
Context Single-User Setting Multi-User Setting Conclusion

On the broadcast and validity-checking security
of PKCS#1 v1.5 encryption

Aurélie Bauer1 Jean-Sébastien Coron2 David Naccache1

Mehdi Tibouchi1,2 Damien Vergnaud1

1École normale supérieure

2Université du Luxembourg

ACNS 2010

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

RSA Signatures

• Encrypting with textbook RSA:

c = me mod N

is a bad idea (e.g. homomorphic properties, deterministic
encryption).

• Therefore, encapsulate m using a padding scheme µ:

c = µ(m)e mod N

Context Single-User Setting Multi-User Setting Conclusion

RSA Signatures

• Encrypting with textbook RSA:

c = me mod N

is a bad idea (e.g. homomorphic properties, deterministic
encryption).

• Therefore, encapsulate m using a padding scheme µ:

c = µ(m)e mod N

Context Single-User Setting Multi-User Setting Conclusion

Padding schemes

• Two kinds of padding schemes:

1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent
specific attacks. Often exhibit other weaknesses.

2. Provably secure paddings, e.g. OAEP. Proven to be secure
under well-defined assumptions.

• Although potentially less secure, ad-hoc paddings remain in
widespread use in real-world applications. Re-evaluating them
periodically is thus necessary.

Context Single-User Setting Multi-User Setting Conclusion

Padding schemes

• Two kinds of padding schemes:

1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent
specific attacks. Often exhibit other weaknesses.

2. Provably secure paddings, e.g. OAEP. Proven to be secure
under well-defined assumptions.

• Although potentially less secure, ad-hoc paddings remain in
widespread use in real-world applications. Re-evaluating them
periodically is thus necessary.

Context Single-User Setting Multi-User Setting Conclusion

Padding schemes

• Two kinds of padding schemes:

1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent
specific attacks. Often exhibit other weaknesses.

2. Provably secure paddings, e.g. OAEP. Proven to be secure
under well-defined assumptions.

• Although potentially less secure, ad-hoc paddings remain in
widespread use in real-world applications. Re-evaluating them
periodically is thus necessary.

Context Single-User Setting Multi-User Setting Conclusion

Padding schemes

• Two kinds of padding schemes:

1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent
specific attacks. Often exhibit other weaknesses.

2. Provably secure paddings, e.g. OAEP. Proven to be secure
under well-defined assumptions.

• Although potentially less secure, ad-hoc paddings remain in
widespread use in real-world applications. Re-evaluating them
periodically is thus necessary.

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

PKCS#1 v1.5

• The PKCS#1 v1.5 standard defines an ad-hoc padding
scheme with a randomizer of 64 bits or more.

• Let k be the size of N in bytes. The padding has the following
form:

µ(m, r) = 000216‖r‖0016‖m

with 2 leading fixed bytes, a string r of k − |m| − 3 ≥ 8
random nonzero bytes, and a zero byte indicating the end of
the randomizer, followed by m itself.

• Thus, the byte size |m| of m must be at most k − 11.

Context Single-User Setting Multi-User Setting Conclusion

PKCS#1 v1.5

• The PKCS#1 v1.5 standard defines an ad-hoc padding
scheme with a randomizer of 64 bits or more.

• Let k be the size of N in bytes. The padding has the following
form:

µ(m, r) = 000216‖r‖0016‖m

with 2 leading fixed bytes, a string r of k − |m| − 3 ≥ 8
random nonzero bytes, and a zero byte indicating the end of
the randomizer, followed by m itself.

• Thus, the byte size |m| of m must be at most k − 11.

Context Single-User Setting Multi-User Setting Conclusion

PKCS#1 v1.5

• The PKCS#1 v1.5 standard defines an ad-hoc padding
scheme with a randomizer of 64 bits or more.

• Let k be the size of N in bytes. The padding has the following
form:

µ(m, r) = 000216‖r‖0016‖m

with 2 leading fixed bytes, a string r of k − |m| − 3 ≥ 8
random nonzero bytes, and a zero byte indicating the end of
the randomizer, followed by m itself.

• Thus, the byte size |m| of m must be at most k − 11.

