
Context Our contribution Conclusion

Cryptanalysis of the RSA subgroup assumption
from TCC 2005

Jean-Sébastien Coron1 Antoine Joux2

Avradip Mandal1 David Naccache3

Mehdi Tibouchi1,3

1Université du Luxembourg

3Université de Versailles–Saint-Quentin/DGA

2École normale supérieure

PKC 2011



Context Our contribution Conclusion

Outline

Context
Cryptography in subgroups of Z∗N
Original security analysis

Our contribution
The new attack
Implementation



Context Our contribution Conclusion

Outline

Context
Cryptography in subgroups of Z∗N
Original security analysis

Our contribution
The new attack
Implementation



Context Our contribution Conclusion

Groth’s paper from TCC 2005

• In a paper presented at TCC 2005, Groth showed how to
construct a number of cryptographic primitives using small
subgroups G of hidden order in Z∗N .

• N is an RSA modulus of a special form:

N = p · q = (2p′r + 1) · (2q′s + 1)

(p, q prime; p′, q′ prime divisors of p − 1, q − 1; r , s random
integers). Then G is the unique subgroup of Z∗N of order p′q′.

• Based on a computational assumption similar to Strong RSA
but restricted to G, Groth proposes standard model
constructions for:

• EUF-ACMA-secure signatures;
• statistically hiding, computationally binding commitments;
• IND-CPA-secure encryption (for a slightly different N).

• Due to the relatively small size of G, these schemes tend to
be more efficient than Strong RSA-based constructions.



Context Our contribution Conclusion

The strong RSA subgroup assumption

In the schemes proposed by Groth, the public key contains an RSA
subgroup pair (N, g), consisting of N as above:

N = p · q = (2p′r + 1) · (2q′s + 1)

and a generator g of the subgroup G ⊂ Z∗N of order p′q′.

Then, the security is based on the following assumption on the RSA
subgroup pairs (N, g) produced by the key generation algorithm.

Definition (Strong RSA subgroup assumption)

It is infeasible to find u, v ∈ Z∗N and d , e > 1 such that:

g = uw e mod N and ud = 1 mod N

In particular, it should be hard to find e-th roots of g for any e.



Context Our contribution Conclusion

Outline

Context
Cryptography in subgroups of Z∗N
Original security analysis

Our contribution
The new attack
Implementation



Context Our contribution Conclusion

Factorization attacks

Consider an RSA subgroup pair (N, g), with
N = p · q = (2p′r + 1) · (2q′s + 1). Groth made the following
observations.

• If an attacker can find the hidden subgroup order p′q′ or
factor N, she can compute e-th roots of g and thus break the
strong RSA subgroup assumption.

• We have gp′ = 1 mod p, so if an attacker can find p′, she can
recover p = gcd(N, gp′ − 1), factor N, and break the
assumption again.



Context Our contribution Conclusion

Concrete parameters

As seen previously, the bit lengths `N , `p′ , `q′ of N, p′, q′ should be
chosen large enough that:

1. factoring N is infeasible;

2. recovering p′, q′ or the hidden order p′q′ is infeasible.

Since no better attacks on the problem are known, Groth
suggested concrete parameters based on these two criteria:

1. `N = 1024 (for roughly 80 bits of security against GNFS);

2. `p′ = `q′ = 100, as Pollard’s lambda method gives a method
to recover the hidden group order in O(

√
p′q′) time and

constant space (the choice gives 100 bits of security against
this attack).

This talk: evidence that this choice of `p′ , `q′ is overly optimistic.



Context Our contribution Conclusion

Concrete parameters

As seen previously, the bit lengths `N , `p′ , `q′ of N, p′, q′ should be
chosen large enough that:

1. factoring N is infeasible;

2. recovering p′, q′ or the hidden order p′q′ is infeasible.

Since no better attacks on the problem are known, Groth
suggested concrete parameters based on these two criteria:

1. `N = 1024 (for roughly 80 bits of security against GNFS);

2. `p′ = `q′ = 100, as Pollard’s lambda method gives a method
to recover the hidden group order in O(

√
p′q′) time and

constant space (the choice gives 100 bits of security against
this attack).

This talk: evidence that this choice of `p′ , `q′ is overly optimistic.



Context Our contribution Conclusion

Outline

Context
Cryptography in subgroups of Z∗N
Original security analysis

Our contribution
The new attack
Implementation



Context Our contribution Conclusion

Main result

Consider an RSA subgroup pair (N, g), with
N = p · q = (2p′r + 1) · (2q′s + 1). An attacker wants to break the
strong RSA subgroup assumption for (N, g) by factoring N.

While the best attack considered originally ran in O(
√
p′q′), we

introduce a new attack in time and space Õ(
√
p′), based on a

variant of the baby-step giant-step algorithm.

Thus, in principle, choosing `p′ = 100, as originally suggested, only
provides about 50 bits of security against this attack.

We will now describe this new attack and discuss its practicality.



Context Our contribution Conclusion

Baby-step giant-step

Recall how the baby-step, giant-step algorithm can reveal the
hidden order n of a cyclic group G with generator g in time and
space roughly linear in

√
n.

If n is of bit length `, we can write:

n = a + ∆ · b with ∆ = 2d`/2e and 0 ≤ a, b < ∆

Now, in time and space O(
√
n), we can compute:

L = {xi = g i : 0 < i < ∆}
L′ = {yj = (g∆)−j : 0 ≤ j < ∆}

A collision xi = yj between those two lists (obtained by sorting,
search trees, etc., in time quasi-linear in

√
n) gives a nontrivial pair

(i , j) such that g i+∆·j = 1. We have (i , j) = (a, b) and
n = a + ∆ · b is recovered.



