Practical Cryptanalysis of $\rm ISO/IEC$ 9796-2 and $\rm EMV$ Signatures

Jean-Sébastien Coron¹ David Naccache² Mehdi Tibouchi² Ralf Philipp Weinmann¹

¹Université du Luxembourg

²École normale supérieure

CRYPTO 2009

Our Results in a Nutshell

- Improve upon a previous attack [CNS99] against ISO 9796-2 signatures by a large factor.
- Conduct the new attack in practice, demonstrating an actual vulnerability in the ISO 9796-2:2002 standard.
- Show how the attack applies to certain EMV signatures.

Our Results in a Nutshell

- Improve upon a previous attack [CNS99] against ISO 9796-2 signatures by a large factor.
- Conduct the new attack in practice, demonstrating an actual vulnerability in the ISO 9796-2:2002 standard.
- Show how the attack applies to certain EMV signatures.

Our Results in a Nutshell

- Improve upon a previous attack [CNS99] against ISO 9796-2 signatures by a large factor.
- Conduct the new attack in practice, demonstrating an actual vulnerability in the ISO 9796-2:2002 standard.
- Show how the attack applies to certain EMV signatures.

Context 0000 000 Our Contribution

Conclusion

Outline

Context

Signing with RSA (or Rabin) Previous Work

Our Contribution

Building Blocks Implementation Application to EMV Signatures

Conclusion

Outline

Context

Signing with RSA (or Rabin)

Previous Work

Our Contribution

Building Blocks Implementation Application to EMV Signatures

Conclusion

RSA Signatures

• Signing using textbook RSA:

$$\sigma = m^{1/e} \bmod N$$

is a bad idea (e.g. homomorphic properties).

• Therefore, encapsulate m using an encoding function μ :

 $\sigma = \mu(m)^{1/e} \bmod N$

Conclusion

RSA Signatures

• Signing using textbook RSA:

$$\sigma = m^{1/e} \bmod N$$

is a bad idea (e.g. homomorphic properties).

• Therefore, encapsulate m using an encoding function μ :

$$\sigma = \mu(m)^{1/e} \mod N$$

Encoding functions

• Two kinds of encoding functions:

- 1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2, etc. Designed to prevent specific attacks. Often exhibit other weaknesses.
- 2. Provably secure encodings: RSA-FDH, RSA-PSS, Cramer-Shoup, etc. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc encodings remain in widespread use in real-world applications (including credit cards, e-passports, etc.). Re-evaluating them periodically is thus necessary.

Encoding functions

- Two kinds of encoding functions:
 - 1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2, etc. Designed to prevent specific attacks. Often exhibit other weaknesses.
 - 2. Provably secure encodings: RSA-FDH, RSA-PSS, Cramer-Shoup, etc. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc encodings remain in widespread use in real-world applications (including credit cards, e-passports, etc.). Re-evaluating them periodically is thus necessary.

Encoding functions

- Two kinds of encoding functions:
 - 1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2, etc. Designed to prevent specific attacks. Often exhibit other weaknesses.
 - 2. Provably secure encodings: RSA-FDH, RSA-PSS, Cramer-Shoup, etc. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc encodings remain in widespread use in real-world applications (including credit cards, e-passports, etc.). Re-evaluating them periodically is thus necessary.

Encoding functions

- Two kinds of encoding functions:
 - 1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2, etc. Designed to prevent specific attacks. Often exhibit other weaknesses.
 - 2. Provably secure encodings: RSA-FDH, RSA-PSS, Cramer-Shoup, etc. Proven to be secure under well-defined assumptions.
- Although potentially less secure, ad-hoc encodings remain in widespread use in real-world applications (including credit cards, e-passports, etc.). Re-evaluating them periodically is thus necessary.

- The ISO 9796-2 standard defines an ad-hoc encoding with partial or total message recovery. We only consider partial message recovery.
- Let *k* be the size of *N*. The encoding function has the following form:

 $\mu(m) = 6 \mathtt{A}_{16} \|m[1]\|_{\mathrm{HASH}}(m) \|\mathtt{BC}_{16}$

- The size of $\mu(m)$ is thus always k-1 bits.
- ISO 9796-2:1997 recommended $128 \le k_h \le 160$. ISO 9796-2:2002 now recommends $k_h \ge 160$, and EMV uses $k_h = 160$.

