

Dirty details
behind ”high level”

programming languages

Aurélien Naldi IJM – 2020/02/13

● High level language ??
– Hides bare-metal details

● Advantages
– Development speed

– Improved correctness and safety

● Hidden costs
– Extra memory / computing

Coarse overview, with shortcuts and weird jargon

interruptions welcome!

3

Surprising differences in speed

c = a + bc = a.copy()
for i in range(n):

c[i] += b[i]

c = int[n]
for (int i=0 ; i<n ; i++) {

c[i] = a[i] + b[i]
}

27 ms2450 ms32 ms

Time for n = 10 000 000

C NumPy loop NumPy

4

Simplified computer architecture

CPU

Memory (RAM)

CPU cache

CPU registers

www

5

Timescales in computing operations

Operation Time Human scale

CPU Cycle 0.5 ns 1 s

CPU cache 5 ns 10 s

Memory 100 ns 4 min

SSD storage 25 – 150 μs 1 – 4 days

Hard drive 1 – 10 ms 1 – 10 months

Internet 50 – 200 ms 4 – 15 years

Source: www.prowesscorp.com/computer-latency-at-a-human-scale

6

Capacity of memory layers

Type Size Speed

Registers 1ko

CPU cache L1 128ko 700 Go/s

CPU cache L2 1Mo 200Go/s

CPU cache L3 6Mo 100Go/s

CPU cache L4 128Mo 40Go/s

RAM 32Go 10Go/s

Hard drive 2To < 2Go/s

https://en.wikipedia.org/wiki/Memory_hierarchy

7

Some CPU instructions speeds

Bitwise: OR, AND, SHIFT, … (1 cycle)

Integer: ADD (1), MUL (3-5), DIV (10-50)

Float: FADD (1-3), FMUL (2-5), FDIV (35-40)

Context switch: 1000s of cycles
 → Reset cache and registers

8

ASM and CPU instructions

R1

R2

R3

R4

R5

c = a + b LOAD a R1
LOAD b R2
ADD R1 R2 R3
PUSH R3 c

a

b

c

...

1

2

4

ADD
3

● Manipulate register values
– Basic and extended instructions

● Load and push values in memory
– CPU cache and page fault

1

2

3

4

n

0
a

b

c

...

0

nCPU

registers memorycache

9

Compilation

Turning an “abstract” programming
language into “concrete” processor
instructions

C++ x86

ARM

MIPS

C

fortran

Optimized
bytecodebytecode

Parser
Lexer Optimiser

Code
generator

10

Interpreted language

Interprets bytecode: “Virtual machine”

● Compile during execution (Python, R)
– Caching bytecode (.pyc)

● Compile in advance (Java)

11

Static vs Dynamic typing

C / Java

int a = 2;
a = 3;
a = 2.5;

Python

a = 2
a = 3.5
a = "whatever"

Dynamic: variables have no fixed type

→ Execution depends on the current type

12

Adapting to dynamic types
● Abstract bytecode
● Runtime types → fast paths

2*a+b int?

Integer fast path

Float fast path

Generic path

float?

Cost of type checking
→ Apply to “large” blocks of code

13

Memory management

● Follows function calls
● Sized at compile time

Stack

Heap

● Sized at runtime
● Explicit allocation/free

● Manual or managed
● Fragmentation

● Pointers in the stack (or heap)

14

Problems with pointers
● Missing free

– Memory leaks

● Multiple copies of a pointer
– Dangling pointer (early free)
– Race conditions, memory corruption

● Common misuses
– NULL or invalid pointers
– Buffer overflows

15

Automatic memory management

x

y

TYPEPoint

z

POINT

Name
Fields
Code

Count: 3

Point

Point

Reference counting
● Increase for each pointer
● Decrease when pointer removed from Stack

➔ Garbage collection
● Detect isolated parts of a pointer graph
● Delayed free, extra cost

Cyclic references → memory leak

16

Memory layout of a program

Execution code (ASM instructions)

Execution pointer ● Execute → advance the pointer
● JUMP Instruction

● GOTO in early languages
● Loops and function calls

Runtime memory

Memory layout is critical for performance

Variables in the same “page” (often 4kb)
are transferred to CPU cache in a single step

17

Architecture of an interpreter

Interpreter code (ASM instructions)

Bytecode

Virtual machine

Runtime memory

Fastpaths (ASM)

Bytecode/ASM ratio
● Depends on the interpreter
● Changes during runtime (JIT)

18

Binary representation of integers

00011011 8 “bits” → 28 = 256 possible values
● [0 → 255] or [-127 → 127]4+8+32+64

→ 108

(signed) sum of powers of two

→ overflow (127+1 = -127)

Variants:
● Little/big endian: side of the strong bit

● Sign encoding:
● Absolute value + sign?
● One’s complement: swap all bits

19

Other binary encodings

Floats: value * multiplier

0001101000111001 Factor has it’s own sign

Precision scales with value
→ Floats are not exact

Text: the encoding can of worms
● ASCII: historical 7-bits encoding (128 characters, no accents)
● Many 8-bits extensions (ISO-8859-1 in western europe)
● Unicode: mapping characters worldwide

➔ Encodings: UTF-8, UTF-16, UTF-32

±2factor*value

Single (32 bits) or double (64bits) precision

20

Grouping related values with objects
Point in space: (x, y, z)

x

y

z

Type information
(optional, shared)

TYPE

x

y

z

TYPE

POINT

Name
Fields
Code

x

y

z

21

Arrays: lists of values

Raw array: just the values

Add size (avoid overflows)

n

Add type information

n nTT T T T T T

22

Dynamic (growing) arrays

ncT

Capacity: total available cells

Size: number of used cells

Increase size until the capacity is reached, then
allocate a new array, copy values, and free the old one

ncT

ncT

23

Array and pointer arithmetics

nTA

v = A[k] if k > *(A+1): ERROR
a = A + 2 + k*S
v = *a

a = A + 2
end = A + 2 + n*S

Fast path to access the next element (no multiplication)

Computing the address of an array element

S = SIZE(T)

while a < end:
a += S
v = *a

24

Calling a function
● Save the execution pointer to stack
● Add parameters of the function call
● JUMP to the function code

 … Execute the function …

● Remove function from the stack
● Add the return value
● JUMP to the stored execution pointer

25

Inheritance and dynamic dispatch

x

y

z

3D Point

VTable 2D

method1
method2

x

y

2D PointPoint

VTable 3D

method1
method2
method3

Point

Bytecode
x

y

2D PointPoint

2+ extra pointers to find the JUMP address

26

Summary: memory cost
Shared
● Runtime
● Type annotations, function tables

Per object
● Pointer + Typeref + Refcount

– Triple memory for small objects (or worse)
➔Use collections of native objects (numpy)

27

Summary: CPU cost
● At startup: compile again and again

● Bytecode interpretation

● Type checking

● Array bound checking

● Dynamic dispatch

● Garbage collector

Not so bad for data analysis (I/O bound)
And long-running tasks with JIT

28

When/how should we go low level?
● Identify bottlenecks: memory or CPU?

➔ Some native module(s)

● Pick a language: ASM C/C++ Rust
• Beware of pointers, right compromise?

● Data structures are key
• Fast for most common operation
• Caching is tricky but can help

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

