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Cryptology

Cryptology is the science of secret messages.
It has two opposite, complementary sides.

Cryptography Cryptanalysis
Constructing systems to ensure
various security properties of com-
munications.

Uncovering flaws in those systems
so as to break the security of com-
munications.
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Security properties

Besides confidentiality (which is traditional goal of cryptography),
other security properties can be sought, such as:

• authenticity: whether it really is Alice talking;

• integrity: whether the message is what was actually sent;

• non-repudiation: so Alice cannot claim she didn’t write the
message;

• and many more...
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Cryptography vs. cryptanalysis

Cryptography Cryptanalysis

Construct secure schemes Break those schemes
Prove security properties in a cer-
tain model

Circumvent the model

...based on given hardness as-
sumptions

Show that the “hard” problems
are not that hard

Implement the schemes in appli-
cations

Tamper with the implementation
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RSA signatures (textbook ver.)

• “Public key”: to authenticate herself to Bob, Alice doesn’t
need to share a secret with him. She can sign messages and
those signatures can be checked by anyone.

• The scheme is as follows:
• Key generation: Alice picks random large primes p,q and

computes N = pq. She chooses e coprime to
ϕ(N) = (p − 1)(q − 1), and computes d the inverse of
e mod ϕ(N).
She makes (N, e) public and keeps p,q,d secret.

• Signature: the signature on a message m is σ = md mod N.
• Verification: to check that the signature σ on m is valid, Bob

verifies that σe ≡ m (mod N).

• The scheme is correct, because by Euler’s theorem
σe ≡ med ≡ m (mod N).

• Recovering the secret key d from the public key (N, e) is as
hard as factoring the RSA modulus N.
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The importance of padding functions
• As such, the scheme is not secure. For example, if Alice

publishes signatures σ1, σ2 on messages m1,m2, then anyone
can forge a signature on the product m1 ⋅m2: simply
σ = σ1 ⋅ σ2 mod N.

• The usual solution is to apply the RSA function not to m itself
but to µ(m) for some public function µ, called a padding:

σ = µ(m)
d mod N

• In applications until the 1990s, µ was constructed to be fast
and thwart some known attacks, but with no proof of security:
ad-hoc paddings, many of which have been shown to be
flawed (example in this thesis).

• Recently, provably secure paddings have been constructed, at
least in the idealized “random oracle model”. For example,
the RSA signature scheme obtained by choosing µ as a
full-length random oracle (FDH) is secure.
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Fault attacks

• Security in traditional cryptography: against adversaries that
“follow the rules” and try to break a mathematical problem.

• Real-world adversaries want to break a physical cryptographic
device.

• Thus, they have more powerful attacks at their disposal.

Side channels: passively exploit the physical leakage (time,
heat, power consumption, etc.) of the device
to gain additional information;

Faults: actively induce device malfunction (power
spikes, overheating, laser beams, etc.) to
cause exploitable errors in computations.

• Even provably secure schemes like FDH do not necessarily
remain secure against such attacks!
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Signing with RSA-CRT

• RSA remains the most widely used signature scheme today. It
is implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)d mod p
2. σq = µ(m)d mod q
3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.
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The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)d mod p
2. σ′q ≠ µ(m)d mod q ← fault
3. σ′ = CRT(σp, σ

′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
provably secure ones like FDH.
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Shamir’s trick

• Faults against RSA-CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231 − 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ+q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!
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Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA-CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)d mod p ← correct
2. σq = µ(m)d mod q ← correct
3. σ′ = CRT(σp, σq) mod N ′ ← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.
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Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧⎪⎪
⎨
⎪⎪⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′ ← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′ ≈ N2, we actually know its value in Z.
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Using the fault (II)
Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.
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Lattice attack overview
• Compute a reduced basis (b1, . . . ,b`−1) of the lattice of

vectors in Z` orthogonal to v.
• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm > N1/2.

• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length N. Thus the remaining vectors
(b1, . . . ,b`−2) form a lattice of volume ≈ N3/2/N1/2 = N. Each
of them is heuristically of length ≈ N1/(`−2). As soon as ` ≥ 5,
they are of length ≪ N1/2 and thus orthogonal to x,y.

