
Context Our Contribution Conclusion

Factoring Unbalanced Moduli with Known Bits

Éric Brier1 David Naccache2

Mehdi Tibouchi2

1Ingenico

2École normale supérieure

ICISC 2009



Context Our Contribution Conclusion

Our Results in a Nutshell

• Investigate the problem of factoring an unbalanced RSA
modulus n = pq (p > q) given the knowledge of some bits of
p.

• Find that it is easily solved when at least 2 log2 q contiguous
bits of p are known, regardless of their position.

• Show that this bound can be improved depending on where
the known bit pattern is located, and that different (e.g.
non-contiguous) patterns can be tackled as well.



Context Our Contribution Conclusion

Our Results in a Nutshell

• Investigate the problem of factoring an unbalanced RSA
modulus n = pq (p > q) given the knowledge of some bits of
p.

• Find that it is easily solved when at least 2 log2 q contiguous
bits of p are known, regardless of their position.

• Show that this bound can be improved depending on where
the known bit pattern is located, and that different (e.g.
non-contiguous) patterns can be tackled as well.



Context Our Contribution Conclusion

Our Results in a Nutshell

• Investigate the problem of factoring an unbalanced RSA
modulus n = pq (p > q) given the knowledge of some bits of
p.

• Find that it is easily solved when at least 2 log2 q contiguous
bits of p are known, regardless of their position.

• Show that this bound can be improved depending on where
the known bit pattern is located, and that different (e.g.
non-contiguous) patterns can be tackled as well.



Context Our Contribution Conclusion

Outline

Context
Factoring with a hint
Unbalanced moduli

Our Contribution
Initial observations
Using Lattice Reduction
Other patterns



Context Our Contribution Conclusion

Outline

Context
Factoring with a hint
Unbalanced moduli

Our Contribution
Initial observations
Using Lattice Reduction
Other patterns



Context Our Contribution Conclusion

The Factoring Problem

• Factoring large integers is believed to be computationally
hard, and many cryptographic primitives are based on this
hardness, or the hardness of related problems (such as RSA).

• However, practical implementations of such primitives may
leak some secret information on the number to be factored,
and an adversary could conceivably use this information to
recover the secret factors efficiently.

• It is thus interesting to investigate how resilient the factoring
problem is to this sort of leakage. Line of work initiated by
Rivest and Shamir in 1986.



Context Our Contribution Conclusion

The Factoring Problem

• Factoring large integers is believed to be computationally
hard, and many cryptographic primitives are based on this
hardness, or the hardness of related problems (such as RSA).

• However, practical implementations of such primitives may
leak some secret information on the number to be factored,
and an adversary could conceivably use this information to
recover the secret factors efficiently.

• It is thus interesting to investigate how resilient the factoring
problem is to this sort of leakage. Line of work initiated by
Rivest and Shamir in 1986.



Context Our Contribution Conclusion

The Factoring Problem

• Factoring large integers is believed to be computationally
hard, and many cryptographic primitives are based on this
hardness, or the hardness of related problems (such as RSA).

• However, practical implementations of such primitives may
leak some secret information on the number to be factored,
and an adversary could conceivably use this information to
recover the secret factors efficiently.

• It is thus interesting to investigate how resilient the factoring
problem is to this sort of leakage. Line of work initiated by
Rivest and Shamir in 1986.



Context Our Contribution Conclusion

Factoring with a hint

• The original 1986 paper by Rivest and Shamir shows that one
can factor a balanced RSA modulus n = pq of N bits given
the knowledge of the N/3 top (or bottom) bits of p. In 1995,
Coppersmith improved this result to N/4.

• These results have been extended in various directions (such
as numbers with more than two prime factors, or numbers of
the form prq), usually using a chunk of bits as the leaked
information on the factors.

• Other types of hints have also been considered, such as an
oracle answering arbitrary yes/no questions, or an oracle
returning another composite integer whose factorization is
related to the initial one.



