Huff's Model for Elliptic Curves

Marc Joye Mehdi Tibouchi Damien Vergnaud

Technicolor
Ecole Normale Supérieure

ANTS-IX, Nancy, July 19-23, 2010

technicolor

Outline

- Elliptic curves and elliptic curves models
- Huff's model
- Efficient arithmetic on Huff curves
- Generalizations and extensions
- Efficient pairings on Huff curves

Elliptic Curves

Definition (Elliptic curve)

A nonsingular absolutely irreducible projective curve defined over a field \mathbb{F} of genus 1 with one distinguished \mathbb{F}-rational point is called an elliptic curve over \mathbb{F}

- An elliptic curve E over \mathbb{F} can be given by the so-called Weierstrass equation
where the coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}$ - M/a note that E has to be nonsingular

Elliptic Curves

Definition (Elliptic curve)

A nonsingular absolutely irreducible projective curve defined over a field \mathbb{F} of genus 1 with one distinguished \mathbb{F}-rational point is called an elliptic curve over \mathbb{F}

- An elliptic curve E over \mathbb{F} can be given by the so-called Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where the coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}$

- We note that E has to be nonsingular

Elliptic Curves

- The set of \mathbb{F}-rational points on E is defined by the set of points

$$
E(\mathbb{F})=\left\{(x, y) \in \mathbb{F} \times \mathbb{F}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\left\{P_{\infty}\right\}
$$ where P_{∞} is the point at infinity process turns $E(\mathbb{F})$ into an abelian group with P_{∞} as the neutral

Elliptic Curves

- The set of \mathbb{F}-rational points on E is defined by the set of points $E(\mathbb{F})=\left\{(x, y) \in \mathbb{F} \times \mathbb{F}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\left\{P_{\infty}\right\}$ where P_{∞} is the point at infinity
- The set of \mathbb{F}-rational points on E by means of the chord-and-tangent process turns $E(\mathbb{F})$ into an abelian group with P_{∞} as the neutral element

Efficient Arithmetic

- Finite field arithmetic
- Elliptic curve arithmetic
- The shape of the curve
- The coordinate systems
- Addition formulas: What is the cost? Is it unified? Is it complete?
- Scalar multiplication
- Evaluation of pairings

Some Forms of Elliptic Curves

- There are many ways to represent an elliptic curve such as Long Weierstrass: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ Short Weierstrass: $y^{2}=x^{3}+a x+b$

Legendre: $y^{2}=x(x-1)(x-\lambda)$
Montgomery: $b y^{2}=x^{3}+a x^{2}+x$
Doche-Icart-Kohel: $y^{2}=x^{3}+3 a(x+1)^{2}$
Jacobi intersection: $x^{2}+y^{2}=1, a x^{2}+z^{2}=1$
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$
Hessian: $x^{3}+y^{3}+1=3 d x y$
Edwards: $x^{2}+y^{2}=c^{2}\left(1+x^{2} y^{2}\right)$
Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$

- Some of these define curves with singular projective closures but geometric genus 1

Some Forms of Binary Elliptic Curves

- There are several ways to represent an elliptic curve over a field of characteristic 2 such as

Long Weierstrass: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ Short Weierstrass: $y^{2}+x y=x^{3}+a x^{2}+b$ Hessian: $x^{3}+y^{3}+1=d x y$
Binary Edwards: $c(x+y)+d\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2}$

A Diophantine problem

$a, b \in \mathbb{Q}^{*}, a^{2} \neq b^{2}$

$x \in \mathbb{Q}$ for which $(x, 0)$ is at rational distances from $(0, \pm a)$ and $(0, \pm b)$?