Context Single-User Setting Multi-User Setting Conclusion

PKCS#1 v1.5

• The PKCS#1 v1.5 standard defines an ad-hoc padding
scheme with a randomizer of 64 bits or more.

• Let k be the size of N in bytes. The padding has the following
form:

µ(m, r) = 000216‖r‖0016‖m

with 2 leading fixed bytes, a string r of k − |m| − 3 ≥ 8
random nonzero bytes, and a zero byte indicating the end of
the randomizer, followed by m itself.

• Thus, the byte size |m| of m must be at most k − 11.

Context Single-User Setting Multi-User Setting Conclusion

PKCS#1 v1.5

• The PKCS#1 v1.5 standard defines an ad-hoc padding
scheme with a randomizer of 64 bits or more.

• Let k be the size of N in bytes. The padding has the following
form:

µ(m, r) = 000216‖r‖0016‖m

with 2 leading fixed bytes, a string r of k − |m| − 3 ≥ 8
random nonzero bytes, and a zero byte indicating the end of
the randomizer, followed by m itself.

• Thus, the byte size |m| of m must be at most k − 11.

Context Single-User Setting Multi-User Setting Conclusion

PKCS#1 v1.5

• The PKCS#1 v1.5 standard defines an ad-hoc padding
scheme with a randomizer of 64 bits or more.

• Let k be the size of N in bytes. The padding has the following
form:

µ(m, r) = 000216‖r‖0016‖m

with 2 leading fixed bytes, a string r of k − |m| − 3 ≥ 8
random nonzero bytes, and a zero byte indicating the end of
the randomizer, followed by m itself.

• Thus, the byte size |m| of m must be at most k − 11.

Context Single-User Setting Multi-User Setting Conclusion

Previous work

• In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5,
recovering a plaintext with around 221 queries to a
validity-checking oracle: PKCS#1 v1.5 is not
`-OW-VCA-secure for large `.

Since many SSL implementations at the time behaved as
validity-checking oracles, SSL session keys could be recovered
by active adversaries in practice.

Since then, this bug has been patched, but PKCS#1 v1.5 is
still the default encryption algorithm for SSL/TLS.

• In 2000, Coron, Naccache, Joye and Paillier introduced
chosen-plaintext attacks on PKCS#1 v1.5, implying in
particular that PKCS#1 v1.5 is not IND-CPA-secure for small
e or large |m|.

Context Single-User Setting Multi-User Setting Conclusion

Previous work

• In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5,
recovering a plaintext with around 221 queries to a
validity-checking oracle: PKCS#1 v1.5 is not
`-OW-VCA-secure for large `.

Since many SSL implementations at the time behaved as
validity-checking oracles, SSL session keys could be recovered
by active adversaries in practice.

Since then, this bug has been patched, but PKCS#1 v1.5 is
still the default encryption algorithm for SSL/TLS.

• In 2000, Coron, Naccache, Joye and Paillier introduced
chosen-plaintext attacks on PKCS#1 v1.5, implying in
particular that PKCS#1 v1.5 is not IND-CPA-secure for small
e or large |m|.

Context Single-User Setting Multi-User Setting Conclusion

Previous work

• In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5,
recovering a plaintext with around 221 queries to a
validity-checking oracle: PKCS#1 v1.5 is not
`-OW-VCA-secure for large `.

Since many SSL implementations at the time behaved as
validity-checking oracles, SSL session keys could be recovered
by active adversaries in practice.

Since then, this bug has been patched, but PKCS#1 v1.5 is
still the default encryption algorithm for SSL/TLS.

• In 2000, Coron, Naccache, Joye and Paillier introduced
chosen-plaintext attacks on PKCS#1 v1.5, implying in
particular that PKCS#1 v1.5 is not IND-CPA-secure for small
e or large |m|.

Context Single-User Setting Multi-User Setting Conclusion

Previous work

• In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5,
recovering a plaintext with around 221 queries to a
validity-checking oracle: PKCS#1 v1.5 is not
`-OW-VCA-secure for large `.

Since many SSL implementations at the time behaved as
validity-checking oracles, SSL session keys could be recovered
by active adversaries in practice.

