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The regulation of Enzyme IIAGlc expression
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During the last few years, several genes, such as pap, bgl and flhDC, have been
shown to be coregulated by the histone-like nucleoid-structuring (H-NS)
protein and the cyclic AMP-catabolite activator protein (cAMP/CAP) complex,
suggesting an interaction between both systems in the control of some cellular
functions. In this study, the possible effect of H-NS on the cAMP level was
investigated. In a CAP-deficient strain, the presence of an hns mutation results
in a strong reduction in the amount of cAMP, due to a decrease in adenylate
cyclase activity. This is caused by the reduced expression of crr, which encodes
the Enzyme IIAGlc of the phosphoenolpyruvate:carbohydrate
phosphotransferase system (PTS), from its specific P2 promoter. This leads to a
twofold reduction in the global amount of Enzyme IIAGlc, the adenylate cyclase
activator, responsible for the decrease in adenylate cyclase activity observed in
the hns crp strain.
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INTRODUCTION

In enterobacteria, the histone-like nucleoid-structuring
(H-NS) protein is one of the most abundant DNA-
binding proteins involved in the organization of the
bacterial chromosome (Bertin et al., 2001). Numerous
phenotypes have been associated with hns mutations,
resulting from a modification in the expression of several
genes. Most of them are regulated by environmental
parameters, such as pH, osmolarity and temperature, or
are known to be involved in bacterial virulence (Atlung
& Ingmer, 1997; Laurent-Winter et al., 1997; Hommais
et al., 2001).

It has been demonstrated that the H-NS protein interacts
with other regulatory systems. For example, the leucine-
responsive regulatory protein Lrp regulates the tran-
scription of a number of genes by binding DNA at a
specific site located upstream from the transcription
start site of the genes (Calvo & Matthews, 1994). Some
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of these target genes and the Lrp structural gene itself
are regulated by the H-NS protein (Levinthal et al.,
1994; Oshima et al., 1995). The H-NS protein also
possesses common targets with the cAMP-catabolite
activator protein (CAP) complex: nmpC and malT
genes (Coll et al., 1994; Johansson et al., 1998) and pap,
bgl, mccABCDE and flhDC operons (Forsman et al.,
1992; Gonzalez-Pastor et al., 1995; Schnetz & Wang,
1996; Soutourina et al., 1999). In contrast to its role in
the control of flhDC expression (Bertin et al., 1994;
Soutourina et al., 1999), the cAMP-CAP complex acts as
an H-NS protein antirepressor in the regulation of pap
and bgl operons (Forsman et al., 1992; Schnetz & Wang,
1996).

The cAMP-CAP complex,which controls the expression
of a multitude of genes or operons, has been charac-
terized for its role in catabolite repression. Indeed, high
glucose levels reduce Enzyme IIAGlc phosphorylation,
which decreases adenylate cyclase activity and cAMP
concentration. This results in a repressed synthesis of
the enzymes needed for the catabolism of alternative
carbon sources. It is now known that CAP is also
involved in the expression of genes needed for ad-
aptation to changes in growth conditions. Moreover,
CAP regulates the synthesis of some membrane com-
ponents, numerous proteins involved in various stresses
and some regulator-encoding genes. Finally, it is worth
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mentioning that many CAP-regulated genes are also
controlled by other transcription factors (for a review
see Busby & Kolb, 1996).

It has been suggested that the cellular CAP concentration
might be somewhat reduced in hns strains (Johansson et
al., 1998). As it has been demonstrated that the activity
of CAP is mainly modulated by the intracellular level of
cAMP (Roy et al., 1983; Kolb et al., 1993), we wanted to
know whether the H-NS protein could be involved in the
control of the intracellular cyclic AMP (cAMP) con-
centration. In the present paper, we show that the H-NS
protein plays a role in this process by acting on crr gene
expression. The effect on the crr-specific P2 promoter
was mainly observable in the absence of CAP and,
although the H-NS protein has been considered as a
transcriptional repressor, our results constitute a new
example of a positive effect of this regulatory protein on
bacterial physiology. Moreover, we show for the first
time that crr expression is regulated and that a twofold
reduction in the global amount of Enzyme IIAGlc is
sufficient to significantly decrease adenylate cyclase
activity and the cAMP level.