- The ISO 9796-2 standard defines an ad-hoc encoding with partial or total message recovery. We only consider partial message recovery.
- Let k be the size of N. The encoding function has the following form:

$\mu(m) = 6\mathtt{A}_{16} \|m[1]\|_{\mathrm{HASH}}(m)\|\mathtt{BC}_{16}$

- The size of $\mu(m)$ is thus always k-1 bits.
- ISO 9796-2:1997 recommended $128 \le k_h \le 160$. ISO 9796-2:2002 now recommends $k_h \ge 160$, and EMV uses $k_h = 160$.

- The ISO 9796-2 standard defines an ad-hoc encoding with partial or total message recovery. We only consider partial message recovery.
- Let k be the size of N. The encoding function has the following form:

 $\mu(m) = \mathbf{6A_{16}} \| m[1] \| \text{HASH}(m) \| \mathbf{BC_{16}}$

- The size of $\mu(m)$ is thus always k-1 bits.
- ISO 9796-2:1997 recommended $128 \le k_h \le 160$. ISO 9796-2:2002 now recommends $k_h \ge 160$, and EMV uses $k_h = 160$.

- The ISO 9796-2 standard defines an ad-hoc encoding with partial or total message recovery. We only consider partial message recovery.
- Let k be the size of N. The encoding function has the following form:

 $\mu(m) = 6 \mathtt{A}_{16} \|m[1]\|_{\mathrm{HASH}(m)} \|\mathtt{BC}_{16}$

- The size of $\mu(m)$ is thus always k-1 bits.
- ISO 9796-2:1997 recommended $128 \le k_h \le 160$. ISO 9796-2:2002 now recommends $k_h \ge 160$, and EMV uses $k_h = 160$.

- The ISO 9796-2 standard defines an ad-hoc encoding with partial or total message recovery. We only consider partial message recovery.
- Let k be the size of N. The encoding function has the following form:

 $\mu(m) = 6A_{16} \|m[1]\|_{\text{HASH}}(m)\|_{\text{BC}_{16}}$

- The size of $\mu(m)$ is thus always k-1 bits.
- ISO 9796-2:1997 recommended $128 \le k_h \le 160$. ISO 9796-2:2002 now recommends $k_h \ge 160$, and EMV uses $k_h = 160$.

- The ISO 9796-2 standard defines an ad-hoc encoding with partial or total message recovery. We only consider partial message recovery.
- Let k be the size of N. The encoding function has the following form:

$$\mu(m) = 6 \mathbb{A}_{16} \|m[1]\|_{\mathrm{HASH}}(m) \|\mathrm{BC}_{16}\|$$

- The size of $\mu(m)$ is thus always k-1 bits.
- ISO 9796-2:1997 recommended $128 \le k_h \le 160$. ISO 9796-2:2002 now recommends $k_h \ge 160$, and EMV uses $k_h = 160$.

- The ISO 9796-2 standard defines an ad-hoc encoding with partial or total message recovery. We only consider partial message recovery.
- Let k be the size of N. The encoding function has the following form:

$$\mu(m) = 6 \mathbb{A}_{16} \|m[1]\|_{\mathrm{HASH}}(m) \|\mathrm{BC}_{16}\|$$

- The size of $\mu(m)$ is thus always k-1 bits.
- ISO 9796-2:1997 recommended $128 \le k_h \le 160$. ISO 9796-2:2002 now recommends $k_h \ge 160$, and EMV uses $k_h = 160$.

Conclusion

Outline

Context Signing with RSA (or Rabin) Previous Work

Our Contribution

Building Blocks Implementation Application to EMV Signatures

Suppose the encoded messages $\mu(m)$ are relatively short. In [DO85], Desmedt and Odlyzko proposed the following attack.