• Compute a reduced basis (x′,y′) of the lattice of vectors
orthogonal to (b1, . . . ,b`−2). The vectors x,y are in this
lattice, and can be recovered by a quick exhaustive search!
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Simulation results
• We can simulate this attack by picking random p,q-parts

(xi , yi), computing the corresponding CRT values vi in Z and
trying to factor the modulus using just the vi ’s.

• For the exhaustive search, we look for all linear combinations
sx′ + ty′ of x′,y′ of length < N1/2 and for each such
combination, we try to factor by computing the GCD:

gcd(v − sx′ − ty′,N)

If the linear combination is either x or y, we’re succesful, since
v is congruent to x mod p but not modq.

• Since x′,y′ are of size ≈ N1/2, the exhaustive search has a few
dozen steps at most. The full attack runs in total time < 0.01
second on a standard PC for a 1024-bit modulus.

• As predicted by the theoretical analysis, success rate is 100%
for ` ≥ 5, regardless of modulus size. Even for ` = 4 we get
success rates of ≈ 40%.
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The attack in practice

We implemented the attack against an implementation of
RSA-CRT signatures on an 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.
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Advantages and limitations
This new attack presents a number of nice features:

• Very fast.
• Only requires 5 correct/fauly signature pairs, regardless of

modulus size.
• Not thwarted by standard RSA-CRT fault countermeasures

such as Shamir’s.

It does have some limitations:

• Needs to recover the faulty modulus N ′: this is a bit
unrealistic in practice. However, with a few more faults of a
reasonable shape, it is easy to overcome this limitation.

• Must be able to obtain a correct and a faulty signature with
the same CRT value: not possible with randomized encodings.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.
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Elliptic curves

A smooth curve in the plane defined by an equation of degree 3.
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Elliptic curves

Can be put in Weierstrass form:

y2
= x3

+ ax + b
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Elliptic curves

Observation dating back at least to Newton: the line through two
points cuts the curve at a third; if a,b are rational, the third point
obtained from two rational points is also rational.
Makes it possible to define an addition law on rational points!
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Elliptic curves

A central object in number theory (many important arithmetic
problems from Diophantus to Wiles are about elliptic curves).
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Elliptic curve cryptography

• Elliptic curves can be defined over any field, including finite
fields Fq (we restrict attention to characteristic > 3).

• The set of Fq-points of an elliptic curve E over Fq is again an
abelian group G = E(Fq) where the Discrete Logarithm
Problem and Diffie-Hellman-type problems are believed to be
hard ▶ suitable for cryptography! Idea due to Miller and
Koblitz in the 1980s.

• In fact, the best known attack in most cases is the generic
one: this means short keys and efficient protocols.

• Also come with rich structures such as pairings that don’t
exist in groups like Z∗p.
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Key size comparison

Security level (bits) RSA or Z∗p Elliptic curves

80 1248 160
96 1776 192

112 2432 224
128 3248 256
256 15424 512
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An ECC example: BLS signatures

• Signature scheme proposed in 2001 by Boneh, Lynn and
Shacham. Achieves the shortest signature size until now.

• Public parameters: a cyclic group G of prime order p endowed
with a symmetric bilinear pairing e ∶ G ×G→ GT and a hash
function H ∶ {0,1}∗ → G.

• KeyGen(): pick x
$
← Zp as the private key, and P← [x] ⋅G as

the public key.

• Sign(m, x): compute the signature as S← [x] ⋅H(m).

• Verify(m,S,P): accept iff e(H(m),P) = e(S,G).

• Secure if the Computational Diffie-Hellman problem is hard in
G and H is modeled as a random oracle.
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Hashing to elliptic curves is a problem

• Like BLS signatures, many cryptographic protocols (for
encryption, signature, PAKE, IBE, etc.) involve representing a
certain numeric value, often a hash value, as an element of
the group G where the computations occur.