METHODS

Bacterial strains, plasmids and growth conditions. The
Escherichia coli K-12 derivative strains and the plasmids used
in this work are listed in Table 1. Mutations hns-1001 and hns-
118 were introduced by P1 transduction as described pre-
viously (Bertin et al., 1994). For reasons of incompatibility
with the kanamycin resistance marker of the resident plasmid,
the hns-118 mutation was used instead of the hns-1001
mutation in β-galactosidase experiments. All strains were
grown at 37 °C in M63 medium (Miller, 1972), supplemented
with glucose (0±4%), thiamine (5 µg ml−") and Casamino acids
(0±1%). When required, kanamycin and ampicillin were added
at 25 and 100 µg ml−", respectively. Plasmid pDIA3350 was
constructed by insertion of the SalI–BamHI fragment of

Table 1. E. coli strains and plasmids used in this study

Strain or

plasmid

Description Source

Strains

TP2101 F− xyl ∆lacX74 argH1 Laboratory collection

BE1522 F− xyl ∆lacX74 argH1 hns-1001 : :Tn5seq1 This study

TP2139 F− xyl ∆crp39 ∆lacX74 argH1 ilvA Roy et al. (1983)

BE1420 F− xyl ∆crp39 ∆lacX74 argH1 ilvA hns-1001 : :Tn5seq1 This study

BE1421 F− xyl ∆crp39 ∆lacX74 argH1 ilvA hns-118 : :Tn10 This study

Plasmids

pDIA1973 cyaA-lacZ operon fusion Roy et al. (1988)

pDIA3226 ptsH-ptsI-lacZ protein fusion De Reuse & Danchin (1988)

pDIA3238 ptsH-ptsI-crr-lacZ protein fusion De Reuse & Danchin (1988)

pDIA3247 ptsH-lacZ protein fusion De Reuse & Danchin (1988)

pDIA3241 ptsH-lacZ operon fusion De Reuse & Danchin (1988)

pDIA3242 ptsH-ptsI-lacZ operon fusion De Reuse & Danchin (1988)

pDIA3350 ptsH-ptsI-crr-lacZ operon fusion This study

pDIA4705 pBR322 derivative carrying crr under anti-Tcr promoter Zeng et al. (1992)

pDIA3238, corresponding to the full phosphoenolpyru-
vate :carbohydrate phosphotransferase system (PTS) operon
with promoters P0, P1 and P2, into plasmid pDIA3240 (De
Reuse et al., 1986). All experiments were performed in
accordance with the European regulation requirements con-
cerning the contained use of Genetically Modified Organisms
of Group I (agreement no. 2735).

cAMP assay. Total cAMP production was determined by a
radioimmunological assay from at least four samples of
exponentially growing cells as described by Guidi-Rontani et
al. (1981) and Crasnier et al. (1994).

In vitro adenylate cyclase assay. Exponentially growing cell
cultures were centrifuged at 9000 g for 10 min at 20 °C. The
pellet, corresponding to 0±5 g bacteria, was resuspended in
3 ml 25 mM Tris}HCl, 10 mM MgCl

#
, pH 8±3, (Tris-Mg

buffer) to obtain a 20 mg ml−" protein concentration. Bacteria
were then broken with the FastPrep System and FastProtein
Blue (Bio-101) and centrifuged at 13000 g at 4 °C. Protein
(0±4–0±8 mg) of the bacterial supernatant was added to 1±2 ml
of assay mixture (125 mM Tris}HCl, pH 8±3, 50 mM MgCl

#
,

5 mM dithiothreitol, 5 mM ATP) and 4±68 ml Tris-Mg buffer.
During incubation at 28 °C, several samples of 1 ml were
taken between 0 and 60 min and heated for 5 min at 100 °C,
according to the method of Joseph et al. (1982). The cAMP
synthesized was quantified with the cAMP["#&I]-RIA kit
(NEN).

β-Galactosidase assay. β-Galactosidase activity was deter-
mined by the method of Miller (1992) on exponentially
growing cells. The assay was performed on more than three
samples from at least two independent cultures.

Determination of the phosphorylation state of Enzyme IIAGlc.
The phosphorylation state of Enzyme IIAGlc was determined
with a Western blotting experiment with anti-IIAGlc antibodies
(kindly provided by P. Postma, University of Amsterdam, The
Netherlands) on 20 µl protein extracts from strains grown to
an OD

'!!
of precisely 0±400 (Takahashi et al., 1998). Immuno-

blots were scanned with a JX-330 Sharp scanner and quanti-
fied using PDI software, PDQuest, based on a SUN computer
system.
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RESULTS