Context Our Contribution Conclusion

Factoring with a hint

• The original 1986 paper by Rivest and Shamir shows that one
can factor a balanced RSA modulus n = pq of N bits given
the knowledge of the N/3 top (or bottom) bits of p. In 1995,
Coppersmith improved this result to N/4.

• These results have been extended in various directions (such
as numbers with more than two prime factors, or numbers of
the form prq), usually using a chunk of bits as the leaked
information on the factors.

• Other types of hints have also been considered, such as an
oracle answering arbitrary yes/no questions, or an oracle
returning another composite integer whose factorization is
related to the initial one.



Context Our Contribution Conclusion

Factoring with a hint

• The original 1986 paper by Rivest and Shamir shows that one
can factor a balanced RSA modulus n = pq of N bits given
the knowledge of the N/3 top (or bottom) bits of p. In 1995,
Coppersmith improved this result to N/4.

• These results have been extended in various directions (such
as numbers with more than two prime factors, or numbers of
the form prq), usually using a chunk of bits as the leaked
information on the factors.

• Other types of hints have also been considered, such as an
oracle answering arbitrary yes/no questions, or an oracle
returning another composite integer whose factorization is
related to the initial one.



Context Our Contribution Conclusion

Coppersmith’s method I

• Most recent results on factoring with hints (and ours is no
exception) use Coppersmith’s lattice-based techniques for
finding small roots of polynomial equations.

• We give a quick run-down of Coppersmith’s own 1995 method
for factoring with hints.

• Let n = pq the number to be factored, and say the top L bits
of p are known to an attacker. He then deduces the top L bits
of q by division, and obtains an equation of the form
n = (p0 + x)(q0 + y), i.e.:

xy + q0x + p0y + (n − p0q0) = 0

where p0, q0 are known constants and x , y are the unknown
bit patterns.



Context Our Contribution Conclusion

Coppersmith’s method I

• Most recent results on factoring with hints (and ours is no
exception) use Coppersmith’s lattice-based techniques for
finding small roots of polynomial equations.

• We give a quick run-down of Coppersmith’s own 1995 method
for factoring with hints.

• Let n = pq the number to be factored, and say the top L bits
of p are known to an attacker. He then deduces the top L bits
of q by division, and obtains an equation of the form
n = (p0 + x)(q0 + y), i.e.:

xy + q0x + p0y + (n − p0q0) = 0

where p0, q0 are known constants and x , y are the unknown
bit patterns.



Context Our Contribution Conclusion

Coppersmith’s method I

• Most recent results on factoring with hints (and ours is no
exception) use Coppersmith’s lattice-based techniques for
finding small roots of polynomial equations.

• We give a quick run-down of Coppersmith’s own 1995 method
for factoring with hints.

• Let n = pq the number to be factored, and say the top L bits
of p are known to an attacker. He then deduces the top L bits
of q by division, and obtains an equation of the form
n = (p0 + x)(q0 + y), i.e.:

xy + q0x + p0y + (n − p0q0) = 0

where p0, q0 are known constants and x , y are the unknown
bit patterns.



Context Our Contribution Conclusion

Coppersmith’s method I

• Most recent results on factoring with hints (and ours is no
exception) use Coppersmith’s lattice-based techniques for
finding small roots of polynomial equations.

• We give a quick run-down of Coppersmith’s own 1995 method
for factoring with hints.

• Let n = pq the number to be factored, and say the top L bits
of p are known to an attacker. He then deduces the top L bits
of q by division, and obtains an equation of the form
n = (p0 + x)(q0 + y), i.e.:

xy + q0x + p0y + (n − p0q0) = 0

where p0, q0 are known constants and x , y are the unknown
bit patterns.



Context Our Contribution Conclusion

Coppersmith’s method I

• Most recent results on factoring with hints (and ours is no
exception) use Coppersmith’s lattice-based techniques for
finding small roots of polynomial equations.

• We give a quick run-down of Coppersmith’s own 1995 method
for factoring with hints.

