Single-User Setting

Multi-User Setting

Conclusion

On the broadcast and validity-checking security of PKCS#1 v1.5 encryption

Aurélie Bauer¹ Jean-Sébastien Coron² David Naccache¹ Mehdi Tibouchi^{1,2} Damien Vergnaud¹

¹École normale supérieure

²Université du Luxembourg

ACNS 2010

Single-User Setting

Multi-User Setting

Conclusion

Outline

Context

Encrypting with RSA PKCS#1 v1.5 and its weaknesses

Single-User Setting

Main idea Attacking indistinguishability Attacking non-malleability Investigating one-wayness

Multi-User Setting

Broadcast RSA Our broadcast attack

Multi-User Setting

Conclusion

Outline

Context Encrypting with RSA

PKCS#1 v1.5 and its weaknesses

Single-User Setting

Main idea Attacking indistinguishability Attacking non-malleability Investigating one-wayness

Multi-User Setting

Broadcast RSA Our broadcast attack

Multi-User Setting

Conclusion

RSA Signatures

Encrypting with textbook RSA:

 $c = m^e \mod N$

- is a bad idea (e.g. homomorphic properties, deterministic encryption).
- Therefore, encapsulate m using a padding scheme μ :

 $c = \mu(m)^e \mod N$

Multi-User Setting

Conclusion

RSA Signatures

Encrypting with textbook RSA:

 $c = m^e \mod N$

is a bad idea (e.g. homomorphic properties, deterministic encryption).

• Therefore, encapsulate *m* using a padding scheme μ :

 $c = \mu(m)^e \mod N$

Multi-User Setting

Conclusion

Padding schemes

• Two kinds of padding schemes:

- 1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent specific attacks. Often exhibit other weaknesses.
- 2. Provably secure paddings, e.g. OAEP. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc paddings remain in widespread use in real-world applications. Re-evaluating them periodically is thus necessary.

Multi-User Setting

Conclusion

Padding schemes

- Two kinds of padding schemes:
 - 1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent specific attacks. Often exhibit other weaknesses.
 - 2. Provably secure paddings, e.g. OAEP. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc paddings remain in widespread use in real-world applications. Re-evaluating them periodically is thus necessary.

Multi-User Setting

Conclusion

Padding schemes

- Two kinds of padding schemes:
 - 1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent specific attacks. Often exhibit other weaknesses.
 - 2. Provably secure paddings, e.g. OAEP. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc paddings remain in widespread use in real-world applications. Re-evaluating them periodically is thus necessary.

Multi-User Setting

Conclusion

Padding schemes

- Two kinds of padding schemes:
 - 1. Ad-hoc paddings, e.g. PKCS#1 v1.5. Designed to prevent specific attacks. Often exhibit other weaknesses.
 - 2. Provably secure paddings, e.g. OAEP. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc paddings remain in widespread use in real-world applications. Re-evaluating them periodically is thus necessary.

Multi-User Setting

Conclusion

Outline

Context Encrypting with RSA PKCS#1 v1.5 and its weaknesses

Single-User Setting

Main idea Attacking indistinguishability Attacking non-malleability Investigating one-wayness

Multi-User Setting

Broadcast RSA Our broadcast attack

Multi-User Setting

Conclusion

PKCS#1 v1.5

- The PKCS#1 v1.5 standard defines an ad-hoc padding scheme with a randomizer of 64 bits or more.
- Let k be the size of N in bytes. The padding has the following form:

 $\mu(m,r) = 0002_{16} \|r\| 00_{16} \|m$

with 2 leading fixed bytes, a string r of $k = |m| = 3 \ge 8$ random nonzero bytes, and a zero byte indicating the end of the randomizer, followed by m itself.

Multi-User Setting

Conclusion

PKCS#1 v1.5

- The PKCS#1 v1.5 standard defines an ad-hoc padding scheme with a randomizer of 64 bits or more.
- Let k be the size of N in bytes. The padding has the following form:

$$\mu(m,r) = 0002_{16} \|r\| 00_{16} \|m$$

with 2 leading fixed bytes, a string r of $k - |m| - 3 \ge 8$ random nonzero bytes, and a zero byte indicating the end of the randomizer, followed by m itself.

Multi-User Setting

Conclusion

PKCS#1 v1.5

- The PKCS#1 v1.5 standard defines an ad-hoc padding scheme with a randomizer of 64 bits or more.
- Let k be the size of N in bytes. The padding has the following form:

$$\mu(m,r) = \frac{0002_{16}}{\|r\|} 00_{16} \|m\|$$

with 2 leading fixed bytes, a string r of $k - |m| - 3 \ge 8$ random nonzero bytes, and a zero byte indicating the end of the randomizer, followed by m itself.

Multi-User Setting

Conclusion

PKCS#1 v1.5

- The PKCS#1 v1.5 standard defines an ad-hoc padding scheme with a randomizer of 64 bits or more.
- Let k be the size of N in bytes. The padding has the following form:

$$\mu(m,r) = 0002_{16} \|r\| 00_{16} \|m$$

with 2 leading fixed bytes, a string r of $k - |m| - 3 \ge 8$ random nonzero bytes, and a zero byte indicating the end of the randomizer, followed by m itself.