A Diophantine problem

$a, b \in \mathbb{Q}^{*}, a^{2} \neq b^{2}$

$x \in \mathbb{Q}$ for which $(x, 0)$ is at rational distances from $(0, \pm a)$ and $(0, \pm b)$?
equivalent to

$$
\text { Rational points on } a x\left(y^{2}-1\right)=b y\left(x^{2}-1\right) ?
$$

Huff's Model

Gerald B. Huff. Diophantine problems in geometry and elliptic ternary forms. Duke Math. J., 15:443-453, 1948.

$$
a X\left(Y^{2}-Z^{2}\right)=b Y\left(X^{2}-Z^{2}\right)
$$

- defines an elliptic curve if $a^{2} \neq b^{2}$ and $a, b \neq 0$ over any field \mathbb{K} of odd characteristic with $(0: 0: 1)$ as the neutral element,
- with three points at infinity $(1: 0: 0),(0: 1: 0)$ and $(a: b: 0)$
- isomorphic to the Weierstrass form:

$$
V^{2} W=U\left(U+a^{2} W\right)\left(U+b^{2} W\right)
$$

$$
\left(\text { with }(U: V: W)=\left(a b(b X-a Y): a b\left(b^{2}-a^{2}\right) Z:-a X+b Y\right)\right)
$$

Huff's Model

$$
E: a X\left(Y^{2}-Z^{2}\right)=b Y\left(X^{2}-Z^{2}\right)
$$

- $\mathbf{O}=(0: 0: 1)$ is an inflection point of $E \rightsquigarrow(E, \mathbf{O})$ is an elliptic curve with \mathbf{O} as neutral element
- chord-and-tangent group law on E
- \rightsquigarrow the inverse of $\mathbf{P}_{\mathbf{1}}=\left(X_{1}: Y_{1}: Z_{1}\right)$ is $\ominus \mathbf{P}_{\mathbf{1}}=\left(X_{1}: Y_{1}:-Z_{1}\right)$
- ($1: 0: 0),(0: 1: 0)$ and $(a: b: 0)$ are 2-torsion points of E $(\pm 1: \pm 1: 1)$ are 4-torsion points; these points form a subgroup isomorphic to $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
- conversely, in odd characteristic, any elliptic curve with a rational subgroup isomorphic to $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ is isomorphic to a Huff curve (Riemann-Roch exercise)

Huff's Model

Unified/Complete Addition Formulas

$$
E: a x\left(y^{2}-1\right)=\operatorname{by}\left(x^{2}-1\right), \quad \mathbf{P}_{\mathbf{1}} \oplus \mathbf{P}_{\mathbf{2}} \oplus \mathbf{P}_{\mathbf{3}}=\mathbf{0}
$$

- $\mathbf{P}_{\mathbf{1}}=\left(x_{1}, y_{1}\right), \mathbf{P}_{\mathbf{3}}=\left(x_{2}, y_{2}\right), \mathbf{P}_{\mathbf{3}}=\left(-x_{3},-y_{3}\right)$ with

$$
x_{3}=\frac{\left(x_{1}+x_{2}\right)\left(1+y_{1} y_{2}\right)}{\left(1+x_{1} x_{2}\right)\left(1-y_{1} y_{2}\right)} \text { and } y_{3}=\frac{\left(y_{1}+y_{2}\right)\left(1+x_{1} x_{2}\right)}{\left(1-x_{1} x_{2}\right)\left(1+y_{1} y_{2}\right)}
$$

whenever $x_{1} x_{2} \neq \pm 1$ and $y_{1} y_{2} \neq \pm 1$

Unified/Complete Addition Formulas

$$
E: a x\left(y^{2}-1\right)=b y\left(x^{2}-1\right), \quad \mathbf{P}_{\mathbf{1}} \oplus \mathbf{P}_{\mathbf{2}} \oplus \mathbf{P}_{\mathbf{3}}=\mathbf{0}
$$

- $\mathbf{P}_{\mathbf{1}}=\left(x_{1}, y_{1}\right), \mathbf{P}_{\mathbf{3}}=\left(x_{2}, y_{2}\right), \mathbf{P}_{\mathbf{3}}=\left(-x_{3},-y_{3}\right)$ with

$$
x_{3}=\frac{\left(x_{1}+x_{2}\right)\left(1+y_{1} y_{2}\right)}{\left(1+x_{1} x_{2}\right)\left(1-y_{1} y_{2}\right)} \text { and } y_{3}=\frac{\left(y_{1}+y_{2}\right)\left(1+x_{1} x_{2}\right)}{\left(1-x_{1} x_{2}\right)\left(1+y_{1} y_{2}\right)}
$$

whenever $x_{1} x_{2} \neq \pm 1$ and $y_{1} y_{2} \neq \pm 1$

- addition law is unified: it can be used to double a point

Unified/Complete Addition Formulas

$$
E: a x\left(y^{2}-1\right)=b y\left(x^{2}-1\right), \quad \mathbf{P}_{\mathbf{1}} \oplus \mathbf{P}_{\mathbf{2}} \oplus \mathbf{P}_{\mathbf{3}}=\mathbf{0}
$$

