
Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Hashing to Elliptic Curves
and Cryptanalysis of RSA-Based Schemes

Mehdi Tibouchi

École normale supérieure

Ph.D. Defense
2011–09–23



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptology

Cryptology is the science of secret messages.
It has two opposite, complementary sides.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptology

Cryptology is the science of secret messages.
It has two opposite, complementary sides.

Cryptography
Constructing systems to ensure
various security properties of com-
munications.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptology

Cryptology is the science of secret messages.
It has two opposite, complementary sides.

Cryptography
Constructing systems to ensure
various security properties of com-
munications.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptology

Cryptology is the science of secret messages.
It has two opposite, complementary sides.

Cryptography
Constructing systems to ensure
various security properties of com-
munications.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptology

Cryptology is the science of secret messages.
It has two opposite, complementary sides.

Cryptography Cryptanalysis
Constructing systems to ensure
various security properties of com-
munications.

Uncovering flaws in those systems
so as to break the security of com-
munications.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ensuring confidentiality

Give me that pencil, will you?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ensuring confidentiality

Give me that pencil, will you?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ensuring confidentiality

Give me that pencil, will you?

!!!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ensuring confidentiality

5809207b5d4cf644b9fecee81ab7fb8

???



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ensuring confidentiality

K K

5809207b5d4cf644b9fecee81ab7fb8

???



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ensuring confidentiality

pk sk

5809207b5d4cf644b9fecee81ab7fb8

???



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security properties

Besides confidentiality (which is traditional goal of cryptography),
other security properties can be sought, such as:

• authenticity: whether it really is Alice talking;

• integrity: whether the message is what was actually sent;

• non-repudiation: so Alice cannot claim she didn’t write the
message;

• and many more...



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security properties

Besides confidentiality (which is traditional goal of cryptography),
other security properties can be sought, such as:

• authenticity: whether it really is Alice talking;

• integrity: whether the message is what was actually sent;

• non-repudiation: so Alice cannot claim she didn’t write the
message;

• and many more...



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security properties

Besides confidentiality (which is traditional goal of cryptography),
other security properties can be sought, such as:

• authenticity: whether it really is Alice talking;

• integrity: whether the message is what was actually sent;

• non-repudiation: so Alice cannot claim she didn’t write the
message;

• and many more...



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security properties

Besides confidentiality (which is traditional goal of cryptography),
other security properties can be sought, such as:

• authenticity: whether it really is Alice talking;

• integrity: whether the message is what was actually sent;

• non-repudiation: so Alice cannot claim she didn’t write the
message;

• and many more...



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes
Prove security properties in a cer-
tain model



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes
Prove security properties in a cer-
tain model

Circumvent the model



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes
Prove security properties in a cer-
tain model

Circumvent the model

...based on given hardness as-
sumptions



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes
Prove security properties in a cer-
tain model

Circumvent the model

...based on given hardness as-
sumptions

Show that the “hard” problems
are not that hard



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes
Prove security properties in a cer-
tain model

Circumvent the model

...based on given hardness as-
sumptions

Show that the “hard” problems
are not that hard

Implement the schemes in appli-
cations



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes
Prove security properties in a cer-
tain model

Circumvent the model

...based on given hardness as-
sumptions

Show that the “hard” problems
are not that hard

Implement the schemes in appli-
cations

Tamper with the implementation



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Outline

Introduction

RSA Cryptanalysis
RSA-CRT signatures
Modulus fault attacks

Hashing to Elliptic Curves
Elliptic curve cryptography
Hashing to elliptic curves
Constructing good hash functions



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Outline

Introduction

RSA Cryptanalysis
RSA-CRT signatures
Modulus fault attacks

Hashing to Elliptic Curves
Elliptic curve cryptography
Hashing to elliptic curves
Constructing good hash functions



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

RSA

In 1976, Rivest, Shamir and Adleman proposed the first
construction of a public-key encryption scheme and of a digital
signature scheme.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

RSA

In 1976, Rivest, Shamir and Adleman proposed the first
construction of a public-key encryption scheme and of a digital
signature scheme.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

RSA signatures (textbook ver.)

• “Public key”: to authenticate herself to Bob, Alice doesn’t
need to share a secret with him. She can sign messages and
those signatures can be checked by anyone.

• The scheme is as follows:
• Key generation: Alice picks random large primes p,q and

computes N = pq. She chooses e coprime to
ϕ(N) = (p − 1)(q − 1), and computes d the inverse of
e mod ϕ(N).
She makes (N, e) public and keeps p,q,d secret.

• Signature: the signature on a message m is σ = md mod N.
• Verification: to check that the signature σ on m is valid, Bob

verifies that σe ≡ m (mod N).

• The scheme is correct, because by Euler’s theorem
σe ≡ med ≡ m (mod N).

• Recovering the secret key d from the public key (N, e) is as
hard as factoring the RSA modulus N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

RSA signatures (textbook ver.)

• “Public key”: to authenticate herself to Bob, Alice doesn’t
need to share a secret with him. She can sign messages and
those signatures can be checked by anyone.

• The scheme is as follows:
• Key generation: Alice picks random large primes p,q and

computes N = pq. She chooses e coprime to
ϕ(N) = (p − 1)(q − 1), and computes d the inverse of
e mod ϕ(N).
She makes (N, e) public and keeps p,q,d secret.

• Signature: the signature on a message m is σ = md mod N.
• Verification: to check that the signature σ on m is valid, Bob

verifies that σe ≡ m (mod N).

• The scheme is correct, because by Euler’s theorem
σe ≡ med ≡ m (mod N).

• Recovering the secret key d from the public key (N, e) is as
hard as factoring the RSA modulus N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

RSA signatures (textbook ver.)

• “Public key”: to authenticate herself to Bob, Alice doesn’t
need to share a secret with him. She can sign messages and
those signatures can be checked by anyone.

• The scheme is as follows:
• Key generation: Alice picks random large primes p,q and

computes N = pq. She chooses e coprime to
ϕ(N) = (p − 1)(q − 1), and computes d the inverse of
e mod ϕ(N).
She makes (N, e) public and keeps p,q,d secret.

• Signature: the signature on a message m is σ = md mod N.
• Verification: to check that the signature σ on m is valid, Bob

verifies that σe ≡ m (mod N).

• The scheme is correct, because by Euler’s theorem
σe ≡ med ≡ m (mod N).

• Recovering the secret key d from the public key (N, e) is as
hard as factoring the RSA modulus N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

RSA signatures (textbook ver.)