Multi-User Setting

Conclusion

PKCS#1 v1.5

- The PKCS#1 v1.5 standard defines an ad-hoc padding scheme with a randomizer of 64 bits or more.
- Let k be the size of N in bytes. The padding has the following form:

$$\mu(m,r) = 0002_{16} \|r\| 00_{16} \|m$$

with 2 leading fixed bytes, a string r of $k - |m| - 3 \ge 8$ random nonzero bytes, and a zero byte indicating the end of the randomizer, followed by m itself.

Multi-User Setting

Conclusion

PKCS#1 v1.5

- The PKCS#1 v1.5 standard defines an ad-hoc padding scheme with a randomizer of 64 bits or more.
- Let k be the size of N in bytes. The padding has the following form:

$$\mu(m,r) = 0002_{16} \|r\| 00_{16} \|m$$

with 2 leading fixed bytes, a string r of $k - |m| - 3 \ge 8$ random nonzero bytes, and a zero byte indicating the end of the randomizer, followed by m itself.

Multi-User Setting

Previous work

 In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5, recovering a plaintext with around 2²¹ queries to a validity-checking oracle: PKCS#1 v1.5 is not *l*-OW-VCA-secure for large *l*.

Since many SSL implementations at the time behaved as validity-checking oracles, SSL session keys could be recovered by active adversaries in practice.

- Since then, this bug has been patched, but PKCS#1 v1.5 is still the default encryption algorithm for SSL/TLS.
- In 2000, Coron, Naccache, Joye and Paillier introduced chosen-plaintext attacks on PKCS#1 v1.5, implying in particular that PKCS#1 v1.5 is not IND-CPA-secure for small e or large [m].

Multi-User Setting

Previous work

 In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5, recovering a plaintext with around 2²¹ queries to a validity-checking oracle: PKCS#1 v1.5 is not *l*-OW-VCA-secure for large *l*.

Since many SSL implementations at the time behaved as validity-checking oracles, SSL session keys could be recovered by active adversaries in practice.

Since then, this bug has been patched, but PKCS#1 v1.5 is still the default encryption algorithm for SSL/TLS.

 In 2000, Coron, Naccache, Joye and Paillier introduced chosen-plaintext attacks on PKCS#1 v1.5, implying in particular that PKCS#1 v1.5 is not IND-CPA-secure for small e or large [m].

Multi-User Setting

Previous work

 In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5, recovering a plaintext with around 2²¹ queries to a validity-checking oracle: PKCS#1 v1.5 is not *l*-OW-VCA-secure for large *l*.

Since many SSL implementations at the time behaved as validity-checking oracles, SSL session keys could be recovered by active adversaries in practice.

Since then, this bug has been patched, but PKCS#1 v1.5 is still the default encryption algorithm for SSL/TLS.

 In 2000, Coron, Naccache, Joye and Paillier introduced chosen-plaintext attacks on PKCS#1 v1.5, implying in particular that PKCS#1 v1.5 is not IND-CPA-secure for small e or large [m].

Multi-User Setting

Previous work

 In 1998, Bleichenbacher proposed an attack on PKCS#1 v1.5, recovering a plaintext with around 2²¹ queries to a validity-checking oracle: PKCS#1 v1.5 is not *l*-OW-VCA-secure for large *l*.

Since many SSL implementations at the time behaved as validity-checking oracles, SSL session keys could be recovered by active adversaries in practice.

Since then, this bug has been patched, but PKCS#1 v1.5 is still the default encryption algorithm for SSL/TLS.

 In 2000, Coron, Naccache, Joye and Paillier introduced chosen-plaintext attacks on PKCS#1 v1.5, implying in particular that PKCS#1 v1.5 is not IND-CPA-secure for small e or large |m|.

Multi-User Setting

Our contribution

Our contribution to the study of the security of $\mathsf{PKCS}\#1$ v1.5 encryption is twofold:

1. Single-user setting (theoretical results). PKCS#1 v1.5 is:

- not 1-IND-VCA-secure
- not NM-CPA-secure
- not 2-OW-CCA-secure for large |m|
- OW-CPA-secure for large |*m*| is RSA is hard (loose reduction).
- 2. Multi-user setting (more concrete results).
 - Coppersmith-based plaintext-recovery attack on broadcast PKCS//3.vd.5:encryption
 - ∞ for 1.024-bit moduli, recovers a 936-bit message encrypted for ≥ 4 recipients (heuristic polynomial time).

Multi-User Setting

Our contribution

Our contribution to the study of the security of $\mathsf{PKCS}\#1$ v1.5 encryption is twofold:

- 1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
 - not 1-IND-VCA-secure
 - not NM-CPA-secure
 - not 2-OW-CCA-secure for large |m|
 - OW-CPA-secure for large |m| is RSA is hard (loose reduction).
- 2. Multi-user setting (more concrete results).
 - Coppersmith-based plaintext-recovery attack on broadcast PKC5//1 v4.5 encryption
 - \approx for 1.024-bit moduli, recovers a 936-bit message encrypted for \geq 4-recipients (heuristic polynomial time).

Multi-User Setting

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5 encryption is twofold:

- 1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
 - not 1-IND-VCA-secure
 - not NM-CPA-secure
 - not 2-OW-CCA-secure for large |m|
 - OW-CPA-secure for large |*m*| is RSA is hard (loose reduction).
- 2. Multi-user setting (more concrete results).
 - Coppersmith-based plaintext-recovery attack on broadcast: PKC5#1.v1.5 encryption
 - For 1024-bit moduli, recovers a 936-bit message encrypted for <u>2</u>:4 recipients (heuristic polynomial time).