Since then, this bug has been patched, but PKCS#1 v1.5 is
still the default encryption algorithm for SSL/TLS.

• In 2000, Coron, Naccache, Joye and Paillier introduced
chosen-plaintext attacks on PKCS#1 v1.5, implying in
particular that PKCS#1 v1.5 is not IND-CPA-secure for small
e or large |m|.

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5
encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
• not 1-IND-VCA-secure
• not NM-CPA-secure
• not 2-OW-CCA-secure for large |m|
• OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).
• Coppersmith-based plaintext-recovery attack on broadcast

PKCS#1 v1.5 encryption
• for 1024-bit moduli, recovers a 936-bit message encrypted for
≥ 4 recipients (heuristic polynomial time).

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

The main idea
Our analysis in the single-user setting is mostly based on the
following observation.

• Consider a message m with Z > 2 trailing zero bits.

µ(m, r) = 000216‖r‖0016‖ · · · ‖002

Easy to write down µ(m, r) · 2−Z .
With good probability, µ(m, r) · (1− 2−Z) is still a valid
padding of some m′.

• Conversely, if the last Z bits of m are not all zero,
µ(m, r) · 2−Z is more or less “random”.
With overwhelming probability, µ(m, r) · (1− 2−Z) is not a
valid padding.

Thus, if c is a ciphertext corresponding to m,
c ′ = c · (1− 2−Z)e mod N is a valid ciphertext roughly when m
ends in Z zeroes.

Context Single-User Setting Multi-User Setting Conclusion

The main idea
Our analysis in the single-user setting is mostly based on the
following observation.

• Consider a message m with Z > 2 trailing zero bits.

µ(m, r) = 000216‖r‖0016‖ · · · ‖002

Easy to write down µ(m, r) · 2−Z .
With good probability, µ(m, r) · (1− 2−Z) is still a valid
padding of some m′.

• Conversely, if the last Z bits of m are not all zero,
µ(m, r) · 2−Z is more or less “random”.
With overwhelming probability, µ(m, r) · (1− 2−Z) is not a
valid padding.

Thus, if c is a ciphertext corresponding to m,
c ′ = c · (1− 2−Z)e mod N is a valid ciphertext roughly when m
ends in Z zeroes.

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

Indistinguishability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
m0,m1

←−−−−− chooses m0,m1

b
$← {0, 1}; c ← Enc(pk,mb)

c
−−−−−→

b′

←−−−−− guesses b′

Encryption is IND-ATK-secure if for all attackers in attack model
ATK, 2 Pr[b = b′]− 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Context Single-User Setting Multi-User Setting Conclusion

Indistinguishability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
m0,m1

←−−−−− chooses m0,m1

b
$← {0, 1}; c ← Enc(pk,mb)

c
−−−−−→

b′

←−−−−− guesses b′

Encryption is IND-ATK-secure if for all attackers in attack model
ATK, 2 Pr[b = b′]− 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Context Single-User Setting Multi-User Setting Conclusion

Indistinguishability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
m0,m1

←−−−−− chooses m0,m1

b
$← {0, 1}; c ← Enc(pk,mb)

c
−−−−−→

b′

←−−−−− guesses b′

Encryption is IND-ATK-secure if for all attackers in attack model
ATK, 2 Pr[b = b′]− 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Context Single-User Setting Multi-User Setting Conclusion

Indistinguishability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
m0,m1

←−−−−− chooses m0,m1

b
$← {0, 1}; c ← Enc(pk,mb)

c
−−−−−→

b′

←−−−−− guesses b′

Encryption is IND-ATK-secure if for all attackers in attack model
ATK, 2 Pr[b = b′]− 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Context Single-User Setting Multi-User Setting Conclusion

Indistinguishability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
m0,m1

←−−−−− chooses m0,m1

b
$← {0, 1}; c ← Enc(pk,mb)

c
−−−−−→

b′

←−−−−− guesses b′

Encryption is IND-ATK-secure if for all attackers in attack model
ATK, 2 Pr[b = b′]− 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Context Single-User Setting Multi-User Setting Conclusion