• “Public key”: to authenticate herself to Bob, Alice doesn’t
need to share a secret with him. She can sign messages and
those signatures can be checked by anyone.

• The scheme is as follows:
• Key generation: Alice picks random large primes p,q and

computes N = pq. She chooses e coprime to
ϕ(N) = (p − 1)(q − 1), and computes d the inverse of
e mod ϕ(N).
She makes (N, e) public and keeps p,q,d secret.

• Signature: the signature on a message m is σ = md mod N.
• Verification: to check that the signature σ on m is valid, Bob

verifies that σe ≡ m (mod N).

• The scheme is correct, because by Euler’s theorem
σe ≡ med ≡ m (mod N).

• Recovering the secret key d from the public key (N, e) is as
hard as factoring the RSA modulus N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The importance of padding functions
• As such, the scheme is not secure. For example, if Alice

publishes signatures σ1, σ2 on messages m1,m2, then anyone
can forge a signature on the product m1 ⋅m2: simply
σ = σ1 ⋅ σ2 mod N.

• The usual solution is to apply the RSA function not to m itself
but to µ(m) for some public function µ, called a padding:

σ = µ(m)
d mod N

• In applications until the 1990s, µ was constructed to be fast
and thwart some known attacks, but with no proof of security:
ad-hoc paddings, many of which have been shown to be
flawed (example in this thesis).

• Recently, provably secure paddings have been constructed, at
least in the idealized “random oracle model”. For example,
the RSA signature scheme obtained by choosing µ as a
full-length random oracle (FDH) is secure.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The importance of padding functions
• As such, the scheme is not secure. For example, if Alice

publishes signatures σ1, σ2 on messages m1,m2, then anyone
can forge a signature on the product m1 ⋅m2: simply
σ = σ1 ⋅ σ2 mod N.

• The usual solution is to apply the RSA function not to m itself
but to µ(m) for some public function µ, called a padding:

σ = µ(m)
d mod N

• In applications until the 1990s, µ was constructed to be fast
and thwart some known attacks, but with no proof of security:
ad-hoc paddings, many of which have been shown to be
flawed (example in this thesis).

• Recently, provably secure paddings have been constructed, at
least in the idealized “random oracle model”. For example,
the RSA signature scheme obtained by choosing µ as a
full-length random oracle (FDH) is secure.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The importance of padding functions
• As such, the scheme is not secure. For example, if Alice

publishes signatures σ1, σ2 on messages m1,m2, then anyone
can forge a signature on the product m1 ⋅m2: simply
σ = σ1 ⋅ σ2 mod N.

• The usual solution is to apply the RSA function not to m itself
but to µ(m) for some public function µ, called a padding:

σ = µ(m)
d mod N

• In applications until the 1990s, µ was constructed to be fast
and thwart some known attacks, but with no proof of security:
ad-hoc paddings, many of which have been shown to be
flawed (example in this thesis).

• Recently, provably secure paddings have been constructed, at
least in the idealized “random oracle model”. For example,
the RSA signature scheme obtained by choosing µ as a
full-length random oracle (FDH) is secure.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The importance of padding functions
• As such, the scheme is not secure. For example, if Alice

publishes signatures σ1, σ2 on messages m1,m2, then anyone
can forge a signature on the product m1 ⋅m2: simply
σ = σ1 ⋅ σ2 mod N.

• The usual solution is to apply the RSA function not to m itself
but to µ(m) for some public function µ, called a padding:

σ = µ(m)
d mod N

• In applications until the 1990s, µ was constructed to be fast
and thwart some known attacks, but with no proof of security:
ad-hoc paddings, many of which have been shown to be
flawed (example in this thesis).

• Recently, provably secure paddings have been constructed, at
least in the idealized “random oracle model”. For example,
the RSA signature scheme obtained by choosing µ as a
full-length random oracle (FDH) is secure.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Fault attacks

• Security in traditional cryptography: against adversaries that
“follow the rules” and try to break a mathematical problem.

• Real-world adversaries want to break a physical cryptographic
device.

• Thus, they have more powerful attacks at their disposal.

Side channels: passively exploit the physical leakage (time,
heat, power consumption, etc.) of the device
to gain additional information;

Faults: actively induce device malfunction (power
spikes, overheating, laser beams, etc.) to
cause exploitable errors in computations.

• Even provably secure schemes like FDH do not necessarily
remain secure against such attacks!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Fault attacks

• Security in traditional cryptography: against adversaries that
“follow the rules” and try to break a mathematical problem.

• Real-world adversaries want to break a physical cryptographic
device.

• Thus, they have more powerful attacks at their disposal.

Side channels: passively exploit the physical leakage (time,
heat, power consumption, etc.) of the device
to gain additional information;

Faults: actively induce device malfunction (power
spikes, overheating, laser beams, etc.) to
cause exploitable errors in computations.

• Even provably secure schemes like FDH do not necessarily
remain secure against such attacks!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Fault attacks

• Security in traditional cryptography: against adversaries that
“follow the rules” and try to break a mathematical problem.

• Real-world adversaries want to break a physical cryptographic
device.

• Thus, they have more powerful attacks at their disposal.

Side channels: passively exploit the physical leakage (time,
heat, power consumption, etc.) of the device
to gain additional information;

Faults: actively induce device malfunction (power
spikes, overheating, laser beams, etc.) to
cause exploitable errors in computations.

• Even provably secure schemes like FDH do not necessarily
remain secure against such attacks!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Fault attacks

• Security in traditional cryptography: against adversaries that
“follow the rules” and try to break a mathematical problem.

• Real-world adversaries want to break a physical cryptographic
device.

• Thus, they have more powerful attacks at their disposal.

Side channels: passively exploit the physical leakage (time,
heat, power consumption, etc.) of the device
to gain additional information;

Faults: actively induce device malfunction (power
spikes, overheating, laser beams, etc.) to
cause exploitable errors in computations.

• Even provably secure schemes like FDH do not necessarily
remain secure against such attacks!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Fault attacks

• Security in traditional cryptography: against adversaries that
“follow the rules” and try to break a mathematical problem.

• Real-world adversaries want to break a physical cryptographic
device.

• Thus, they have more powerful attacks at their disposal.

Side channels: passively exploit the physical leakage (time,
heat, power consumption, etc.) of the device
to gain additional information;

Faults: actively induce device malfunction (power
spikes, overheating, laser beams, etc.) to
cause exploitable errors in computations.