• Let n = pq the number to be factored, and say the top L bits
of p are known to an attacker. He then deduces the top L bits
of q by division, and obtains an equation of the form
n = (p0 + x)(q0 + y), i.e.:

xy + q0x + p0y + (n − p0q0) = 0

where p0, q0 are known constants and x , y are the unknown
bit patterns.



Context Our Contribution Conclusion

Coppersmith’s method II

• The previous equation:

p(x , y) = xy + q0x + p0y + (n − p0q0) = 0

is a bivariate equation of degree 2 over the integers, with a
small root (x , y).

• Coppersmith shows that it can be solved provided that the
bitsizes of X and Y satisfy X + Y < 2D/3, where D is the
maximum bitsize of p(x , y) in the required range, in this case
N/2 + X for a balanced modulus with X = Y .

• Hence the size of the unknown chunk must satisfy:

6X < N + 2X i.e. X < N/4

as required.



Context Our Contribution Conclusion

Coppersmith’s method II

• The previous equation:

p(x , y) = xy + q0x + p0y + (n − p0q0) = 0

is a bivariate equation of degree 2 over the integers, with a
small root (x , y).

• Coppersmith shows that it can be solved provided that the
bitsizes of X and Y satisfy X + Y < 2D/3, where D is the
maximum bitsize of p(x , y) in the required range, in this case
N/2 + X for a balanced modulus with X = Y .

• Hence the size of the unknown chunk must satisfy:

6X < N + 2X i.e. X < N/4

as required.



Context Our Contribution Conclusion

Coppersmith’s method II

• The previous equation:

p(x , y) = xy + q0x + p0y + (n − p0q0) = 0

is a bivariate equation of degree 2 over the integers, with a
small root (x , y).

• Coppersmith shows that it can be solved provided that the
bitsizes of X and Y satisfy X + Y < 2D/3, where D is the
maximum bitsize of p(x , y) in the required range, in this case
N/2 + X for a balanced modulus with X = Y .

• Hence the size of the unknown chunk must satisfy:

6X < N + 2X i.e. X < N/4

as required.



Context Our Contribution Conclusion

Outline

Context
Factoring with a hint
Unbalanced moduli

Our Contribution
Initial observations
Using Lattice Reduction
Other patterns



Context Our Contribution Conclusion

Unbalanced moduli

• Unbalanced moduli n = pq, with p much larger than q, aren’t
as commonly used in cryptography as balanced ones.

• However, several proposed schemes use such moduli. For
instance, in his 1990 “RSA for paranoids” paper, Shamir
showed how RSA security could be improved at little
computational cost by choosing q of regular RSA size but p
much larger.

• This doesn’t improve security as much as a larger balanced n
would (because of factoring algorithms such as the ECM), but
it performs a lot faster.

• However, a larger n means a larger key size, and a larger
amount of secret data to protect from leakage.



Context Our Contribution Conclusion

Unbalanced moduli

• Unbalanced moduli n = pq, with p much larger than q, aren’t
as commonly used in cryptography as balanced ones.

• However, several proposed schemes use such moduli. For
instance, in his 1990 “RSA for paranoids” paper, Shamir
showed how RSA security could be improved at little
computational cost by choosing q of regular RSA size but p
much larger.

• This doesn’t improve security as much as a larger balanced n
would (because of factoring algorithms such as the ECM), but
it performs a lot faster.

• However, a larger n means a larger key size, and a larger
amount of secret data to protect from leakage.



Context Our Contribution Conclusion

Unbalanced moduli

• Unbalanced moduli n = pq, with p much larger than q, aren’t
as commonly used in cryptography as balanced ones.

• However, several proposed schemes use such moduli. For
instance, in his 1990 “RSA for paranoids” paper, Shamir
showed how RSA security could be improved at little
computational cost by choosing q of regular RSA size but p
much larger.

• This doesn’t improve security as much as a larger balanced n
would (because of factoring algorithms such as the ECM), but
it performs a lot faster.

• However, a larger n means a larger key size, and a larger
amount of secret data to protect from leakage.



Context Our Contribution Conclusion

Unbalanced moduli

• Unbalanced moduli n = pq, with p much larger than q, aren’t
as commonly used in cryptography as balanced ones.