Indistinguishability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
m0,m1

←−−−−− chooses m0,m1

b
$← {0, 1}; c ← Enc(pk,mb)

c
−−−−−→

b′

←−−−−− guesses b′

Encryption is IND-ATK-secure if for all attackers in attack model
ATK, 2 Pr[b = b′]− 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Context Single-User Setting Multi-User Setting Conclusion

Indistinguishability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
m0,m1

←−−−−− chooses m0,m1

b
$← {0, 1}; c ← Enc(pk,mb)

c
−−−−−→

b′

←−−−−− guesses b′

Encryption is IND-ATK-secure if for all attackers in attack model
ATK, 2 Pr[b = b′]− 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Context Single-User Setting Multi-User Setting Conclusion

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is
defined as follows:

1. Choose m0 = 00 · · · 0016, and m1 any message with a nonzero
trailing nibble.

2. Upon receiving the challenge ciphertext c , compute
c ′ = c · (1− 2−4)e , and query the oracle on c ′. If c ′ is valid,
set b′ = 0. Otherwise, set b′ = 1.

This breaks IND-VCA with a single query, because:

• by a counting argument, if b = 1, c ′ can never be valid;

• by carefully writing the substraction, if b = 0, c ′ is valid with
probability > 0.47.

Context Single-User Setting Multi-User Setting Conclusion

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is
defined as follows:

1. Choose m0 = 00 · · · 0016, and m1 any message with a nonzero
trailing nibble.

2. Upon receiving the challenge ciphertext c , compute
c ′ = c · (1− 2−4)e , and query the oracle on c ′. If c ′ is valid,
set b′ = 0. Otherwise, set b′ = 1.

This breaks IND-VCA with a single query, because:

• by a counting argument, if b = 1, c ′ can never be valid;

• by carefully writing the substraction, if b = 0, c ′ is valid with
probability > 0.47.

Context Single-User Setting Multi-User Setting Conclusion

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is
defined as follows:

1. Choose m0 = 00 · · · 0016, and m1 any message with a nonzero
trailing nibble.

2. Upon receiving the challenge ciphertext c , compute
c ′ = c · (1− 2−4)e , and query the oracle on c ′. If c ′ is valid,
set b′ = 0. Otherwise, set b′ = 1.

This breaks IND-VCA with a single query, because:

• by a counting argument, if b = 1, c ′ can never be valid;

• by carefully writing the substraction, if b = 0, c ′ is valid with
probability > 0.47.

Context Single-User Setting Multi-User Setting Conclusion

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is
defined as follows:

1. Choose m0 = 00 · · · 0016, and m1 any message with a nonzero
trailing nibble.

2. Upon receiving the challenge ciphertext c , compute
c ′ = c · (1− 2−4)e , and query the oracle on c ′. If c ′ is valid,
set b′ = 0. Otherwise, set b′ = 1.

This breaks IND-VCA with a single query, because:

• by a counting argument, if b = 1, c ′ can never be valid;

• by carefully writing the substraction, if b = 0, c ′ is valid with
probability > 0.47.

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

Non-malleability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
R,M
←−−−−− relation R, sampling M

m←M; c ← Enc(pk,m)
c

−−−−−→
c ′

←−−−−− chooses c ′ 6= c

Encryption is NM-ATK-secure if for all attackers in attack model
ATK, Pr[R(m,m′)]− Pr[m0 ←M;R(m0,m

′)] is negligible.

In our case, ATK = CPA = no oracle.

Context Single-User Setting Multi-User Setting Conclusion

Non-malleability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
R,M
←−−−−− relation R, sampling M

m←M; c ← Enc(pk,m)
c

−−−−−→
c ′

←−−−−− chooses c ′ 6= c

Encryption is NM-ATK-secure if for all attackers in attack model
ATK, Pr[R(m,m′)]− Pr[m0 ←M;R(m0,m

′)] is negligible.

In our case, ATK = CPA = no oracle.

Context Single-User Setting Multi-User Setting Conclusion

Non-malleability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
R,M
←−−−−− relation R, sampling M

m←M; c ← Enc(pk,m)
c

−−−−−→
c ′

←−−−−− chooses c ′ 6= c

Encryption is NM-ATK-secure if for all attackers in attack model
ATK, Pr[R(m,m′)]− Pr[m0 ←M;R(m0,m

′)] is negligible.