Multi-User Setting

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5 encryption is twofold:

- 1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
 - not 1-IND-VCA-secure
 - not NM-CPA-secure
 - not 2-OW-CCA-secure for large |m|
 - OW-CPA-secure for large |*m*| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).

- Coppersmith-based-plaintext-recovery attack on broadcast: PKCS-//1.v1.5-encryption
- for 1.024-bit moduli, recovers a 936-bit message encrypted for 2:4 recipients (heuristic polynomial time).

Multi-User Setting

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5 encryption is twofold:

- 1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
 - not 1-IND-VCA-secure
 - not NM-CPA-secure
 - not 2-OW-CCA-secure for large |m|
 - OW-CPA-secure for large |m| is RSA is hard (loose reduction).

2. Multi-user setting (more concrete results).

- Coppersmith-based plaintext-recovery attack on broadcast PKCS#1 v1.5 encryption
- For 1.024-bit moduli, recovers a 936-bit message encrypted for 2:4 recipients (heuristic polynomial time).

Multi-User Setting

Our contribution

Our contribution to the study of the security of $\mathsf{PKCS}\#1$ v1.5 encryption is twofold:

- 1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
 - not 1-IND-VCA-secure
 - not NM-CPA-secure
 - not 2-OW-CCA-secure for large |m|
 - OW-CPA-secure for large |m| is RSA is hard (loose reduction).
- 2. Multi-user setting (more concrete results).
 - Coppersmith-based plaintext-recovery attack on broadcast PKCS#1 v1.5 encryption
 - for 1024-bit moduli, recovers a 936-bit message encrypted for ≥ 4 recipients (heuristic polynomial time).

Multi-User Setting

Our contribution

Our contribution to the study of the security of PKCS#1 v1.5 encryption is twofold:

- 1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
 - not 1-IND-VCA-secure
 - not NM-CPA-secure
 - not 2-OW-CCA-secure for large |m|
 - OW-CPA-secure for large |m| is RSA is hard (loose reduction).
- 2. Multi-user setting (more concrete results).
 - Coppersmith-based plaintext-recovery attack on broadcast $\mathsf{PKCS}\#1$ v1.5 encryption
 - for 1024-bit moduli, recovers a 936-bit message encrypted for ≥ 4 recipients (heuristic polynomial time).

Multi-User Setting

Our contribution

Our contribution to the study of the security of $\mathsf{PKCS}\#1$ v1.5 encryption is twofold:

- 1. Single-user setting (theoretical results). PKCS#1 v1.5 is:
 - not 1-IND-VCA-secure
 - not NM-CPA-secure
 - not 2-OW-CCA-secure for large |m|
 - OW-CPA-secure for large |m| is RSA is hard (loose reduction).
- 2. Multi-user setting (more concrete results).
 - Coppersmith-based plaintext-recovery attack on broadcast $PKCS\#1 \ v1.5 \ encryption$
 - for 1024-bit moduli, recovers a 936-bit message encrypted for \geq 4 recipients (heuristic polynomial time).

Single-User Setting

Multi-User Setting

Conclusion

Outline

Context Encrypting with RSA PKCS#1 v1.5 and its weaknesse

Single-User Setting Main idea

Attacking indistinguishability Attacking non-malleability Investigating one-wayness

Multi-User Setting

Broadcast RSA Our broadcast attack

Multi-User Setting

The main idea

Our analysis in the single-user setting is mostly based on the following observation.

• Consider a message m with Z > 2 trailing zero bits.

 $\mu(m,r) = 0002_{16} \|r\| 00_{16} \| \cdots \| 00_2$

Easy to write down $\mu(m, r) \cdot 2^{-Z}$. With good probability, $\mu(m, r) \cdot (1 - 2^{-Z})$ is still a valid padding of some m'.

• Conversely, if the last Z bits of m are not all zero, $\mu(m,r) \cdot 2^{-Z}$ is more or less "random". With overwhelming probability, $\mu(m,r) \cdot (1-2^{-Z})$ is not a valid padding.

Thus, if c is a ciphertext corresponding to m, $c' = c \cdot (1 - 2^{-Z})^e \mod N$ is a valid ciphertext roughly when m ends in Z zeroes.

Multi-User Setting

The main idea

Our analysis in the single-user setting is mostly based on the following observation.

• Consider a message m with Z > 2 trailing zero bits.

$$\mu(m,r) = 0002_{16} \|r\| 00_{16} \|\cdots \|00_{2}$$

Easy to write down $\mu(m, r) \cdot 2^{-Z}$. With good probability, $\mu(m, r) \cdot (1 - 2^{-Z})$ is still a valid padding of some m'.

 Conversely, if the last Z bits of m are not all zero, μ(m, r) · 2^{-Z} is more or less "random". With overwhelming probability, μ(m, r) · (1 − 2^{-Z}) is not a valid padding.

Thus, if c is a ciphertext corresponding to m, $c' = c \cdot (1 - 2^{-Z})^e \mod N$ is a valid ciphertext roughly when m ends in Z zeroes.