• For G = Z∗p, simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group;
e.g. one cannot put the value in the x-coordinate of a curve
point, because only about 1/2 of possible x-values correspond
to actual points.

• Elliptic curve-specific protocols have been developed to
circumvent this problem (ECDSA for signature,
Menezes-Vanstone for encryption, ECMQV for key agreement,
etc.), but doing so with all imaginable protocols is unrealistic.
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A naive approach

• We have reasonable construction of hash functions to bit
strings, or to a group like Zp.

• Hence, a naive approach to hashing to an elliptic curve group
G of order p could be to start from a hash function
h ∶ {0,1}∗ → Zp and simply define:

H(m) = [h(m)] ⋅G

• This is a bad idea. Taking BLS signatures as an example, the
signature on a message m can the be written as:

S = [x] ⋅H(m) = [xh(m)] ⋅G = [h(m)] ⋅P

and hence computed publicly. Completely breaks security!

• So we have to be careful.
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The traditional solution

• Start from a hash function h ∶ {0,1}∗ → Fq to the base field.

• For k bits of security:

1. concatenate the message m with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the hash value x = h(c∥m) is a valid x-coordinate on the

curve (i.e. x3 + ax + b is a square in Fq), return one of the two
corresponding points as H(m); otherwise increment the
counter and try again.

• The probability of a concatenated value being valid is
1/2 +O(1/

√
q), so k iterations ensure k bits of security.

• Problem: this does not run in constant time. Can facilitate
side-channel attacks, especially for protocols like PAKE.
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The Boneh-Franklin construction
For their elliptic curve-based IBE scheme [BF01], Boneh and
Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic
encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and
secure ▶ if h is a good hash function to Fq, H(m) = f (h(m)) is
well-behaved: has the properties of a RO to the curve if h is
modeled as a RO to Fq.The IBE scheme is secure for H in the
ROM for h.

Downside: limited to supersingular curves.
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Ordinary curves: Icart
At CRYPTO 2009, Icart presented a construction for ordinary
curves when q ≡ 2 (mod 3). Generalization of the supersingular
case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve
even if h is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed
recently, but with the same limitation.
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Security in the ROM
Is it secure to use H(m) = f (h(m)) as a hash function to the
curve?

More precisely: if a scheme is proved secure assuming H is a RO, is
the security preserved if one instantiates H(m) = f (h(m)) with h
modeled as a RO?

• For a number of schemes: yes (related to random
self-reducibility properties of the underlying security
assumptions).

• In general: no, security breaks down (ad-hoc
counter-examples).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time
instead?
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Indifferentiability

High-level formulation of our problem: find a condition under
which an ideal primitive (the RO to the curve) can be replaced by
a construction based on another ideal primitive (a RO to Fq) so
that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking,
the construction is indifferentiable from the primitive if no PPT
adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?
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Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and
F is a deterministic function S → E(Fq).

We can prove that H is indifferentiable from a RO to E(Fq) as
soon as the function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of
F (s) is statistically indistinguishable from the
uniform distribution in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq)

returns an uniformly distributed element in F−1($).
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Remarks

• We can quantify precisely the “loss” in random oracle security
when instantiating H in this manner (in terms of the
statistical distance between F (s) and uniform, and the
running time of the sampling algorithm).

• Icart’s function is not admissible: computable and samplable,
but not regular.

• A construction like H(m) = [h(m)] ⋅G is not admissible:
computable and regular but not samplable.
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General construction

E ordinary elliptic curve over Fq, G generator of E(Fq) (assumed
cyclic of cardinality N) and f ∶Fq → E(Fq) deterministic encoding
like Icart’s function.

Under mild assumptions on f (verified for all deterministic
encodings proposed so far), the following is an admissible function
Fq ×Z/NZ→ E(Fq):

F (u, v) = f (u) + [v] ⋅G

Thus, H(m) = f (h1(m)) + [h2(m)] ⋅G is indifferentiable from a
RO, in the ROM for h1,h2.