In our case, ATK = CPA = no oracle.

Context Single-User Setting Multi-User Setting Conclusion

Non-malleability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
R,M
←−−−−− relation R, sampling M

m←M; c ← Enc(pk,m)
c

−−−−−→
c ′

←−−−−− chooses c ′ 6= c

Encryption is NM-ATK-secure if for all attackers in attack model
ATK, Pr[R(m,m′)]− Pr[m0 ←M;R(m0,m

′)] is negligible.

In our case, ATK = CPA = no oracle.

Context Single-User Setting Multi-User Setting Conclusion

Non-malleability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
R,M
←−−−−− relation R, sampling M

m←M; c ← Enc(pk,m)
c

−−−−−→
c ′

←−−−−− chooses c ′ 6= c

Encryption is NM-ATK-secure if for all attackers in attack model
ATK, Pr[R(m,m′)]− Pr[m0 ←M;R(m0,m

′)] is negligible.

In our case, ATK = CPA = no oracle.

Context Single-User Setting Multi-User Setting Conclusion

Non-malleability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
R,M
←−−−−− relation R, sampling M

m←M; c ← Enc(pk,m)
c

−−−−−→
c ′

←−−−−− chooses c ′ 6= c

Encryption is NM-ATK-secure if for all attackers in attack model
ATK, Pr[R(m,m′)]− Pr[m0 ←M;R(m0,m

′)] is negligible.

In our case, ATK = CPA = no oracle.

Context Single-User Setting Multi-User Setting Conclusion

Non-malleability

Challenger Attacker

(pk, sk)← KeyGen(1λ)
pk

−−−−−→
R,M
←−−−−− relation R, sampling M

m←M; c ← Enc(pk,m)
c

−−−−−→
c ′

←−−−−− chooses c ′ 6= c

Encryption is NM-ATK-secure if for all attackers in attack model
ATK, Pr[R(m,m′)]− Pr[m0 ←M;R(m0,m

′)] is negligible.

In our case, ATK = CPA = no oracle.

Context Single-User Setting Multi-User Setting Conclusion

Breaking NM-CPA (I)

Our attacker, for any fixed message length of greater than half the
byte-size of the modulus, is defined as follows:

1. M is the uniform distribution on messages of the form:

m = m̄︸︷︷︸
M bits

‖12‖ 0 · · · 02︸ ︷︷ ︸
Z zero bits

R(m1,m2) holds iff the first M bits of m1,m2 coincide.

2. Upon receiving the challenge ciphertext c , compute
c ′ = c · (1− 2−Z)e .

Context Single-User Setting Multi-User Setting Conclusion

Breaking NM-CPA (I)

Our attacker, for any fixed message length of greater than half the
byte-size of the modulus, is defined as follows:

1. M is the uniform distribution on messages of the form:

m = m̄︸︷︷︸
M bits

‖12‖ 0 · · · 02︸ ︷︷ ︸
Z zero bits

R(m1,m2) holds iff the first M bits of m1,m2 coincide.

2. Upon receiving the challenge ciphertext c , compute
c ′ = c · (1− 2−Z)e .

Context Single-User Setting Multi-User Setting Conclusion

Breaking NM-CPA (II)

This adversary breaks NM-CPA, because:

• c ′ is always a valid ciphertext, associated with a message
m′ 6= m with R(m,m′): Pr[R(m,m′)] = 1. Indeed,
µ(m) · (1− 2−Z) is:

000216‖r‖0016‖m̄‖12‖0 · · · 02
− 000216‖r‖0016‖m̄‖12
= 000216‖r‖0016‖m̄‖02‖some digits · · ·

• clearly, on average for m0 ←M,
Pr[R(m0,m

′)] = 2−M ≤ 1/2.

In practice, the advantage is overwhelmingly close to 1.