• However, several proposed schemes use such moduli. For
instance, in his 1990 “RSA for paranoids” paper, Shamir
showed how RSA security could be improved at little
computational cost by choosing q of regular RSA size but p
much larger.

• This doesn’t improve security as much as a larger balanced n
would (because of factoring algorithms such as the ECM), but
it performs a lot faster.

• However, a larger n means a larger key size, and a larger
amount of secret data to protect from leakage.



Context Our Contribution Conclusion

Outline

Context
Factoring with a hint
Unbalanced moduli

Our Contribution
Initial observations
Using Lattice Reduction
Other patterns



Context Our Contribution Conclusion

Some trivial cases

• General situation: we want to factor an unbalanced modulus
n = pq where q is of bit-length Q, under the assumption that
some L-bit chunk of p is known.

• A trivial case is when the Q most significant bits of p are
known. Indeed, a simple division recovers all Q bits of q.

• Similarly, if the Q least significant bits of p are known, say
p′ = p mod 2Q , we can compute:

n

p′ mod 2Q = q mod 2Q = q



Context Our Contribution Conclusion

Some trivial cases

• General situation: we want to factor an unbalanced modulus
n = pq where q is of bit-length Q, under the assumption that
some L-bit chunk of p is known.

• A trivial case is when the Q most significant bits of p are
known. Indeed, a simple division recovers all Q bits of q.

• Similarly, if the Q least significant bits of p are known, say
p′ = p mod 2Q , we can compute:

n

p′ mod 2Q = q mod 2Q = q



Context Our Contribution Conclusion

Some trivial cases

• General situation: we want to factor an unbalanced modulus
n = pq where q is of bit-length Q, under the assumption that
some L-bit chunk of p is known.

• A trivial case is when the Q most significant bits of p are
known. Indeed, a simple division recovers all Q bits of q.

• Similarly, if the Q least significant bits of p are known, say
p′ = p mod 2Q , we can compute:

n

p′ mod 2Q = q mod 2Q = q



Context Our Contribution Conclusion

Some trivial cases

• General situation: we want to factor an unbalanced modulus
n = pq where q is of bit-length Q, under the assumption that
some L-bit chunk of p is known.

• A trivial case is when the Q most significant bits of p are
known. Indeed, a simple division recovers all Q bits of q.

• Similarly, if the Q least significant bits of p are known, say
p′ = p mod 2Q , we can compute:

n

p′ mod 2Q = q mod 2Q = q

×



Context Our Contribution Conclusion

A simple pattern elsewhere

• While a bit pattern at either end of p readily provides
information on q, it is not as easy to take advantage of a bit
pattern elsewhere.

• One simple example is the case when p has a Q-bit chunk of
zero bits starting from position Q.

• Indeed, this gives p = 22Q + y where y is of bitsize Q. We
can thus write:

gcd(n, n mod 22Q) = gcd(pq, yq mod 22Q) = gcd(pq, yq) = q



Context Our Contribution Conclusion

A simple pattern elsewhere

• While a bit pattern at either end of p readily provides
information on q, it is not as easy to take advantage of a bit
pattern elsewhere.

• One simple example is the case when p has a Q-bit chunk of
zero bits starting from position Q.

×0 … 00 0

• Indeed, this gives p = 22Q + y where y is of bitsize Q. We
can thus write:

gcd(n, n mod 22Q) = gcd(pq, yq mod 22Q) = gcd(pq, yq) = q



Context Our Contribution Conclusion

A simple pattern elsewhere

• While a bit pattern at either end of p readily provides
information on q, it is not as easy to take advantage of a bit
pattern elsewhere.

• One simple example is the case when p has a Q-bit chunk of
zero bits starting from position Q.

×0 … 00 0

• Indeed, this gives p = 22Q + y where y is of bitsize Q. We
can thus write:

gcd(n, n mod 22Q) = gcd(pq, yq mod 22Q) = gcd(pq, yq) = q



Context Our Contribution Conclusion

Tackling more general patterns
• The previous case p = 22Q + y generalizes to:

p = u · 2W +L + v · 2W + y

with u, y unknown, and v a known L-bit pattern starting from
position W .