Single-User Setting •••• •••• •••• •••• Multi-User Setting

Conclusion

Outline

Context Encrypting with RSA PKCS#1 v1.5 and its weaknes

Single-User Setting

Main idea

Attacking indistinguishability

Attacking non-malleability Investigating one-wayness

Multi-User Setting

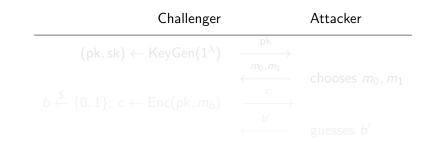
Broadcast RSA Our broadcast attack

Context	
000	
0000	

Multi-User Setting

Conclusion

Indistinguishability

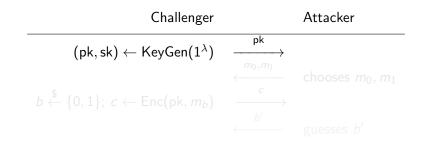


Encryption is IND-ATK-secure if for all attackers in attack model ATK, $2 \Pr[b = b'] - 1$ is negligible.

Context	
000	
0000	

Multi-User Setting

Indistinguishability



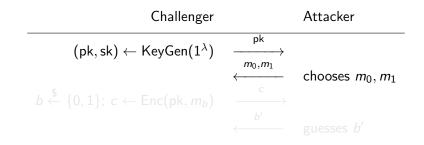
Encryption is IND-ATK-secure if for all attackers in attack model ATK, $2 \Pr[b = b'] - 1$ is negligible.

С	ont	ext
0		
0	00	0

Multi-User Setting

Conclusion

Indistinguishability



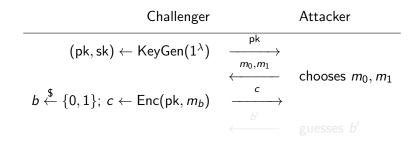
Encryption is IND-ATK-secure if for all attackers in attack model ATK, $2 \Pr[b = b'] - 1$ is negligible.

С	01	nt	e	X	t
0	0				
0	0	0	C)	

Multi-User Setting

Conclusion

Indistinguishability



Encryption is IND-ATK-secure if for all attackers in attack model ATK, $2 \Pr[b = b'] - 1$ is negligible.

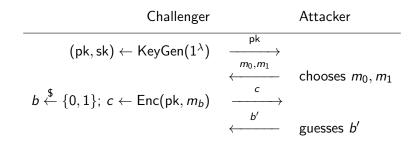
Context	
000	
0000	

Single-User Setting

Multi-User Setting

Conclusion

Indistinguishability

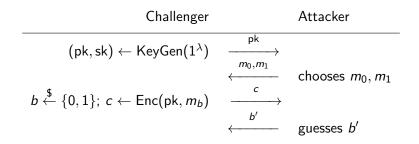


Encryption is IND-ATK-secure if for all attackers in attack model ATK, $2 \Pr[b = b'] - 1$ is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

С	01	nt	ex	t
0	0			
0	0	0	0	

Indistinguishability

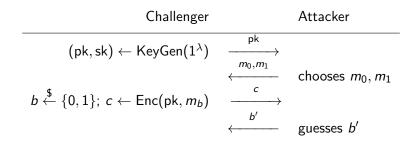


Encryption is IND-ATK-secure if for all attackers in attack model ATK, $2 \Pr[b = b'] - 1$ is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

С	01	nt	ex	t
0	0			
0	0	0	0	

Indistinguishability



Encryption is IND-ATK-secure if for all attackers in attack model ATK, 2 Pr[b = b'] - 1 is negligible.

In our case, ATK = VCA = access to a validity-checking oracle.

Single-User Setting

Multi-User Setting

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is defined as follows:

1. Choose $m_0 = 00 \cdots 00_{16}$, and m_1 any message with a nonzero trailing nibble.

2. Upon receiving the challenge ciphertext c, compute $c' = c \cdot (1 - 2^{-4})^e$, and query the oracle on c'. If c' is valid, set b' = 0. Otherwise, set b' = 1.

- by a counting argument, if b = 1, c' can never be valid;
- by carefully writing the substraction, if b = 0, c' is valid with probability > 0.47.

Single-User Setting

Multi-User Setting

Conclusion

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is defined as follows:

- 1. Choose $m_0 = 00 \cdots 00_{16}$, and m_1 any message with a nonzero trailing nibble.
- 2. Upon receiving the challenge ciphertext c, compute $c' = c \cdot (1 2^{-4})^e$, and query the oracle on c'. If c' is valid, set b' = 0. Otherwise, set b' = 1.

- by a counting argument, if b = 1, c' can never be valid;
- by carefully writing the substraction, if b = 0, c' is valid with probability > 0.47.

Single-User Setting

Multi-User Setting

Conclusion

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is defined as follows:

- 1. Choose $m_0 = 00 \cdots 00_{16}$, and m_1 any message with a nonzero trailing nibble.
- 2. Upon receiving the challenge ciphertext c, compute $c' = c \cdot (1 2^{-4})^e$, and query the oracle on c'. If c' is valid, set b' = 0. Otherwise, set b' = 1.

- by a counting argument, if b = 1, c' can never be valid;
- by carefully writing the substraction, if b = 0, c' is valid with probability > 0.47.