1. Choose a bound B and let p_1, \ldots, p_ℓ be the primes smaller than B.

2. Find $\ell + 1$ messages m_i such that the $\mu(m_i)$ are *B*-smooth:

$$\mu(m_i) = p_1^{v_{i,1}} \cdots p_\ell^{v_{i,\ell}}$$

3. Obtain a linear dependence relation between the exponent vectors $v_i = (v_{i,1} \mod e, \ldots, v_{i,\ell} \mod e)$ and deduce the expression of one $\mu(m_j)$ as a multiplicative combination of the $\mu(m_i)$, $i \neq j$.

4. Ask for the signatures of the m_i and forge the signature of m_j .

Suppose the encoded messages $\mu(m)$ are relatively short. In [DO85], Desmedt and Odlyzko proposed the following attack.

- 1. Choose a bound B and let p_1, \ldots, p_ℓ be the primes smaller than B.
- 2. Find $\ell + 1$ messages m_i such that the $\mu(m_i)$ are *B*-smooth:

$$\mu(m_i) = p_1^{v_{i,1}} \cdots p_\ell^{v_{i,\ell}}$$

- 3. Obtain a linear dependence relation between the exponent vectors $v_i = (v_{i,1} \mod e, \ldots, v_{i,\ell} \mod e)$ and deduce the expression of one $\mu(m_j)$ as a multiplicative combination of the $\mu(m_i)$, $i \neq j$.
- 4. Ask for the signatures of the m_i and forge the signature of m_j .

Suppose the encoded messages $\mu(m)$ are relatively short. In [DO85], Desmedt and Odlyzko proposed the following attack.

- 1. Choose a bound B and let p_1, \ldots, p_ℓ be the primes smaller than B.
- 2. Find $\ell + 1$ messages m_i such that the $\mu(m_i)$ are *B*-smooth:

$$\mu(m_i) = p_1^{v_{i,1}} \cdots p_\ell^{v_{i,\ell}}$$

Obtain a linear dependence relation between the exponent vectors v_i = (v_{i,1} mod e,..., v_{i,ℓ} mod e) and deduce the expression of one μ(m_j) as a multiplicative combination of the μ(m_i), i ≠ j.

4. Ask for the signatures of the m_i and forge the signature of m_j .

Suppose the encoded messages $\mu(m)$ are relatively short. In [DO85], Desmedt and Odlyzko proposed the following attack.

- 1. Choose a bound B and let p_1, \ldots, p_ℓ be the primes smaller than B.
- 2. Find $\ell + 1$ messages m_i such that the $\mu(m_i)$ are *B*-smooth:

$$\mu(m_i) = p_1^{v_{i,1}} \cdots p_\ell^{v_{i,\ell}}$$

- Obtain a linear dependence relation between the exponent vectors v_i = (v_{i,1} mod e,..., v_{i,ℓ} mod e) and deduce the expression of one μ(m_j) as a multiplicative combination of the μ(m_i), i ≠ j.
- 4. Ask for the signatures of the m_i and forge the signature of m_j .

- The ISO 9796-2 encoding $\mu(m)$ has full size, so the [DO85] attack doesn't apply.
- However, Coron et al. noticed that the attack generalizes to the case where, for some fixed a, the $t_i = a \cdot \mu(m_i) \mod N$ are small.
- Moreover, they show that for a = 2⁸, one can choose the message prefix m[1] such that all the corresponding a · μ(m) mod N are of size ≤ k_h + 16 bits.
- Attacking the instances $k_h = 128$ and $k_h = 160$ requires 2^{54} and 2^{61} operations respectively.

- The ISO 9796-2 encoding $\mu(m)$ has full size, so the [DO85] attack doesn't apply.
- However, Coron et al. noticed that the attack generalizes to the case where, for some fixed a, the $t_i = a \cdot \mu(m_i) \mod N$ are small.
- Moreover, they show that for a = 2⁸, one can choose the message prefix m[1] such that all the corresponding a · µ(m) mod N are of size ≤ k_h + 16 bits.
- Attacking the instances $k_h = 128$ and $k_h = 160$ requires 2^{54} and 2^{61} operations respectively.

