Huff's Model for Elliptic Curves

Marc Joye Mehdi Tibouchi Damien Vergnaud

Technicolor

Ecole Normale Supérieure

ANTS-IX, Nancy, July 19-23, 2010

- Elliptic curves and elliptic curves models
- Huff's model
- Efficient arithmetic on Huff curves
- Generalizations and extensions
- Efficient pairings on Huff curves

Definition (Elliptic curve)

A nonsingular absolutely irreducible projective curve defined over a field $\mathbb F$ of genus 1 with one distinguished $\mathbb F$ -rational point is called an elliptic curve over $\mathbb F$

• An elliptic curve E over $\mathbb F$ can be given by the so-called Weierstrass equation

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where the coefficients $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}$

We note that E has to be nonsingular

Definition (Elliptic curve)

A nonsingular absolutely irreducible projective curve defined over a field $\mathbb F$ of genus 1 with one distinguished $\mathbb F$ -rational point is called an elliptic curve over $\mathbb F$

• An elliptic curve E over $\mathbb F$ can be given by the so-called Weierstrass equation

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where the coefficients $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}$

• We note that *E* has to be nonsingular

• The set of \mathbb{F} -rational points on E is defined by the set of points

 $E(\mathbb{F}) = \{(x, y) \in \mathbb{F} \times \mathbb{F} : y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{P_\infty\}$

where P_∞ is the point at infinity

 The set of 𝔅-rational points on 𝔅 by means of the chord-and-tangent process turns 𝔅(𝔅) into an abelian group with 𝒫_∞ as the neutral element • The set of \mathbb{F} -rational points on E is defined by the set of points

 $E(\mathbb{F}) = \{(x, y) \in \mathbb{F} \times \mathbb{F} : y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{P_\infty\}$

where P_{∞} is the point at infinity

• The set of \mathbb{F} -rational points on E by means of the chord-and-tangent process turns $E(\mathbb{F})$ into an abelian group with P_{∞} as the neutral element

- Finite field arithmetic
- Elliptic curve arithmetic
 - The shape of the curve
 - The coordinate systems
 - Addition formulas: What is the cost? Is it unified? Is it complete?
 - Scalar multiplication
- Evaluation of pairings

Some Forms of Elliptic Curves

- There are many ways to represent an elliptic curve such as Long Weierstrass: $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ Short Weierstrass: $y^2 = x^3 + ax + b$ Legendre: $y^2 = x(x-1)(x-\lambda)$ Montgomery: $by^2 = x^3 + ax^2 + x$ Doche-Icart-Kohel: $y^2 = x^3 + 3a(x+1)^2$ Jacobi intersection: $x^2 + y^2 = 1$, $ax^2 + z^2 = 1$ Jacobi quartic: $y^2 = x^4 + 2ax^2 + 1$ Hessian: $x^{3} + v^{3} + 1 = 3dxv$ Edwards: $x^2 + v^2 = c^2(1 + x^2v^2)$ Twisted Edwards: $ax^2 + y^2 = 1 + dx^2y^2$
- Some of these define curves with singular projective closures but geometric genus 1

• There are several ways to represent an elliptic curve over a field of characteristic 2 such as

Long Weierstrass: $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ Short Weierstrass: $y^2 + xy = x^3 + ax^2 + b$ Hessian: $x^3 + y^3 + 1 = dxy$ Binary Edwards: $c(x + y) + d(x^2 + y^2) = xy + xy(x + y) + x^2y^2$

A Diophantine problem

 $a,b\in \mathbb{Q}^*$, $a^2
eq b^2$

 $x \in \mathbb{Q}$ for which (x, 0) is at rational distances from $(0, \pm a)$ and $(0, \pm b)$?

equivalent to

Rational points on
$$ax(y^2 - 1) = by(x^2 - 1)$$
?

A B M A B M

A Diophantine problem

 $x \in \mathbb{Q}$ for which (x, 0) is at rational distances from $(0, \pm a)$ and $(0, \pm b)$?

equivalent to

Rational points on
$$ax(y^2 - 1) = by(x^2 - 1)$$
?