Single-User Setting

Multi-User Setting

Conclusion

Breaking IND-VCA

Our attacker, for any fixed message length of at least one byte is defined as follows:

- 1. Choose $m_0 = 00 \cdots 00_{16}$, and m_1 any message with a nonzero trailing nibble.
- 2. Upon receiving the challenge ciphertext c, compute $c' = c \cdot (1 2^{-4})^e$, and query the oracle on c'. If c' is valid, set b' = 0. Otherwise, set b' = 1.

- by a counting argument, if b = 1, c' can never be valid;
- by carefully writing the substraction, if b = 0, c' is valid with probability > 0.47.

Single-User Setting

Multi-User Setting

Conclusion

Outline

Context Encrypting with RSA PKCS#1 v1.5 and its weakne

Single-User Setting

Main idea Attacking indistinguishability Attacking non-malleability

Investigating one-wayness

Multi-User Setting

Broadcast RSA Our broadcast attack

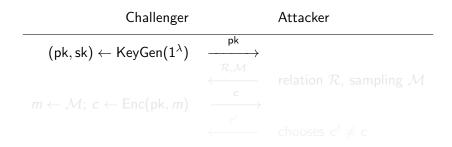
Context	
000	
0000	

Non-malleability

Encryption is NM-ATK-secure if for all attackers in attack model ATK, $\Pr[\mathcal{R}(m, m')] - \Pr[m_0 \leftarrow \mathcal{M}; \mathcal{R}(m_0, m')]$ is negligible.

С	on	ite	xt
0		С	
0	00	C)

Non-malleability

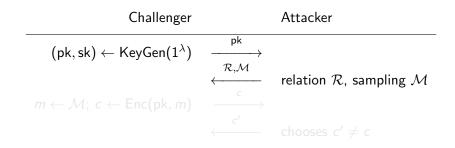


Encryption is NM-ATK-secure if for all attackers in attack model ATK, $\Pr[\mathcal{R}(m, m')] - \Pr[m_0 \leftarrow \mathcal{M}; \mathcal{R}(m_0, m')]$ is negligible.

1	C	OI	nt	e	XI	
		0	0			
1	0	0	0	C		

Conclusion

Non-malleability

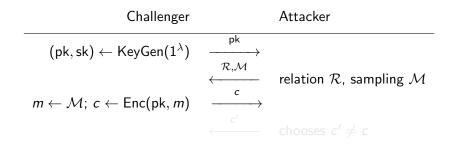


Encryption is NM-ATK-secure if for all attackers in attack model ATK, $\Pr[\mathcal{R}(m, m')] - \Pr[m_0 \leftarrow \mathcal{M}; \mathcal{R}(m_0, m')]$ is negligible.

1	C	OI	nt	e	XI	
		0	0			
1	0	0	0	C		

Conclusion

Non-malleability

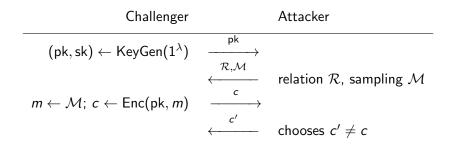


Encryption is NM-ATK-secure if for all attackers in attack model ATK, $\Pr[\mathcal{R}(m, m')] - \Pr[m_0 \leftarrow \mathcal{M}; \mathcal{R}(m_0, m')]$ is negligible.

С	on	ite	xt
0		С	
0	00	C)

Conclusion

Non-malleability

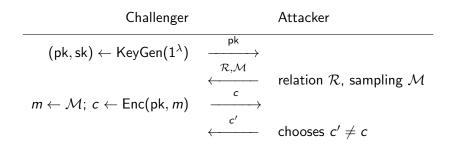


Encryption is NM-ATK-secure if for all attackers in attack model ATK, $\Pr[\mathcal{R}(m, m')] - \Pr[m_0 \leftarrow \mathcal{M}; \mathcal{R}(m_0, m')]$ is negligible.

Context	
000	
0000	

Conclusion

Non-malleability

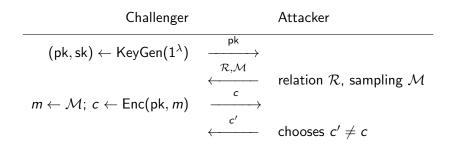


Encryption is NM-ATK-secure if for all attackers in attack model ATK, $\Pr[\mathcal{R}(m, m')] - \Pr[m_0 \leftarrow \mathcal{M}; \mathcal{R}(m_0, m')]$ is negligible.

1	Context
	0000

Conclusion

Non-malleability



Encryption is NM-ATK-secure if for all attackers in attack model ATK, $\Pr[\mathcal{R}(m, m')] - \Pr[m_0 \leftarrow \mathcal{M}; \mathcal{R}(m_0, m')]$ is negligible.

Single-User Setting

Multi-User Setting

Conclusion

Breaking NM-CPA (I)

Our attacker, for any fixed message length of greater than half the byte-size of the modulus, is defined as follows:

1. ${\mathcal M}$ is the uniform distribution on messages of the form:

1

$$m = \underbrace{\bar{m}}_{M \text{ bits}} \| 1_2 \| \underbrace{0 \cdots 0_2}_{Z \text{ zero bits}}$$

R(m₁, m₂) holds iff the first M bits of m₁, m₂ coincide.
Upon receiving the challenge ciphertext c, compute c' = c ⋅ (1 - 2^{-Z})^e.

