1
N ||2 =

4

N2

N∑
j=1

|
(
GN (z)D1(f)GN (z)

)
N+i+1,j

|2

6
4

N2

2N∑
j=1

|
(
GN (z)D1(f)GN (z)

)
N+i+1,j

|2

6
4

N2

|| f ||2∞
| =z |4

.

where, in the last line, we used lemma 8.26 and the fact that the matrix GN (z)D1(f)GN (z) has
a spectral radius smaller than || f ||∞ / | =z |2.

Finally,

E
[
| F 1

N − E[F 1
N ] |2

]
6

8

N

|| f ||2∞
| =z |4

. (8.80)

�
We also prove the following lemma:

Lemma 8.20. For all α > 1 such that ζ(2α) > 1, we have

E

[∣∣∣∣∣
N∑
t=1

rk(t)
2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ

(N+k)
N (z)tt]

)∣∣∣∣∣
]
6

C(lnN)2

N
ζ(2α)−1

α |=(z)|4
(8.81)

for some positive constant C independent from N, z, k.

Proof. Notice that (rk(t))t and Ĝ
(N+k)
N (z) are independent. Hence, by conditioning with respect

to the process (rk(t))t, we can argue along the same lines as in the previous lemma with rk(t)
instead of 1

N f( t
N ) and we get the formula:

E

∣∣∣∣∣
N∑
t=1

rk(t)
2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ

(N+k)
N (z)tt]

)∣∣∣∣∣
2
 6 8

|=(z)|4
E[sup

t
rk(t)

4].

We conclude with Proposition 8.29 in the appendix .
In the following, we fix α > 1 such that ζ(2α) > 1 (because of the expression of ζ and the

inequality γ2 < 1/3, it is clear that such a number exists).

8.5.4 The system verified by the limit point µ2
z and Kz(x): first equation

From the Schur complement formula (see e.g. Lemma 4.2 in [33] for a reminder), one has for
k ∈ {1, . . . , N}:

GN (z)N+k,N+k =

z − N∑
s,t=1

rk(s)rk(t)G
(N+k)
N (z)st

−1

(8.82)
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Using Lemma 8.27, one can write:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)
2G

(N+k)
N (z)tt + ε1N,k(z)

]−1

(8.83)

where ε1N,k(z) is a complex valued random variable for which there exists C > 0 such that for
all N ∈ N and 1 6 k 6 N ,

E[|ε1N,k(z)|2] <
C

N1−γ2 . (8.84)

By using Lemma 8.17, we can write:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)
2Ĝ

(N+k)
N (z)tt + ε1N,k(z)

]−1

. (8.85)

Lemma 8.20 applied to α > 1 such that ζ(2α) > 1 yields:

E

∣∣∣∣∣
N∑
t=1

rk(t)
2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ

(N+k)
N (z)tt]

)∣∣∣∣∣
2
 6 C(lnN)2

N
ζ(2α)−1

α |=(z)|4
. (8.86)

Thus, one can write:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)
2E
[
Ĝ

(N+k)
N (z)tt

]
+ ε1N,k(z) + ε2N,k(z)

]−1

(8.87)

where ε2N,k(z) is a complex valued random variable such that for all N ∈ N and 1 6 k 6 N + 1,

E[|ε2N,k(z)|2] <
C(lnN)2

N
ζ(2α)−1

α |=(z)|4
. (8.88)

In addition, using Lemma 8.15, we can show:

E

[∣∣∣∣∣
N∑
t=1

rk(t)
2
(
E
[
Ĝ

(N+k)
N (z)tt −GN (z)tt

])∣∣∣∣∣
]

(8.89)

6
N∑
t=1

E[rk(t)
2]E
[∣∣∣Ĝ(N+k)

N (z)tt −GN (z)tt

∣∣∣] (8.90)

6
1

|=(z)|2
√
N
. (8.91)

It follows:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)
2E [GN (z)tt] + ε1N,k(z) + ε2N,k(z) + ε3N,k(z)

]−1

(8.92)

where ε3N,k(z) is a complex valued random variable such that for all N ∈ N and 1 6 k 6 N + 1,

E
[
|ε3N,k(z)|

]
<

1

|=(z)|2
√
N
. (8.93)

Let us denote by ItN the interval [ t−1
N , tN ]. Then we have:

Lemma 8.21. The following inequality holds:

E

∣∣∣∣∣
N∑
t=1

(
rk(t)

2 −Mk(ItN )
)
E [GN (z)tt]

∣∣∣∣∣
2
 6 C

N1−γ2 |=(z)|2

for some positive constant C.
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Proof. We expand the square and, because rk(t) and rk(t
′) are independent for t 6= t′ condition-

ally to Mk, we have:

E
[∣∣∣ N∑

t=1

(
rk(t)

2 −Mk(ItN )
)
E [GN (z)tt]

∣∣∣2]
=

N∑
t,t′=1

E
[(
rk(t)

2 −Mk(ItN )
)(
rk(t

′)2 −Mk(It
′
N )
)
E [GN (z)tt]E [GN (z)t′t′ ]

]

=
N∑
t=1

E
[(
rk(t)

2 −Mk(ItN )
)2]

E [GN (z)tt]
2

= 2
N∑
t=1

E
[(
Mk(ItN )

)2
]
E [GN (z)tt]

2

6 2C
N

N ζ(2)|=(z)|2

We can thus write

GN (z)N+k,N+k =

[
z −

N∑
t=1

Mk(ItN )E [GN (z)tt] (8.94)

+ ε1N,k(z) + ε2N,k(z) + ε3N,k(z) + ε4N,k(z)

]−1

(8.95)

where ε4N,k(z) is a complex valued random variable such that for all N ∈ N and 1 6 k 6 N + 1,

E
[
|ε4N,k(z)|2

]
6

C

N ζ(2)−1|=(z)|2
. (8.96)

Set εN,k(z) = ε1N,k(z) + ε2N,k(z) + ε3N,k(z) + ε4N,k(z) and rewrite:

GN (z)N+k,N+k =

[
z −

N∑
t=1

Mk(ItN )E [GN (z)tt] + εN,k(z)

]−1

(8.97)

We now need to introduce the truncated Radon measure Mk
ε (dx) with Lebesgue density

eω
k
ε (x) which converges almost surely as ε goes to 0, in the sense of weak convergence in the

space of Radon measure, to the measure Mk (see section 8.2.1).

Lemma 8.22. For ε > 0, the following uniform bound holds:

sup
N

E
[
|
N∑
t=1

Mk(ItN )E [GN (z)tt]−
N∑
t=1

Mk
ε (ItN )E [GN (z)tt] |2

]
6
Cε1−γ

2

|=(z)|2
.

Proof. We expand the square. Note that the covariance function ρε of the process ωε increases
as ε decreases to 0 and uniformly converges as ε → 0 towards ln+

τ
|x| over the complement of
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any ball centered at 0. Thus we have:

sup
N

E
[
|
N∑
t=1

Mk(ItN )E [GN (z)tt]−
N∑
t=1

Mk
ε (ItN )E [GN (z)tt] |2

]
= sup

N

N∑
t,t′=1

E
[
(Mk(ItN )−Mk

ε (ItN ))(Mk(It
′
N )−Mk

ε (It
′
N ))
]
E [GN (z)tt]E [GN (z)t′t′ ]

= sup
N

N∑
t,t′=1

E
[
(Mk(ItN )−Mk

ε (ItN ))(Mk(It
′
N )−Mk

ε (It
′
N ))
]
E [GN (z)tt]E [GN (z)t′t′ ]

= sup
N

N∑
t,t′=1

(
E
[
Mk(ItN )Mk(It

′
N )
]
− E

[
Mk
ε (ItN )Mk

ε (It
′
N )
])

E [GN (z)tt]E [GN (z)t′t′ ]

= sup
N

N∑
t,t′=1

E [GN (z)tt]E [GN (z)t′t′ ]

∫
ItN

∫
It
′
N

(
e
ψ(2) ln+

τ
|r−u| − eψ(2)ρε(r−u)

)
drdu

6
1

|=(z)|2

∫ 1

0

∫ 1

0

(
e
ψ(2) ln+

τ
|r−u| − eψ(2)ρε(r−u)

)
drdu.

where, in the fourth line, we used the fact that, if Fεis the sigma field generated by the random
variables µ(A), A ∈ B({(t, y) : y > ε}), then E[Mk(A)|Fε] = Mk

ε (A) for all borelian set A. A
straightforward computation leads to the relation

ρε(t) =


ln τ

ε + 1− |t|ε if |t| 6 ε
ln τ
|t| if ε 6 |t| 6 τ

0 if τ < |t|
(8.98)

By using the expression of ρε, it is then plain to obtain the desired bound.

We can thus write

GN (z)N+k,N+k =

[
z −

N∑
t=1

Mk
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

]−1

, (8.99)

where

sup
N

E[|δ(ε,N, z)|2]→ 0 as ε→ 0, (8.100)

and also:

E [GN (z)N+k,N+k] = E

[z − N∑
t=1

Mk
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

]−1
 . (8.101)

The next step is to study the convergence of the above quantity. Hence we prove (see the proof
in the appendix):

Lemma 8.23. The random variable
∑N

t=1M
k
ε (ItN )E [GN (z)tt] converges in probability as N →

+∞ towards
∫ 1

0 Kz(x)Mk
ε (dx).

We fix ε > 0. For that ε, the family of random variables (δ(ε,N, z))N is bounded in L2

so that it is tight. Even if it means extracting again a subsequence we assume that the couple
(
∑N

t=1M
k
ε (ItN )E [GN (z)tt] , δ(ε,N, z))N converges in law towards the couple (

∫ 1
0 Kz(x)Mk

ε (dx), Yε).
We remind the reader of (8.82) which implies that∣∣∣∣∣∣

(
z −

N∑
t=1

Mk
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

)−1
∣∣∣∣∣∣ 6 1

|=(z)|
.
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The quantity
(
z −

∑N
t=1M

k
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

)−1
is therefore bounded uni-

formly with respect to N, ε and converges in law towards(
z −

∫ 1

0
Kz(x)Mk

ε (dx) + Yε

)−1

.

We deduce that the expectation of the former quantity converges as ε → 0 towards the expec-
tation of the latter quantity. From (8.101), we deduce that

µ2
z = E

[(
z −

∫ 1

0
Kz(x)Mk

ε (dx) + Yε

)−1
]
. (8.102)

Clearly, standard arguments prove that
∫ 1

0 Kz(x)Mk
ε (dx) converges almost surely towards

∫ 1
0 Kz(x)Mk(dx)

as ε → 0 (Kz is deterministic (see lemma 8.19), measurable and bounded) and, because
of (8.100), Yε converges almost surely towards 0 as ε → 0. Again, because the quantity(
z −

∫ 1
0 Kz(x)Mk

ε (dx) + Yε

)−1
is bounded uniformly with respect to ε, we deduce that:

µ2
z = E

[(
z −

∫ 1

0
Kz(x)Mk(dx)

)−1
]
. (8.103)

8.5.5 Second equation

Now we turn our attention to the terms GN (z)kk for k ∈ {1, . . . , N}. Again, by using the Schur
complement formula, we can write, for k ∈ {1, . . . , N}:

GN (z)kk =

z − N∑
i,j=1

ri(k)rj(k)G
(k)
N (z)N+i,N+j

−1

(8.104)

=

[
z −

N∑
i=1

ri(k)2G
(k)
N (z)N+i,N+i + η1

N,k(z)

]−1

(8.105)

where, using Lemma 8.28, η1
N,k(z) is a complex valued random variable for which there exists

c > 0 such that for all N ∈ N and 1 6 k 6 N,E[|η1
N,k(z)|2] < c/N .

With a further use of the Schur complement formula for the term G
(k)
N (z)N+i,N+i, we obtain:

GN (z)kk =

z − N∑
i=1

ri(k)2

z − N∑
s,t 6=k

ri(s)ri(t)G
(k,N+i)
N (z)st

−1

+ η1
N,k(z)

−1

(8.106)

where G
(k,N+i)
N (z) = A

(k,N+i)
N (z)−1. Note that G

(k,N+i)
N (z) is independent of (ri(t))t=1,...,N .

Using the same arguments as in the derivation of the first equation (in particular Lemmas 8.27,
8.17, 8.20, 8.29, 8.16 and 8.15), one can show that:

GN (z)kk =

[
z −

N∑
i=1

ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt] + δN,k,i(z)

+ η1
N,k(z)

]−1

(8.107)

where (δN,k,i(z))1 6 i 6 N are complex random variable such that

E[|δN,k,i(z)|] 6
C

Nmin( 1−γ2

4
,
ζ(2α)−1

α
)

(8.108)

for some positive constant C that does not depend on i,N and for α > 1 such that ζ(2α) > 1.

Lemma 8.24. One can write:

GN (z)kk =

[
z −

N∑
i=1

ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt]

+ η1
N,k(z) + η2

N,k(z)

]−1

(8.109)

where η2
N,k(z) is a random variable that tends to 0 in probability as N goes to ∞.
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Proof. By using Lemma 8.14, we deduce that:

N∑
i=1

∣∣∣ ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt] + δN,k,i(z)

− ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt]

∣∣∣
6

1

|=(z)|2
N∑
i=1

ri(k)2 min(|δN,k,i(z)|, 2). (8.110)

We stress that the lemma is proved as soon as we can prove that the left-hand side in (9.19)
converges in probability to 0. Hence it is enough to prove that

E

[
N∑
i=1

ri(k)2 min(|δN,k,i(z)|, 2)

]

converges to 0 as N tends to ∞. By noticing that:

δN,k,i(z) =
N∑

s,t 6=k
ri(s)ri(t)G

(k,N+i)
N (z)st −

N∑
t=1

M i(ItN )E [GN (z)tt] , (8.111)

it is straightforward to see that the variables
(
ri(k)2 min(|δN,k,i(z)|, 2)

)
1 6 i 6 N+1

are identically

distributed. Thus we have

E
[ N∑
i=1

ri(k)2 min(|δN,k,i(z)|, 2)
]

= NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
.