Huff's Model

Gerald B. Huff. Diophantine problems in geometry and elliptic ternary forms. Duke Math. J., 15:443–453, 1948.

$$aX(Y^2-Z^2)=bY(X^2-Z^2)$$

- defines an elliptic curve if a² ≠ b² and a, b ≠ 0 over any field K of odd characteristic with (0 : 0 : 1) as the neutral element,
- with three points at infinity (1:0:0), (0:1:0) and (a:b:0)
- isomorphic to the Weierstrass form:

$$V^2W = U(U + a^2W)(U + b^2W)$$

$$(\mathsf{with}\ (U:V:W) = \left(\mathsf{ab}(\mathsf{b}X-\mathsf{a}Y):\mathsf{ab}(\mathsf{b}^2-\mathsf{a}^2)Z:-\mathsf{a}X+\mathsf{b}Y\right))$$

$$E: aX(Y^2 - Z^2) = bY(X^2 - Z^2)$$

- O = (0 : 0 : 1) is an inflection point of E → (E, O) is an elliptic curve with O as neutral element
- chord-and-tangent group law on E
- \rightsquigarrow the inverse of $\mathbf{P_1} = (X_1:Y_1:Z_1)$ is $\ominus \mathbf{P_1} = (X_1:Y_1:-Z_1)$
- (1:0:0), (0:1:0) and (a: b:0) are 2-torsion points of E (±1:±1:1) are 4-torsion points; these points form a subgroup isomorphic to Z/4Z × Z/2Z
- conversely, in odd characteristic, any elliptic curve with a rational subgroup isomorphic to $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ is isomorphic to a Huff curve (Riemann-Roch exercise)

ゆ く き く き く

э

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Unified/Complete Addition Formulas

$$E : ax(y^2 - 1) = by(x^2 - 1), \qquad \mathbf{P_1} \oplus \mathbf{P_2} \oplus \mathbf{P_3} = \mathbf{0}$$
$$\mathbf{P_1} = (x_1, y_1), \ \mathbf{P_3} = (x_2, y_2), \ \mathbf{P_3} = (-x_3, -y_3) \text{ with}$$
$$x_3 = \frac{(x_1 + x_2)(1 + y_1y_2)}{(1 + x_1x_2)(1 - y_1y_2)} \text{ and } y_3 = \frac{(y_1 + y_2)(1 + x_1x_2)}{(1 - x_1x_2)(1 + y_1y_2)}$$

whenever $x_1x_2 \neq \pm 1$ and $y_1y_2 \neq \pm 1$

addition law is *unified*: it can be used to double a point
 involves inversions ~> projective coordinates:

$$\begin{cases} X_3 = (X_1Z_2 + X_2Z_1)(Y_1Y_2 + Z_1Z_2)^2(Z_1Z_2 - X_1X_2) \\ Y_3 = (Y_1Z_2 + Y_2Z_1)(X_1X_2 + Z_1Z_2)^2(Z_1Z_2 - Y_1Y_2) \\ Z_3 = (Z_1^2Z_2^2 - X_1^2X_2^2)(Z_1^2Z_2^2 - Y_1^2Y_2^2) \end{cases}$$

can be evaluated with 12m

Unified/Complete Addition Formulas

$$E: ax(y^2 - 1) = by(x^2 - 1),$$
 $P_1 \oplus P_2 \oplus P_3 = 0$

• $\mathbf{P_1} = (x_1, y_1)$, $\mathbf{P_3} = (x_2, y_2)$, $\mathbf{P_3} = (-x_3, -y_3)$ with

$$x_3 = \frac{(x_1 + x_2)(1 + y_1y_2)}{(1 + x_1x_2)(1 - y_1y_2)}$$
 and $y_3 = \frac{(y_1 + y_2)(1 + x_1x_2)}{(1 - x_1x_2)(1 + y_1y_2)}$

whenever $x_1x_2 \neq \pm 1$ and $y_1y_2 \neq \pm 1$

addition law is unified: it can be used to double a point

involves inversions ~> projective coordinates:

$$\begin{cases} X_3 = (X_1Z_2 + X_2Z_1)(Y_1Y_2 + Z_1Z_2)^2(Z_1Z_2 - X_1X_2) \\ Y_3 = (Y_1Z_2 + Y_2Z_1)(X_1X_2 + Z_1Z_2)^2(Z_1Z_2 - Y_1Y_2) \\ Z_3 = (Z_1^2Z_2^2 - X_1^2X_2^2)(Z_1^2Z_2^2 - Y_1^2Y_2^2) \end{cases}$$

can be evaluated with 12m

Unified/Complete Addition Formulas

$$E: ax(y^2-1) = by(x^2-1), \qquad \mathbf{P_1} \oplus \mathbf{P_2} \oplus \mathbf{P_3} = \mathbf{0}$$

• $\mathbf{P_1} = (x_1, y_1)$, $\mathbf{P_3} = (x_2, y_2)$, $\mathbf{P_3} = (-x_3, -y_3)$ with

$$x_3 = \frac{(x_1 + x_2)(1 + y_1y_2)}{(1 + x_1x_2)(1 - y_1y_2)}$$
 and $y_3 = \frac{(y_1 + y_2)(1 + x_1x_2)}{(1 - x_1x_2)(1 + y_1y_2)}$

whenever $x_1x_2 \neq \pm 1$ and $y_1y_2 \neq \pm 1$

- addition law is *unified*: it can be used to double a point
- involves inversions \rightsquigarrow projective coordinates:

$$\begin{cases} X_3 = (X_1Z_2 + X_2Z_1)(Y_1Y_2 + Z_1Z_2)^2(Z_1Z_2 - X_1X_2) \\ Y_3 = (Y_1Z_2 + Y_2Z_1)(X_1X_2 + Z_1Z_2)^2(Z_1Z_2 - Y_1Y_2) \\ Z_3 = (Z_1^2Z_2^2 - X_1^2X_2^2)(Z_1^2Z_2^2 - Y_1^2Y_2^2) \end{cases}$$

can be evaluated with 12m

- The previous addition formula on a Huff curve is *independent* of the curve parameters
- Moreover, it is almost complete:

Theorem

Let $\mathbf{P_1} = (X_1 : Y_1 : Z_1)$ and $\mathbf{P_2} = (X_2 : Y_2 : Z_2)$ be two points on a Huff curve. Then the previous addition formula is valid provided that $X_1X_2 \neq \pm Z_1Z_2$ and $Y_1Y_2 \neq \pm Z_1Z_2$.

• in particular, if **P** is of odd order, the addition law in $\langle \mathbf{P} \rangle$ is complete

伺 ト く ヨ ト く ヨ ト

• useful ~> natural protection against certain side-channel attacks

- The doubling formula can be sped up by evaluating squarings The cost of a point doubling then becomes 7m + 5s or 10m + 1s
- Choosing O' = (0 : 1 : 0) as the neutral element results in translating the group law. We get

 $\begin{cases} X_3 = (X_1Z_2 + X_2Z_1)(Y_1Y_2 + Z_1Z_2)(Y_1Z_2 + Y_2Z_1) \\ Y_3 = (X_1X_2 - Z_1Z_2)(Z_1^2Z_2^2 - Y_1^2Y_2^2) \\ Z_3 = (Y_1Z_2 + Y_2Z_1)(X_1X_2 + Z_1Z_2)(Y_1Y_2 - Z_1Z_2) \end{cases}$

This *unified* addition formula can be evaluated with 11mThe cost of a point doubling then becomes 6m + 5s

- The doubling formula can be sped up by evaluating squarings The cost of a point doubling then becomes 7m + 5s or 10m + 1s
- Choosing $\mathbf{O}' = (0:1:0)$ as the neutral element results in translating the group law. We get

$$\begin{cases} X_3 = (X_1Z_2 + X_2Z_1)(Y_1Y_2 + Z_1Z_2)(Y_1Z_2 + Y_2Z_1) \\ Y_3 = (X_1X_2 - Z_1Z_2)(Z_1^2Z_2^2 - Y_1^2Y_2^2) \\ Z_3 = (Y_1Z_2 + Y_2Z_1)(X_1X_2 + Z_1Z_2)(Y_1Y_2 - Z_1Z_2) \end{cases}$$