Context Our contribution Conclusion

Applying BSGS to our setting (I)
To do something similar in our setting, we can write the RSA
subgroup G as Gp ×Gq, where Gp is the mod-p group, of order
p′, and Gq is the mod-q group, of order q′.

In particular, g mod p is a generator of Gp and has multiplicative
order p′. Now let ` = `p′ be the bit length of p′, and write

p′ = a + ∆ · b with ∆ = 2d`/2e and 0 ≤ a, b < ∆

as before. We would like to recover p′ in time and space linear in√
p′ by applying the baby-step giant-step algorithm in Gp.

However, we cannot compute the two lists:

Lp = {g i mod p : 0 < i < ∆}
L′p = {(g∆)−j mod p : 0 ≤ j < ∆}

because p is unknown!



Context Our contribution Conclusion

Applying BSGS to our setting (II)

Consider the following two lists instead:

L = {xi = g i mod N : 0 < i < ∆}
L′ = {yj = (g∆)−j mod N : 0 ≤ j < ∆}

Then we can test if xi and yj “collide mod p” by computing
gcd(N, xi − yj).

If we compute all gcd values gcd(N, xi − yj), we will in particular
evaluate gcd(N, xa − yb) = p and thus factor N.

But this is still not what we want: this requires computing
∆2 = O(p′) gcd values, which cannot be done in Õ(

√
p′) time.



Context Our contribution Conclusion

Attaining Õ(
√
p′) time

We can make the gcd trick work as follows.

1. Instead of just computing the list of all values xi = g i ,
0 < i < ∆, form the following polynomial:

f (x) =
∏

0<i<∆

(x − xi ) mod N

2. For 0 ≤ j < ∆, evaluate the polynomial f at yj = (g∆)−j , and
compute gcd(N, f (yj)). For j = b, this reveals p as before.

This variant now runs in time quasi-linear in ∆ (or equivalently√
p′). Indeed, we can compute the coefficients of f with a product

tree and evaluate it at all the yj ’s with a remainder tree, both in
time O(M(∆) log ∆).



Context Our contribution Conclusion

Improving complexity further

Since the xi ’s and the yj ’s are both in geometric progression,
computing the polynomial:

f (x) =
∏

0<i<∆

(x − xi ) mod N

and evalutating it at all yj ’s can be done faster than with generic
product and remainder tree techniques, using the Newton basis
interpolation and evaluation algorithms by Bostan and Schost
(which simplify further in our setting).

Overall complexity:

Time: 3M(∆) + O(∆) arithmetic operations in ZN .

Space: 4∆ + O(1) elements of ZN .



Context Our contribution Conclusion

Outline

Context
Cryptography in subgroups of Z∗N
Original security analysis

Our contribution
The new attack
Implementation



Context Our contribution Conclusion

Implementation details

• Newton basis conversions following Bostan’s thesis.

• Arbitrary precision arithmetic using MPIR/MPFR.

• Fast polynomial arithmetic over ZN using the FLINT library.
(Lack of a built-in middle-product leads to some efficency loss
in time and space).

• Single-threaded implementation in C.

• Tested on a single core of an Intel Core2 Duo E8500 3.12GHz
CPU, for a 1024-bit modulus N, and various sizes for p′, q′.



Context Our contribution Conclusion

Experimental results

` = dlog2 p
′e running time

26 bits 1.9 seconds
28 bits 4.0 seconds
30 bits 8.1 seconds
32 bits 16.5 seconds
34 bits 33.5 seconds
36 bits 68.9 seconds

For the tested sizes, we get a very regular increase in running time,
by a factor of about 2 for every two bits of `: essentially linear in√
p′ as expected.



Context Our contribution Conclusion

Extrapolation to larger parameters

Direct extrapolation of the experimental running times gives the
following estimates for running times with larger `.

` = dlog2 p
′e running time clock cycles

60 bits 3 days 250

80 bits 9 years 260

100 bits 9000 years 270

We would expect an attack on Groth’s proposed parameters to
take 9000 CPU years: a lot, but not absurdly so. The RSA-768
factoring effort took around 2000 CPU years.

However, there are serious hurdles to overcome before such large
parameters can be attacked in practice.



Context Our contribution Conclusion

Limitations

This attacks works well for small parameters but is difficult to carry
out in practice for larger ones, due to two main limitations.

• Difficult to parallelize: due to the sequential nature of
Bostan’s algorithm, distributing the full size computation on
several CPUs appears to be nontrivial.

• Large memory requirements: the O(
√
p′) space requirement is

a major difficulty. Even ` = 60 would require storage for 4
polynomials of degree 230 over ZN , or about 500 GB of fast
access memory.

In our implementation, due to suboptimal memory
management, we actually ran into memory problems as early
as ` ≈ 38.



Context Our contribution Conclusion

Conclusion

• Proposed a new attack on hidden order subgroups of Z∗N in
time and space Õ(

√
p′).

• Extrapolated running time suggests that the parameter choice
of the original TCC 2005 paper is insecure.

• However, distributing computations and storage remains a
stumbling block before this parameter choice can be attacked
in practice.

• Open questions:
• Better memory management?
• Parallel implementation?
• Ideally: constant-space variant à la Pollard lambda?



Context Our contribution Conclusion

Thank you!


	Context
	Cryptography in subgroups of ZN*
	Original security analysis

	Our contribution
	The new attack
	Implementation

	Conclusion