• To take advantage of our knowledge of v , we reduce the
equation n = pq mod 2W +L:

(n mod mod2W +L) = (v · 2W + y) · q (mod 2)W +L

• This has the form:

b = x(a + y) (mod 2)W +L

where x and y are unknowns of bitsizes Q and W
respectively, whereas a and b are known constants.

• This equation is then well-suited for applying techniques based
on lattice reduction.



Context Our Contribution Conclusion

Tackling more general patterns
• The previous case p = 22Q + y generalizes to:

p = u · 2W +L + v · 2W + y

with u, y unknown, and v a known L-bit pattern starting from
position W .

• To take advantage of our knowledge of v , we reduce the
equation n = pq mod 2W +L:

(n mod mod2W +L) = (v · 2W + y) · q (mod 2)W +L

• This has the form:

b = x(a + y) (mod 2)W +L

where x and y are unknowns of bitsizes Q and W
respectively, whereas a and b are known constants.

• This equation is then well-suited for applying techniques based
on lattice reduction.



Context Our Contribution Conclusion

Tackling more general patterns
• The previous case p = 22Q + y generalizes to:

p = u · 2W +L + v · 2W + y

with u, y unknown, and v a known L-bit pattern starting from
position W .

• To take advantage of our knowledge of v , we reduce the
equation n = pq mod 2W +L:

(n mod mod2W +L) = (v · 2W + y) · q (mod 2)W +L

• This has the form:

b = x(a + y) (mod 2)W +L

where x and y are unknowns of bitsizes Q and W
respectively, whereas a and b are known constants.

• This equation is then well-suited for applying techniques based
on lattice reduction.



Context Our Contribution Conclusion

Tackling more general patterns
• The previous case p = 22Q + y generalizes to:

p = u · 2W +L + v · 2W + y

with u, y unknown, and v a known L-bit pattern starting from
position W .

• To take advantage of our knowledge of v , we reduce the
equation n = pq mod 2W +L:

(n mod mod2W +L) = (v · 2W + y) · q (mod 2)W +L

• This has the form:

b = x(a + y) (mod 2)W +L

where x and y are unknowns of bitsizes Q and W
respectively, whereas a and b are known constants.

• This equation is then well-suited for applying techniques based
on lattice reduction.



Context Our Contribution Conclusion

Outline

Context
Factoring with a hint
Unbalanced moduli

Our Contribution
Initial observations
Using Lattice Reduction
Other patterns



Context Our Contribution Conclusion

Linearization

• To recover x and y in the previous equation:

b = x(a + y) (mod 2)W +L

a first, simple method is linearization: write z = xy . The
equation simplifies to a modular linear equation in two
variables:

b = ax + z (mod 2)W +L

• The solutions (x , z) form a lattice in Z2. Lattice reduction
algorithms like LLL will thus recover the solution we are after
if it is small enough.

• In our setting, x is of size Q and z of size Q + W . Therefore,
LLL will work provided that Q + (Q + W ) < W + L, i.e.
L > 2Q.



Context Our Contribution Conclusion

Linearization

• To recover x and y in the previous equation:

b = x(a + y) (mod 2)W +L

a first, simple method is linearization: write z = xy . The
equation simplifies to a modular linear equation in two
variables:

b = ax + z (mod 2)W +L

• The solutions (x , z) form a lattice in Z2. Lattice reduction
algorithms like LLL will thus recover the solution we are after
if it is small enough.

• In our setting, x is of size Q and z of size Q + W . Therefore,
LLL will work provided that Q + (Q + W ) < W + L, i.e.
L > 2Q.



Context Our Contribution Conclusion

Linearization

• To recover x and y in the previous equation:

b = x(a + y) (mod 2)W +L

a first, simple method is linearization: write z = xy . The
equation simplifies to a modular linear equation in two
variables:

b = ax + z (mod 2)W +L

• The solutions (x , z) form a lattice in Z2. Lattice reduction
algorithms like LLL will thus recover the solution we are after
if it is small enough.