Single-User Setting

Multi-User Setting

Conclusion

Breaking NM-CPA (I)

Our attacker, for any fixed message length of greater than half the byte-size of the modulus, is defined as follows:

1. ${\mathcal M}$ is the uniform distribution on messages of the form:

$$m = \underbrace{\bar{m}}_{M \text{ bits}} \| 1_2 \| \underbrace{0 \cdots 0_2}_{Z \text{ zero bits}}$$

 $\mathcal{R}(m_1, m_2)$ holds iff the first *M* bits of m_1, m_2 coincide.

2. Upon receiving the challenge ciphertext c, compute $c' = c \cdot (1 - 2^{-Z})^e$.

1

Single-User Setting

Multi-User Setting

Conclusion

Breaking NM-CPA (II)

This adversary breaks NM-CPA, because:

• c' is always a valid ciphertext, associated with a message $m' \neq m$ with $\mathcal{R}(m, m')$: $\Pr[\mathcal{R}(m, m')] = 1$. Indeed, $\mu(m) \cdot (1 - 2^{-Z})$ is:

$$0002_{16} \|r\| 00_{16} \|\bar{m}\| 1_2 \| 0 \cdots 0_2 \\ 0002_{16} \|r\| 00_{16} \|\bar{m}\| 1_2$$

 $= 0002_{16} ||r|| 00_{16} ||\bar{m}|| 0_2 ||\text{some digits} \cdots$

• clearly, on average for $m_0 \leftarrow \mathcal{M}$, $\Pr[\mathcal{R}(m_0, m')] = 2^{-M} \le 1/2.$

In practice, the advantage is overwhelmingly close to 1.

Single-User Setting

Multi-User Setting

Conclusion

Breaking NM-CPA (II)

This adversary breaks NM-CPA, because:

• c' is always a valid ciphertext, associated with a message $m' \neq m$ with $\mathcal{R}(m, m')$: $\Pr[\mathcal{R}(m, m')] = 1$. Indeed, $\mu(m) \cdot (1 - 2^{-Z})$ is:

$$- \frac{0002_{16} \|r\| 00_{16} \|\bar{m}\| 1_2 \| 0 \cdots 0_2}{0002_{16} \|r\| 00_{16} \|\bar{m}\| 1_2}$$

 $= 0002_{16} ||r|| 00_{16} ||\bar{m}|| 0_2 ||\text{some digits} \cdots$

• clearly, on average for
$$m_0 \leftarrow \mathcal{M}$$
,
 $\Pr[\mathcal{R}(m_0, m')] = 2^{-M} \le 1/2.$

In practice, the advantage is overwhelmingly close to 1.

Single-User Setting

Multi-User Setting

Conclusion

Outline

Context

Encrypting with RSA PKCS#1 v1.5 and its weaknesses

Single-User Setting

Main idea Attacking indistinguishability Attacking non-malleability Investigating one-wayness

Multi-User Setting

Broadcast RSA Our broadcast attack

Multi-User Setting

Investigating one-wayness

When |m| is large, say |m| = k - 11, one can reduce the OW-CPA-security of PKCS#1 v1.5 encryption to the RSA problem.

Idea: suppose we are given an RSA challenge $y = x^e \mod N$.

- Set $c = y \cdot r^e$ for a random r. With probability $(255/256)^8 \cdot 2^{-24}$, c is a valid PKCS#1 v1.5 ciphertext and we can decrypt.
- However, decryption doesn't reveal the randomizer.
- But the randomizer can be recovered using the method of [CJNP00] if we have *two* valid ciphertexts c_1, c_2 . This is enough to compute the *e*-th root of *y* and solve RSA.

Hence, for large |m|, PKCS#1 v1.5 is OW-CPA-secure if the RSA problem is hard (loose reduction, though).

Multi-User Setting

Investigating one-wayness

When |m| is large, say |m| = k - 11, one can reduce the OW-CPA-security of PKCS#1 v1.5 encryption to the RSA problem.

Idea: suppose we are given an RSA challenge $y = x^e \mod N$.

- Set $c = y \cdot r^e$ for a random r. With probability $(255/256)^8 \cdot 2^{-24}$, c is a valid PKCS#1 v1.5 ciphertext and we can decrypt.
- However, decryption doesn't reveal the randomizer.
- But the randomizer can be recovered using the method of [CJNP00] if we have *two* valid ciphertexts c_1, c_2 . This is enough to compute the *e*-th root of *y* and solve RSA.

Hence, for large |m|, PKCS#1 v1.5 is OW-CPA-secure if the RSA problem is hard (loose reduction, though).

Multi-User Setting

Investigating one-wayness

When |m| is large, say |m| = k - 11, one can reduce the OW-CPA-security of PKCS#1 v1.5 encryption to the RSA problem.

Idea: suppose we are given an RSA challenge $y = x^e \mod N$.

- Set $c = y \cdot r^e$ for a random r. With probability $(255/256)^8 \cdot 2^{-24}$, c is a valid PKCS#1 v1.5 ciphertext and we can decrypt.
- However, decryption doesn't reveal the randomizer.
- But the randomizer can be recovered using the method of [CJNP00] if we have *two* valid ciphertexts c_1, c_2 . This is enough to compute the *e*-th root of *y* and solve RSA.

