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● High level language ??
– Hides bare-metal details

● Advantages
– Development speed

– Improved correctness and safety

● Hidden costs
– Extra memory / computing

Coarse overview, with shortcuts and weird jargon

interruptions welcome!
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Surprising differences in speed

c = a + bc =  a.copy()
for i in range(n):

c[i] += b[i]

c = int[n]
for (int i=0 ; i<n ; i++) {

c[i] = a[i] + b[i]
}

27 ms2450 ms32 ms

Time for n = 10 000 000

C NumPy loop NumPy
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Simplified computer architecture

CPU

Memory (RAM)

CPU cache

CPU registers

www
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Timescales in computing operations

Operation Time Human scale

CPU Cycle 0.5 ns 1 s

CPU cache 5 ns 10 s

Memory 100 ns 4 min

SSD storage 25 – 150 μs 1 – 4 days

Hard drive 1 – 10 ms 1 – 10 months

Internet 50 – 200 ms 4 – 15 years

Source: www.prowesscorp.com/computer-latency-at-a-human-scale
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Capacity of memory layers

Type Size Speed

Registers 1ko

CPU cache L1 128ko 700 Go/s

CPU cache L2 1Mo 200Go/s

CPU cache L3 6Mo 100Go/s

CPU cache L4 128Mo 40Go/s

RAM 32Go 10Go/s

Hard drive 2To < 2Go/s

https://en.wikipedia.org/wiki/Memory_hierarchy
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Some CPU instructions speeds

Bitwise:  OR, AND, SHIFT, …   (1 cycle)

Integer:    ADD (1),           MUL (3-5),       DIV (10-50)

Float:  FADD (1-3),    FMUL (2-5),     FDIV (35-40)

Context switch: 1000s of cycles
 → Reset cache and registers
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ASM and CPU instructions

R1

R2

R3

R4

R5

c = a + b LOAD a  R1
LOAD b  R2
ADD  R1 R2 R3
PUSH R3 c

a

b

c

...

1

2

4

ADD
3

● Manipulate register values
– Basic and extended instructions

● Load and push values in memory
– CPU cache and page fault

1

2

3

4

n

0
a

b

c

...

0

nCPU

registers memorycache



9

Compilation

Turning an “abstract” programming 
language into “concrete” processor 
instructions

C++ x86

ARM

MIPS

C

fortran

Optimized
bytecodebytecode

Parser
Lexer Optimiser

Code
generator
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Interpreted language

Interprets bytecode: “Virtual machine”

● Compile during execution (Python, R)
– Caching bytecode (.pyc)

● Compile in advance (Java) 
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Static vs Dynamic typing

C / Java

int a = 2;
a = 3;
a = 2.5;

Python

a = 2
a = 3.5
a = "whatever"

Dynamic: variables have no fixed type

→ Execution depends on the current type
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Adapting to dynamic types
● Abstract bytecode
● Runtime types → fast paths

2*a+b int?

Integer fast path

Float fast path

Generic path

float?

Cost of type checking
→ Apply to “large” blocks of code
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Memory management

● Follows function calls
● Sized at compile time

Stack

Heap

● Sized at runtime
● Explicit allocation/free

● Manual or managed
● Fragmentation

● Pointers in the stack (or heap)
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Problems with pointers
● Missing free

– Memory leaks

● Multiple copies of a pointer
– Dangling pointer (early free)
– Race conditions, memory corruption

● Common misuses
– NULL or invalid pointers
– Buffer overflows
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Automatic memory management

x

y

TYPEPoint

z

POINT

Name
Fields
Code

Count: 3

Point

Point

Reference counting
● Increase for each pointer
● Decrease when pointer removed from Stack

➔ Garbage collection
● Detect isolated parts of a pointer graph
● Delayed free, extra cost

Cyclic references  →  memory leak
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Memory layout of a program

Execution code (ASM instructions)

Execution pointer ● Execute → advance the pointer
● JUMP Instruction

● GOTO in early languages
● Loops and function calls

Runtime memory

Memory layout is critical for performance

Variables in the same “page” (often 4kb)
are transferred to CPU cache in a single step
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Architecture of an interpreter

Interpreter code (ASM instructions)

Bytecode

Virtual machine

Runtime memory

Fastpaths (ASM)

Bytecode/ASM ratio
● Depends on the interpreter
● Changes during runtime (JIT)
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Binary representation of integers

00011011 8 “bits” → 28 = 256 possible values
● [0 → 255] or [-127 → 127]4+8+32+64

→ 108

(signed) sum of powers of two

→ overflow (127+1 = -127)

Variants:
● Little/big endian: side of the strong bit

● Sign encoding:
● Absolute value + sign?
● One’s complement: swap all bits
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Other binary encodings

Floats: value * multiplier

0001101000111001 Factor has it’s own sign

Precision scales with value
→ Floats are not exact

Text: the encoding can of worms
● ASCII: historical 7-bits encoding (128 characters, no accents)
● Many 8-bits extensions (ISO-8859-1 in western europe)
● Unicode: mapping characters worldwide

➔ Encodings: UTF-8, UTF-16, UTF-32

±2factor*value

Single (32 bits) or double (64bits) precision



20

Grouping related values with objects
Point in space: (x, y, z)

x

y

z

Type information
(optional, shared)

TYPE

x

y

z

TYPE

POINT

Name
Fields
Code

x

y

z
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Arrays: lists of values

Raw array: just the values

Add size (avoid overflows)

n

Add type information

n nTT T T T T T
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Dynamic (growing) arrays

ncT

Capacity: total available cells

Size: number of used cells

Increase size until the capacity is reached, then
allocate a new array, copy values, and free the old one

ncT

ncT



23

Array and pointer arithmetics

nTA

v = A[k] if k > *(A+1): ERROR
a = A + 2 + k*S
v = *a

a = A + 2
end = A + 2 + n*S

Fast path to access the next element (no multiplication)

Computing the address of an array element

S = SIZE(T)

while a < end:
a += S
v = *a
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Calling a function
● Save the execution pointer to stack
● Add parameters of the function call
● JUMP to the function code

        … Execute the function …

● Remove function from the stack
● Add the return value
● JUMP to the stored execution pointer
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Inheritance and dynamic dispatch

x

y

z

3D Point

VTable 2D

method1
method2

---
x

y

2D PointPoint

VTable 3D

method1
method2
method3

Point

Bytecode
x

y

2D PointPoint

2+ extra pointers to find the JUMP address
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Summary: memory cost
Shared
● Runtime
● Type annotations, function tables

Per object
● Pointer + Typeref + Refcount

– Triple memory for small objects (or worse)
➔Use collections of native objects (numpy)
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Summary: CPU cost
● At startup: compile again and again

● Bytecode interpretation

● Type checking

● Array bound checking

● Dynamic dispatch

● Garbage collector

Not so bad for data analysis (I/O bound)
And long-running tasks with JIT
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When/how should we go low level?
● Identify bottlenecks: memory or CPU?

➔ Some native module(s)

● Pick a language: ASM    C/C++    Rust
• Beware of pointers, right compromise?

● Data structures are key
• Fast for most common operation
• Caching is tricky but can help
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