

Chapter 13

Debugging Strategies

Learning by debugging

Chapter 13

Two types of errors :

1. program does not run at all → make it running

2. program runs but gives an incorrect output → check procedures

Avoidance by good design
Result validation

Chapter 13

General Strategies

Build upon working elements

1. Think about the general approach to your problem
2. Start building towards incremental success
3. Get each element of your program working before moving on

e.g.
- print intermediate steps on the screen while writing the script
- use a sandbox folder
- use artificial or copied data

Chapter 13

General Strategies

Think about your assumptions

1. Make sure you are editing the version of the program that you are
 actually using → editing wrong script

Use which command to get the absolute path of the program

2. Save changes before re-execution

3. Check line endings
Incorrect line endings in input files → program can combine data lines

InFile = open(InFileName, 'rU')

converts all line endings to newline (\n) characters

Chapter 13

General Strategies

Think about your assumptions

1. Make sure you are editing the version of the program that you are
 actually using → editing wrong script

Use which command to get the absolute path of the program

2. Save changes before re-execution

3. Check line endings

4. Check contents of your data file
Incorrect input files can crash programs

example : AGTC ..., sequence file that contains - or ?
 Postive or negative numbers,

 . or ,

Chapter 13

Specific debugging techniques

Isolate the problem

- Error report : reported line often does not contain error. Check
previous steps.

- Comment in/out sections with # or ''' ''' (or """ … """ ?) triple
quotes for multiple lines.

… Comment on what you write

Chapter 13

Specific debugging techniques

Write verbose software

- incorporate diagnostic print statements
- if Debug statement, try with authors2.py

import sys
Debug = True

(insert program statements here)

wherever you want to give feedback, insert these lines
if Debug :
 Print MyList
 # or you can use
 sys.stderr.write(MyList)

Chapter 13

Error messages and their meanings

Common Python errors

-bash : myscript.py : command not found

 Program not found in the folder listed in your PATH,
 permission not set to executable,
 → set PATH variable, try chmod u+x

/Users/lucy/scripts/myprogram.py: line 3: import command not found

 Problem with python program,
 1. Perhaps problems with shebang line: #!
 2. misspelled built-in Python function within the program

Chapter 13

Error messages and their meanings

Common Python errors

bad interpreter not a directory

 #! has a / after /usr/bin/env/

r /usr/bin/env: bad interpreter: No such file or directory

 Parts in your # ! statement not found
 → copy in statement into the terminal, see if it launches Python

Permission denied

 chmod u+x

Chapter 13

Error messages and their meanings

Common Python errors

Name 'x' is not defined

 - misspelled variable name in the program

 - variable not originally defined
 → Inititialize variable e.g. , MyList=[], or MyString='' ''

 - function used, but not imported from a module first

 - function used without the required module name in dot notation
 e.g. Randint(5) instead of random.randint(5)

Chapter 13

Error messages and their meanings

Common Python errors

Indentation error

 - 4 commas vs 1 tab

Attribute error

 Misspelling of a built-in function
 e.g. MyString.lowercase() instead of MyString.lower()

Type error 'xx' object is not callable

 Want to get values from a List() and not List[],
 wrong interpretation as a function and not a list

Chapter 13

Error messages and their meanings

Common Python errors

Traceback … zero division error

 Division by zero !
 - Function returns unexpected 0
 - Input data with 0
 → check user and variable input, to be not blank, non zero, …

Non-ASCII character '\xe2' in file

 Or ävoid non ASCI characters, or type # coding : utf-8 below the #! line

Invalid syntax

 Many things possible : Missing colon after if, else, or for statement
 Missing close parenthesis, brackets,
 = instead of ==

Chapter 13

Error messages and their meanings

Shell errors

Illegal byte sequence

 - Some command line programs cannot process
 Unicode characters •, °, ≠, … in a file being read

Improper use of \ > * < ;

Chapter 13

Making your program more efficient

Optimization

- sometimes everything works but just too slow / inefficient

 - multiple ways to do the same thing

Measure time that a program needs :

import time
StartTime = time.time()
#perform your commands here
print "Elapsed : %.5f" % 9time.time() - StartTime)

Chapter 13

for Line in File:
 if Line [0] ==">":
 Name=Line.strip()[1:]
 # lines with > are Names
 else:
 #check for a pre-existing key
 if Name in Dict.keys():
 Dict[Name] += Line.strip()
 # not a key so define
 else:
 Dict[Name] = Line.strip()

for Line in File:
 if Line [0] ==">":
 Name=Line.strip()[1:]
 # lines with > are Names
 else:
 #check for a pre-existing key
 if Name in Dict.keys():
 Dict[Name] += Line.strip()
 # not a key so define
 else:
 Dict[Name] = Line.strip()

Making your program more efficient

try and except to handle errors

for Line in File:
 if Line [0] ==">":
 Name=Line.strip()[1:]
 # lines with > are Names
 else :
 try:
 # try to append with +=
 # assumes Name is a key
 Dict[Name] += Line.strip()
 # oops, not a key so define
 except KeyError:
 Dict[Name] = Line.strip()

Traditional Fast

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