Then for all A > 1 and α > 0, we have

NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
=NE

[
r1(k)2 min(|δN,k,1(z)|, 2)1{Nr1(k)2 6 A}

]
+NE

[
r1(k)2 min(|δN,k,1(z)|, 2)1{Nr1(k)2>A}

]
6 AE[|δN,k,1(z)|] + 2E

[
Nr1(k)21{Nr1(k)2>A}

]
6

AC

N
ζ(2)−1

4

+
2

Aα
E
[
N1+αr1(k)2(α+1)

]
=

AC

N
ζ(2)−1

4

+
2N1+α

Aα
E
[
M1(0,

1

N
)α+1

]
By using the scale invariance property of the measure M1, we have:

E
[
M1(0, 1/N)α+1

]
=

1

N ζ(1+α)
E
[
M1(0, 1)α+1

]
,

in such a way that

NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
6

AC

N
ζ(2)−1

4

+ 2E
[
M1(0, 1)α+1

] Nψ(1+α)

Aα
. (8.112)

Since ζ(2) > 5− 4ζ ′(1) (this inequality is clear with ζ(q) = (1 + γ2/2)q + q2γ2/2 and is due to
our hypotheses of Assumption 8.24 in the more general case), we can choose p > 0 such that

ζ(2)− 1

4
> p > 1− ζ ′(1) = ψ′(1). (8.113)

The mapping α ∈]0,+∞[ 7→ pα − ψ(1 + α) reduces to 0 for α = 0 and, because p > ψ′(1), is
strictly positive for α > 0 small enough. So we choose α < 1 such that pα − ψ(1 + α) > 0 and
we set A = Np. We obtain:

NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
6

C

N
ζ(2)−1

4
−p

+ 22+αE
[
M1(0, T )α+1

] 1

Nαp−ψ(1+α)
.

The result follows by letting N →∞ since min((ζ(2)− 1)/4− p, αp− ψ(1 + α)) > 0.
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Lemma 8.25. There exists a constant c > 0, which does not depend on N , such that for each
N ∈ N:

E

[∣∣∣∣ N∑
i=1

(
ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt]

− E
[

ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt]

])∣∣∣∣2
]
6

c

N1−γ2 .

Proof. The proof is straightforward using the fact that for i ∈ {1, . . . , N}, the random variables

ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt]

(8.114)

are i.i.d. random variables and Lemma 8.14.

Therefore we can write

GN (z)kk =

[
z −

N∑
i=1

ri(k)2

z −
∑N

t=1M
i(ItN )E [GN (z)tt]

+ η1
N,k(z) + η2

N,k(z) + η3
N,k(z)

]−1

(8.115)

with E[(η3
N,k(z))

2] 6 c

N1−γ2 .

Now we can take the expectation in (8.115) to obtain

E[L1,z
N (f)]

=
1

N

N∑
k=1

f(k/N)E[GN (z)kk]

=
1

N

N∑
k=1

f(k/N)E
[(
z − E

[ N∑
i=1

ri(k)2

z −
∑N

t=1M
i(ItN )E

[
GN (z)tt

]]+ ηN,k(z)
)−1]

=
1

N

N∑
k=1

f(k/N)E
[(
z −NE

[ M
[
k−1
N ; kN

]
z −

∑N
t=1M(ItN )E

[
GN (z)tt

]]+ ηN,k(z)
)−1]

with ηN,k(z) = η1
N,k(z) + η2

N (z) + η3
N,k(z). Then, by introducing the truncated measure Mε and

by using the Girsanov formula, we can approximate (uniformly in N) this last expression by:

1

N

N∑
k=1

f(k/N)E
[(
z −NE

[ Mε

[
k−1
N ; kN

]
z −

∑N
t=1Mε(ItN )E

[
GN (z)tt

]])−1
+ δ̂(N, k, z, ε)

]
(8.116)

with supN,k E[|δ̂(N, k, z, ε)|2] going to 0 when ε is going to 0. Along some appropriate subse-
quence, this latter quantity converges as N → +∞ to:

∫ 1

0
f(x)E

(z − E

[
eωε(x)

z −
∫ 1

0 Kz(r)Mε(dr)

])−1

+ Y ε

 dx (8.117)

where Y ε is such that E[(Y ε)2] converges to 0 when ε is going to 0. And, we thus obtain gathering
the above arguments that:

∫ 1

0
f(x)Kz(x) dx =

∫ 1

0
f(x)E

(z − E

[
eωε(x)

z −
∫ 1

0 Kz(r)Mε(dr)

])−1

+ Y ε

 dx. (8.118)

It remains to pass to the limit as ε→ 0 in that expression. This job is carried out with the help
of a Girsanov type transform in Appendix 8.8.
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8.5.6 Uniqueness of the solution to the system of equations

Let X be the space of bounded measurable functions [0, 1]→ C endowed with the uniform norm
defined for f ∈ X by:

||f ||∞ = sup
x∈[0,1]

|f(x)|. (8.119)

Define the operator T : X → X by setting, for g ∈ X and for all x ∈ [0, 1]:

Tg(x) =
1

z − qE

[(
z −

∫ 1
0

(
τ
|t−x|

)γ2

+
g(t)M(dt)

)−1
] (8.120)

For g, h ∈ X and for all x ∈ [0, 1], we have:

|Tg(x)− Th(x)| 6 q

|=(z)|4
E

[∫ 1

0

(
τ

|t− x|

)γ2

+

|g(t)− h(t)|M(dt)

]

6
q

|=(z)|4
E

[∫ 1

0

(
τ

|t− x|

)γ2

+

M(dt)

]
||g − h||∞

6
q

|=(z)|4

∫ 1

0

(
τ

|t− x|

)γ2

+

dt||g − h||∞.

Recall that γ2 < 1/3, and thus it is easy to see that:

sup
x∈[0,1]

∫ 1

0

(
τ

|t− x|

)γ2

+

dt < +∞ (8.121)

And we can deduce that there exists a positive constant C such that:

sup
x∈[0,1]

|Tg(x)− Th(x)| 6 C

|=(z)|4
||g − h||∞ (8.122)

If z is such that C/|=(z)|4 < 1, the operator T is contracting and thus has a unique fixed point
g in the Banach space X. We conclude that, for each z with |=(z)| large enough, there exists a
unique bounded function Kz : [0, 1]→ C such that for all x ∈ [0, 1]:

Kz(x) =
1

z − qE

[(
z −

∫ 1
0

(
τ
|t−x|

)γ2

+
Kz(t)M(dt)

)−1
] . (8.123)

Using the first equation, it is now plain to see that, for z such that C/|=(z)|4 < 1, the
constant µ2

z is uniquely defined by the system of equations (by the first equation, it is a function
of the function Kz, which is uniquely defined for such z).

Now it remains to show that the limit point µ2
z is uniquely defined for all z ∈ C \ R. It will

be easy to see using analyticity arguments. Indeed, from the Montel theorem, every limit point
µ2
z is holomorphic on the set C\R since it is the pointwise limit of a subsequence of the sequence

of holomorphic functions L1,z
N ([0, 1]) that are uniformly bounded on each compact set of C \ R

(see Lemma 8.14). Thus, µ2
z is uniquely defined for each z ∈ C \ R by analytic extension (we

have just seen that µ2
z is uniquely defined for a set of z with accumulation points).

The same argument holds for the unicity of the integral
∫ 1

0 Kz(x)dx. Indeed, every limit

point
∫ 1

0 Kz(x)dx is a holomorphic function on C \R that has some prescribed value on the set
{z ∈ C \ R : C/|=(z)|4 < 1}, which has accumulation points.
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8.5.7 Proof of Theorem 8.3, 8.4 and 8.5

Let us gather the above arguments to prove the main theorems.
Proof of theorem 8.5: it is a direct consequence of sections 8.5.4, 8.5.5 and 8.5.6.
Proof of theorem 8.4 i): The limit points Kz(x)dx and µ2

zdx of the two complex measures
E[L1,z

N ] and E[L2,z
N ] are uniquely defined because µ2

z and Kz(x) satisfy a fixed point system of
equations (we have just seen this in theorem 8.5).

Proof of theorem 8.4 iii): We need to prove that µ2
z is the Stieltjes transform of a probability

measure υ. From [81], it suffices to prove that µ2
z is holomorphic over C \ R, maps {z ∈

C \ R;=(z) < 0} to {z ∈ C \ R;=(z) > 0} and that limy→∞ iyµ
2
iy = 1 (y ∈ R). Let us check

those properties. We have already seen in section 8.5.6 that µ2
z is holomorphic. From Lemma

8.14, µ2 maps {z ∈ C \ R;=(z) < 0} to {z ∈ C \ R;=(z) > 0}. Finally, from Theorem 8.5, we
have

zµ2
z = E

[
1

1− z−1
∫ 1

0 Kz(x)M(dx)

]
.

As |Kz(x)| 6 |=(z)|−1, the term
∫ 1

0 Kz(x)M(dx)/z converges pointwise towards 0 when z = iy
and y → ∞. Furthermore, from Lemma 8.18, we have =(z)=(Kz(x) 6 0 in such a way that∣∣∣z − ∫ 1

0 Kz(x)M(dx)
∣∣∣−1
6 |=(z)|−1. Therefore

∣∣ z

z −
∫ 1

0 Kz(x)M(dx)

∣∣ 6 1

when z takes on the form z = iy (y ∈ R). The dominated convergence theorem then implies
that limy→∞ iyµ

2
iy = 1 and we can conclude µ2 is indeed the Stieltjes transform of a (unique)

probability measure υ.
Proof of theorem 8.3 i) and 8.4 ii) We observe that, for z ∈ C \ R:

AN (z)

(
zIT 0
XN zIN

)
=

(
z2IT − tXNXN −ztXN

0 z2IN

)
. (8.124)

Let us rewrite the matrix GN (z) = AN (z)−1 under the form:

GN (z) =

(
G1(z) tG1,2(z)
G1,2(z) G2(z)

)
, (8.125)

where G1(z), G1,2(z), G2(z) are respectively of size T × T , N × T , N ×N .
By taking the inverse in the relation (8.124), we obtain:(

IT /z 0
−XN/z

2 IN/z

)(
G1(z) tG1,2(z)
G1,2(z) G2(z)

)
=

(
(z2IT − tXNXN )−1 B

0 IN/z
2

)
(8.126)

where B = (z2IT − tXNXN )−1tXN/z.
It can be rewritten, using the fact that −XNG1(z) + zG1,2(z) = 0 and −XN

tG1,2(z) +
zG2(z) = IN , as: (

G1(z)/z tG1,2(z)/z
0 IN/z

2

)
=

(
(z2IT − tXNXN )−1 B

0 IN/z
2

)
(8.127)

Therefore, taking the trace we get:

1

Tz

T∑
k=1

GN (z)kk =
1

T
tr(z2IT − tXNXN )−1, (8.128)

and, by using the fact that the eigenvalues of tXNXN are those of XN
tXN augmented with

T −N zeros:

1

Tz

T∑
k=1

GN (z)kk =
1

T
tr(z2IN −XN

tXN )−1 +
T −N
Tz2

. (8.129)
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Now, taking expectation and using theorem 8.4, we deduce:∫ 1

0
Kz(x)dx = qz lim

N→∞

1

N
E
[
tr(z2IN −XN

tXN )−1
]

+
1− q
z

(8.130)

Using the fact that (by (8.12)) the spectrum of BN contains 2N eigenvalues which are the
positive and negative square-roots of the spectrum of RN = tXNXN plus T −N zero eigenvalues
and the fact that 1/(z − λ) + 1/(z + λ) = 2z/(z2 − λ2), we can see that:

1

N + T

N+T∑
k=1

GN (z)kk =
2z

N + T
tr(z2IN −XN

tXN )−1 +
T −N
T +N

1

z
(8.131)

Using the relation 8.17 and theorem 8.4, it is easy to see that:

lim
N→+∞

1

N + T

N+T∑
k=1

E[GN (z)kk] =
1

1 + q

(
qµ2

z +

∫ 1

0
Kz(x)dx

)
(8.132)

Taking expectation in 8.131 and using (8.132), we get:

1

1 + q

(
qµ2

z +

∫ 1

0
Kz(x)dx

)
=

2qz

1 + q
lim
N→∞

1

N
E
[
tr(z2IN −XN

tXN )−1
]

(8.133)

+
1− q
1 + q

1

z
. (8.134)

From equations (8.130) and (8.133), we get the following relation:∫ 1

0
Kz(x)dx = qµ2

z +
1− q
z

. (8.135)

and theorem 8.4 ii). is proved.
With (8.135), (8.132) becomes:

lim
N→+∞

1

N + T

N+T∑
k=1

E[GN (z)kk] =
1

1 + q

(
2qµ2

z +
1− q
z

)
(8.136)

and, we note that the right hand side of (8.136) is the Stieltjes transform of the measure 2q/(1+
q)υ(dx) + (1− q)/(1 + q)δ0(dx). Thus, the mean spectral measure E[µBN ] converges weakly to
the measure 2q/(1 + q)υ(dx) + (1− q)/(1 + q)δ0(dx).