Downside: quite inefficient (≈ 10 times slower than Icart’s function
alone).
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Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u) + [v] ⋅G is uniformly distributed in E(Fq),
regardless of the behavior of f .

Samplable To sample F−1(P), pick a random v ∈ Z/NZ and
solve the algebraic equation f (u) = P − [v] ⋅G for u.
For Icart, there are at most 4 solutions, easy to
enumerate. Return (u, v) for one of those solutions u
at random, or try again if there are none.
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Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO,
in the ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient.
No restriction on the curve.

Downside: proof is more difficult.

More precisely, computability and samplability are proved like
before. The hard part is regularity: showing that the cardinality of
F−1(P) is almost constant along the curve.
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Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to
the equation f (u)+ f (v) = P is constant up to negligible deviations
when P varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane.
The Hasse-Weil bound ensures that such a curve always has
q +O(

√
q) points. QED.

Technical difficulties:
• Icart’s function f is not a morphism, only an algebraic

correspondence. The correct geometric pictures involves a
curve C with morphisms h∶C → E and p∶C → P1 such that
f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a
few exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an
irreducible curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity
(intersection theory on C × C ), and push everything down to
(Fq)

2.
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Summary and outlook

• Consider the instantiations of random oracles in elliptic
curve-based cryptosystems;

• Suggest a framework for constructing well-behaved hash
functions to ordinary elliptic curves;

• Propose two such constructions, one more general, the other
more efficient.

Further problems:

• Extend the efficient construction to any constant-time
encoding to elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves (some
progress)

• Understand how the possibility of encoding scalars as curve
points affects elliptic curve-based protocols (wide open)
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Contributions to RSA cryptanalysis (I)

• Fault attacks

Fault Attacks Against EMV Signatures
Coron, Naccache, T. [CT-RSA 2010]

Modulus Fault Attacks Against RSA Signatures
Brier, Naccache, Nguyen, T. [CHES 2011; JCEN]

Lattice-Based Fault Attacks on Signatures
Nguyen, T. [FAC]
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Contributions to RSA cryptanalysis (II)

• Attacks of ad-hoc paddings

Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures
Coron, Naccache, T., Weinmann [CRYPTO 2009]

On the Broadcast and Validity-Checking Security of PKCS#1 v1.5
Bauer, Coron, Naccache, T., Vergnaud [ACNS 2010]

Another Look at RSA Signatures With Affine Padding
Coron, Naccache, T. [submitted]

• Other contributions

Factoring Unbalanced Moduli with Known Bits
Brier, Naccache, T. [ICISC 2009]

Cryptanalysis of the RSA Subgroup Assumption from TCC 2005
Coron, Joux, Naccache, Mandal, T. [PKC 2011]
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Contributions to ECC (I)

• Hashing and encoding

Estimating the Size of the Image of Deterministic Hash Functions to
Elliptic Curves
Fouque, T. [LATINCRYPT 2010]

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves
Brier, Coron, Icart, Madore, Randriam, T. [CRYPTO 2010]

Deterministic Encoding and Hashing to Odd Hyperelliptic Curves
Fouque, T. [Pairing 2010]

Securing E-passports with Elliptic Curves
Chabanne, T. [IEEE Security & Privacy]

Indifferentiable Deterministic Hashing to Elliptic and Hyperelliptic
Curves
Farashahi, Fouque, Shparlinski, T., Voloch

[to appear in Math. Comp.]
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Contributions to ECC (II)

• Other contributions

Huff’s Model for Elliptic Curves
Joye, T., Vergnaud [ANTS-IX]

A Nagell Algorithm in Any Characteristic
T. [Festschrift JJQ]
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Other areas

• Fully-homomorphic encryption

Fully Homomorphic Encryption over the Integers with Shorter Public
Keys
Coron, Mandal, Naccache, T. [CRYPTO 2011]

Optimization of Fully Homomorphic Encryption
Coron, Naccache, T. [submitted]

• Prime generation

Close to Uniform Prime Number Generation With Fewer Random
Bits
Fouque, T. [submitted]
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Thank you!
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