- $\mathbf{P}_{\mathbf{1}}=\left(x_{1}, y_{1}\right), \mathbf{P}_{\mathbf{3}}=\left(x_{2}, y_{2}\right), \mathbf{P}_{\mathbf{3}}=\left(-x_{3},-y_{3}\right)$ with

$$
x_{3}=\frac{\left(x_{1}+x_{2}\right)\left(1+y_{1} y_{2}\right)}{\left(1+x_{1} x_{2}\right)\left(1-y_{1} y_{2}\right)} \text { and } y_{3}=\frac{\left(y_{1}+y_{2}\right)\left(1+x_{1} x_{2}\right)}{\left(1-x_{1} x_{2}\right)\left(1+y_{1} y_{2}\right)}
$$

whenever $x_{1} x_{2} \neq \pm 1$ and $y_{1} y_{2} \neq \pm 1$

- addition law is unified: it can be used to double a point
- involves inversions \rightsquigarrow projective coordinates:

$$
\left\{\begin{array}{l}
X_{3}=\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Y_{2}+Z_{1} Z_{2}\right)^{2}\left(Z_{1} Z_{2}-X_{1} X_{2}\right) \\
Y_{3}=\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)\left(X_{1} X_{2}+Z_{1} Z_{2}\right)^{2}\left(Z_{1} Z_{2}-Y_{1} Y_{2}\right) \\
Z_{3}=\left(Z_{1}^{2} Z_{2}^{2}-X_{1}^{2} X_{2}^{2}\right)\left(Z_{1}^{2} Z_{2}^{2}-Y_{1}^{2} Y_{2}^{2}\right)
\end{array}\right.
$$

can be evaluated with 12 m

Applicability

- The previous addition formula on a Huff curve is independent of the curve parameters
- Moreover, it is almost complete:

Theorem

Let $\mathbf{P}_{\mathbf{1}}=\left(X_{1}: Y_{1}: Z_{1}\right)$ and $\mathbf{P}_{\mathbf{2}}=\left(X_{2}: Y_{2}: Z_{2}\right)$ be two points on a Huff curve. Then the previous addition formula is valid provided that $X_{1} X_{2} \neq \pm Z_{1} Z_{2}$ and $Y_{1} Y_{2} \neq \pm Z_{1} Z_{2}$.

- in particular, if \mathbf{P} is of odd order, the addition law in $\langle\mathbf{P}\rangle$ is complete
- useful \rightsquigarrow natural protection against certain side-channel attacks

Generalizations and Extensions

- The doubling formula can be sped up by evaluating squarings The cost of a point doubling then becomes $7 m+5$ s or $10 m+1$ s

Generalizations and Extensions

- The doubling formula can be sped up by evaluating squarings The cost of a point doubling then becomes $7 \mathrm{~m}+5 \mathrm{~s}$ or $10 \mathrm{~m}+1 \mathrm{~s}$
- Choosing $\mathbf{0}^{\prime}=(0: 1: 0)$ as the neutral element results in translating the group law. We get

$$
\left\{\begin{array}{l}
X_{3}=\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Y_{2}+Z_{1} Z_{2}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
Y_{3}=\left(X_{1} X_{2}-Z_{1} Z_{2}\right)\left(Z_{1}^{2} Z_{2}^{2}-Y_{1}^{2} Y_{2}^{2}\right) \\
Z_{3}=\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)\left(X_{1} X_{2}+Z_{1} Z_{2}\right)\left(Y_{1} Y_{2}-Z_{1} Z_{2}\right)
\end{array}\right.
$$

This unified addition formula can be evaluated with 11 m
The cost of a point doubling then becomes $6 m+5 s$

Generalizations and Extensions

- Twisted curves: Let $P \in \mathbb{K}[T]$ be a monic polynomial of degree 2 , with non-zero discriminant, and such that $P(0) \neq 0$. We can generalize Huff's model and introduce the cubic curve

$$
\operatorname{ax} P(y)=\operatorname{by} P(x) \text { where } a, b \in \mathbb{K}^{*}
$$