• Even provably secure schemes like FDH do not necessarily
remain secure against such attacks!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Fault attacks

• Security in traditional cryptography: against adversaries that
“follow the rules” and try to break a mathematical problem.

• Real-world adversaries want to break a physical cryptographic
device.

• Thus, they have more powerful attacks at their disposal.

Side channels: passively exploit the physical leakage (time,
heat, power consumption, etc.) of the device
to gain additional information;

Faults: actively induce device malfunction (power
spikes, overheating, laser beams, etc.) to
cause exploitable errors in computations.

• Even provably secure schemes like FDH do not necessarily
remain secure against such attacks!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Signing with RSA-CRT

• RSA remains the most widely used signature scheme today. It
is implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)d mod p
2. σq = µ(m)d mod q
3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Signing with RSA-CRT

• RSA remains the most widely used signature scheme today. It
is implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)d mod p
2. σq = µ(m)d mod q
3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Signing with RSA-CRT

• RSA remains the most widely used signature scheme today. It
is implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)d mod p
2. σq = µ(m)d mod q
3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Signing with RSA-CRT

• RSA remains the most widely used signature scheme today. It
is implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)d mod p
2. σq = µ(m)d mod q
3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Shamir’s trick

• Faults against RSA-CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231 − 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ+q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Shamir’s trick

• Faults against RSA-CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231 − 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ+q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Shamir’s trick

• Faults against RSA-CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231 − 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ+q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Outline

Introduction

RSA Cryptanalysis
RSA-CRT signatures
Modulus fault attacks

Hashing to Elliptic Curves
Elliptic curve cryptography
Hashing to elliptic curves
Constructing good hash functions



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧⎪⎪
⎨
⎪⎪⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′ ← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′ ≈ N2, we actually know its value in Z.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧⎪⎪
⎨
⎪⎪⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′ ← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′ ≈ N2, we actually know its value in Z.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧⎪⎪
⎨
⎪⎪⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′ ← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′ ≈ N2, we actually know its value in Z.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧⎪⎪
⎨
⎪⎪⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′ ← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′ ≈ N2, we actually know its value in Z.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Using the fault (II)
Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Using the fault (II)
Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Using the fault (II)
Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Lattice attack overview
• Compute a reduced basis (b1, . . . ,b`−1) of the lattice of

vectors in Z` orthogonal to v.
• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm > N1/2.

• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length N. Thus the remaining vectors
(b1, . . . ,b`−2) form a lattice of volume ≈ N3/2/N1/2 = N. Each
of them is heuristically of length ≈ N1/(`−2). As soon as ` ≥ 5,
they are of length ≪ N1/2 and thus orthogonal to x,y.

• Compute a reduced basis (x′,y′) of the lattice of vectors
orthogonal to (b1, . . . ,b`−2). The vectors x,y are in this
lattice, and can be recovered by a quick exhaustive search!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Lattice attack overview
• Compute a reduced basis (b1, . . . ,b`−1) of the lattice of

vectors in Z` orthogonal to v.
• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm > N1/2.

• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length N. Thus the remaining vectors
(b1, . . . ,b`−2) form a lattice of volume ≈ N3/2/N1/2 = N. Each
of them is heuristically of length ≈ N1/(`−2). As soon as ` ≥ 5,
they are of length ≪ N1/2 and thus orthogonal to x,y.

• Compute a reduced basis (x′,y′) of the lattice of vectors
orthogonal to (b1, . . . ,b`−2). The vectors x,y are in this
lattice, and can be recovered by a quick exhaustive search!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Lattice attack overview
• Compute a reduced basis (b1, . . . ,b`−1) of the lattice of

vectors in Z` orthogonal to v.
• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm > N1/2.

• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length N. Thus the remaining vectors
(b1, . . . ,b`−2) form a lattice of volume ≈ N3/2/N1/2 = N. Each
of them is heuristically of length ≈ N1/(`−2). As soon as ` ≥ 5,
they are of length ≪ N1/2 and thus orthogonal to x,y.

• Compute a reduced basis (x′,y′) of the lattice of vectors
orthogonal to (b1, . . . ,b`−2). The vectors x,y are in this
lattice, and can be recovered by a quick exhaustive search!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Lattice attack overview
• Compute a reduced basis (b1, . . . ,b`−1) of the lattice of

vectors in Z` orthogonal to v.
• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm > N1/2.

• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length N. Thus the remaining vectors
(b1, . . . ,b`−2) form a lattice of volume ≈ N3/2/N1/2 = N. Each
of them is heuristically of length ≈ N1/(`−2). As soon as ` ≥ 5,
they are of length ≪ N1/2 and thus orthogonal to x,y.

• Compute a reduced basis (x′,y′) of the lattice of vectors
orthogonal to (b1, . . . ,b`−2). The vectors x,y are in this
lattice, and can be recovered by a quick exhaustive search!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Lattice attack overview
• Compute a reduced basis (b1, . . . ,b`−1) of the lattice of

vectors in Z` orthogonal to v.
• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm > N1/2.

• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length N. Thus the remaining vectors
(b1, . . . ,b`−2) form a lattice of volume ≈ N3/2/N1/2 = N. Each
of them is heuristically of length ≈ N1/(`−2). As soon as ` ≥ 5,
they are of length ≪ N1/2 and thus orthogonal to x,y.

• Compute a reduced basis (x′,y′) of the lattice of vectors
orthogonal to (b1, . . . ,b`−2). The vectors x,y are in this
lattice, and can be recovered by a quick exhaustive search!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Simulation results
• We can simulate this attack by picking random p,q-parts

(xi , yi), computing the corresponding CRT values vi in Z and
trying to factor the modulus using just the vi ’s.

• For the exhaustive search, we look for all linear combinations
sx′ + ty′ of x′,y′ of length < N1/2 and for each such
combination, we try to factor by computing the GCD:

gcd(v − sx′ − ty′,N)

If the linear combination is either x or y, we’re succesful, since
v is congruent to x mod p but not modq.

• Since x′,y′ are of size ≈ N1/2, the exhaustive search has a few
dozen steps at most. The full attack runs in total time < 0.01
second on a standard PC for a 1024-bit modulus.

• As predicted by the theoretical analysis, success rate is 100%
for ` ≥ 5, regardless of modulus size. Even for ` = 4 we get
success rates of ≈ 40%.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Simulation results
• We can simulate this attack by picking random p,q-parts

(xi , yi), computing the corresponding CRT values vi in Z and
trying to factor the modulus using just the vi ’s.