• In our setting, x is of size Q and z of size Q + W . Therefore,
LLL will work provided that Q + (Q + W ) < W + L, i.e.
L > 2Q.



Context Our Contribution Conclusion

Linearization

• To recover x and y in the previous equation:

b = x(a + y) (mod 2)W +L

a first, simple method is linearization: write z = xy . The
equation simplifies to a modular linear equation in two
variables:

b = ax + z (mod 2)W +L

• The solutions (x , z) form a lattice in Z2. Lattice reduction
algorithms like LLL will thus recover the solution we are after
if it is small enough.

• In our setting, x is of size Q and z of size Q + W . Therefore,
LLL will work provided that Q + (Q + W ) < W + L, i.e.
L > 2Q.



Context Our Contribution Conclusion

Linearization

In other words, a 2Q-bit pattern anywhere in p is enough to factor
n.

×

×

×

×
…



Context Our Contribution Conclusion

Better bound with Coppersmith
• Instead of linearizing the equation

b = x(a + y) (mod 2)W +L

we can try to solve it directly.
• As a bivariate modular quadratic, this equation can be tackled

with extensions of Coppersmith’s method for recovering small
roots of polynomial equations.

• While the original Coppersmith theorems apply to either
univariate modular polynomials or bivariate polynomials over
Z, they generalize heuristically to the multivariate modular
case, subject to appropriate bounds given by
Howgrave-Graham.

• Moreover, this particular quadratic equation is well
understood: it is a simple variant of the Boneh-Durfee
equation x(a + y) = 1 mod e, whose root can be recovered if
x and y satisfy bounds that are easy to express.



Context Our Contribution Conclusion

Better bound with Coppersmith
• Instead of linearizing the equation

b = x(a + y) (mod 2)W +L

we can try to solve it directly.
• As a bivariate modular quadratic, this equation can be tackled

with extensions of Coppersmith’s method for recovering small
roots of polynomial equations.

• While the original Coppersmith theorems apply to either
univariate modular polynomials or bivariate polynomials over
Z, they generalize heuristically to the multivariate modular
case, subject to appropriate bounds given by
Howgrave-Graham.

• Moreover, this particular quadratic equation is well
understood: it is a simple variant of the Boneh-Durfee
equation x(a + y) = 1 mod e, whose root can be recovered if
x and y satisfy bounds that are easy to express.



Context Our Contribution Conclusion

Better bound with Coppersmith
• Instead of linearizing the equation

b = x(a + y) (mod 2)W +L

we can try to solve it directly.
• As a bivariate modular quadratic, this equation can be tackled

with extensions of Coppersmith’s method for recovering small
roots of polynomial equations.

• While the original Coppersmith theorems apply to either
univariate modular polynomials or bivariate polynomials over
Z, they generalize heuristically to the multivariate modular
case, subject to appropriate bounds given by
Howgrave-Graham.

• Moreover, this particular quadratic equation is well
understood: it is a simple variant of the Boneh-Durfee
equation x(a + y) = 1 mod e, whose root can be recovered if
x and y satisfy bounds that are easy to express.



Context Our Contribution Conclusion

Better bound with Coppersmith
• Instead of linearizing the equation

b = x(a + y) (mod 2)W +L

we can try to solve it directly.
• As a bivariate modular quadratic, this equation can be tackled

with extensions of Coppersmith’s method for recovering small
roots of polynomial equations.

• While the original Coppersmith theorems apply to either
univariate modular polynomials or bivariate polynomials over
Z, they generalize heuristically to the multivariate modular
case, subject to appropriate bounds given by
Howgrave-Graham.

• Moreover, this particular quadratic equation is well
understood: it is a simple variant of the Boneh-Durfee
equation x(a + y) = 1 mod e, whose root can be recovered if
x and y satisfy bounds that are easy to express.