This *unified* addition formula can be evaluated with 11m The cost of a point doubling then becomes 6m + 5s Twisted curves: Let P ∈ K[T] be a monic polynomial of degree 2, with non-zero discriminant, and such that P(0) ≠ 0. We can generalize Huff's model and introduce the cubic curve

$$\mathit{axP}(y) = \mathit{byP}(x)$$
 where $\mathit{a}, \mathit{b} \in \mathbb{K}^*$

With $P(T) = T^2 - d$, the sum of two points can be evaluated with 12m using projective coordinates

• Binary fields: Huff's form can be extended to a binary field as

$$ax(y^2 + y + 1) = by(x^2 + x + 1)$$

with neutral element $\mathbf{O} = (0, 0)$

Twisted curves: Let P ∈ K[T] be a monic polynomial of degree 2, with non-zero discriminant, and such that P(0) ≠ 0. We can generalize Huff's model and introduce the cubic curve

$$\mathit{axP}(y) = \mathit{byP}(x)$$
 where $\mathit{a}, \mathit{b} \in \mathbb{K}^*$

With $P(T) = T^2 - d$, the sum of two points can be evaluated with 12m using projective coordinates

• Binary fields: Huff's form can be extended to a binary field as

$$ax(y^2 + y + 1) = by(x^2 + x + 1)$$

with neutral element $\mathbf{O} = (0,0)$

Pairings

- *E* pairing-friendly elliptic curve over \mathbb{F}_q with *hn* rational points (*n* a large prime) and even embedding degree *k* wrt *n* (i.e. $n|q^k 1$)
- To compute e.g. the (reduced) Tate pairing:

$$T_n: E(\mathbb{F}_q)[n] \times E(\mathbb{F}_{q^k})/[n]E(\mathbb{F}_{q^k}) \longrightarrow \mu_n$$

one typically uses Miller's algorithm

Algorithm 1 Miller's algorithm for T_n , $n = \overline{n_{\ell-1}n_{\ell-1}\cdots n_0}^2$

1:
$$f \leftarrow 1$$
; $\mathbf{R} \leftarrow \mathbf{P}$
2: for $i = \ell - 2$ down to 0 do
3: $f \leftarrow f^2 \cdot g_{\mathbf{R},\mathbf{R}}(\mathbf{Q})$; $\mathbf{R} \leftarrow [2]\mathbf{R}$ \triangleright Miller doubling
4: if $(n_i = 1)$ then
5: $f \leftarrow f \cdot g_{\mathbf{R},\mathbf{P}}(\mathbf{Q})$; $\mathbf{R} \leftarrow \mathbf{R} \oplus \mathbf{P}$ \triangleright Miller addition
6: end if
7: end for
8: return $f^{(q^k-1)/n}$

- The rational function g_{R,P} in Miller's algorithm is Miller's line function, with divisor R + P − O − (R ⊕ P)
- The faster we can compute $g_{\mathbf{R},\mathbf{P}}$, the faster the pairing
- For a curve with chord-and-tangent addition, like Weierstrass or Huff but unlike Edwards, g_{R,P} is simple: equation of the line through R and P
- Huff curves have a simple line function and efficient arithmetic \rightsquigarrow convenient for pairings?

- The formulas we find don't use the fastest possible addition or doubling → not far from the records set for Jacobian coordinates or Edwards, but not as fast
- Actual multiplication counts:

mixed Miller addition: 1M + (k + 13)mfull Miller addition: 1M + (k + 15)mMiller doubling: 1M + 1S + (k + 11)m + 6s

- Compares to Arène et al.'s records: 1M + (k + 12)m, 1M + (k + 14)m, 1M + 1S + (k + 6)m + 5s for Edwards
- Room for improvement!

- Altenate representation for elliptic curves
- Efficient arithmetic
- Useful properties
 - unified/complete addition law
 - addition law independent of curve parameters
- Suitable for pairing evaluation

Comments/Questions?

- ● ● ●