We have also:

lim
N→∞

1

N
E
[
tr(z2IN −XN

tXN )−1
]

=
µ2
z

z
(8.137)

Again using the fact that, for all x ∈ R, 1/(z2 − x2) = (1/(z − x) + 1/(z + x))/(2z) and
the fact that υ(dx) is a symmetric measure on R (υ(dx) is the weak limit of E [µBN ], which is
symmetric since the spectrum of BN is symmetric with respect to 0 almost surely), we see that:

lim
N→∞

1

N
E
[
tr(z2IN −XN

tXN )−1
]

=
1

z

∫
R

υ(dx)

z − x
(8.138)

=

∫
R

υ ◦ (x2)−1(dx)

z2 − x
. (8.139)

This implies that, for each z ∈ C \ R,

lim
N→∞

1

N
E
[
tr(zIN −XN

tXN )−1
]

=

∫
R

υ ◦ (x2)−1(dx)

z − x
. (8.140)

and thus, the probability measure E[µRN ] converges weakly to the measure υ ◦ (x2)−1(dx).
Proof of theorem 8.3 ii): using relation (8.17) and lemma 8.19, it is plain to check that∫

R(z−x)−1µBN (dx) converges in probability to the Stieltjes transform of the probability measure
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2q/(1 + q)υ(dx) + (1 − q)/(1 + q)δ0(dx). This convergence holds for finite dimensional vectors
(
∫
R(zi−x)−1µBN (dx)), i = 1, . . . , d) as well. Using the fact that the set of functions {(z−x)−1, z ∈

C\R} is dense in the set C0(R) of continuous functions on R going to 0 at infinity, we can show,
for each f ∈ C0(R), that

∫
f(x)µBN (dx) converges in probability to

∫
f(x)(2q/(1 + q)υ(dx) +

(1 − q)/(1 + q)δ0(dx)). But, since µBN (R) = 2q/(1 + q)υ(R) + (1 − q)/(1 + q)δ0(R) = 1, this
vague convergence can be strengthened in a weak convergence. With the relations µB2

N
=

2N/(N + T )µRN + (T −N)/(T +N)δ0 and the fact that
∫
f(x)µB2

N
(dx) =

∫
f(x2)µBN (dx), it

is plain to conclude that µRN converges weakly in probability to υ ◦ (x2)−1(dx).
Proof of theorem 8.3 iii): again using relation (8.17) and lemma 8.19 together with Borel-

Cantelli’s lemma, one can show that the two spectral measures µBNk converges weakly almost
surely to 2q/(1 + q)υ(dx) + (1− q)/(1 + q)δ0(dx). It is then easy to deduce as before that µRNk
converges weakly almost surely to υ ◦ (x2)−1(dx).

8.6 Auxiliary lemmas

Lemma 8.26. Let A be a n× n complex matrix such that the Hermitian matrix M = AĀT has
spectral radius λmax. Then, for all i, we have:

n∑
j=1

| Aij |2 6 λmax. (8.141)

Proof. It is straightforward to see that all the entries of M are, in modulus, smaller than λmax.
On the other hand, we have:

Mii =
n∑
j=1

| Aij |2 .

and, thus:
n∑
j=1

| Aij |2 6 λmax. (8.142)

�

Lemma 8.27. There exists C > 0 such that for each N ∈ N and k ∈ {1, . . . , N}:

E

∣∣∣∣∣∣
N∑
s 6=t

rk(s)rk(t)G
(N+k)
N (z)st

∣∣∣∣∣∣
2 6 C

N1−γ2 .

Similarly, for each N ∈ N and k ∈ {1, . . . , N}, i ∈ {1, . . . , N}, we have the following inequality
concerning the conditional expectation with respect to M i:

E

∣∣∣∣∣∣
N∑

s,t 6=k,s6=t
ri(s)ri(t)G

(k,N+i)
N (z)st

∣∣∣∣∣∣
2

|M i

 6 C

N1−γ2 .

Proof. We first expand the square and use the independence of (rk(s))s from G
(N+k)
N (z):

E

∣∣∣∣∣∣
N∑
s 6=t

rk(s)rk(t)G
(N+k)
N (z)st

∣∣∣∣∣∣
2 = 2

N∑
s 6=t

E
[
rk(s)

2rk(t)
2
]
E
[∣∣∣G(N+k)

N (z)st

∣∣∣2]
Now we compute

E
[
rk(s)

2rk(t)
2
]

= E
[
Mk(

s− 1

N
,
s

N
)Mk(

t− 1

N
,
t

N
)

]
=

∫ s
N

s−1
N

∫ t
N

t−1
N

max

(
1,

τ

|r − u|

)ψ(2)

drdu

6
∫ 1

N

0

∫ 2
N

1
N

max

(
1,

τ

|r − u|

)ψ(2)

drdu
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We consider N large enough so as to make 2/N 6 τ . The above integral is then plain to compute
and we get

E
[
rk(s)

2rk(t)
2
]
6

τψ(2)(22−ψ(2) − 2)

(1− ψ(2))(2− ψ(2))

1

N2−ψ(2)
. (8.143)

Thus we have for some positive constant C

E

∣∣∣∣∣∣
N∑
s6=t

rk(s)rk(t)G
(N+k)
N (z)st

∣∣∣∣∣∣
2 6 C

N2−ψ(2)

N∑
s 6=t

E
[∣∣∣G(N+k)

N (z)st

∣∣∣2]

6
C

N1−ψ(2)

1

|=(z)|2
,

where we have used the fact that almost surely:

1

2N − 1

2N∑
s,t 6=N+k

∣∣∣G(N+k)
N (z)st

∣∣∣2 6 1

|=(z)|2
.

It just remains to see that ψ(2) = γ2. To prove the second relation, we follow the same argument

by noticing that (ri(t))t and G
(k,N+i)
N (z) are independent conditionally to M i.

Lemma 8.28. There exists some constant c > 0 such that for each N ∈ N and k ∈ {1, . . . , N}:

E

∣∣∣∣∣∣
N∑
i 6=j

ri(k)rj(k)G
(k)
N (z)N+i,N+j

∣∣∣∣∣∣
2 6 c

N
.

Proof. Again we expand the square and we use the fact that, conditionally to the (M i)i, the

quantities ri(k), rj(k), G
(k)
N (z)N+i,N+j are independent and ri(k), rj(k) are centered. Indeed,

conditionally to the (M i)i, the variables ri(k), rj(k), G
(k)
N (z)N+i,N+j involve different increments

of the Brownian motion. Thus we have

E

∣∣∣∣∣∣
N∑
i 6=j

ri(k)rj(k)G
(k)
N (z)N+i,N+j

∣∣∣∣∣∣
2 =

N∑
i 6=j

E
[
ri(k)2rj(k)2

]
E
[∣∣∣G(k)

N (z)N+i,N+j

∣∣∣2]

6
N∑
i 6=j

E[ri(k)2]E[rj(k)2]E
[∣∣∣G(k)

N (z)N+i,N+j

∣∣∣2]

= N−2
N∑
i 6=j

E
[∣∣∣G(k)

N (z)N+i,N+j

∣∣∣2]
6

c

N
,

where we have used the fact that almost surely:

1

2N − 1

2N∑
i,j 6=k

∣∣∣G(k)
N (z)i,j

∣∣∣2 6 1

|=(z)|2
.

Proof of Lemma 8.23. We define the function fk,εN on the interval [0, 1] by

fk,εN (x) = NMk,ε(ItN ) if x ∈ ItN .

Notice the relation:

N∑
t=1

Mk
ε (ItN )E [GN (z)tt] =

∫ 1

0
fk,εN (r) dE[L1,z

N ](dr).
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Then, by stationarity, we have:

E
[∣∣∣∣∫ 1

0
fk,εN (r) dE[L1,z

N ](dr)−
∫ 1

0
eω

k
ε (r) dE[L1,z

N ](dr)

∣∣∣∣]
6

N∑
t=1

E

[∣∣∣∣∣
∫
ItN

(fk,εN (r)− eωkε (r)) dE[L1,z
N ](dr)

∣∣∣∣∣
]

6
N

|=(z)|
sup
r∈I1

N

E

[∣∣∣∣∣
∫
I1
N

(eω
k
ε (u) − eωkε (r)) du

∣∣∣∣∣
]

6
N

|=(z)|
sup
r∈I1

N

∫
I1
N

E
[∣∣∣eωkε (u) − eωkε (r))

∣∣∣2]1/2

du

6
N

|=(z)|
sup
r∈I1

N

∫
I1
N

(
2eψ(2)ρε(0) − 2eψ(2)ρε(r−u)

)1/2
du.

Because of the continuity of the function ρε over [0, 1], we have

E
[∣∣∣ ∫ 1

0
fk,εN (r) dE[L1,z

N ](dr)−
∫ 1

0
eω

k
ε (r) dE[L1,z

N ](dr)
∣∣∣]→ 0 as N →∞. (8.144)

In a quite similar way, we can prove that

E
[∣∣∣ ∫ 1

0
eω

k
ε ∗ φp(r) dE[L1,z

N ](dr)−
∫ 1

0
eω

k
ε (r) dE[L1,z

N ](dr)
∣∣∣]→ 0 as p→∞ uniformly w.r.t. N

(8.145)
and

E
[∣∣∣ ∫ 1

0
eω

k
ε ∗ φp(r)Kz(r) dr −

∫ 1

0
eω

k
ε (r)Kz(r) dr

∣∣∣]→ 0 as p→∞ uniformly w.r.t. N (8.146)

where (φp)p∈N is a regularizing sequence and ∗ stands for the convolution. Furthermore, for each

fixed p and because of the weak convergence of E[L1,z
N ] towards Kz(x)dx, we have almost surely∫ 1

0
eω

k
ε ∗ φp(r) dE[L1,z

N ](dr)→
∫ 1

0
eω

k
ε ∗ φp(r)Kz(r) dr as N →∞. (8.147)

We prove the result by gathering (8.144) (8.145) (8.146) and (8.147).

8.7 Sup of MRW

Here we prove

Proposition 8.29. We have for all k = 1, . . . , N + 1

E

[
sup

t=1,...,N
rk(t)

4

]
6 C

(lnN)2

N
ζ(2α)−1

α

.

for some positive constant C.

Proof. To prove the result, we first prove

Lemma 8.30. There exists a constant C such that, if (Xi)1 6 i 6 N are iid centered Gaussian
random variables then:

E
[

max
1 6 i 6 N

|Xi|4
]
6 C max

1 6 i 6 N
E[X2

i ]2(lnN)2.
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Proof. By homogeneity, it suffices to assume that E[X2
i ] = 1. Then we have for all δ > 0

E
[

max
1 6 i 6 N

|Xi|4
]
6 δ +N

∫ ∞
δ

P(|X1|4 > t)dt

6 δ + 2N

∫ ∞
δ

P(X1 > t1/4)dt

6 δ +
2N√

2π

∫ ∞
δ

e−
√
tdt

6 δ +
4N√

2π

∫ ∞
√
δ
e−ttdt

6 δ +
4N√

2π

(√
δe−
√
δ + e−

√
δ
)
,

and this last expression can be made smaller than C(lnN)2 by choosing δ = (lnN)2.
We want apply the above lemma after conditioning with respect to the law of the MRM Mk:

E

[
sup

t=1,...,N
rk(t)

4

]
= E

[
E

[
sup

t=1,...,N
rk(t)

4|Mk

]]
.

Notice then that, conditionally toMk(0, 1
N ) = x1, . . . ,M

k(N−1
N , 1) = xN , the vector (rk(1), . . . , rk(N)

has the same law as the increments of B: (Bx1 − B0, . . . , BxN − BxN−1). By applying Lemma
8.30, we deduce that

E

[
sup

t=1,...,N
rk(t)

4|Mk

]
6 C(lnN)2 max

t=1,...,N
Mk
( t− 1

N
,
t

N

)2
.

Thus we deduce

E

[
sup

t=1,...,N
rk(t)

4

]
6 C(lnN)2E

[(
max

t=1,...,N
Mk
( t− 1

N
,
t

N

))2
]
. (8.148)

Finally we have for all δ > 0 and for α > 1 such that ζ(2α) > 1:

E

[(
max

t=1,...,N
Mk
( t− 1

N
,
t

N

))2
]
6 δ +N

∫ ∞
δ

P
(
Mk
( t− 1

N
,
t

N

)2
> x

)
dx

6 δ +N

∫ ∞
δ

1

xα
E
[
Mk
( t− 1

N
,
t

N

)2α]
dx

6 δ + Cδ1−αN1−ζ(2α)

for some constant C only depending on α, τ and γ2. Choose now δ = N
1−ζ(2α)

α so as to get

E

[
sup

t=1,...,N
rk(t)

4

]
6 (1 + C)

(lnN)2

N
ζ(2α)−1

α

(8.149)

8.8 Girsanov transform

Lemma 8.31. Let µ be an independently scattered infinitely divisible random measure associated
to (ψ, θ), where

∀q ∈ R, ψ(q) = mq +
1

2
σ2q2 +

∫
R

(eqz − 1)ν(dz),

ψ(2) < +∞ and ψ(1) = 0. Let B be a bounded Borelian set. We define a new probability
measure PB (with expectation EB) by:

∀Ameasurable set, PB(A) = E[1Ae
µ(B)].
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Then, under PB, µ has the same law as µ+µB where µB is an independently scattered infinitely
divisible random measures independent of µ and is associated to (ψB, θB) given by

ψB(q) = qσ2 +

∫
R

(eqx − 1)(ex − 1)ν(dx)

θB(·) = θ(· ∩B).