• For the exhaustive search, we look for all linear combinations
sx′ + ty′ of x′,y′ of length < N1/2 and for each such
combination, we try to factor by computing the GCD:

gcd(v − sx′ − ty′,N)

If the linear combination is either x or y, we’re succesful, since
v is congruent to x mod p but not modq.

• Since x′,y′ are of size ≈ N1/2, the exhaustive search has a few
dozen steps at most. The full attack runs in total time < 0.01
second on a standard PC for a 1024-bit modulus.

• As predicted by the theoretical analysis, success rate is 100%
for ` ≥ 5, regardless of modulus size. Even for ` = 4 we get
success rates of ≈ 40%.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Simulation results
• We can simulate this attack by picking random p,q-parts

(xi , yi), computing the corresponding CRT values vi in Z and
trying to factor the modulus using just the vi ’s.

• For the exhaustive search, we look for all linear combinations
sx′ + ty′ of x′,y′ of length < N1/2 and for each such
combination, we try to factor by computing the GCD:

gcd(v − sx′ − ty′,N)

If the linear combination is either x or y, we’re succesful, since
v is congruent to x mod p but not modq.

• Since x′,y′ are of size ≈ N1/2, the exhaustive search has a few
dozen steps at most. The full attack runs in total time < 0.01
second on a standard PC for a 1024-bit modulus.

• As predicted by the theoretical analysis, success rate is 100%
for ` ≥ 5, regardless of modulus size. Even for ` = 4 we get
success rates of ≈ 40%.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Simulation results
• We can simulate this attack by picking random p,q-parts

(xi , yi), computing the corresponding CRT values vi in Z and
trying to factor the modulus using just the vi ’s.

• For the exhaustive search, we look for all linear combinations
sx′ + ty′ of x′,y′ of length < N1/2 and for each such
combination, we try to factor by computing the GCD:

gcd(v − sx′ − ty′,N)

If the linear combination is either x or y, we’re succesful, since
v is congruent to x mod p but not modq.

• Since x′,y′ are of size ≈ N1/2, the exhaustive search has a few
dozen steps at most. The full attack runs in total time < 0.01
second on a standard PC for a 1024-bit modulus.

• As predicted by the theoretical analysis, success rate is 100%
for ` ≥ 5, regardless of modulus size. Even for ` = 4 we get
success rates of ≈ 40%.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The attack in practice

We implemented the attack against an implementation of
RSA-CRT signatures on an 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The attack in practice

We implemented the attack against an implementation of
RSA-CRT signatures on an 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The attack in practice

We implemented the attack against an implementation of
RSA-CRT signatures on an 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The attack in practice

We implemented the attack against an implementation of
RSA-CRT signatures on an 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with lasers!

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The attack in practice

We implemented the attack against an implementation of
RSA-CRT signatures on an 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with a focused laser beam.

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The attack in practice

We implemented the attack against an implementation of
RSA-CRT signatures on an 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Advantages and limitations
This new attack presents a number of nice features:

• Very fast.
• Only requires 5 correct/fauly signature pairs, regardless of

modulus size.
• Not thwarted by standard RSA-CRT fault countermeasures

such as Shamir’s.

It does have some limitations:

• Needs to recover the faulty modulus N ′: this is a bit
unrealistic in practice. However, with a few more faults of a
reasonable shape, it is easy to overcome this limitation.

• Must be able to obtain a correct and a faulty signature with
the same CRT value: not possible with randomized encodings.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Advantages and limitations
This new attack presents a number of nice features:

• Very fast.
• Only requires 5 correct/fauly signature pairs, regardless of

modulus size.
• Not thwarted by standard RSA-CRT fault countermeasures

such as Shamir’s.

It does have some limitations:

• Needs to recover the faulty modulus N ′: this is a bit
unrealistic in practice. However, with a few more faults of a
reasonable shape, it is easy to overcome this limitation.

• Must be able to obtain a correct and a faulty signature with
the same CRT value: not possible with randomized encodings.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Advantages and limitations
This new attack presents a number of nice features:

• Very fast.
• Only requires 5 correct/fauly signature pairs, regardless of

modulus size.
• Not thwarted by standard RSA-CRT fault countermeasures

such as Shamir’s.

It does have some limitations:

• Needs to recover the faulty modulus N ′: this is a bit
unrealistic in practice. However, with a few more faults of a
reasonable shape, it is easy to overcome this limitation.

• Must be able to obtain a correct and a faulty signature with
the same CRT value: not possible with randomized encodings.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Advantages and limitations
This new attack presents a number of nice features:

• Very fast.
• Only requires 5 correct/fauly signature pairs, regardless of

modulus size.
• Not thwarted by standard RSA-CRT fault countermeasures

such as Shamir’s.

It does have some limitations:

• Needs to recover the faulty modulus N ′: this is a bit
unrealistic in practice. However, with a few more faults of a
reasonable shape, it is easy to overcome this limitation.

• Must be able to obtain a correct and a faulty signature with
the same CRT value: not possible with randomized encodings.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Advantages and limitations
This new attack presents a number of nice features:

• Very fast.
• Only requires 5 correct/fauly signature pairs, regardless of

modulus size.
• Not thwarted by standard RSA-CRT fault countermeasures

such as Shamir’s.

It does have some limitations:

• Needs to recover the faulty modulus N ′: this is a bit
unrealistic in practice. However, with a few more faults of a
reasonable shape, it is easy to overcome this limitation.

• Must be able to obtain a correct and a faulty signature with
the same CRT value: not possible with randomized encodings.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Advantages and limitations
This new attack presents a number of nice features:

• Very fast.
• Only requires 5 correct/fauly signature pairs, regardless of

modulus size.
• Not thwarted by standard RSA-CRT fault countermeasures

such as Shamir’s.

It does have some limitations:

• Needs to recover the faulty modulus N ′: this is a bit
unrealistic in practice. However, with a few more faults of a
reasonable shape, it is easy to overcome this limitation.

• Must be able to obtain a correct and a faulty signature with
the same CRT value: not possible with randomized encodings.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Outline

Introduction

RSA Cryptanalysis
RSA-CRT signatures
Modulus fault attacks

Hashing to Elliptic Curves
Elliptic curve cryptography
Hashing to elliptic curves
Constructing good hash functions



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curves

A smooth curve in the plane defined by an equation of degree 3.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curves

Can be put in Weierstrass form:

y2
= x3

+ ax + b



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curves

Observation dating back at least to Newton: the line through two
points cuts the curve at a third; if a,b are rational, the third point
obtained from two rational points is also rational.
Makes it possible to define an addition law on rational points!