Effect of crp and/or hns mutations on cAMP level

To determine whether the H-NS protein modulates
cAMP synthesis, the total cAMP level was measured in
exponentially growing cells of wild-type TP2101 and
isogenic strains deficient for the H-NS protein (BE1522),
CAP (TP2139) or both regulators (BE1420), by using a
radioimmunological method. As expected (Potter et al.,
1974; Joseph et al., 1982), the presence of a crp mutation
in TP2139 resulted in an important increase in cAMP
concentration (more than 300-fold). In contrast, no
significant difference was observed in the hns strain
BE1522 (Table 2). Moreover, compared to the strain
carrying the sole crp mutation, the presence of both crp
and hns mutations in BE1420 resulted in a more than
sixfold reduction in the cAMP concentration (Table 2).
This result was confirmed by a cAMP excretion test on
MacConkey maltose medium (data not shown). This
suggests that the repression by the cAMP-CAP complex
seems to be epistatic with regard to the activation by the
H-NS protein. However, at least in a crp background,
the H-NS protein affects the level of cAMP.

Table 2. cAMP levels in H-NS protein-deficient and/or
CAP-deficient strains
.................................................................................................................................................

Data are the mean values of four samples from two
independent cultures that differed by less than 20%.

Strain Relevant genotype Total cAMP

[pmol (mg protein)−1]

TP2101 Wild-type 314

BE1522 hns 415

TP2139 crp 97625

BE1420 crp hns 15069

Table 3. Effect of the H-NS protein on β-galactosidase synthesis rate of gene fusions
between cyaA, ptsH, ptsI or crr and lacZ
.....................................................................................................................................................................................................................................

Data are the mean values of more than three samples from at least two independent cultures that
differed by less than 10%

Plasmid lacZ fusion β-Galactosidase activity

[Miller units (mg protein)−1] in :

TP2139 (crp) BE1421 (crp hns)

pDIA1973 cyaA operon 8950 3470

pDIA3241 ptsH operon 2730 2000

pDIA3247 ptsH protein 5370 3870

pDIA3242 ptsH-ptsI operon 2190 2150

pDIA3226 ptsH-ptsI protein 1420 1910

pDIA3350 ptsH-ptsI-crr operon 10690 2870

pDIA3238 ptsH-ptsI-crr protein 6210 3150

Positive effect of the H-NS protein on the activity
and the synthesis of adenylate cyclase in a crp strain

Adenylate cyclase plays a major role in the control of
cAMP level in bacterial cells. This enzyme is known to
be regulated by CAP at the level of its activity and at the
transcriptional level (Aiba, 1985; Inada et al., 1996;
Takahashi et al., 1998).

Adenylate cyclase activity was measured with an in vitro
assay on exponentially growing cells. A more than 30-
fold increase in enzyme activity was measured in the crp
strain TP2139 [12600 pmol cAMP (mg protein)−" min−"]
compared to the wild-type TP2101 [400 pmol cAMP (mg
protein)−" min−"], in accordance with the results of
others (Rephaeli & Saier, 1976; Joseph et al., 1982). In
contrast, an eightfold decrease in activity was measured
in the crp hns double mutant BE1420 [1600 pmol cAMP
(mg protein)−" min−"] compared to the crp strain. These
results are in agreement with the total cAMP level
measured in bacterial cultures (Table 2).

To investigate the role of the H-NS protein on the
transcription of the adenylate cyclase encoding gene, we
measured the activity of a cyaA-lacZ operon fusion from
plasmid pDIA1973 (Roy et al., 1988). Compared to the
wild-type TP2101 [6320 Miller units (mg protein)−"], a
moderate increase in β-galactosidase activity was ob-
served in the crp strain TP2139 (Table 3), in agreement
with the data of others (Kawamukai et al., 1985). In
contrast, in the crp hns double mutant BE1421 (Table 3),
a more than twofold decrease in β-galactosidase activity
was observed compared to that in the crp strain.

Regulation of adenylate cyclase activity by the H-NS
protein via the Enzyme IIAGlc level

Adenylate cyclase activity is known to be regulated by
the PTS via Enzyme IIAGlc and the cAMP-CAP complex
(Levy et al., 1990; Saier et al., 1996; Reddy&Kamireddi,
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Fig. 1. Organization of the pts operon (De Reuse & Danchin,
1988; De Reuse et al., 1992). Open boxes represent the ptsH,
ptsI and crr coding regions. The transcriptional start sites from
P0, P1 and P2 promoters are indicated by arrows. The major
transcriptional start sites are indicated by bold arrows and the
binding site for the CAP-cAMP complex is shown by a hatched
box.