Context Single-User Setting Multi-User Setting Conclusion

Breaking NM-CPA (II)

This adversary breaks NM-CPA, because:

• c ′ is always a valid ciphertext, associated with a message
m′ 6= m with R(m,m′): Pr[R(m,m′)] = 1. Indeed,
µ(m) · (1− 2−Z) is:

000216‖r‖0016‖m̄‖12‖0 · · · 02
− 000216‖r‖0016‖m̄‖12
= 000216‖r‖0016‖m̄‖02‖some digits · · ·

• clearly, on average for m0 ←M,
Pr[R(m0,m

′)] = 2−M ≤ 1/2.

In practice, the advantage is overwhelmingly close to 1.

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

Investigating one-wayness
When |m| is large, say |m| = k − 11, one can reduce the
OW-CPA-security of PKCS#1 v1.5 encryption to the RSA
problem.

Idea: suppose we are given an RSA challenge y = xe mod N.

• Set c = y · r e for a random r . With probability
(255/256)8 · 2−24, c is a valid PKCS#1 v1.5 ciphertext and
we can decrypt.

• However, decryption doesn’t reveal the randomizer.

• But the randomizer can be recovered using the method of
[CJNP00] if we have two valid ciphertexts c1, c2. This is
enough to compute the e-th root of y and solve RSA.

Hence, for large |m|, PKCS#1 v1.5 is OW-CPA-secure if the RSA
problem is hard (loose reduction, though).

Context Single-User Setting Multi-User Setting Conclusion

Investigating one-wayness
When |m| is large, say |m| = k − 11, one can reduce the
OW-CPA-security of PKCS#1 v1.5 encryption to the RSA
problem.

Idea: suppose we are given an RSA challenge y = xe mod N.

• Set c = y · r e for a random r . With probability
(255/256)8 · 2−24, c is a valid PKCS#1 v1.5 ciphertext and
we can decrypt.

• However, decryption doesn’t reveal the randomizer.

• But the randomizer can be recovered using the method of
[CJNP00] if we have two valid ciphertexts c1, c2. This is
enough to compute the e-th root of y and solve RSA.

Hence, for large |m|, PKCS#1 v1.5 is OW-CPA-secure if the RSA
problem is hard (loose reduction, though).

Context Single-User Setting Multi-User Setting Conclusion

Investigating one-wayness
When |m| is large, say |m| = k − 11, one can reduce the
OW-CPA-security of PKCS#1 v1.5 encryption to the RSA
problem.

Idea: suppose we are given an RSA challenge y = xe mod N.

• Set c = y · r e for a random r . With probability
(255/256)8 · 2−24, c is a valid PKCS#1 v1.5 ciphertext and
we can decrypt.

• However, decryption doesn’t reveal the randomizer.

• But the randomizer can be recovered using the method of
[CJNP00] if we have two valid ciphertexts c1, c2. This is
enough to compute the e-th root of y and solve RSA.

Hence, for large |m|, PKCS#1 v1.5 is OW-CPA-secure if the RSA
problem is hard (loose reduction, though).

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

Broadcast RSA

Broadcast RSA encryption: multi-user protocol in which a sender
encrypts the same message m to multiple recipients, each with its
own RSA public key.

Public moduli Ni differ, but the public exponent e is usually shared.

Broadcast RSA has specific vulnerabilities:

• When textbook RSA is used, an attacker can apply the CRT
to the ci = me mod Ni and deduce c = me mod N1 · · ·N`. If
` ≥ e, c = me in Z and taking e-th roots recovers m.

• More generally, Håstad proved in 1988 that if public constant
paddings are used:

ci = (ωi + m)e mod Ni (ωi public)

m can still be recovered when ` > e.

Context Single-User Setting Multi-User Setting Conclusion

Broadcast RSA

Broadcast RSA encryption: multi-user protocol in which a sender
encrypts the same message m to multiple recipients, each with its
own RSA public key.

Public moduli Ni differ, but the public exponent e is usually shared.

Broadcast RSA has specific vulnerabilities:

• When textbook RSA is used, an attacker can apply the CRT
to the ci = me mod Ni and deduce c = me mod N1 · · ·N`. If
` ≥ e, c = me in Z and taking e-th roots recovers m.

• More generally, Håstad proved in 1988 that if public constant
paddings are used:

ci = (ωi + m)e mod Ni (ωi public)

m can still be recovered when ` > e.