Proof. It suffices to compute the joint distribution of p disjoint sets A1, . . . , Ap. We have for
any λ1, . . . , λp ∈ R:

EB
[
eλ1µ(A1)+···+λpµ(Ap)

]
= E

[
eλ1µ(A1)+···+λpµ(Ap)+µ(B)

]
= E

[
eλ1µ(A1\B)+···+λpµ(Ap\B)+λ1µ(A1∩B)+···+λpµ(Ap∩B)+µ(B)

]
= E

[
eλ1µ(A1\B)+···+λpµ(Ap\B)+(λ1+1)µ(A1∩B)+···+(λp+1)µ(Ap∩B)+µ(B\

⋃n
i=1 Ai)

]
= E

[
eλ1µ(A1\B)+···+λpµ(Ap\B)

]
E
[
e(λ1+1)µ(A1∩B)+···+(λp+1)µ(Ap∩B)

]
= eψ(λ1)θ(A1\B)+···+ψ(λp)θ(Ap\B)eψ(λ1+1)θ(A1∩B)+···+ψ(λp+1)θ(Ap∩B)

= eψ(λ1)θ(A1)+···+ψ(λp)θ(Ap)e(ψ(λ1+1)−ψ(λ1))θ(A1∩B)+···+(ψ(λp+1)−ψ(λp))θ(Ap∩B).

Then it suffices to notice that:

ψ(q + 1)− ψ(q) = m+ σ2q +
1

2
σ2 +

∫
R

(e(q+1)z − eqz)ν(dz)

and ψ(1) = 0.

Lemma 8.32. If the process ωε is defined as ωε(x) = µ(Aε(x)) where µ is an independently
scattered random measure associated to (ϕ, θ) with ϕ(q) = −iqγ2/2− q2γ2/2 and θ given by 8.8,
then:

lim
ε→0

E

[
eωε(x)

z −
∫ 1

0 Kz(r)eωε(r)dr

]
= E

(z − ∫ 1

0

(
τ

|r − x|

)γ2

+

Kz(r)M(dr)

)−1


where M is the lognormal MRM.

Proof. One can check that (ωε(x))x∈[0;1] is a stationary gaussian process with covariance given
by γ2ρε(x− y). So, using Girsanov transform, we can write:

E

[
eωε(x)

z −
∫ 1

0 Kz(r)eωε(r)dr

]
= E

[(
z −

∫ 1

0
Kz(r)e

γ2ρε(r−x)eωε(r)dr

)−1
]

We are interested in the limit when ε goes to 0 of this latter term, we thus approximate it
with a simpler term:∣∣∣∣∣E

[(
z −

∫ 1

0
Kz(r)e

γ2ρε(r−x)eωε(r) dr

)−1
]

− E

(z − ∫ 1

0
Kz(r)

(
τ

|r − x|

)γ2

+

eωε(r) dr

)−1
 ∣∣∣∣∣

6
1

|=(z)|2
E

[∫ 1

0
|Kz(r)|eωε(r)

∣∣∣∣∣eγ2ρε(r−x) −
(

τ

|r − x|

)γ2

+

∣∣∣∣∣ dr
]

6
1

|=(z)|3

∫ 1

0

∣∣∣∣∣eγ2ρε(r−x) −
(

τ

|r − x|

)γ2

+

∣∣∣∣∣ dr (8.150)

where we have used Lemmas 8.14 and 8.18 and the normalization ψ(1) = 0.
Because γ2 < 1, the dominated convergence theorem implies that 8.150 converges to 0 when

ε goes to 0.
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We thus look at the limit when ε goes to 0 of the term:

E

(z − ∫ 1

0
Kz(r)

(
τ

|r − x|

)γ2

+

eωε(r) dr

)−1
 .

The random variable ∫ 1

0
Kz(r)

(
τ

|r − x|

)γ2

+

M(dr)

is well defined and is finite almost surely since:

E

[∣∣∣∣∣
∫ 1

0
Kz(r)

(
τ

|r − x|

)γ2

+

M(dr)

∣∣∣∣∣
]
6
∫ 1

0
|Kz(r)|

(
τ

|r − x|

)γ2

+

dr < +∞.

And thus, we can compute:∣∣∣∣∣E
(z − ∫ 1

0
Kz(r)

(
τ

|r − x|

)γ2

+

eωε(r) dr

)−1


− E

(z − ∫ 1

0
Kz(r)

(
τ

|r − x|

)γ2

+

M(dr)

)−1
 ∣∣∣∣∣

6
1

|=(z)|2
E

[∣∣∣∣∣
∫ 1

0
Kz(r)

(
τ

|r − x|

)γ2

+

(eωε(r)dr −M(dr))

∣∣∣∣∣
]
,

and, for all n ∈ N, this latter term is smaller than

E

[∣∣∣∣∣
∫ 1

0
Kz(r)

[(
τ

|r − x|

)γ2

+

−min

((
τ

|r − x|

)γ2

+

, n

)]
eωε(r)dr

∣∣∣∣∣
]

(8.151)

+ E

[∣∣∣∣∣
∫ 1

0
Kz(r) min

((
τ

|r − x|

)γ2

+

, n

)
(eωε(r)dr −M(dr))

∣∣∣∣∣
]

(8.152)

+ E

[∣∣∣∣∣
∫ 1

0
Kz(r)

[(
τ

|r − x|

)γ2

+

−min

((
τ

|r − x|

)γ2

+

, n

)]
M(dr)

∣∣∣∣∣
]
. (8.153)

The two quantities 8.151 and 8.153 are smaller than∫ 1

0
|Kz(r)|

[(
τ

|r − x|

)γ2

+

−min

((
τ

|r − x|

)γ2

+

, n

)]
dr (8.154)

and thus converge to 0, uniformly in ε as n goes to infinity.

For a fixed n, the function min((τ/|r − x|)γ
2

+ , n) is measurable and bounded and thus it is
plain to see that, for a fixed n, the term 8.152 goes to 0 when ε goes to 0.

The lemma follows gathering the above estimates.

Lemma 8.33. If the process ωε is defined as ωε(x) = µ(Aε(x)) where µ is an independently
scattered random measure associated to (ϕ, θ) where ϕ is given by (8.6),i.e.

ϕ(q) = imq − γ2

2
q2 +

∫
R

(eiqx − 1)ν(dx)

and where θ given by (8.8), then:

lim
ε→0

E

[
eωε(x)

z −
∫ 1

0 Kz(r)eωε(r)dr

]
= E

[(
z −

∫ 1

0

(
τ

|r − x|

)κ
+

Kz(r)Q(dr)

)−1
]

with κ = γ2 +
∫
R(ex−1)2ν(dx) and where the random Radon measure Q is defined, conditionally

on a MRM denoted by M whose structure exponent is ζ(q) := q − ϕ(−iq), as the almost sure
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weak limit as ε goes to 0 of the family of random measures Qε(dt) := eωε(t)M(dt) where, for each
ε > 0, the random process ωε is independent of M and defined as ωε(t) = µ(Aε(t)) where µ is
the independently scattered log infinitely divisible random measure associated to (ϕ̄, θ(· ∩A0(x)))
where

ϕ̄(p) = ip(γ2 − κ) +

∫
R

(eipx − 1)(ex − 1)ν(dx). (8.155)

Proof. We want to apply Lemma 8.31 to the process ωε. If we set B = Aε(x), Lemma 8.31 tells
us that, under PB, the process ωε possesses the same law as the process

ω(1)
ε (r) + ω(2)

ε (r) with ω(1)
ε (r) = µ(1)(Aε(r)) and ω(2)

ε (r) = µ(2)(Aε(r)),

where µ
(1)
ε , µ

(2)
ε are independent independently scattered log infinitely divisible random measures

respectively associated to (ϕ, θ) and (ϕ(2), θ(2)) with:

ϕ(2)(q) = iγ2q +

∫
R

(eiqx − 1)(ex − 1)ν(dx) and θ(2)(·) = θ(· ∩Aε(x)). (8.156)

Define:

κ = γ2 +

∫
R

(ex − 1)2ν(dx), ϕ(q) = ϕ(2)(q)− iqκ, ψ(q) = ϕ(−iq). (8.157)

Notice that ψ is then normalized so as to make ψ(1) = ψ(0) = 0. Let us define the process ωε
by:

ωε(r) = ω(2)
ε (r)− κθ(Aε(r) ∩Aε(x)) = ω(2)

ε (r)− κρε(r − x), (8.158)

and notice that E[eiqωε(r)] = eϕ(q)ρε(r−x).
We can now apply Lemma 8.31:

E

[
eωε(x)

z −
∫ 1

0 Kz(r)eωε(r)dr

]
= E

[(
z −

∫ 1

0
Kz(r)e

ωε(r)+κρε(r−x)+ωε(r)dr

)−1
]

We are interested in the limit when ε goes to 0 of this latter term, we thus approximate it
with a simpler term:∣∣∣∣∣E

[(
z −

∫ 1

0
eωε(r)+ωε(r)+κρε(r−x)Kz(r) dr

)−1
]

− E

[(
z −

∫ 1

0
eωε(r)+ωε(r)

(
τ

|r − x|

)κ
+

Kz(r) dr

)−1
] ∣∣∣∣∣

6
1

|=(z)|2
E
[∫ 1

0
eωε(r)+ωε(r)

∣∣∣∣eκρε(r−x) −
(

τ

|r − x|

)κ
+

∣∣∣∣ |Kz(r)| dr
]

6
1

|=(z)|3

∫ 1

0

∣∣∣∣eκρε(r−x) −
(

τ

|r − x|

)κ
+

∣∣∣∣ dr (8.159)

where we have used Lemmas 8.14 and 8.18, the normalizations ψ(1) = 0, ψ(1) = 0 and the
independence between ωε and ωε.

Let us show that κ < 1. Indeed, we have:

κ = γ2 +

∫
R

(ex − 1)2ν(dx)

= γ2 +

∫
R

(e2x − 1)ν(dx)− 2

∫
R

(ex − 1)ν(dx)

= γ2 +

∫
R

(e2x − 1)ν(dx) + 2(m+
1

2
γ2)

= 2m+ 2γ2 +

∫
R

(e2x − 1)ν(dx)

= ψ(2)
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where, in the third line, we used the fact that ψ(1) = 0 (which implies the relation
∫
R(ex −

1)ν(dx) = −(m+ γ2/2)). We will now show that ψ(2) is strictly less than 1. It suffices to show
that ζ(2) > 1. Using the concavity of the function ζ, we have the inequality:

ζ(2 + ε)− ζ(1)

1 + ε
< ζ(2)− ζ(1) (8.160)

and with assumption 8.24, we see that ζ(2) − ζ(1) = ζ(2) − 1 > 0. We can thus conclude that
κ < 1.

Because κ < 1, the dominated convergence theorem implies that 8.159 converges to 0 when
ε goes to 0.

For each Borelian set A of [0; 1], the familyMε(A) :=
∫
A e

ωε(r)dr, ε > 0 is a positive martingale
with respect to ε and that it converges almost surely to M(A). With the assumption 8.24 and in
particular the condition ζ(2+ε) > 1, we can show (see [?] for a proof) that the family (Mε(A))ε>0

is in fact uniformly integrable. In particular, if we let Fε be the sigma field generated by the
family of random variables (ωη(r))η>ε,r∈R, we have the following almost sure equality:

E [M(A)|Fε] = Mε(A). (8.161)

Conditionally to the random measure M , the family Pε(A) :=
∫
A e

ωε(r)M(dr), ε > 0 is also a
positive martingale with respect to ε. Thus, Pε(A) converges almost surely to a random variable
that we will denote by P (A). We know that this defines a random Radon measure P on [0; 1]
and that the family of random Radon measures Pε converges, when ε goes to 0, weakly almost
surely to P in the space of Radon measures. Denote, conditionally to the random measure M ,
by PM the law P[·|M ] and let us show that the family (Pε([0; 1]))ε>0 is PM -uniformly integrable.
Let δ be such that ψ(1 + δ) < +∞ (we can show, using the condition ψ(2 + δ) < +∞, that
that there exists such δ ). We will show that the family (Pε([0; 1]))ε>0 is uniformly bounded in

L1+δ(PM ). Indeed, conditionally to the random measure M :

EM

(∫ 1

0
eωε(r)M(dr)

)1+δ
 6 EM

[∫ 1

0
e(1+δ)ωε(r)M(dr)

]
M [0; 1]δ

6
∫ 1

0
eψ(1+δ)ρε(r−x)M(dr)M [0; 1]δ

6M [0; 1]δeψ(1+δ)

∫ 1

0

(
τ

|r − x|

)κ
+

M(dr) < +∞.

The family (Pε([0; 1]))ε>0 is therefore PM -uniformly integrable, in particular, Pε([0; 1]) converges
to P ([0; 1]) also in L1, which implies that P is a non degenerated random measure. Moreover,
denoting by F ε the sigma field generated by the family of random variables (ωη(r))η>ε,r∈R, we
have, almost surely, conditionally to M , for all Borelian set A of [0; 1]:

EM [P (A)|Fε] = Pε(A).

Now, as before, it is easy to see that the family Qε(A) :=
∫
A e

ωε(r)+ωε(r)dr, ε > 0 is also a
positive martingale with respect to ε. Therefore, Qε(A) converges almost surely to a random
variable that we will denote by Q(A). This defines a random Radon measure Q and the family
of random Radon measure Qε converges, as ε → 0, weakly almost surely to Q in the space of
Radon measure. We want to show that the two random measures P and Q have the same law.