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curves

A central object in number theory (many important arithmetic
problems from Diophantus to Wiles are about elliptic curves).



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curve cryptography

• Elliptic curves can be defined over any field, including finite
fields Fq (we restrict attention to characteristic > 3).

• The set of Fq-points of an elliptic curve E over Fq is again an
abelian group G = E(Fq) where the Discrete Logarithm
Problem and Diffie-Hellman-type problems are believed to be
hard ▶ suitable for cryptography! Idea due to Miller and
Koblitz in the 1980s.

• In fact, the best known attack in most cases is the generic
one: this means short keys and efficient protocols.

• Also come with rich structures such as pairings that don’t
exist in groups like Z∗p.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curve cryptography

• Elliptic curves can be defined over any field, including finite
fields Fq (we restrict attention to characteristic > 3).

• The set of Fq-points of an elliptic curve E over Fq is again an
abelian group G = E(Fq) where the Discrete Logarithm
Problem and Diffie-Hellman-type problems are believed to be
hard ▶ suitable for cryptography! Idea due to Miller and
Koblitz in the 1980s.

• In fact, the best known attack in most cases is the generic
one: this means short keys and efficient protocols.

• Also come with rich structures such as pairings that don’t
exist in groups like Z∗p.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curve cryptography

• Elliptic curves can be defined over any field, including finite
fields Fq (we restrict attention to characteristic > 3).

• The set of Fq-points of an elliptic curve E over Fq is again an
abelian group G = E(Fq) where the Discrete Logarithm
Problem and Diffie-Hellman-type problems are believed to be
hard ▶ suitable for cryptography! Idea due to Miller and
Koblitz in the 1980s.

• In fact, the best known attack in most cases is the generic
one: this means short keys and efficient protocols.

• Also come with rich structures such as pairings that don’t
exist in groups like Z∗p.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Elliptic curve cryptography

• Elliptic curves can be defined over any field, including finite
fields Fq (we restrict attention to characteristic > 3).

• The set of Fq-points of an elliptic curve E over Fq is again an
abelian group G = E(Fq) where the Discrete Logarithm
Problem and Diffie-Hellman-type problems are believed to be
hard ▶ suitable for cryptography! Idea due to Miller and
Koblitz in the 1980s.

• In fact, the best known attack in most cases is the generic
one: this means short keys and efficient protocols.

• Also come with rich structures such as pairings that don’t
exist in groups like Z∗p.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Key size comparison

Security level (bits) RSA or Z∗p Elliptic curves

80 1248 160
96 1776 192

112 2432 224
128 3248 256
256 15424 512



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

An ECC example: BLS signatures

• Signature scheme proposed in 2001 by Boneh, Lynn and
Shacham. Achieves the shortest signature size until now.

• Public parameters: a cyclic group G of prime order p endowed
with a symmetric bilinear pairing e ∶ G ×G→ GT and a hash
function H ∶ {0,1}∗ → G.

• KeyGen(): pick x
$
← Zp as the private key, and P← [x] ⋅G as

the public key.

• Sign(m, x): compute the signature as S← [x] ⋅H(m).

• Verify(m,S,P): accept iff e(H(m),P) = e(S,G).

• Secure if the Computational Diffie-Hellman problem is hard in
G and H is modeled as a random oracle.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

An ECC example: BLS signatures

• Signature scheme proposed in 2001 by Boneh, Lynn and
Shacham. Achieves the shortest signature size until now.

• Public parameters: a cyclic group G of prime order p endowed
with a symmetric bilinear pairing e ∶ G ×G→ GT and a hash
function H ∶ {0,1}∗ → G.

• KeyGen(): pick x
$
← Zp as the private key, and P← [x] ⋅G as

the public key.

• Sign(m, x): compute the signature as S← [x] ⋅H(m).

• Verify(m,S,P): accept iff e(H(m),P) = e(S,G).

• Secure if the Computational Diffie-Hellman problem is hard in
G and H is modeled as a random oracle.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

An ECC example: BLS signatures

• Signature scheme proposed in 2001 by Boneh, Lynn and
Shacham. Achieves the shortest signature size until now.

• Public parameters: a cyclic group G of prime order p endowed
with a symmetric bilinear pairing e ∶ G ×G→ GT and a hash
function H ∶ {0,1}∗ → G.

• KeyGen(): pick x
$
← Zp as the private key, and P← [x] ⋅G as

the public key.

• Sign(m, x): compute the signature as S← [x] ⋅H(m).

• Verify(m,S,P): accept iff e(H(m),P) = e(S,G).

• Secure if the Computational Diffie-Hellman problem is hard in
G and H is modeled as a random oracle.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

An ECC example: BLS signatures

• Signature scheme proposed in 2001 by Boneh, Lynn and
Shacham. Achieves the shortest signature size until now.

• Public parameters: a cyclic group G of prime order p endowed
with a symmetric bilinear pairing e ∶ G ×G→ GT and a hash
function H ∶ {0,1}∗ → G.

• KeyGen(): pick x
$
← Zp as the private key, and P← [x] ⋅G as

the public key.

• Sign(m, x): compute the signature as S← [x] ⋅H(m).

• Verify(m,S,P): accept iff e(H(m),P) = e(S,G).

• Secure if the Computational Diffie-Hellman problem is hard in
G and H is modeled as a random oracle.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

An ECC example: BLS signatures

• Signature scheme proposed in 2001 by Boneh, Lynn and
Shacham. Achieves the shortest signature size until now.

• Public parameters: a cyclic group G of prime order p endowed
with a symmetric bilinear pairing e ∶ G ×G→ GT and a hash
function H ∶ {0,1}∗ → G.

• KeyGen(): pick x
$
← Zp as the private key, and P← [x] ⋅G as

the public key.

• Sign(m, x): compute the signature as S← [x] ⋅H(m).

• Verify(m,S,P): accept iff e(H(m),P) = e(S,G).

• Secure if the Computational Diffie-Hellman problem is hard in
G and H is modeled as a random oracle.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

An ECC example: BLS signatures

• Signature scheme proposed in 2001 by Boneh, Lynn and
Shacham. Achieves the shortest signature size until now.

• Public parameters: a cyclic group G of prime order p endowed
with a symmetric bilinear pairing e ∶ G ×G→ GT and a hash
function H ∶ {0,1}∗ → G.