Context Single-User Setting Multi-User Setting Conclusion

Broadcast RSA

Broadcast RSA encryption: multi-user protocol in which a sender
encrypts the same message m to multiple recipients, each with its
own RSA public key.

Public moduli Ni differ, but the public exponent e is usually shared.

Broadcast RSA has specific vulnerabilities:

• When textbook RSA is used, an attacker can apply the CRT
to the ci = me mod Ni and deduce c = me mod N1 · · ·N`. If
` ≥ e, c = me in Z and taking e-th roots recovers m.

• More generally, Håstad proved in 1988 that if public constant
paddings are used:

ci = (ωi + m)e mod Ni (ωi public)

m can still be recovered when ` > e.

Context Single-User Setting Multi-User Setting Conclusion

Broadcast PKCS#1 v1.5

In broadcast PKCS#1 v1.5 encryption, the ciphertexts are of the
form:

ci = µ(m, ri)
e = (m + Ari + B)e mod Ni

with A = 28|m|+8 and B = 28k−7.

The randomizers ri are not public, so Håstad’s attack, or even its
later generalizations, do not apply. Indeed, random padding was
the prescribed countermeasure to Håstad’s attack.

Context Single-User Setting Multi-User Setting Conclusion

Broadcast PKCS#1 v1.5

In broadcast PKCS#1 v1.5 encryption, the ciphertexts are of the
form:

ci = µ(m, ri)
e = (m + Ari + B)e mod Ni

with A = 28|m|+8 and B = 28k−7.

The randomizers ri are not public, so Håstad’s attack, or even its
later generalizations, do not apply. Indeed, random padding was
the prescribed countermeasure to Håstad’s attack.

Context Single-User Setting Multi-User Setting Conclusion

Outline

Context
Encrypting with RSA
PKCS#1 v1.5 and its weaknesses

Single-User Setting
Main idea
Attacking indistinguishability
Attacking non-malleability
Investigating one-wayness

Multi-User Setting
Broadcast RSA
Our broadcast attack

Context Single-User Setting Multi-User Setting Conclusion

Attacking broadcast PKCS#1 v1.5

Nevertheless, we can attack as follows. Using CRT, all ` equations
can be rewritten as a single equation mod N = N1 · · ·N`:∑

uici =
∑

ui (m + Ari + B)e mod N

for explicit constants ui .

Thus, (m, r1, . . . , r`) is a small root mod N of the multivariate
polynomial

f (x , y1, . . . , y`) =
∑

ui
(
ci − (m + Ari + B)e

)
Finding small modular roots of multivariate polynomials can be
attempted using heuristic generalizations of Coppersmith’s
lattice-based techniques for computing small roots.

Context Single-User Setting Multi-User Setting Conclusion

Attacking broadcast PKCS#1 v1.5

Nevertheless, we can attack as follows. Using CRT, all ` equations
can be rewritten as a single equation mod N = N1 · · ·N`:∑

uici =
∑

ui (m + Ari + B)e mod N

for explicit constants ui .

Thus, (m, r1, . . . , r`) is a small root mod N of the multivariate
polynomial

f (x , y1, . . . , y`) =
∑

ui
(
ci − (m + Ari + B)e

)
Finding small modular roots of multivariate polynomials can be
attempted using heuristic generalizations of Coppersmith’s
lattice-based techniques for computing small roots.

Context Single-User Setting Multi-User Setting Conclusion

Attacking broadcast PKCS#1 v1.5

Nevertheless, we can attack as follows. Using CRT, all ` equations
can be rewritten as a single equation mod N = N1 · · ·N`:∑

uici =
∑

ui (m + Ari + B)e mod N

for explicit constants ui .

Thus, (m, r1, . . . , r`) is a small root mod N of the multivariate
polynomial

f (x , y1, . . . , y`) =
∑

ui
(
ci − (m + Ari + B)e

)
Finding small modular roots of multivariate polynomials can be
attempted using heuristic generalizations of Coppersmith’s
lattice-based techniques for computing small roots.