Hence, for large |m|, PKCS#1 v1.5 is OW-CPA-secure if the RSA problem is hard (loose reduction, though).

Single-User Setting

Multi-User Setting

Conclusion

Outline

Context

Encrypting with RSA PKCS#1 v1.5 and its weaknesses

Single-User Setting

Main idea Attacking indistinguishability Attacking non-malleability Investigating one-wayness

Multi-User Setting

Broadcast RSA

Single-User Setting

Multi-User Setting

Broadcast RSA

Broadcast RSA encryption: multi-user protocol in which a sender encrypts the same message m to multiple recipients, each with its own RSA public key.

Public moduli N_i differ, but the public exponent e is usually shared.

Broadcast RSA has specific vulnerabilities:

- When textbook RSA is used, an attacker can apply the CRT to the c_i = m^e mod N_i and deduce c = m^e mod N₁ ···· N_ℓ. If ℓ ≥ e, c = m^e in Z and taking e-th roots recovers m.
- More generally, Håstad proved in 1988 that if public constant paddings are used:

 $c_i = (\omega_i + m)^e \mod N_i$ (ω_i public)

m can still be recovered when $\ell > e_{-}$

Multi-User Setting

Broadcast RSA

Broadcast RSA encryption: multi-user protocol in which a sender encrypts the same message m to multiple recipients, each with its own RSA public key.

Public moduli N_i differ, but the public exponent e is usually shared.

Broadcast RSA has specific vulnerabilities:

- When textbook RSA is used, an attacker can apply the CRT to the $c_i = m^e \mod N_i$ and deduce $c = m^e \mod N_1 \cdots N_\ell$. If $\ell \ge e, c = m^e$ in \mathbb{Z} and taking *e*-th roots recovers *m*.
- More generally, Håstad proved in 1988 that if public constant paddings are used:

 $c_i = (\omega_i + m)^e \mod N_i$ (ω_i public)

m can still be recovered when $\ell > e$.

Multi-User Setting

Broadcast RSA

Broadcast RSA encryption: multi-user protocol in which a sender encrypts the same message m to multiple recipients, each with its own RSA public key.

Public moduli N_i differ, but the public exponent e is usually shared.

Broadcast RSA has specific vulnerabilities:

- When textbook RSA is used, an attacker can apply the CRT to the $c_i = m^e \mod N_i$ and deduce $c = m^e \mod N_1 \cdots N_\ell$. If $\ell \ge e, c = m^e$ in \mathbb{Z} and taking *e*-th roots recovers *m*.
- More generally, Håstad proved in 1988 that if public constant paddings are used:

$$c_i = (\omega_i + m)^e \mod N_i$$
 (ω_i public)

m can still be recovered when $\ell > e$.

Single-User Setting

Multi-User Setting

Broadcast PKCS#1 v1.5

In broadcast PKCS#1 v1.5 encryption, the ciphertexts are of the form:

$$c_i = \mu(m, r_i)^e = (m + Ar_i + B)^e \mod N_i$$

with $A = 2^{8|m|+8}$ and $B = 2^{8k-7}$.

The randomizers r_i are not public, so Håstad's attack, or even its later generalizations, do not apply. Indeed, random padding was the prescribed countermeasure to Håstad's attack.

Single-User Setting

Multi-User Setting

Broadcast PKCS#1 v1.5

In broadcast PKCS#1 v1.5 encryption, the ciphertexts are of the form:

$$c_i = \mu(m, r_i)^e = (m + Ar_i + B)^e \mod N_i$$

with $A = 2^{8|m|+8}$ and $B = 2^{8k-7}$.

The randomizers r_i are not public, so Håstad's attack, or even its later generalizations, do not apply. Indeed, random padding was the prescribed countermeasure to Håstad's attack.

Single-User Setting

Multi-User Setting

Conclusion

Outline

Context

Encrypting with RSA PKCS#1 v1.5 and its weaknesses

Single-User Setting

Main idea Attacking indistinguishability Attacking non-malleability Investigating one-wayness

Multi-User Setting

Broadcast RSA Our broadcast attack

Single-User Setting

Multi-User Setting

Attacking broadcast PKCS#1 v1.5

Nevertheless, we can attack as follows. Using CRT, all ℓ equations can be rewritten as a single equation mod $N = N_1 \cdots N_\ell$:

$$\sum u_i c_i = \sum u_i (m + Ar_i + B)^e \mod N$$

for explicit constants u_i .

Thus, (m, r_1, \ldots, r_ℓ) is a small root mod N of the multivariate polynomial

$$f(x, y_1, \ldots, y_\ell) = \sum u_i (c_i - (m + Ar_i + B)^e)$$

Finding small modular roots of multivariate polynomials can be attempted using heuristic generalizations of Coppersmith's lattice-based techniques for computing small roots.

Single-User Setting

Multi-User Setting

Attacking broadcast PKCS#1 v1.5

Nevertheless, we can attack as follows. Using CRT, all ℓ equations can be rewritten as a single equation mod $N = N_1 \cdots N_\ell$:

$$\sum u_i c_i = \sum u_i (m + Ar_i + B)^e \mod N$$

for explicit constants u_i .