1998). The HPr protein could also be involved in this
process (Peterkofsky et al., 1995). Although the three
PTS genes ptsH, ptsI and crr, which encode the proteins
HPr, Enzyme I and Enzyme IIAGlc, respectively, are
considered to be part of a single operon, transcription is
known to be initiated from three distinct promoters, P0,
P1 and P2 (Fig. 1) (De Reuse & Danchin, 1988; De Reuse
et al., 1992). As the decrease in cyaA-lacZ activity does
not seem to be sufficient to explain the strong decrease in
adenylate cyclase activity measured in the crp hns double
mutant BE1421 (see above), the expression level of ptsH,
ptsI and crr was analysed using protein and operon
fusions (De Reuse & Danchin, 1988). In the crp strain,
the lack of H-NS protein had only a minor effect on the
expression of both ptsH-lacZ and ptsI-lacZ fusions,
which are exclusively under the control of promoters P0
and P1, i.e. a 1±3-fold decrease and 1±3-fold increase,
respectively (Table 3). In contrast, crr expression, which
is under the control of the three promoters, showed a
3±7-fold and twofold decrease in the β-galactosidase
activity of the crr-lacZ transcriptional and protein
fusion, respectively, in the crp hns double mutant
BE1421 compared to the crp strain (Table 3). This
suggests that the H-NS protein exerts a positive and
specific effect on crr transcription from the P2 promoter.

The Enzyme IIAGlc is known to be phosphorylated by
the phosphorylated HPr protein (HPr-P), which is itself
phosphorylated by Enzyme I-P (Postma & Lengeler,
1985). Phosphorylated Enzyme IIAGlc is known to
activate adenylate cyclase while the unphosphorylated
form has no effect on enzyme activity (Den Blaauwen &
Postma, 1985; Crasnier & Danchin, 1990; Reddy &
Kamireddi, 1998; Takahashi et al., 1998). Moreover, it
has been supposed that the global regulation of adeny-
late cyclase activity depends on the sole phosphorylation
state of Enzyme IIAGlc. Indeed, the major effect of the
cAMP-CAP complex on adenylate cyclase activity re-
sults from the decrease in Enzyme IIAGlc phosphoryla-
tion (Saier et al., 1996; Crasnier-Mednansky et al.,
1997; Reddy & Kamireddi, 1998; Takahashi et al.,
1998). To determine the phosphorylated state of En-
zyme IIAGlc in the different strains, a Western blotting
experiment was performed with anti-IIAGlc antibodies
on protein extracts from strains grown to an OD

'!!
of

0±400 (Takahashi et al., 1998). After quantification, only
14% of Enzyme IIAGlc was phosphorylated in wild-type

TP2101 TP2139 BE1420

IIAGlc-P

IIAGlc

.................................................................................................................................................

Fig. 2. Phosphorylation state and amount of Enzyme IIAGlc in
wild-type (TP2101), crp (TP2139) and crp hns (BE1420) strains.
The two forms of the enzyme were visualized on a Western
blot using anti-Enzyme IIAGlc antibodies and quantified using
PDI software, PDQuest. The result is representative of two
experiments performed with 20 µl protein extract from two
independent cultures at an OD600 of precisely 0±400.

strain TP2101, while 82 and 93% was phosphorylated in
the crp (TP2139) and crp hns (BE1420) strains, re-
spectively (Fig. 2). The proportion of the two forms of
Enzyme IIAGlc was similar in both crp and crp hns
mutant strains. This suggests that the small variation
observed on ptsH and ptsI expression has no effect on
the phosphorylation state of Enzyme IIAGlc. No signifi-
cant difference in the amount of Enzyme IIAGlc was
observed between wild-type and crp strains (Fig. 2). In
contrast, a twofold decrease in the amount of Enzyme
IIAGlc was measured in the crp hns double mutant
compared to the crp strain (Fig. 2). This result is in
agreement with the reduced expression of the crr-lacZ
fusions observed in such a strain (Table 3). Similarly, a
51% reduction in the amount of Enzyme IIAGlc was
measured in the hns strains compared to that in the wild-
type.

To discover whether the reduced amount of Enzyme
IIAGlc measured in the crp hns strain (Fig. 2) was
sufficient to explain the decrease in adenylate cyclase
activity, we determined this activity in the double
mutant BE1420 containing plasmid pDIA4705 carrying
the crr gene. The presence of this plasmid in a ∆crr strain
has been shown to restore the wild-type cAMP level and
glucose transport (Zeng et al., 1992). The activity
measured in the crp hns mutant containing plasmid
pDIA4705, 11400 pmol cAMP (mg protein)−" min−",
was similar to that obtained in the TP2139 crp strain
[12600 pmol cAMP (mg protein)−" min−"]. This is
consistent with the Western blotting experiment which
showed that a similar amount of Enzyme IIAGlc was
present in both TP2139 and BE1420(pDIA4705) (data
not shown). This demonstrated that the variation in
adenylate cyclase activity resulting froman hnsmutation
depends on the reduced amount of Enzyme IIAGlc

present in the cells rather than the effect the H-NS
protein on cyaA gene expression (Table 2).