Context Single-User Setting Multi-User Setting Conclusion

Theory and practice

To determine when the attack applies, we use the method of
Jochemsz and May to construct the relevant lattices, and obtain
bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in
heuristic polynomial time in e, k , |m| (but exponential time in `)
when:

` >
e|m|

k − e(k − |m| − 3)
> 0

For 1024-bit moduli and 936-bit m, this gives ` ≥ 4, so in theory
at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more
than 1000), with big coefficients. Such realistic settings are
currently out of computational reach.

Context Single-User Setting Multi-User Setting Conclusion

Theory and practice

To determine when the attack applies, we use the method of
Jochemsz and May to construct the relevant lattices, and obtain
bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in
heuristic polynomial time in e, k , |m| (but exponential time in `)
when:

` >
e|m|

k − e(k − |m| − 3)
> 0

For 1024-bit moduli and 936-bit m, this gives ` ≥ 4, so in theory
at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more
than 1000), with big coefficients. Such realistic settings are
currently out of computational reach.

Context Single-User Setting Multi-User Setting Conclusion

Theory and practice

To determine when the attack applies, we use the method of
Jochemsz and May to construct the relevant lattices, and obtain
bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in
heuristic polynomial time in e, k , |m| (but exponential time in `)
when:

` >
e|m|

k − e(k − |m| − 3)
> 0

For 1024-bit moduli and 936-bit m, this gives ` ≥ 4, so in theory
at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more
than 1000), with big coefficients. Such realistic settings are
currently out of computational reach.

Context Single-User Setting Multi-User Setting Conclusion

Theory and practice

To determine when the attack applies, we use the method of
Jochemsz and May to construct the relevant lattices, and obtain
bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in
heuristic polynomial time in e, k , |m| (but exponential time in `)
when:

` >
e|m|

k − e(k − |m| − 3)
> 0

For 1024-bit moduli and 936-bit m, this gives ` ≥ 4, so in theory
at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more
than 1000), with big coefficients. Such realistic settings are
currently out of computational reach.

Context Single-User Setting Multi-User Setting Conclusion

Conclusion

Before: PKCS#1 v1.5 was somewhat broken.

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA = Factoring
⇓ ⇓ ⇓

OW-CCA ⇐= (((((OW-VCA ⇐= OW-CPA
large `

⇓ ⇓ ⇓
IND-CCA ⇐= IND-VCA ⇐= (((((IND-CPA

small e
⇓ ⇓ ⇓

NM-CCA ⇐= NM-VCA ⇐= NM-CPA

Context Single-User Setting Multi-User Setting Conclusion

Conclusion

After: PKCS#1 v1.5 is somewhat more broken.

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA = Factoring
⇓ ⇓ ⇓

(((((OW-CCA ⇐= (((((OW-VCA ⇐= OW-CPA = RSA
` = 2 large ` (((((OW-CPA multi-user
⇓ ⇓ ⇓

(((((IND-CCA ⇐= (((((IND-VCA ⇐= (((((IND-CPA
` = 1 small e

⇓ ⇓ ⇓
(((((NM-CCA ⇐= (((((NM-VCA ⇐= (((((NM-CPA

any e

Bottom line: isn’t it about time we used OAEP?

Context Single-User Setting Multi-User Setting Conclusion

Conclusion

After: PKCS#1 v1.5 is somewhat more broken.

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA = Factoring
⇓ ⇓ ⇓

(((((OW-CCA ⇐= (((((OW-VCA ⇐= OW-CPA = RSA
` = 2 large ` (((((OW-CPA multi-user
⇓ ⇓ ⇓

(((((IND-CCA ⇐= (((((IND-VCA ⇐= (((((IND-CPA
` = 1 small e

⇓ ⇓ ⇓
(((((NM-CCA ⇐= (((((NM-VCA ⇐= (((((NM-CPA

any e

Bottom line: isn’t it about time we used OAEP?

Context Single-User Setting Multi-User Setting Conclusion

Thank you!

	Context
	Encrypting with RSA
	PKCS#1 v1.5 and its weaknesses

	Single-User Setting
	Main idea
	Attacking indistinguishability
	Attacking non-malleability
	Investigating one-wayness

	Multi-User Setting
	Broadcast RSA
	Our broadcast attack

	Conclusion