• KeyGen(): pick x
$
← Zp as the private key, and P← [x] ⋅G as

the public key.

• Sign(m, x): compute the signature as S← [x] ⋅H(m).

• Verify(m,S,P): accept iff e(H(m),P) = e(S,G).

• Secure if the Computational Diffie-Hellman problem is hard in
G and H is modeled as a random oracle.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Outline

Introduction

RSA Cryptanalysis
RSA-CRT signatures
Modulus fault attacks

Hashing to Elliptic Curves
Elliptic curve cryptography
Hashing to elliptic curves
Constructing good hash functions



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Hashing to elliptic curves is a problem

• Like BLS signatures, many cryptographic protocols (for
encryption, signature, PAKE, IBE, etc.) involve representing a
certain numeric value, often a hash value, as an element of
the group G where the computations occur.

• For G = Z∗p, simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group;
e.g. one cannot put the value in the x-coordinate of a curve
point, because only about 1/2 of possible x-values correspond
to actual points.

• Elliptic curve-specific protocols have been developed to
circumvent this problem (ECDSA for signature,
Menezes-Vanstone for encryption, ECMQV for key agreement,
etc.), but doing so with all imaginable protocols is unrealistic.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Hashing to elliptic curves is a problem

• Like BLS signatures, many cryptographic protocols (for
encryption, signature, PAKE, IBE, etc.) involve representing a
certain numeric value, often a hash value, as an element of
the group G where the computations occur.

• For G = Z∗p, simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group;
e.g. one cannot put the value in the x-coordinate of a curve
point, because only about 1/2 of possible x-values correspond
to actual points.

• Elliptic curve-specific protocols have been developed to
circumvent this problem (ECDSA for signature,
Menezes-Vanstone for encryption, ECMQV for key agreement,
etc.), but doing so with all imaginable protocols is unrealistic.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Hashing to elliptic curves is a problem

• Like BLS signatures, many cryptographic protocols (for
encryption, signature, PAKE, IBE, etc.) involve representing a
certain numeric value, often a hash value, as an element of
the group G where the computations occur.

• For G = Z∗p, simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group;
e.g. one cannot put the value in the x-coordinate of a curve
point, because only about 1/2 of possible x-values correspond
to actual points.

• Elliptic curve-specific protocols have been developed to
circumvent this problem (ECDSA for signature,
Menezes-Vanstone for encryption, ECMQV for key agreement,
etc.), but doing so with all imaginable protocols is unrealistic.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Hashing to elliptic curves is a problem

• Like BLS signatures, many cryptographic protocols (for
encryption, signature, PAKE, IBE, etc.) involve representing a
certain numeric value, often a hash value, as an element of
the group G where the computations occur.

• For G = Z∗p, simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group;
e.g. one cannot put the value in the x-coordinate of a curve
point, because only about 1/2 of possible x-values correspond
to actual points.

• Elliptic curve-specific protocols have been developed to
circumvent this problem (ECDSA for signature,
Menezes-Vanstone for encryption, ECMQV for key agreement,
etc.), but doing so with all imaginable protocols is unrealistic.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

A naive approach

• We have reasonable construction of hash functions to bit
strings, or to a group like Zp.

• Hence, a naive approach to hashing to an elliptic curve group
G of order p could be to start from a hash function
h ∶ {0,1}∗ → Zp and simply define:

H(m) = [h(m)] ⋅G

• This is a bad idea. Taking BLS signatures as an example, the
signature on a message m can the be written as:

S = [x] ⋅H(m) = [xh(m)] ⋅G = [h(m)] ⋅P

and hence computed publicly. Completely breaks security!

• So we have to be careful.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

A naive approach

• We have reasonable construction of hash functions to bit
strings, or to a group like Zp.

• Hence, a naive approach to hashing to an elliptic curve group
G of order p could be to start from a hash function
h ∶ {0,1}∗ → Zp and simply define:

H(m) = [h(m)] ⋅G

• This is a bad idea. Taking BLS signatures as an example, the
signature on a message m can the be written as:

S = [x] ⋅H(m) = [xh(m)] ⋅G = [h(m)] ⋅P

and hence computed publicly. Completely breaks security!

• So we have to be careful.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

A naive approach

• We have reasonable construction of hash functions to bit
strings, or to a group like Zp.

• Hence, a naive approach to hashing to an elliptic curve group
G of order p could be to start from a hash function
h ∶ {0,1}∗ → Zp and simply define:

H(m) = [h(m)] ⋅G

• This is a bad idea. Taking BLS signatures as an example, the
signature on a message m can the be written as:

S = [x] ⋅H(m) = [xh(m)] ⋅G = [h(m)] ⋅P

and hence computed publicly. Completely breaks security!

• So we have to be careful.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

A naive approach

• We have reasonable construction of hash functions to bit
strings, or to a group like Zp.

• Hence, a naive approach to hashing to an elliptic curve group
G of order p could be to start from a hash function
h ∶ {0,1}∗ → Zp and simply define:

H(m) = [h(m)] ⋅G

• This is a bad idea. Taking BLS signatures as an example, the
signature on a message m can the be written as:

S = [x] ⋅H(m) = [xh(m)] ⋅G = [h(m)] ⋅P

and hence computed publicly. Completely breaks security!

• So we have to be careful.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-Franklin construction
For their elliptic curve-based IBE scheme [BF01], Boneh and
Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic
encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and
secure ▶ if h is a good hash function to Fq, H(m) = f (h(m)) is
well-behaved: has the properties of a RO to the curve if h is
modeled as a RO to Fq.The IBE scheme is secure for H in the
ROM for h.

Downside: limited to supersingular curves.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-Franklin construction
For their elliptic curve-based IBE scheme [BF01], Boneh and
Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic
encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and
secure ▶ if h is a good hash function to Fq, H(m) = f (h(m)) is
well-behaved: has the properties of a RO to the curve if h is
modeled as a RO to Fq.The IBE scheme is secure for H in the
ROM for h.

Downside: limited to supersingular curves.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-Franklin construction
For their elliptic curve-based IBE scheme [BF01], Boneh and
Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic
encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and
secure ▶ if h is a good hash function to Fq, H(m) = f (h(m)) is
well-behaved: has the properties of a RO to the curve if h is
modeled as a RO to Fq.The IBE scheme is secure for H in the
ROM for h.