- The ISO 9796-2 encoding $\mu(m)$ has full size, so the [DO85] attack doesn't apply.
- However, Coron et al. noticed that the attack generalizes to the case where, for some fixed a, the $t_i = a \cdot \mu(m_i) \mod N$ are small.
- Moreover, they show that for a = 2⁸, one can choose the message prefix m[1] such that all the corresponding a · µ(m) mod N are of size ≤ k_h + 16 bits.
- Attacking the instances $k_h = 128$ and $k_h = 160$ requires 2^{54} and 2^{61} operations respectively.

- The ISO 9796-2 encoding $\mu(m)$ has full size, so the [DO85] attack doesn't apply.
- However, Coron et al. noticed that the attack generalizes to the case where, for some fixed a, the $t_i = a \cdot \mu(m_i) \mod N$ are small.
- Moreover, they show that for a = 2⁸, one can choose the message prefix m[1] such that all the corresponding a · µ(m) mod N are of size ≤ k_h + 16 bits.
- Attacking the instances $k_h = 128$ and $k_h = 160$ requires 2^{54} and 2^{61} operations respectively.

Context 0000 000 Our Contribution

onclusion

Outline

Context

Signing with RSA (or Rabin) Previous Work

Our Contribution Building Blocks

Implementation Application to EMV Signatures

- 1. Bernstein's batch smoothness detection algorithm: we use the technique of [B04] to find smooth numbers in a large collection of integers much faster than trial division (speed-up factor \approx 1000).
- 2. The large prime variant: we looked for semi-smooth numbers in addition to smooth numbers to obtain additional relations (speed-up factor \approx 1.4).
- Similar to values: in [CNS99], $t_i = s \circ \mu(m_i) \mod N$ with $a = 2^{\theta}$; we show that a careful choice of a depending on N yields smaller t_i values (speed-up factor ≈ 2).
- 8. Exhaustive search: we reduce the size of t further by selecting messages which each value match a certain bit pattern (speed-up factor is 2).

- 1. Bernstein's batch smoothness detection algorithm: we use the technique of [B04] to find smooth numbers in a large collection of integers much faster than trial division (speed-up factor \approx 1000).
- 2. The large prime variant: we looked for semi-smooth numbers in addition to smooth numbers to obtain additional relations (speed-up factor \approx 1.4).
- 3. Smaller t_i values: in [CNS99], $t_i = a \cdot \mu(m_i) \mod N$ with $a = 2^8$; we show that a careful choice of a depending on N yields smaller t_i values (speed-up factor ≈ 2).
- 4. Exhaustive search: we reduce the size of t_i further by selecting messages whose hash values match a certain bit pattern (speed-up factor ≈ 2).

- 1. Bernstein's batch smoothness detection algorithm: we use the technique of [B04] to find smooth numbers in a large collection of integers much faster than trial division (speed-up factor \approx 1000).
- 2. The large prime variant: we looked for semi-smooth numbers in addition to smooth numbers to obtain additional relations (speed-up factor \approx 1.4).
- 3. Smaller t_i values: in [CNS99], $t_i = a \cdot \mu(m_i) \mod N$ with $a = 2^8$; we show that a careful choice of a depending on N yields smaller t_i values (speed-up factor ≈ 2).
- 4. Exhaustive search: we reduce the size of t_i further by selecting messages whose hash values match a certain bit pattern (speed-up factor \approx 2).

- 1. Bernstein's batch smoothness detection algorithm: we use the technique of [B04] to find smooth numbers in a large collection of integers much faster than trial division (speed-up factor \approx 1000).
- 2. The large prime variant: we looked for semi-smooth numbers in addition to smooth numbers to obtain additional relations (speed-up factor \approx 1.4).
- 3. Smaller t_i values: in [CNS99], $t_i = a \cdot \mu(m_i) \mod N$ with $a = 2^8$; we show that a careful choice of a depending on N yields smaller t_i values (speed-up factor ≈ 2).
- 4. Exhaustive search: we reduce the size of t_i further by selecting messages whose hash values match a certain bit pattern (speed-up factor \approx 2).

- 1. Bernstein's batch smoothness detection algorithm: we use the technique of [B04] to find smooth numbers in a large collection of integers much faster than trial division (speed-up factor \approx 1000).
- 2. The large prime variant: we looked for semi-smooth numbers in addition to smooth numbers to obtain additional relations (speed-up factor \approx 1.4).
- 3. Smaller t_i values: in [CNS99], $t_i = a \cdot \mu(m_i) \mod N$ with $a = 2^8$; we show that a careful choice of a depending on N yields smaller t_i values (speed-up factor ≈ 2).
- 4. Exhaustive search: we reduce the size of t_i further by selecting messages whose hash values match a certain bit pattern (speed-up factor ≈ 2).