Gathering the above arguments, we can write, almost surely:

E
[
P (A)|σ(Fε,F ε)

]
= E

[
E[P (A)|F ε]

]
= E

[∫
A
eωε(r)M(dr)|Fε

]
=

∫
A
eωε(r)+ωε(r)dr,
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and the latter quantity has the same law as Qε(A). Since the martingale (E[P (A)|σ(Fε,F ε)])ε>0

is uniformly integrable, we deduce that the family (Qε(A))ε>0 is also uniformly integrable. Hence,
both random variables P (A) and Q(A) have the same law. We can show easily that in fact the
two random measures P and Q have the same law. In particular, Q is non degenerated.

It is now easy to see that, for all bounded and continuous function f , the two random variables∫
R f(r)P (dr) and

∫
R f(r)Q(dr) have the same law. By regularizing the function

(
τ
|r−x|

)κ
+

and

with the dominated convergence theorem, we conclude as in the proof of lemma 8.32 using the
fact that κ < 1 that:∫ 1

0
Kz(r)

(
τ

|r − x|

)κ
+

Q(dr)
(law)
=

∫ 1

0
Kz(r)

(
τ

|r − x|

)κ
+

P (dr). (8.162)

Gathering the above argument and letting ε go to 0 concludes the proof.
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Chapter 9

Principal Regression Analysis and
the index leverage effect

Résumé

Cet article est publié dans Physica A et est écrit en collaboration avec Jean-Philippe
Bouchaud et Pierre-Alain Reigneron. Nous revisitons l’effet Levier pour l’indice,
qui peut être décomposé en un effet sur la volatilité et un effet sur les corrélations.
Nous nous intéressons à ce dernier en utilisant une régression linéaire matricielle, que
nous appelons analyse en régression principale et pour lequel nous donnons un cadre
de travail (grâce à la théorie des matrices aléatoires) théorique et numérique. Nous
trouvons que les rendements négatifs passés ont pour effet d’augmenter la corrélation
moyenne entre les prix des actions mais ont tendance à éloigner le mode marché du
vecteur uniforme. Il y a deux échelles de temps associées à cet effet, une échelle
courte de l’ordre d’un mois (correspondant à 20 jours d’échange sur les marchés) et
une plus longue de l’ordre de un an. Nous trouvons aussi des traces d’un effet levier
pour les secteurs, qui se révélent par les deuxième et troisième modes de la matrice
issue de l’analyse en régression principale.

Abstract

We revisit the index leverage effect, that can be decomposed into a volatility effect
and a correlation effect. We investigate the latter using a matrix regression analysis,
that we call ‘Principal Regression Analysis’ (PRA) and for which we provide some
analytical (using Random Matrix Theory) and numerical benchmarks. We find that
downward index trends increase the average correlation between stocks (as measured
by the most negative eigenvalue of the conditional correlation matrix), and makes
the market mode more uniform. Upward trends, on the other hand, also increase
the average correlation between stocks but rotates the corresponding market mode
away from uniformity. There are two time scales associated to these effects, a short
one on the order of a month (20 trading days), and a longer time scale on the order
of a year. We also find indications of a leverage effect for sectorial correlations as
well, which reveals itself in the second and third mode of the PRA.

9.1 Introduction

Among the best known stylized facts of financial markets lies the so-called “leverage effect”
[82, 30, 118, 48, 119, 120], a name coined by Black to describe the negative correlation between
past price returns and future realized volatilities in stock markets [38]. 1 It is indeed well
documented that negative price returns induce increased future volatilities, an effect responsible
for the observed skew on the implied volatility smile in stock option markets (see e.g. [35, 57]).

1While this effect holds for most markets in developed economies, Tenenbaum et al. [144] report that the
situation appears to be different for markets in developing countries.
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However, the association, made by Black, with a true leverage effect (i.e. that when the value
of a stock goes down its debt to equity ratio increases, thereby making the company riskier and
more volatile), is probably misleading. In particular, the amplitude of the leverage correlation
for indices is noticeably stronger than for individual stocks, which even sounds paradoxical when
the index return is by definition the average of individual stock returns! The volatility of an
index in fact reflects both the volatility of underlying single stocks and the average correlation
between these stocks. The increased leverage effect for indices must therefore mean that both
these quantities are sensitive to a downward move of the market.

The aim of the present paper is to investigate more specifically this “correlation leverage
effect”, and make precise the common lore according to which correlations “jump to one” in
crisis periods (see [70, 104, 141, 126] for early studies of the time evolution of the correlations
in financial markets). Similar studies have appeared recently. In [27], a careful study of the
average correlation between stock returns during contemporaneous upward/downward trends
of the market index has confirmed that correlations are indeed stronger when the market goes
down [40]. Our analyses confirm and make more precise these results, first by extending them
to different markets, and second by devising and exploiting a new tool to investigate conditional
correlations, that we call “principal regression analysis” (PRA). The idea here is to regress
the instantaneous correlation matrix on the value of the index return (or any other condition-
ing variable). While the intercept of the regression gives the average correlation matrix, the
regression slopes define a second symmetric (but not definite positive) matrix that can be di-
agonalized, leading to modes (eigenvectors) of sensitivity to the conditioning variable(s). The
interpretation of these eigenvectors is particularly transparent when they coincide with those of
the correlation matrix itself. The corresponding eigenvalues quantify how the whole correlation
structure of stock returns is affected by the conditioning variable. The nice point about the PRA
is that Random Matrix Theory (RMT) provides, as for standard PCA, a useful guide to decide
whether or not these sensitivity modes are statistically meaningful (for a review on RMT, see
[44]). When the conditioning variable is the past values of the index return, the conclusion of
PRA is that the dominant mode is the market mode, associated to a negative eigenvalue, indeed
corresponding to a correlation leverage effect. We characterize the temporal decay of this effect.
Upon separating positive and negative index returns, we furthermore find that the correlation
leverage effect is strongly asymmetric: whereas negative returns increase both the volatility of
the underlying stocks and the average correlation between stocks, positive returns have weaker
influence on these quantities (see Fig. 6 below). We furthermore find indications of a leverage
effect for sectorial correlations as well, which reveals itself in the second and third modes of the
PRA.

9.2 Data, notations and definitions

We have considered 6 pools of stocks corresponding to 6 major stock indices: SP500, BE500,
Nikkei, FTSE, CAC 40 and DAX. We analyze the daily returns in a time period spanning from
01/01/2000 to 04/26/2010. Stocks are labelled by α = 1, . . . , N (where N depends on the
market), and days by t = 1, . . . , T (where T = 2594). Time average will be denoted by 〈.〉. The
return of stock α between the close of day t− 1 and the close of day t is denoted as ηα(t). We
in fact understand ηα(t) as the demeaned return over the whole time period T . We define an
inverse volatility weighted index return at time t as:

I(t) =
1

N

N∑
α=1

η̂α(t), η̂α(t) ≡ ηα(t)

σα
, (9.1)

where σα is the average volatility of the stock α over the whole time period:

σ2
α :=

1

T

T∑
t=1

ηα(t)2. (9.2)
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We will further define the average instantaneous stock volatility σ(t) at time t as:

σ(t)2 :=
1

N

N∑
α=1

η̂α(t)2 (9.3)

while the average instantaneous correlation between all pairs of stocks ρ(t) is defined as:

ρ(t) :=
1

N(N − 1)

N∑
α 6=β=1

η̂α(t)η̂β(t)

σ(t)2
. (9.4)

The average over time of the above two quantities will be denoted as σ2
0 and ρ0.

The squared index return I(t)2 is a rough proxy for the instantaneous index volatility. Using
the above definitions and the fact that N is large, it is easy to check that:

I(t)2 ≈ ρ(t)σ(t)2 +O(
1

N
), (9.5)

showing that both the average stock volatility and the average correlation contribute to the index
volatility. It is therefore natural to decompose the full index leverage effect in two contributions:
one coming from the dependence of the average stock volatility on the past returns of the index,
and a second one describing the average correlation. We thus define a full leverage correlation
function LI(τ):

LI(τ) =

〈
I(t− τ)I(t)2

〉
〈I(t)2〉

, (9.6)

and two partial leverage correlation functions:

Lσ(τ) =

〈
I(t− τ)σ(t)2

〉
〈I(t)2〉

, Lρ(τ) =
〈I(t− τ)ρ(t)〉
〈I(t)2〉

. (9.7)

All the above leverage correlation functions are normalized to be the regression slope of the
corresponding observables on the past value of the index return, for example:

ρ(t) = ρ0 + Lρ(τ)I(t− τ) + ε(t, τ), (9.8)

where ε(t, τ) is some noise. (Remember that by construction, I(t) has zero mean.)
In the limit of weak correlations, the two effects are additive and one should find:

LI(τ) ≈ ρ0Lσ(τ) + σ2
0Lρ(τ), (9.9)

eliciting the contribution of the average stock volatility and of the average correlation to the full
leverage correlation. The second term is responsible for the enhanced leverage effect for indices
compared to single stocks.

9.3 Index leverage effect: A simple empirical analysis

As a first stab at understanding the index leverage effect, we plot in Fig. 9.1 the normalized
partial leverage correlation functions, ρ0Lσ(τ), σ2

0Lρ(τ), together with the full leverage LI(τ).
In these plots, the data is averaged over the four indices, SP500, BE500, Nikkei and FTSE.
From this figure, we draw the following conclusions:

• (a) the two contributions to the index leverage are of the same order of magnitude. In
particular, the correlation leverage is significant and confirms the conclusions of Refs. [27,
40].

• (b) the correlation effect is stronger at short times but decays faster than the volatility
effect; a two time scale exponential fit of these two contributions in the range τ ∈ [1, 250]
(in days) indeed leads to

σ2
0Lρ(τ) ≈ −0.053 exp(−τ/18)− 0.005 exp(−τ/350); (9.10)

ρ0Lσ(τ) ≈ −0.02 exp(−τ/14)− 0.02 exp(−τ/280), (9.11)
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Figure 9.1: Left: normalized leverage correlation functions ρ0Lσ(τ), σ2
0Lρ(τ), and an exponential

fits with two scales (dotted lines). Right: Full leverage function LI(τ) and comparison with an
additive model (dotted line).

• (c) a test of Eq. (9.9) with the sum of the above two fitted exponentials reproduces sat-
isfactorily the full leverage effect, although the latter is underestimated at short times,
when the correlations cease to be small enough for Eq. (9.9) to be accurate.

In fact, one can test directly whether linear regressions such as Eq. (9.8) above make sense
or not, by averaging all values of ρ(t) corresponding to a given value of I(t − 1) within some
range. The resulting graphs are shown in Fig. 10.2, both for ρ and for σ2. One sees that whereas
a linear regression for ρ makes sense for I(t − 1) < 0, there is in fact perhaps a small positive
slope for I(t− 1) > 0. For σ2, the graph looks even more symmetric, reflecting the presence of
volatility correlations on top of (asymmetric) leverage correlations.
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Figure 9.2: Dependence of the average correlation ρ(t) and the average single stock volatility
σ2(t) on the index return the previous day, I(t − 1). The result is obtained as an average over
all 6 indices: SP500, BE500, Nikkei, FTSE, CAC40 and DAX, but the qualitative effects are
robust and appear on each markets individually. These plots suggest that a quadratic I2(t− 1)
term should be included to the linear regressions. The printed error bars are the average of the
error bars obtained for each of the 6 indices.
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9.4 The “Principal Regression Analysis”

The above analysis, although interesting, is oversimplified, because the structure of inter-stock
correlations is described by a full correlation matrix C and not by a single number ρ, that
only captures the average correlations. In order to characterize the way the correlation matrix
depends on the past value of the index (or on any other conditioning variable), we propose the
following: consider a given pair of stocks, α, β, and regress the product of normalized returns
η̂α(t)η̂β(t) on the past value of the index return, i.e. write:

η̂α(t)η̂β(t) := Cα,β +Dα,β(τ)I(t− τ) + εα,β(t, τ). (9.12)

Since I(t) has zero mean, the intercept of the regression is exactly the empirical Pearson estimate
of the correlation matrix. The regression slopes Dα,β(τ) define another N×N symmetric matrix
D(τ), which encodes the full information about the dependence of the correlations on past
returns. More precisely, the regression leads to the following empirical determination of D(τ):

〈I2〉Dα,β(τ) =
1

(T − τ)

T∑
t=τ+1

η̂α(t)η̂β(t)I(t− τ). (9.13)

The aim of this section is first to discuss the information contained in D(τ), in particular its
eigenvalues and eigenvectors, and second to use results from Random Matrix Theory to assess
how meaningful this information is when the length of the sample, T , is not very large compared
to the number of stocks N . Finally, we describe our empirical results on D(τ), in particular its
most negative eigenvalue and eigenvectors.

9.4.1 Interpretation

Define C(I) to be the correlation matrix conditioned to a certain past value of I, by:

C(I) = C + ID. (9.14)

The interpretation of the matrix D is particularly simple when it commutes with the cor-
relation matrix C, i.e. when the eigenvectors of D are the same as those of C. In this case,
the eigenvectors of C(I) are exactly the same as those of C, whereas the eigenvalues λk(I) are
shifted as:2

λk(I) = λk(0) + I〈vk|D|vk〉, (9.15)

where λk(0) are the eigenvalues of C and |vk〉 are the associated eigenvectors (in quantum
mechanics notations). When D does not commute with C, the structure of the eigenvectors
themselves is impacted by the conditioning variable. If DI is small enough, standard first order
perturbation theory gives back Eq. (9.15) for the eigenvalues and:

|vk(I)〉 = |vk〉+ I
∑
`6=k

〈v`|D|vk〉
λk − λ`

|v`〉, (9.16)

for the eigenvectors of the matrix C(I).