Downside: limited to supersingular curves.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

The Boneh-Franklin construction
For their elliptic curve-based IBE scheme [BF01], Boneh and
Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic
encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and
secure ▶ if h is a good hash function to Fq, H(m) = f (h(m)) is
well-behaved: has the properties of a RO to the curve if h is
modeled as a RO to Fq.The IBE scheme is secure for H in the
ROM for h.

Downside: limited to supersingular curves.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ordinary curves: Icart
At CRYPTO 2009, Icart presented a construction for ordinary
curves when q ≡ 2 (mod 3). Generalization of the supersingular
case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve
even if h is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed
recently, but with the same limitation.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ordinary curves: Icart
At CRYPTO 2009, Icart presented a construction for ordinary
curves when q ≡ 2 (mod 3). Generalization of the supersingular
case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve
even if h is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed
recently, but with the same limitation.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Ordinary curves: Icart
At CRYPTO 2009, Icart presented a construction for ordinary
curves when q ≡ 2 (mod 3). Generalization of the supersingular
case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve
even if h is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed
recently, but with the same limitation.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Outline

Introduction

RSA Cryptanalysis
RSA-CRT signatures
Modulus fault attacks

Hashing to Elliptic Curves
Elliptic curve cryptography
Hashing to elliptic curves
Constructing good hash functions



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security in the ROM
Is it secure to use H(m) = f (h(m)) as a hash function to the
curve?

More precisely: if a scheme is proved secure assuming H is a RO, is
the security preserved if one instantiates H(m) = f (h(m)) with h
modeled as a RO?

• For a number of schemes: yes (related to random
self-reducibility properties of the underlying security
assumptions).

• In general: no, security breaks down (ad-hoc
counter-examples).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time
instead?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security in the ROM
Is it secure to use H(m) = f (h(m)) as a hash function to the
curve?

More precisely: if a scheme is proved secure assuming H is a RO, is
the security preserved if one instantiates H(m) = f (h(m)) with h
modeled as a RO?

• For a number of schemes: yes (related to random
self-reducibility properties of the underlying security
assumptions).

• In general: no, security breaks down (ad-hoc
counter-examples).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time
instead?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security in the ROM
Is it secure to use H(m) = f (h(m)) as a hash function to the
curve?

More precisely: if a scheme is proved secure assuming H is a RO, is
the security preserved if one instantiates H(m) = f (h(m)) with h
modeled as a RO?

• For a number of schemes: yes (related to random
self-reducibility properties of the underlying security
assumptions).

• In general: no, security breaks down (ad-hoc
counter-examples).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time
instead?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security in the ROM
Is it secure to use H(m) = f (h(m)) as a hash function to the
curve?

More precisely: if a scheme is proved secure assuming H is a RO, is
the security preserved if one instantiates H(m) = f (h(m)) with h
modeled as a RO?

• For a number of schemes: yes (related to random
self-reducibility properties of the underlying security
assumptions).

• In general: no, security breaks down (ad-hoc
counter-examples).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time
instead?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Security in the ROM
Is it secure to use H(m) = f (h(m)) as a hash function to the
curve?

More precisely: if a scheme is proved secure assuming H is a RO, is
the security preserved if one instantiates H(m) = f (h(m)) with h
modeled as a RO?

• For a number of schemes: yes (related to random
self-reducibility properties of the underlying security
assumptions).

• In general: no, security breaks down (ad-hoc
counter-examples).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time
instead?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Indifferentiability

High-level formulation of our problem: find a condition under
which an ideal primitive (the RO to the curve) can be replaced by
a construction based on another ideal primitive (a RO to Fq) so
that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking,
the construction is indifferentiable from the primitive if no PPT
adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Indifferentiability

High-level formulation of our problem: find a condition under
which an ideal primitive (the RO to the curve) can be replaced by
a construction based on another ideal primitive (a RO to Fq) so
that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking,
the construction is indifferentiable from the primitive if no PPT
adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and
F is a deterministic function S → E(Fq).

We can prove that H is indifferentiable from a RO to E(Fq) as
soon as the function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of
F (s) is statistically indistinguishable from the
uniform distribution in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq)

returns an uniformly distributed element in F−1($).



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and
F is a deterministic function S → E(Fq).

We can prove that H is indifferentiable from a RO to E(Fq) as
soon as the function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of
F (s) is statistically indistinguishable from the
uniform distribution in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq)

returns an uniformly distributed element in F−1($).



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Remarks

• We can quantify precisely the “loss” in random oracle security
when instantiating H in this manner (in terms of the
statistical distance between F (s) and uniform, and the
running time of the sampling algorithm).

• Icart’s function is not admissible: computable and samplable,
but not regular.

• A construction like H(m) = [h(m)] ⋅G is not admissible:
computable and regular but not samplable.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Remarks

• We can quantify precisely the “loss” in random oracle security
when instantiating H in this manner (in terms of the
statistical distance between F (s) and uniform, and the
running time of the sampling algorithm).

• Icart’s function is not admissible: computable and samplable,
but not regular.

• A construction like H(m) = [h(m)] ⋅G is not admissible:
computable and regular but not samplable.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Remarks

• We can quantify precisely the “loss” in random oracle security
when instantiating H in this manner (in terms of the
statistical distance between F (s) and uniform, and the
running time of the sampling algorithm).

• Icart’s function is not admissible: computable and samplable,
but not regular.

• A construction like H(m) = [h(m)] ⋅G is not admissible:
computable and regular but not samplable.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

General construction

E ordinary elliptic curve over Fq, G generator of E(Fq) (assumed
cyclic of cardinality N) and f ∶Fq → E(Fq) deterministic encoding
like Icart’s function.

Under mild assumptions on f (verified for all deterministic
encodings proposed so far), the following is an admissible function
Fq ×Z/NZ→ E(Fq):

F (u, v) = f (u) + [v] ⋅G

Thus, H(m) = f (h1(m)) + [h2(m)] ⋅G is indifferentiable from a
RO, in the ROM for h1,h2.

Downside: quite inefficient (≈ 10 times slower than Icart’s function
alone).



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u) + [v] ⋅G is uniformly distributed in E(Fq),
regardless of the behavior of f .

Samplable To sample F−1(P), pick a random v ∈ Z/NZ and
solve the algebraic equation f (u) = P − [v] ⋅G for u.
For Icart, there are at most 4 solutions, easy to
enumerate. Return (u, v) for one of those solutions u
at random, or try again if there are none.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO,
in the ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient.
No restriction on the curve.

Downside: proof is more difficult.