With $P(T)=T^{2}-d$, the sum of two points can be evaluated with 12 m using projective coordinates

Binary fields:
with neutral element $\mathbf{O}=(0,0)$

Generalizations and Extensions

- Twisted curves: Let $P \in \mathbb{K}[T]$ be a monic polynomial of degree 2 , with non-zero discriminant, and such that $P(0) \neq 0$. We can generalize Huff's model and introduce the cubic curve

$$
\operatorname{ax} P(y)=b y P(x) \text { where } a, b \in \mathbb{K}^{*}
$$

With $P(T)=T^{2}-d$, the sum of two points can be evaluated with 12 m using projective coordinates

- Binary fields: Huff's form can be extended to a binary field as

$$
a x\left(y^{2}+y+1\right)=b y\left(x^{2}+x+1\right)
$$

with neutral element $\mathbf{O}=(0,0)$

Pairings

- E pairing-friendly elliptic curve over \mathbb{F}_{q} with $h n$ rational points (n a large prime) and even embedding degree k wrt n (i.e. $n \mid q^{k}-1$)
- To compute e.g. the (reduced) Tate pairing:

$$
T_{n}: E\left(\mathbb{F}_{q}\right)[n] \times E\left(\mathbb{F}_{q^{k}}\right) /[n] E\left(\mathbb{F}_{q^{k}}\right) \longrightarrow \mu_{n}
$$

one typically uses Miller's algorithm
Algorithm 1 Miller's algorithm for $T_{n}, n={\overline{n_{\ell-1}} n_{\ell-1} \cdots n_{0}}^{2}$
1: $f \leftarrow 1 ; \mathbf{R} \leftarrow \mathbf{P}$
2: for $i=\ell-2$ down to 0 do
3: $\quad f \leftarrow f^{2} \cdot g_{\mathbf{R}, \mathbf{R}}(\mathbf{Q}) ; \mathbf{R} \leftarrow[2] \mathbf{R} \quad \triangleright$ Miller doubling
4: if $\left(n_{i}=1\right)$ then
5: $\quad f \leftarrow f \cdot g_{\mathbf{R}, \mathbf{P}}(\mathbf{Q}) ; \mathbf{R} \leftarrow \mathbf{R} \oplus \mathbf{P} \quad \triangleright$ Miller addition
6: end if
7: end for
8: return $f^{\left(q^{k}-1\right) / n}$

- The rational function $g_{R, P}$ in Miller's algorithm is Miller's line function, with divisor $\mathbf{R}+\mathbf{P}-\mathbf{O}-(\mathbf{R} \oplus \mathbf{P})$
- The faster we can compute $g_{\mathrm{R}, \mathbf{P},}$ the faster the pairing
- For a curve with chord-and-tangent addition, like Weierstrass or Huff but unlike Edwards, $g_{\mathbf{R}, \mathbf{P}}$ is simple: equation of the line through \mathbf{R} and \mathbf{P}
- Huff curves have a simple line function and efficient arithmetic \rightsquigarrow convenient for pairings?

Pairings on Huff curves

- The formulas we find don't use the fastest possible addition or doubling \rightsquigarrow not far from the records set for Jacobian coordinates or Edwards, but not as fast
- Actual multiplication counts:
mixed Miller addition: $1 \mathrm{M}+(k+13) \mathrm{m}$
full Miller addition: $1 \mathrm{M}+(k+15) \mathrm{m}$
Miller doubling: $1 \mathrm{M}+1 \mathrm{~S}+(k+11) \mathrm{m}+6 \mathrm{~s}$
- Compares to Arène et al.'s records: $1 \mathrm{M}+(k+12) \mathrm{m}$, $1 \mathrm{M}+(k+14) \mathrm{m}, 1 \mathrm{M}+1 \mathrm{~S}+(k+6) \mathrm{m}+5 \mathrm{~s}$ for Edwards
- Room for improvement!
- Altenate representation for elliptic curves
- Efficient arithmetic
- Useful properties
- unified/complete addition law
- addition law independent of curve parameters
- Suitable for pairing evaluation

Comments/Questions?