Context Our Contribution Conclusion

Better bound with Coppersmith

• The lattice involved in solving our equation has the same form
and the same determinant as Boneh and Durfee’s, so the
bound on x and y is computed identically.

• However, contrary to the Boneh-Durfee setting, x and y need
not have the same size in our case. Adapting the
computation, we find that (x , y) can be recovered iff:

L > Q +
2

3
(
√

W 2 + 3QW −W )

• The number of known bits L required to factor n using this
method is thus close to Q for small W , and increases
asymptotically to 2Q for W →∞.



Context Our Contribution Conclusion

Better bound with Coppersmith

• The lattice involved in solving our equation has the same form
and the same determinant as Boneh and Durfee’s, so the
bound on x and y is computed identically.

• However, contrary to the Boneh-Durfee setting, x and y need
not have the same size in our case. Adapting the
computation, we find that (x , y) can be recovered iff:

L > Q +
2

3
(
√

W 2 + 3QW −W )

• The number of known bits L required to factor n using this
method is thus close to Q for small W , and increases
asymptotically to 2Q for W →∞.



Context Our Contribution Conclusion

Better bound with Coppersmith

• The lattice involved in solving our equation has the same form
and the same determinant as Boneh and Durfee’s, so the
bound on x and y is computed identically.

• However, contrary to the Boneh-Durfee setting, x and y need
not have the same size in our case. Adapting the
computation, we find that (x , y) can be recovered iff:

L > Q +
2

3
(
√

W 2 + 3QW −W )

• The number of known bits L required to factor n using this
method is thus close to Q for small W , and increases
asymptotically to 2Q for W →∞.



Context Our Contribution Conclusion

Better bound with Coppersmith

Required number of known bits growing from Q to 2Q as the
chunk slides from the least significant bits to the most significant
bits. The method is always better than linearization.

×

×

×

×
…



Context Our Contribution Conclusion

Outline

Context
Factoring with a hint
Unbalanced moduli

Our Contribution
Initial observations
Using Lattice Reduction
Other patterns



Context Our Contribution Conclusion

Other patterns

• It is also possible to use hints consisting of multiple
non-contiguous bit blocks of p to factor n. In the paper, we
consider the case when the the least significant Q/2 bits of p
are known, as well as a Q-bit pattern starting from position
Q. This data is sufficient to factor.

×

• Furthermore, particular forms of n itself can further improve
the number of bits needed to factor. We find that a short,
suitably placed string of zeroes in n can improve the bounds
of our Coppersmith-type technique by about 5%.



Context Our Contribution Conclusion

Other patterns

• It is also possible to use hints consisting of multiple
non-contiguous bit blocks of p to factor n. In the paper, we
consider the case when the the least significant Q/2 bits of p
are known, as well as a Q-bit pattern starting from position
Q. This data is sufficient to factor.

×

• Furthermore, particular forms of n itself can further improve
the number of bits needed to factor. We find that a short,
suitably placed string of zeroes in n can improve the bounds
of our Coppersmith-type technique by about 5%.



Context Our Contribution Conclusion

Conclusion

• At most 2Q contiguous bits of p, appearing anywhere, are
needed to factor some unbalanced modulus pq.

• In many cases, even fewer bits are needed.

• Additional patterns suggest that further improvements and
generalizations are possible.



Context Our Contribution Conclusion

Conclusion

• At most 2Q contiguous bits of p, appearing anywhere, are
needed to factor some unbalanced modulus pq.

• In many cases, even fewer bits are needed.

• Additional patterns suggest that further improvements and
generalizations are possible.



Context Our Contribution Conclusion

Conclusion

• At most 2Q contiguous bits of p, appearing anywhere, are
needed to factor some unbalanced modulus pq.

• In many cases, even fewer bits are needed.

• Additional patterns suggest that further improvements and
generalizations are possible.



Context Our Contribution Conclusion

Thank you!


	Context
	Factoring with a hint
	Unbalanced moduli

	Our Contribution
	Initial observations
	Using Lattice Reduction
	Other patterns

	Conclusion