As we will find below, the eigenvector corresponding to the most negative eigenvalue of D
turns out to be very close to the first eigenvector of C (i.e. the so-called market mode, |v1〉),
whereas all other eigenvalues are significantly smaller. In this case, the top eigenvalue of C is
to a good approximation given by:

λ1(I) ≈ λ1 + Iµ1, (9.17)

where µ1 is the most negative eigenvalue of D. Since λ1 can be used to define the average
correlation between stocks through λ1 := Nρ, the meaning of µ1 is similar to, but more precise
than, the correlation leverage function Lρ defined above.

2Note that the dependence on the lag τ is implied in the following formulas.
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More generally, when D and C do not commute, one expects the “correlation leverage”
to rotate the top eigenvector away from the market mode |v1〉. The common lore is indeed
that when markets go down, all stocks “move together”, meaning that the top eigenvector
should rotate towards the uniform vector |e〉 = (1/

√
N, 1/

√
N, . . . , 1/

√
N). The cosine of the

angle between |v1〉 and |e〉 is given by the scalar product 〈e|v1〉, that one can compute using
perturbation theory. Eq. (9.16) above. Assuming further that the top eigenvalue of C is much
larger than all the others (λ1 � λ 6̀=1), one finds:

〈e|v1(I)〉 ≈ 〈e|v1〉+
I

λ1
[〈e|D|v1〉 − 〈v1|D|v1〉〈e|v1〉] . (9.18)

A measure of how strongly the top eigenvector moves towards |e〉 is therefore provided by the
quantity ∆, defined as:

∆ =
1

λ1
[〈e|D|v1〉 − 〈v1|D|v1〉〈e|v1〉] . (9.19)

A negative ∆ means that the instantaneous market mode is closer to the uniform mode |e〉 when
the index goes down, since 〈e|v1(I)〉 − 〈e|v1〉 = I∆ > 0.

9.4.2 Results from Random Matrix Theory

When N is large, the simultaneous determination – using Eq. (9.13) above – of the N(N + 1)/2
different elements of D from the NT data points is problematic, exactly in the same way the
correlation matrix C is hard to measure. We thus need to provide a benchmark to compare
the empirical results obtained with the noise level of the benchmark case. This will enable to
separate significant effect from noise level arising from the dimensionality problem. Let ξ be a
random variable which will play the role of the conditioning variable (the past values of index
returns in our context) and let xα, α = 1, . . . , N be a gaussian vector of covariance matrix C
which should be seen as instantaneous stock returns. The xα will be supposed to have 0 mean
and unit variance, so that C is the correlation matrix of the gaussian vector (x1, . . . , xN ).

We begin by the case C = I. Suppose, in addition, that there is no correlations whatsoever
between the conditioning variable ξ and the correlation xαxβ, and that one forms a matrix D̃
from:

〈ξ2〉D̃α,β =
1

T

T∑
t=1

xα(t)xβ(t)ξ(t). (9.20)

In the limit T →∞ for finite N one should find that all the elements of the matrix D̃ are zero,
and therefore all its eigenvalues are zero as well. For finite T , however, the matrix D̃ will have
a set of non trivial eigenvalues. Random Matrix Theory offers a way to compute the statistics
of these eigenvalues when N and T are both large, with a fixed ratio q = N/T . The result
depends both on the eigenvalue spectrum of the matrix C and, perhaps surprisingly, on the
probability distribution of the conditioning variable, P (ξ). The simplest, albeit unrealistic case
for applications in finance, is when C is the identity matrix, i.e. there is no correlations between
the η̂. In this case, using the theory of Free Random Matrices [145], one finds that the empirical
eigenvalue spectrum of D̃, ρ1(µ), is the solution of the following set of equations, in the limit
where ε goes to zero: [44, 37]

µ =
GR

G2
R + π2ρ2

1

+

∫
dξP (ξ)

ξ(1− qξGR)

(1− qξGR)2 + (qπξρ1)2
(9.21)

ε = ρ1

(
− 1

G2
R + π2ρ2

1

+

∫
dξP (ξ)

qξ2

(1− qξGR)2 + (qπξρ1)2

)
, (9.22)

where GR is the real part of the resolvent. One can check that in the limit q → 0, and using the
fact that ξ has zero mean, the above equations boil down to:

1

GR − iπρ1
= µ− iε→ ρ1(µ) = δ(µ), (9.23)

i.e. all eigenvalues are zero, as they indeed should when T � N .
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The case of an arbitrary correlation matrix C can also be solved completely using the above
result on ρ1 and the so-called S-transform of the eigenvalue spectrum [145], noting that the
eigenvalues of D̃ are the same as those of the product C ×D1, where D1 is a random matrix
with eigenvalue spectrum ρ1(µ). The resulting equation can in principle be solved numerically
for any value of q and for an arbitrary correlation matrix C. The resulting theoretical eigenvalue
spectrum for the matrix D̃, assuming no correlation between the conditioning variable ξ and
the instantaneous correlation xαxβ, can be compared to the empirical spectrum obtained from
data using Eq. (9.13). Any difference between the two spectra can be interpreted as resulting
from a true correlation with the conditioning variable.

In the null-hypothesis case, it is also clear that the quantity ∆̃ defined by:

∆̃ =
1

λ1

[
〈e|D̃|v1〉 − 〈v1|D̃|v1〉〈e|v1〉

]
. (9.24)

must be zero when averaged over ξ, xα. One can compute its variance, which is found to be:

〈∆̃2〉ξ,xα =
〈e|C|e〉 − λ1〈e|v1〉2

Tλ1
〈ξ2〉. (9.25)

For large T , the central limit theorem ensures that ∆̃ becomes Gaussian with the above variance.
This result will be used below to assess whether the empirical value of ∆ (defined above) is
meaningful or not.
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Figure 9.3: Main figure: empirical spectrum of D for the BE500 index (in red), compared
to the null-hypothesis case (in blue). For the latter case, we have generated 1000 random
samples, ranked the eigenvalues and averaged each of them separately. The leftmost blue peak
therefore corresponds to the average value of the most negative eigenvalue. Insets: cumulative
distributions of the most negative eigenvalue µ1 and of the scalar product S = 〈w1|v1〉.

9.4.3 Numerical simulations

In practice, however, we found it more convenient to use direct numerical simulations rather
than the above exact results. In principle, these results below could be obtained using the
mathematical formalism above, but the effort required to solve numerically the equations above
is larger than the one needed to make direct simulations. We measure the null-hypothesis
spectrum of D̃ by choosing ξ(t) to be a Gaussian random variable of zero mean and unit
variance, completely independent of the true returns ηα(t), which we then diagonalize. The
cumulative distribution of the largest negative eigenvalue in the null-hypothesis is shown in the
inset. The average position of the most negative eigenvalue of D̃ in the null-hypothesis case is
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found to be µ̃1 ≈ −4.8. The average position of the second and third most negative eigenvalues
in the null-hypothesis case will be denoted by µ̃2 and µ̃3.

We have also measured the distribution of the scalar product S = 〈w1|v1〉 between the
corresponding top eigenvector |w1〉 and the top eigenvector of C, |v1〉. We find that even in the
case where ξ(t) is an independent random variable, the top eigenvector of D is in fact strongly
correlated with |v1〉, with an average scalar product equal to S = 0.68 for the correlation
matrix of the returns of the BE500 index. We find numerically that P (S 6 0.5) ≈ 0.11 and
P (S 6 0.65) ≈ 0.38 for the BE500 index – see Fig. 10.3. Results for the SP500 are very similar.

9.4.4 Comparison with empirical data

In order to reduce the measurement noise and compare with the above numerical simulations,
we have estimated D(τ) using Eq. (9.13) with “Gaussianized” empirical index returns, obtained
by first ranking the true index return from most negative to most positive, defining the rank of
day t, k(t). The Gaussianized index return IG(t) is then obtained as Φ−1(k(t)/T ), where Φ is
the error function.

0 50 100 150 200 250

−
50

−
40

−
30

−
20

−
10

ττ

µµ 1
((ττ

))

0 50 100 150 200 250

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

ττ

((v
1,,  

w
1((ττ

))))

Figure 9.4: Left: Largest negative eigenvalue µ1(τ) of the lagged regression matrix D(τ).
The double exponential fit (dotted line) is given by : µ1(τ) = µ∞1 − 26.6 exp(−τ/11) −
17.1 exp(−τ/200), where we fix the value of µ∞1 using the numerical results of the previous
section: µ∞1 = µ̃1 ≈ −4.8, since we expect that for large τ , all correlations are lost. Right:
Evolution of the scalar product S(τ) = 〈v1|w1(τ)〉 as a function of τ . The horizontal dashed
line corresponds to the mean of the scalar product S in the null-hypothesis case. The data
corresponds to the BE500 index, but the results for the SP500 are very similar.

We show in Fig. 10.4 the evolution of µ1(τ), the largest (in absolute value) eigenvalue of
D(τ) as a function of τ . We find that µ1 is negative, corresponding to the correlation leverage
effect (see Eq. (9.17)). Comparing with the null-hypothesis case, we find that µ1(τ) remains
significant at the 1% confidence level up to τ ≈ 240. When fitting µ1(τ) with an exponential
function with two scales that saturates at the noise level µ̃1 determined above, we find µ1(τ) =
µ̃1− 26.6 exp(−τ/11)− 17.1 exp(−τ/200). This reveals two time scales; a rather short one close
to the one determined directly from Lρ(τ) above (see Fig. 9.1), and a much longer time scale on
the order of a year, showing that the effect of market drops on the correlation is long lasting. The
scalar product S(τ) = 〈w1(τ)|v1〉 between the top eigenvectors of D(τ) and C globally exceeds
0.8 in the whole range τ ∈ [1, 240], whereas the null-hypothesis average value is S = 0.68.

We have also studied the second (µ2(τ)) and third (µ3(τ)) eigenvalues of D(τ) as a function
of τ , which are both negative and clearly beyond the noise level, and are found to decay with
very similar time scales: a month and a year (see Fig. 10.5). The corresponding eigenvectors
are found to be mostly within the subspace spanned by the second and third eigenvectors of
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C. The financial interpretation of these eigenvalues is of an increased sectorial correlation when
the market drops on top of an increase of the market correlations. Therefore, all idiosyncratic
effects disappear upon market drops, while global factors become dominant.
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Figure 9.5: Left: Second eigenvalue µ2(τ) of the lagged regression matrix D(τ). The exponential
fit (dotted line) is given by: µ2(τ) = µ̃2 − 1.3 exp(−τ/14.4) − 2.3 exp(−τ/364). Right: Third
eigenvalue µ3(τ) of the lagged regression matrix D(τ). The exponential fit (dotted line) is given
by : µ3(τ) = µ̃3−1.3 exp(−τ/20)−1.5 exp(−τ/420). Direct numerical simulations of the random
case lead to µ̃2 ≈ −1.52 and µ̃3 ≈ −1.24. The data corresponds to the BE500 index, but the
results for the SP500 are again very similar.

9.4.5 Separating negative & positive returns

As Fig. 10.2 explicitely shows, the correlation depends on past index returns in a non-linear
way. In fact, both negative and positive returns increase the correlations, although the effect
is stronger for negative returns, which in turn leads to a non-zero linear term in the regression
of η̂α(t)η̂β(t) on I(t − τ). A way to capture the parabolic shape seen in Fig. 10.2 would be to
extend the above model to:

η̂α(t)η̂β(t) := Cα,β +Dα,β(τ)I(t− τ) + Eα,β(τ)
[
I2(t− τ)− 〈I2〉

]
+ εα,β(t), (9.26)

defining a new matrix E that captures the symmetric effect of index returns on the correlation
matrix. An alternative choice, that we adopt below, is to regress separately on negative returns
and on positive returns:

η̂α(t)η̂β(t) := Cα,β +D+
α,β(τ)

[
I+(t− τ)− 〈I+〉

]
δ{I(t−τ)>0} (9.27)

+D−α,β(τ)
[
I−(t− τ)− 〈I−〉

]
δ{I(t−τ)<0} + εα,β(t), (9.28)

where I+ = max(I, 0), I− = min(I, 0) and δ is the Dirac function. With this definition, one can
rewrite the correlation matrix conditioned to a certain past value of I more precisely, separating
the effect of positive returns and negative returns, as follows:

C(I) = C + D−
[
I− − 〈I−〉

]
δ{I<0} + D+

[
I+ − 〈I+〉

]
δ{I>0}. (9.29)

Again, in order to reduce the measurement noise, we used “Gaussianized” empirical index returns
IG(t) instead of I(t). We apply to D±(τ) the same analysis as above. As anticipated, the top
eigenvalue µ−1 of D− is strongly negative, whereas the top eigenvalue µ+

1 of D+ is positive, but
with µ+

1 < |µ−1 | — see Fig. 10.6. The projections of |w+
1 〉 and |w−1 〉 onto |v1〉 are both very
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close to unity for small τ and gradually decay to the noise level as τ increases. To check the
significancy of our effect, as before, we define a null-hypothesis case, introducing the matrix:

〈φ2〉D̃−α,β =
1

T

T∑
t=1

xα(t)xβ(t)φ(t) (9.30)

where the conditioning variables φ is independent of the xα (which are standard gaussian vari-
ables whose correlation matrix is C as above) and distributed as min(ξ, 0) − 〈min(ξ, 0)〉 where
ξ is as before a standard gaussian variable. We define further the matrix D̃+ exactly as D̃−

except for the fact that the conditioning variable is now distributed as max(ξ, 0)− 〈max(ξ, 0)〉.
As above, µ̃−1 , µ̃

−
2 , µ̃

−
3 will be the average positions of the first, second and third most negative

eigenvalues of D̃− and µ̃+
1 , µ̃

+
2 , µ̃

+
3 will be the average positions of the first, second and third

most positive eigenvalues of D̃+. Those values are all computed using numerical simulations.
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Figure 9.6: Left: µ−1 (τ) of the lagged regression matrix D−(τ). The exponential fit (dotted
line) is given by : µ−1 (τ) = µ̃−1 − 73 exp(−τ/19) − 41 exp(−τ/300). Right: µ+

1 (τ) of the lagged
regression matrix D+(τ). The exponential fit (dotted line) is now given by : µ+

1 (τ) = µ̃+
1 +

10.6 exp(−τ/49) + 44 exp(−τ/200). Note again the presence of a long relaxation time on the
order of a year. We have used direct numerical simulations to obtain µ̃−1 = µ̃+

1 ≈ −8.3. The
data is for the returns of the BE500. Again, SP500 yields very similar results.