DISCUSSION

In E. coli, adenylate cyclase activity is known to be very
low in a wild-type genetic context. Indeed, Enzyme
IIAGlc, which is the major activator of this activity, is
mainly in an unphosphorylated form due to the presence
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of a high concentration of cAMP-CAP complex (Saier et
al., 1996; Crasnier-Mednansky et al., 1997; Reddy &
Kamireddi, 1998; Takahashi et al., 1998). Only the
phosphorylated form of the enzyme plays a role as
activator. This phosphorylation results from a transfer
of the phosphoryl group from phosphoenolpyruvate to
Enzyme IIAGlc via Enzyme I and HPr (Postma &
Lengeler, 1985). The three PTS genes ptsH, ptsI and crr,
which encode the proteins HPr, Enzyme I and Enzyme
IIAGlc, respectively, belong to a single operon. However,
transcription is initiated from three distinct promoters
(Fig. 1). Both ptsH and ptsI depend on P0 and P1
promoters, while crr is controlled by the three pro-
moters, P2 being responsible for 80% of total crr mRNA
synthesis (De Reuse & Danchin, 1988; De Reuse et al.,
1992). Transcriptional regulation by glucose, the cAMP-
CAP complex and the global repressor Mlc has been
observed on promoter P0 (De Reuse et al., 1992; Ryu &
Garges, 1994; Tanaka et al., 1999), while promoter P1 is
known to be regulated by the fructose repressor FruR
(Ryu et al., 1995). However, no regulatory mechanism
has been shown to affect promoter P2.

Our results demonstrate, for the first time, that crr is
regulated at the transcriptional level. This regulation
only affects the P2-specific promoter and has almost no
effect on the two other promoters of the PTS operon.
The H-NS protein controls the expression of numerous
genes involved in bacterial adaptation to environmental
changes (Hommais et al., 2001) and it is generally
considered as a transcriptional repressor. Although the
mechanism, which could be indirect, remains to be
determined, our results constitute a new example of the
positive effect of this regulatory protein on bacterial
physiology. Recently, the existence of a complex be-
tween HhA and the H-NS protein has been shown to be
involved in the regulation of the haemolysin operon in E.
coli (Nieto et al., 2000). Moreover, an hha mutation
results in a fivefold decrease in Enzyme IIAGlc in rich
medium under high osmolarity conditions (Balsalobre
et al., 1999). Taken together, these obervations may
suggest an interaction of both proteins in the regulation
of crr expression. However, in contrast to the H-NS
protein (Table 3 and Fig. 2), the effect of HhA on
Enzyme IIAGlc was only observed in conditions of high
osmolarity, suggesting that the two regulatory proteins
affect crr expression by a different mechanism. Finally,
the repression by the cAMP-CAP complex is predomi-
nant with regard to the activation by the H-NS protein.
Indeed, in the presence of the cAMP-CAP complex, only
a small fraction of Enzyme IIAGlc was phosphorylated
(Fig. 2). This suggests that adenylate cyclase has its
lowest activity in the wild-type strain, which could
explain that a twofold alteration in the amount of
Enzyme IIAGlc in hns strains has no major effect on
adenylate cyclase activation.

We also showed that, despite a large excess of Enzyme
IIAGlc in the cell [about 15000 Enzyme IIAGlc phos-
phorylated molecules in comparison with 15–50 adeny-
late cyclase molecules (Yang & Epstein, 1983; Mitchell
et al., 1987)], a twofold variation in its accumulation

level resulted in an eightfold decrease in adenylate
cyclase activity. In a glucose-rich medium, the phos-
phorylated form of Enzyme IIAGlc interacts preferen-
tially with the glucose permease (Enzyme IIBCGlc) to
allow the entry of glucose into the cell. This suggests
that the affinity of phosphorylated Enzyme IIAGlc is
much lower for adenylate cyclase, or for the putative
intermediary that could activate it (Saier et al., 1996),
than for glucose permease. Depending on environmental
conditions, adenylate cyclase may be regulated either by
the amount or by the phosphorylation of Enzyme IIAGlc.
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