Thus, (m, r_1, \ldots, r_ℓ) is a small root mod N of the multivariate polynomial

$$f(x, y_1, \ldots, y_\ell) = \sum u_i (c_i - (m + Ar_i + B)^e)$$

Finding small modular roots of multivariate polynomials can be attempted using heuristic generalizations of Coppersmith's lattice-based techniques for computing small roots.

Single-User Setting

Multi-User Setting

Attacking broadcast PKCS#1 v1.5

Nevertheless, we can attack as follows. Using CRT, all ℓ equations can be rewritten as a single equation mod $N = N_1 \cdots N_\ell$:

$$\sum u_i c_i = \sum u_i (m + Ar_i + B)^e \mod N$$

for explicit constants u_i .

Thus, (m, r_1, \ldots, r_ℓ) is a small root mod N of the multivariate polynomial

$$f(x, y_1, \ldots, y_\ell) = \sum u_i (c_i - (m + Ar_i + B)^e)$$

Finding small modular roots of multivariate polynomials can be attempted using heuristic generalizations of Coppersmith's lattice-based techniques for computing small roots.

Single-User Setting

Multi-User Setting

Theory and practice

To determine when the attack applies, we use the method of Jochemsz and May to construct the relevant lattices, and obtain bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in heuristic polynomial time in e, k, |m| (but exponential time in ℓ) when:

$$\ell > \frac{e|m|}{k-e(k-|m|-3)} > 0$$

For 1024-bit moduli and 936-bit m, this gives $\ell \ge 4$, so in theory at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more than 1000), with big coefficients. Such realistic settings are currently out of computational reach.

Single-User Setting

Multi-User Setting

Conclusion

Theory and practice

To determine when the attack applies, we use the method of Jochemsz and May to construct the relevant lattices, and obtain bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in heuristic polynomial time in e, k, |m| (but exponential time in ℓ) when:

$$\ell > \frac{e|m|}{k-e(k-|m|-3)} > 0$$

For 1024-bit moduli and 936-bit m, this gives $\ell \ge 4$, so in theory at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more than 1000), with big coefficients. Such realistic settings are currently out of computational reach.

Single-User Setting

Multi-User Setting

Theory and practice

To determine when the attack applies, we use the method of Jochemsz and May to construct the relevant lattices, and obtain bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in heuristic polynomial time in e, k, |m| (but exponential time in ℓ) when:

$$\ell > \frac{e|m|}{k-e(k-|m|-3)} > 0$$

For 1024-bit moduli and 936-bit *m*, this gives $\ell \ge 4$, so in theory at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more than 1000), with big coefficients. Such realistic settings are currently out of computational reach.

Single-User Setting

Multi-User Setting

Theory and practice

To determine when the attack applies, we use the method of Jochemsz and May to construct the relevant lattices, and obtain bounds on the size of parameters to get short enough vectors.

Asymptotically, we find that the attack applies, and runs in heuristic polynomial time in e, k, |m| (but exponential time in ℓ) when:

$$\ell > \frac{e|m|}{k-e(k-|m|-3)} > 0$$

For 1024-bit moduli and 936-bit *m*, this gives $\ell \ge 4$, so in theory at least, the attack applies to very realistic settings.

However, the lattice sizes involved can be very large (much more than 1000), with big coefficients. Such realistic settings are currently out of computational reach.

Context	
000	
0000	

Conclusion

Conclusion

Before: PKCS#1 v1.5 was somewhat broken.

UBK-CCA \leftarrow UBK-VCA \leftarrow UBK-CPA = Factoring ∜ \downarrow OW-CCA OW-VCA **OW-CPA** \Leftarrow large ℓ ∜ ╢ 11 IND-CCA IND-VCA IND-CPA \leftarrow small e 1 1 ╢ NM-VCA NM-CCA NM-CPA \leftarrow

Context	
000	
0000	

Conclusion

After: PKCS#1 v1.5 is somewhat more broken.

UBK-CCA	$\Leftarrow\!\!=$	UBK-VCA	$\Leftarrow\!\!=$	$UBK\operatorname{-CPA} = Factoring$
\Downarrow		\Downarrow		\Downarrow
OW-ECA	$\Leftarrow\!\!=$	OW-VCA	$\Leftarrow\!\!=$	OW-CPA = RSA
$\ell = 2$		large ℓ		OW-CPA multi-user
\Downarrow		\Downarrow		\Downarrow
IND-ECA	$\Leftarrow\!\!=$	IND-VCA	$\Leftarrow\!\!=$	IND-EPA
		$\ell = 1$		small <i>e</i>
\Downarrow		\Downarrow		\Downarrow
NM-ECA	$\Leftarrow\!\!=$	NM-VCA	\Leftarrow	NM-EPA
				any e

Bottom line: isn't it about time we used OAEP?

Multi-User Setting

Conclusion

After: PKCS#1 v1.5 is somewhat more broken.

 $UBK-CCA \iff UBK-VCA \iff UBK-CPA = Factoring$ 11 \downarrow OW-FCA OW-VCA OW-CPA = RSA⇐= $\ell = 2$ OW-CPA multi-user large ℓ ∜ ∜ IND-FCA IND-VCA IND-CPA \Leftarrow $\ell = 1$ small e ╢ \iff NM-VCA NA-CCA NM-CPA any e

Bottom line: isn't it about time we used OAEP?

Context	
000	
0000	

Single-User Setting 00 0000 0000 00 Multi-User Setting

Conclusion

Thank you!