We have also studied the rotation parameter ∆± for both matrices D±(τ) defined as:

∆± =
1

λ1

[
〈e|D±|v1〉 − 〈v1|D±|v1〉〈e|v1〉

]
. (9.31)

The results are shown in Fig. 10.7. In agreement with the common lore, ∆− is negative, indi-
cating that strongly negative index returns (below 〈I−〉) lead to a more uniform instantaneous
market mode. On the other hand, ∆+ is found to be negative as well, meaning that while
strongly positive returns also tend to increase the average correlation between stocks, the in-
stantaneous market mode rotates away from the uniform vector |e〉. The effects we are reporting
are statistically significant since the root-mean square error on ∆̃± (defined as in Eq.(9.24)) in
the null-hypothesis case is found to be ∼ 8 · 10−4, a factor 3 to 4 smaller than the amplitude of
the empirical values of ∆̃±.

9.5 Summary & Conclusion

The aim of this paper was to revisit the index leverage effect, that can be decomposed into
a volatility effect and a correlation effect. We investigated the latter in great detail using a
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Figure 9.7: Plot of the rotation parameters ∆− (left) and ∆+ (right) as a function of τ . The
horizontal dashed lines correspond to the root-mean square error on ∆± in the null-hypothesis
case. The data is for BE500; the amplitude of ∆− and ∆+ are found to be roughly a factor 2
larger for the SP500.

matrix regression analysis, that we called ‘Principal Regression Analysis’ (PRA) and for which
we have provided, using Random Matrix Theory and simulations, some analytical and numerical
benchmarks.

Using this refined analysis, we confirm that downward index trends increase the average
correlation between stocks (as measured by the top eigenvalue of the conditional correlation
matrix), which in turn explains why the index leverage effect is stronger than for single stocks.
Compared to the null-hypothesis benchmark, this leverage correlation effect is highly significant
(see Fig. 10.4 and Fig. 10.6). We also find that large downward trends implies a more uniform
future market mode (see Fig. 10.7, left).

Upward trends, on the other hand, also increase the average correlation between stocks (see
Fig. 10.6, right) but large upward trends rotate the future market mode away from uniformity
(see Fig. 10.7, right). All these effects are characterized by two ‘memory’ time scales: a ‘short’
one on the order of a month and a longer one on the order of a year. The latter long time scale
could be related to the fact that the market had long cycles of booms and busts within the
studied time series, during which the average correlation went down and up again.

We have also studied the correlation leverage effect on intraday data, and we find (results not
shown) that while the top eigenvalue of the 15 minutes correlation matrix is nearly insensitive
to the sign of the previous 15 minutes index return, a significant effect emerges when the time
scale reaches one hour.

Finally, we have found indications of a leverage effect for sectorial correlations as well, which
reveals itself in the second and third modes of the PRA (see Fig. 10.5). It would be interesting
to analyze other conditional correlation matrices using the tools developed in this paper, such
as for example leader-lagger effects [124, 46, 123], or the role of other macro variables such as
oil, currencies or interest rates.
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Chapter 10

Individual and collective stock
dynamics: intra-day seasonalities

Résumé

Cet article est publié dans le journal New Journal of Physics et est écrit en col-
laboration avec Jean-Philippe Bouchaud. Nous établissons plusieurs nouveaux faits
stylisés concernant les saisonalités de la dynamique des prix des actions au cours de la
journée. Au delà du célèbre effet U pour la volatilité au cours de la journée, nous trou-
vons que la corrélation moyenne entre les actions augmente au cours de la journée, ce
qui conduit à une plus petite dispersion entre les stocks. D’une manière légèrement
paradoxale, la kurtosis (une mesure des occurrences de volatilité inhabituelles) atteint
son minimum à l’ouverture du marché, lorsque la volatilité est à son maximum. Nous
confirmons que la kurtosis est une fonction décroissante du rendement de l’indice.
Cela signifie que lors des grands mouvements du marché, la composante idiosyncra-
tique devient moindre dans la dynamique des actions. Schématiquement, les heures
du matin sont dominés par les mouvements idiosyncratiques ou sectorielle avec peu
de surprise, tandis que l’influence du vecteur marché augmente au cours de la journée
et que les surprises deviennent plus fréquentes.

Abstract

We establish several new stylized facts concerning the intra-day seasonalities of stock
dynamics. Beyond the well known U-shaped pattern of the volatility, we find that
the average correlation between stocks increases throughout the day, leading to a
smaller relative dispersion between stocks. Somewhat paradoxically, the kurtosis
(a measure of volatility surprises) reaches a minimum at the open of the market,
when the volatility is at its peak. We confirm that the dispersion kurtosis is a
markedly decreasing function of the index return. This means that during large
market swings, the idiosyncratic component of the stock dynamics becomes sub-
dominant. In a nutshell, early hours of trading are dominated by idiosyncratic or
sector specific effects with little surprises, whereas the influence of the market factor
increases throughout the day, and surprises become more frequent.

10.1 Introduction

Financial markets operate in sync with human activities. It is therefore no surprise that financial
time series reveal a number of seasonalities related to human rhythms: markets open in the
morning and close in the evening, remain closed during week-ends and during vacations; wages
are paid and portfolios are re-balanced on a monthly basis, earnings are announced on a quarterly
basis (in the US), etc. These periodicities leave a statistical trace on the time series of returns of
many assets. Among the best known periodicities is the so-called U effect [2, 13], that describes
the intra-day pattern of volatility of individual US stocks: the average volatility is observed to

217



218 CHAPTER 10. INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS

be high after the market opens, then decreases as to reach a minimum around lunch time and
increases again steadily until market close.1

In this short note we want to report on additional intra-day patterns concerning both individ-
ual and collective stock dynamics. First, we study the intra-day pattern of other moments of the
individual stock dynamics, beyond the well known U-shaped volatility. Second, we characterise
the cross-sectional distribution of returns and its typical evolution during the day. Finally, we
study the correlation matrix between stock returns and find that the leading modes also have a
very well defined intra-day pattern. Our study here is entirely empirical, but our results certainly
beg for a detailed theoretical interpretation in terms of agent behaviour: strategies, information
processing, risk aversion, etc. We provide some hints in that direction in the conclusion.

10.2 Data, notations and definitions

We have considered a set of N = 126 stocks of the New York Stock Exchange (which are among
the 250 largest market capitalisations) that has been continuously traded during the period
between 01/01/2000 and 12/31/2009 to form a statistical ensemble of 5 minutes stock returns.
The total number of 5 minute bins is 186, 498, whereas the total number of days is T = 2, 391
(K = 78 bins per day). Stocks will be labelled by α = 1, . . . , N , days by t = 1, . . . , T and bins
by k = 1, . . . ,K. The return of stock α in bin k of day t will be denoted as ηα(k; t).

Different types of averages will be needed. Time averages for a given stock and a given bin
are expressed with angled brackets: 〈. . . 〉, whereas averages over the ensemble of stocks for a
given bin in a given day appear with square brackets: [. . . ]. For an arbitrary function F (.) of
these returns we therefore write:

〈F 〉(k;α) :=
1

T

T∑
t=1

F (ηα(k; t)); [F ](k; t) :=
1

N

N∑
α=1

F (ηα(k; t)); [〈F 〉](k) =
1

T

T∑
t=1

[F ](k; t).

(10.1)

The first set of observables concerns single stock properties. We characterise the distribution
of stock α in bin k by its four first moments: mean µα(k), standard deviation (volatility) σα(k),
skewness ζα(k) and kurtosis κα(k). We will in fact use low moments, less noisy estimates of the
last two quantities. We will define mα(k) as the median of all returns of stock α in bin k, and
define:

µα(k) = 〈ηα(k; t)〉 (10.2a)

σ2
α(k) = 〈ηα(k; t)2〉 − µ2

α(k) (10.2b)

ζα(k) =
6

σα(k)
(µα(k)−mα(k)) (10.2c)

κα(k) = 24

(
1−

√
π

2

〈|ηα(k; t)− µα(k)|
σα(k)

〉
)

+ ζα(k)2. (10.2d)

Within a cumulant expansion, the last two lines coincide with the usual definition of skewness
and kurtosis, but no moments larger than two are needed to estimate them. Note that the
correction term ζα(k)2 to the kurtosis turns out to be negligible, and we have neglected it in the
following. We will be interested below in the average over all stocks of the above quantities, as
a way to characterize the typical intra-day evolution of the distribution of single stock returns.

One can also consider cross sectional distributions, i.e. the dispersion of the returns of the
N stocks for a given bin k in a given day t, i.e. one distribution every five minutes. One can
again characterize these distributions in terms of the first four moments. The median of all N

1This pattern is a little different in Europe or in the UK, with a second volatility spike at 2:30 pm GMT when
the US market opens.



10.3. SINGLE STOCK INTRA-DAY SEASONALITIES 219

returns for a given k; t is now md(k; t) (d for “dispersion”), and we define:

µd(k; t) = [ηα(k; t)] (10.3a)

σ2
d(k; t) = [ηα(k; t)2]− µ2

d(k; t) (10.3b)

ζd(k; t) =
6

σd(k; t)
(µd(k; t)−md(k; t)) (10.3c)

κd(k) = 24

(
1−

√
π

2

[|ηα(k; t)− µα(k)|]
σd(k)

)
(10.3d)

Note that µd(k; t) can be seen as the return of an index, equiweighted on all stocks. We will be
interested below in the average over all days of the above quantities, as a way to characterize
the typical intra-day evolution of the dispersion between stock returns.

Although the dispersion already captures part of the “Co-movements” of stocks, a more
direct characterization is through the standard correlation of returns. In order to measure
the correlation matrix of the returns, we first normalize each return by the dispersion of the
corresponding bin. This factors in any “trivial” intra-day seasonality, and also accounts for the
fact that the volatility fluctuates quite a bit during the 10 year time interval that we consider.
Therefore, we introduce: η̂α(k; t) = ηα(k; t)/σd(k; t) and study the correlation matrix defined
for a given bin k:

Cα,β(k) :=
1

σ̂α(k)σ̂β(k)
〈η̂α(k; t)η̂β(k; t)〉c, (10.4)

where the subscript c means “connected part” (i.e. averages have been subtracted) and σ2
α(k) :=

〈η2
α(k; t)〉c. Of special interest are the largest eigenvalues and eigenvectors of Cα,β(k), which

characterize the correlation structure of stock returns. This analysis has been performed in
several papers ([45, 44, 146, 122]) using daily or high frequency returns, and it is well known
that the structure of large eigenvectors reflects the existence of economic sectors of activity. The
largest eigenvalue λ1, in particular, corresponds to the market mode, and is associated to an
eigenvector with all entries positive and close to 1/

√
N . In fact, λ1/N can be seen as a measure

of the average correlation between stocks. We will be interested below in the k dependence of the
largest eigenvalues and their associated eigenvectors, a study that, to the best of our knowledge,
has not been reported in the literature before.

10.3 Single stock intra-day seasonalities

10.3.1 Odd moments

Odd moments tend to be small and noisy, so it is difficult to draw definite conclusions. The
average return is on average over the whole period positive, but noisy and does not show any
intra-day pattern. The average skewness of five minutes returns is also noisy and is compatible
with zero, again without any identifiable intra-day pattern at all. This is at variance with
the skewness of returns on a longer time interval, which is negative. The build up of negative
skewness with time scale is a consequence of the leverage effect, i.e. negative returns tend to be
followed by larger volatilities (see e.g. [45]).

10.3.2 Even moments

The average volatility, on the other hand, reveals a very clean U-shaped pattern that has been
reported many times in the literature ([2, 13]). We show in Fig. 10.1 σ(k) = [σα(k)]. Note that
the overnight volatility ≈ 1.15% is much larger than the typical five minute volatility, and is
not shown in the graph. Interestingly, the average volatility is found to decay in the first two
hours of trading as a power-law k−β with β ≈ 0.3. This relaxation is reminiscent of the power-
law decay of the volatility after large price swings [101, 142, 156, 90]. The overnight return is
indeed usually quite large, and can be seen as a strong perturbation. The power-law relaxation
suggests that some critical mechanism is involved in the way volatility reverts back to ‘normal’
after market jumps.
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Figure 10.1: We show the average volatility of stocks σ(k), the average cross sectional dispersion
σd(k) and the average absolute value of the index return 〈|µd(k, t)|〉 (multiplied by 4 for clarity)
as a function of k, with the corresponding statistical error bars. All display the well known U
pattern. We also compare σ(k) with a power-law decay k−β with β ≈ 0.3 (dashed line), which
is a good fit for the first half of the day. Inset: ratio σ(k)/σd(k) as a function of k, showing that
dispersion effects diminish throughout the day.