More precisely, computability and samplability are proved like
before. The hard part is regularity: showing that the cardinality of
F−1(P) is almost constant along the curve.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to
the equation f (u)+ f (v) = P is constant up to negligible deviations
when P varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane.
The Hasse-Weil bound ensures that such a curve always has
q +O(

√
q) points. QED.

Technical difficulties:
• Icart’s function f is not a morphism, only an algebraic

correspondence. The correct geometric pictures involves a
curve C with morphisms h∶C → E and p∶C → P1 such that
f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a
few exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an
irreducible curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity
(intersection theory on C × C ), and push everything down to
(Fq)

2.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to
the equation f (u)+ f (v) = P is constant up to negligible deviations
when P varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane.
The Hasse-Weil bound ensures that such a curve always has
q +O(

√
q) points. QED.

Technical difficulties:
• Icart’s function f is not a morphism, only an algebraic

correspondence. The correct geometric pictures involves a
curve C with morphisms h∶C → E and p∶C → P1 such that
f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a
few exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an
irreducible curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity
(intersection theory on C × C ), and push everything down to
(Fq)

2.



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Summary and outlook

• Consider the instantiations of random oracles in elliptic
curve-based cryptosystems;

• Suggest a framework for constructing well-behaved hash
functions to ordinary elliptic curves;

• Propose two such constructions, one more general, the other
more efficient.

Further problems:

• Extend the efficient construction to any constant-time
encoding to elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves (some
progress)

• Understand how the possibility of encoding scalars as curve
points affects elliptic curve-based protocols (wide open)



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Summary and outlook

• Consider the instantiations of random oracles in elliptic
curve-based cryptosystems;

• Suggest a framework for constructing well-behaved hash
functions to ordinary elliptic curves;

• Propose two such constructions, one more general, the other
more efficient.

Further problems:

• Extend the efficient construction to any constant-time
encoding to elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves (some
progress)

• Understand how the possibility of encoding scalars as curve
points affects elliptic curve-based protocols (wide open)



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Summary and outlook

• Consider the instantiations of random oracles in elliptic
curve-based cryptosystems;

• Suggest a framework for constructing well-behaved hash
functions to ordinary elliptic curves;

• Propose two such constructions, one more general, the other
more efficient.

Further problems:

• Extend the efficient construction to any constant-time
encoding to elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves (some
progress)

• Understand how the possibility of encoding scalars as curve
points affects elliptic curve-based protocols (wide open)



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Summary and outlook

• Consider the instantiations of random oracles in elliptic
curve-based cryptosystems;

• Suggest a framework for constructing well-behaved hash
functions to ordinary elliptic curves;

• Propose two such constructions, one more general, the other
more efficient.

Further problems:

• Extend the efficient construction to any constant-time
encoding to elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves (some
progress)

• Understand how the possibility of encoding scalars as curve
points affects elliptic curve-based protocols (wide open)



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Summary and outlook

• Consider the instantiations of random oracles in elliptic
curve-based cryptosystems;

• Suggest a framework for constructing well-behaved hash
functions to ordinary elliptic curves;

• Propose two such constructions, one more general, the other
more efficient.

Further problems:

• Extend the efficient construction to any constant-time
encoding to elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves (some
progress)

• Understand how the possibility of encoding scalars as curve
points affects elliptic curve-based protocols (wide open)



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Summary and outlook

• Consider the instantiations of random oracles in elliptic
curve-based cryptosystems;

• Suggest a framework for constructing well-behaved hash
functions to ordinary elliptic curves;

• Propose two such constructions, one more general, the other
more efficient.

Further problems:

• Extend the efficient construction to any constant-time
encoding to elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves (some
progress)

• Understand how the possibility of encoding scalars as curve
points affects elliptic curve-based protocols (wide open)



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Contributions to RSA cryptanalysis (I)

• Fault attacks

Fault Attacks Against EMV Signatures
Coron, Naccache, T. [CT-RSA 2010]

Modulus Fault Attacks Against RSA Signatures
Brier, Naccache, Nguyen, T. [CHES 2011; JCEN]

Lattice-Based Fault Attacks on Signatures
Nguyen, T. [FAC]



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Contributions to RSA cryptanalysis (II)

• Attacks of ad-hoc paddings

Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures
Coron, Naccache, T., Weinmann [CRYPTO 2009]

On the Broadcast and Validity-Checking Security of PKCS#1 v1.5
Bauer, Coron, Naccache, T., Vergnaud [ACNS 2010]

Another Look at RSA Signatures With Affine Padding
Coron, Naccache, T. [submitted]

• Other contributions

Factoring Unbalanced Moduli with Known Bits
Brier, Naccache, T. [ICISC 2009]

Cryptanalysis of the RSA Subgroup Assumption from TCC 2005
Coron, Joux, Naccache, Mandal, T. [PKC 2011]



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Contributions to ECC (I)

• Hashing and encoding

Estimating the Size of the Image of Deterministic Hash Functions to
Elliptic Curves
Fouque, T. [LATINCRYPT 2010]

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves
Brier, Coron, Icart, Madore, Randriam, T. [CRYPTO 2010]

Deterministic Encoding and Hashing to Odd Hyperelliptic Curves
Fouque, T. [Pairing 2010]

Securing E-passports with Elliptic Curves
Chabanne, T. [IEEE Security & Privacy]

Indifferentiable Deterministic Hashing to Elliptic and Hyperelliptic
Curves
Farashahi, Fouque, Shparlinski, T., Voloch

[to appear in Math. Comp.]



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Contributions to ECC (II)

• Other contributions

Huff’s Model for Elliptic Curves
Joye, T., Vergnaud [ANTS-IX]

A Nagell Algorithm in Any Characteristic
T. [Festschrift JJQ]



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Other areas

• Fully-homomorphic encryption

Fully Homomorphic Encryption over the Integers with Shorter Public
Keys
Coron, Mandal, Naccache, T. [CRYPTO 2011]

Optimization of Fully Homomorphic Encryption
Coron, Naccache, T. [submitted]

• Prime generation

Close to Uniform Prime Number Generation With Fewer Random
Bits
Fouque, T. [submitted]



Introduction RSA Cryptanalysis Hashing to Elliptic Curves Conclusion

Thank you!


	Introduction
	

	RSA Cryptanalysis
	RSA-CRT signatures
	Modulus fault attacks

	Hashing to Elliptic Curves
	Elliptic curve cryptography
	Hashing to elliptic curves
	Constructing good hash functions

	Conclusion