Turning now to the kurtosis κ(k) = [κα(k)], we find, perhaps surprisingly, that there is a
clear intra-day growth of the kurtosis from κ ≈ 3.5 at the beginning of the day to κ ≈ 5 around
1 p.m., and stays approximately constant (but noisy) until the end of the day – see Fig. 10.2,
left. The overnight kurtosis remains around 5. This finding is counter-intuitive because one
would naively associate the large volatility in the morning with huge swings, symptomatic of
the market uncertainty at the open. But this is not the case: the maximum of the intra-day
volatility corresponds to a minimum in kurtosis. We will report similar counter-intuititive results
below. Possible mechanisms are discussed in the conclusion.

10.4 Cross-sectional intra-day seasonalities

10.4.1 Odd moments

Noting that the average over stocks of µα(k) is identical to the average over time of µd(k; t), the
discussion of the first moment of the cross-sectional distribution is redundant. The average of
|µd(k; t)| is a proxy for the index volatility, and is displayed in Fig. 10.1 : it shows a U-shaped
pattern similar to that of σ(k), with however a stronger end-of-day surge. This is due to the
correlation pattern discussed in section 5 below: the average correlation between stock indeed
increases as the day proceeds, leading to an increased index volatility.

As far as the average skewness ζd(k) = 〈ζd(k; t)〉 is concerned, we again find a very noisy
quantity with no particular intra-day pattern. The only notable feature is that this time, the
skewness is significantly positive, albeit small: the average over k of ζd(k) is found to be ≈ 0.025.

10.4.2 Even moments

As above, the even moments show clear patterns. The average dispersion σd(k) = 〈σd(k; t)〉
exhibits a U-shaped pattern very similar to that of σ(k) — see Fig. 10.1. In fact, the ratio
σ(k)/σd(k) is plotted in the inset of Fig. 10.1 as a function of k and increases from ≈ 1.15 at
the open to 1.45 at the close. In relative terms, the dispersion is thus stronger in the morning,
and decreases as the day proceeds.

The dispersion kurtosis κd(k) = 〈κd(k; t)〉, on the other hand, has an inverted U shape, and
reaches a minimum at the open and at the close of the market, i.e. when the dispersion and
the volatility are locally maximum. So even when the dispersion of returns is at its peak, with
stocks all over the place (so to say), the cross-sectional distribution of returns is on average
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Figure 10.2: Left: average kurtosis of individual stocks κ(k) as a function of k. Right: average
cross sectional kurtosis κd(k) as a function of k. In both cases, we show the 1-σ dispersion
around the mean (i.e. not the error bar). The red triangles correspond to the overnight values.

closer to a Gaussian! Note however that the variation of the kurtosis is not large, from κd = 2
to κd = 2.4. The overnight dispersion kurtosis, on the other hand, is much stronger: κd ≈ 3.3.

10.4.3 Conditioning on the index return

As noted above, the quantity µd(k; t) is the return of an equiweighted index. It is interesting
to condition the value of the moments of the cross-sectional dispersion on this quantity. Such a
study was performed on daily returns in [103] and more recently by L. Borland [39]. In agreement
with the results of [103, 58], we find that the average dispersion σd is an increasing function of
the amplitude of the index return, see Fig. 10.3. As noted in [58], this observation shows that
the volatility of the stock residuals in a one-factor model must depend on the volatility of the
market mode. Fig. 10.3 furthermore suggests that this dependence is sub-linear (see [56] for
some elaborations on this observation.)

As first established in [102] on daily data, we find that the skewness ζd is an odd function
of µd, as shown in Fig. 10.4. Note that the skewness increases very abruptly for small µd and
saturates for larger values of the index return. Pictorially, a positive index return can be thought
of as resulting from a few “winners” running ahead of the pack, contributing both to the mean
µd and to the skewness. The slope of ζd(µd) around the origin, together with the fact that the
index has made on average positive daily gains in the period 2000 – 2009, are enough to explain
the average value of the dispersion skewness ζd(k) ≈ 0.025 reported above.

Finally, the dispersion kurtosis κd shows again a non-intuitive decreasing behaviour as a
function of |µd|, see Fig. 10.5. The average kurtosis conditioned to a value of |µd| decreases from
≈ 2.8 for small index returns to ≈ 1.8 for index returns larger than 2% in absolute value. This
was first noticed en passant in [58] on daily data and recently emphasised by Borland [39]. Here,
we confirm on five minute returns this strange stylised fact: the cross-sectional distribution of
returns appears to be more Gaussian when its mean is off-centred.

However, if we now condition κd on the dispersion σd (which, as we found above, is positively
correlated with |µd|), we find (see Fig. 10.5) the opposite behaviour, i.e. the larger the dispersion,
the larger the kurtosis κd! We will offer a discussion of these confusing effects in the discussion
section below.
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Figure 10.3: Cross sectional dispersion σd as a function of the index return (equiweighted on
all stocks) µd. We added error bars, and linear branches that fit the small |µd| slopes, that
emphasise the sub-linear behaviour of σd.
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Figure 10.4: Cross sectional skewness ζd as a function of the index return (equiweighted on all
stocks) µd. We added error bars (dotted lines), that are actually difficult to see near the origin.
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Figure 10.5: Left: Cross sectional kurtosis κd as a function of the index return (equiweighted
on all stocks) µd. Note that the dependence is nearly the same for positive and negative market
returns. Right: Cross sectional kurtosis κd as a function of the cross sectional dispersion σd.
We added error bars (dashed lines) on both figures.

10.5 Intra-day seasonalities in the inter-stock correlations

Let us now turn to the properties of the eigenvalues and eigenvectors of the N ×N correlation
matrix Cα,β(k) defined by Eq. (10.4) above.

10.5.1 The top eigenvalue

The largest eigenvalue λ1 of the correlation matrix of stock returns is well known to be associated
with the “market mode”, i.e. all stocks moving more or less in sync. As recalled above, the
quantity λ1/N can be used to define the average correlation between stocks.

We show in Fig. 10.6 (left side) the magnitude of λ1/N as a function of k. Interestingly, the
average correlation clearly increases as time elapses, from a rather small value ≈ 0.12 when the
market opens to ≈ 0.3 near market close. This is in agreement with the fact that the dispersion
σd(k) is, in relative terms, smaller at the end of the day (see Fig. 10.1, inset). The value of
λ1/N for the correlation of overnight returns is also around 0.3, in continuity with the value at
the end of the trading day.

In agreement with the idea that the stock dynamics become more and more uniform as the
day proceeds, we find a substantial increase of the scalar product of the largest eigenvector ~v1(k)
with the uniform normalised vector ~e = (1/

√
N, 1/

√
N, . . . , 1/

√
N) — see Fig. 10.6 right. This

scalar product is always close to unity, confirming the market mode interpretation of the top
eigenvalue, but starts the day around 0.97 and ends the day at 0.995, before dropping again in
the last bins of the day and during the overnight, when it is equal to 0.985 (i.e. larger than the
open value).

10.5.2 Smaller eigenvalues

The evolution of the next six eigenvalues λi(k), i = 2, . . . , 7 is shown in Fig. 10.7. We see that
the amplitude of this risk factors now decreases with time, before shooting back up during the
overnight (see the last point of the graphs). Although by construction the trace of the correlation
matrix, and therefore the sum of all N eigenvalues is constant (and equal to N), this decrease is
not a trivial consequence of the increase of λ1, since the sum of the first five eigenvalues is ∼ 50,
still small compared to Tr(C) = N = 126. What we see here is that as the day proceeds, more
and more risk is carried by the market factor, while the amplitude of sectorial moves shrivels in
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Figure 10.6: Left: Dependence of the top eigenvalue of the correlation matrix C(k), λ1(k)/N ,
as a function of time of day. Right: Evolution of the scalar product between top eigenvector
~v1(k) and the uniform vector ~e. The red triangles correspond to the overnight values.

relative terms (but remember that the correlation matrix is defined after normalising the returns
by the local volatility, which increases in the last hours of the day).

It is more difficult to visualise the evolution of the corresponding eigenvectors, since there
is no natural vectors to compare them with. Furthermore, eigenvalues can “collide” and cross,
resulting in an interchange between two consecutive eigenvectors. We have therefore chosen
to take as a reference the eigenvectors ~vi(1) in the opening bin k = 1, corresponding to the
largest values of λi(k), i = 2, . . . , 7. We then form the 6× 6 matrix of scalar products Wij(k) =
~vi(1) ·~vj(k). The singular values s`(k) of this matrix (equal to the square-root of the eigenvalues
of W T W ) give a measure of the overlap between the eigenspace spanned by the ~vi(1) and that
spanned by the ~vj(k). If the ~vj(k) are a permutation of the ~vi(1), all the si’s are equal to
unity, indicating maximum overlap. In particular, s`(1) ≡ 1 trivially. The evolution of the
s`(k), ` = 2, . . . , 7 is shown in Fig. 10.7 right. Using the results of [46], we conclude that all
s`(k) are meaningful, since in the absence of any true correlations between the ~vi(1) and the
~vj(k), one would expect all singular values to lie in the interval [0, 0.12]. Therefore, although
the structure of correlations clearly evolves between the opening hours and the closing hours,
there is as expected a strong overlap between the principal components throughout the day.

10.6 Discussion & Conclusion

Let us present a synthetic account of the above empirical results, for which we only propose
an interpretation stub. We have seen that during the opening hours of the market, the volatil-
ity and the dispersion of returns are high, whereas kurtosis effects are relatively low. These
two quantities are different measures of the heterogeneity of stock returns, and quite paradox-
ically they are found to behave in opposite ways. But while the volatility and dispersion are
dimensional measures of heterogeneity (measuring the spread of returns in %), the kurtosis is
a relative, a-dimensional measure of surprise. What our results mean in intuitive terms is that
although the typical amplitudes of stock returns are high in the morning, outliers are relatively
rare, both over time and over stocks. In a sense, agitation is the norm during these early hours
of trading, stocks move in different directions in such a way that the average correlation is
weaker than average, and the top eigenvector of the correlation matrix is farther away from the
uniform mode ~e = (1/

√
N, 1/

√
N, . . . , 1/

√
N). But anomalously large jumps rarely take place

in the morning — as expected, these jumps are more likely overnight (and are to be related to
arrival of corporate specific or market-wide information), where kurtosis effects are strongest,
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Figure 10.7: Left: Smaller eigenvalues λi(k), i = 2, . . . , 7) as a function of k. Right: The 6
singular values s`(k) (` = 2, . . . , 7) of the matrix Wij(k). In the absence of any true persistence,
one would expect all singular value to lie in the interval [0, 0.12], much below the smallest
singular value s7 ∼ 0.8. The triangles correspond to the overnight values.

both for single stock and cross-sectional returns. As the day proceeds, correlations increase and
dispersion decreases, but unexpectedly large jumps become more probable, thereby increasing the
kurtosis.

The second somewhat paradoxical effect is the dependence of the kurtosis on the index return,
which was recently interpreted by L. Borland as a signature of collective behaviour during crises
[39]. Again, days when the market as a whole moves a lot are also large dispersion days where
all stocks move a lot in different directions, but with little outliers, i.e. one or a handful of
stocks that would jump up or down. In this sense, these days are more homogeneous. Should
one deduce from this that there is a stronger “synchronisation”, or collective dynamics, during
these periods, as suggested by Borland? While it is true that the average correlation between
stocks depends on the index return, this dependence is in fact signed: correlations are stronger
for negative index returns and weaker for positive returns, see [27, 8]. This is in contrast
with the kurtosis effect discussed here, which is surprisingly symmetrical (see Fig. 10.5). A
quantitative model for this behaviour is missing at this stage. Qualitatively, however, we believe
that the mechanism is the following [56]: when the index return is large, the dominant source
of dispersion becomes the market exposure (the ‘β’s’) of the different stocks, rather than the
idiosyncratic residuals. Since the distribution of the β’s is roughly Gaussian, kurtosis effects do
indeed decrease for large index returns. This interpretation however requires that the volatility
of the residuals increases sub-linearly with the index volatility, as indeed suggested by the data
shown in Fig. 10.3. The fact that during large swings of the index, the market exposure of stocks
becomes the dominant factor is probably a result of index/futures arbitrage.

Finally, although large index return days are large dispersion days, the converse is not true.
A typical large dispersion day is in fact a day when one or a handful of stocks gyrate wildly,
contributing both to the dispersion and to the kurtosis, and explaining the positive correlation
between σd and κd. If this interpretation is correct, this positive correlation should diminish
when one uses the mean-absolute deviation and not the variance to compute the dispersion,
since the former is less sensitive to outliers. We have checked that this is indeed the case.

To summarise, we have established several new stylised facts concerning the intra-day sea-
sonalities of stock dynamics. Beyond the well known U-shaped pattern of the volatility, we have
found that the average correlation between stocks increases throughout the day, leading to a
smaller dispersion between stocks (in relative terms). However, the kurtosis, which is a measure
of volatility surprises, is in fact minimum at the open of the market, when the volatility is at its
peak. We have also confirmed that the dispersion kurtosis is a symmetric, markedly decreasing



226 CHAPTER 10. INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS

function of the index return. This means that during large market swings, the idiosyncratic
component of the stock dynamics becomes sub-dominant, an effect that we have confirmed di-
rectly. Finally, while the market mode component of the dynamics becomes stronger as the day
proceeds, the sectorial components recede. In a nutshell, early hours of trading are dominated
by idiosyncratic or sector specific effects with little surprises, whereas the influence of macro,
market factor increases throughout the day, and surprises become more frequent. A detailed
quantitative interpretation of our results, for example of the power-law decay of the volatility in
the morning, is at this stage lacking. We believe that, when available, such an interpretation will
shed light on the relative importance of behavioural and informational effects on price formation
and volatility.
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