Context 0000 000 Our Contribution

Conclusion

Outline

Context

Signing with RSA (or Rabin) Previous Work

Our Contribution Building Blocks Implementation Application to EMV Signatures

Overview of the Experiment

We implemented the attack for N = RSA-2048, e = 2 and HASH = SHA-1. The attack step by step:

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell=2^{20}$).
- Compute $t_i := a \in \mu(m_i) \mod N_i$ and hence SHA-1(m_i), for many messages m_i .
- Find the smooth and semi-smooth t_i 's.
- Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e
- Find nontrivial vectors in the kernel of the reduced matrix.
- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1 (m_i) , for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1 (m_i) , for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

We implemented the attack for N = RSA-2048, e = 2 and HASH = SHA-1. The attack step by step:

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

Setup stage: on a single PC, negligible time.

We implemented the attack for N = RSA-2048, e = 2 and HASH = SHA-1. The attack step by step:

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- $\ensuremath{ 7. }$ Find nontrivial vectors in the kernel of the reduced matrix.

Sieving stage: on Amazon EC2, 1100 CPU hours, 2 days.

We implemented the attack for N = RSA-2048, e = 2 and HASH = SHA-1. The attack step by step:

- 1. Determine the constants a, m[1], etc.
- 2. Compute the product of the first ℓ primes ($\ell = 2^{20}$).
- 3. Compute $t_i = a \cdot \mu(m_i) \mod N$, and hence SHA-1(m_i), for many messages m_i .
- 4. Find the smooth and semi-smooth t_i 's.
- 5. Factor the smooth integers and colliding pairs of semi-smooth integers, obtaining the sparse matrix of exponents.
- 6. Reduce modulo e.
- 7. Find nontrivial vectors in the kernel of the reduced matrix.

Linear algebra stage: on a PC, a few hours.

- 1. 16,230,259,553,940 ($\approx 2^{44})$ digest computations.
- 2. 739,686,719,488 ($\approx 2^{39}$) t_i 's in 647,901 batches of 2^{19} each.
- 3. 684,365 smooth *t_i*'s and 366,302 collisions between 2,786,327 semi-smooth *t_i*'s.
- 4. 1,050,667-column matrix $(2^{20} + 1 = 1,048,577 \text{ needed})$.
- 5. Algebra on 839,908 columns having > 1 nonzero entries.
- 6. 124 kernel vectors.
- 7. Forgery involving 432,903 signatures.

- 1. 16,230,259,553,940 ($\approx 2^{44}$) digest computations.
- 2. 739,686,719,488 ($\approx 2^{39}$) t_i 's in 647,901 batches of 2^{19} each.
- 3. 684,365 smooth *t_i*'s and 366,302 collisions between 2,786,327 semi-smooth *t_i*'s.
- 4. 1,050,667-column matrix $(2^{20} + 1 = 1,048,577 \text{ needed})$.
- 5. Algebra on 839,908 columns having > 1 nonzero entries.
- 6. 124 kernel vectors.
- 7. Forgery involving 432,903 signatures.

- 1. 16,230,259,553,940 ($\approx 2^{44}$) digest computations.
- 2. 739,686,719,488 ($\approx 2^{39}$) t_i 's in 647,901 batches of 2^{19} each.
- 3. 684,365 smooth t_i 's and 366,302 collisions between 2,786,327 semi-smooth t_i 's.
- 4. 1,050,667-column matrix $(2^{20} + 1 = 1,048,577 \text{ needed})$.
- 5. Algebra on 839,908 columns having > 1 nonzero entries.
- 6. 124 kernel vectors.
- 7. Forgery involving 432,903 signatures.

- 1. 16,230,259,553,940 ($\approx 2^{44}$) digest computations.
- 2. 739,686,719,488 ($\approx 2^{39}$) t_i 's in 647,901 batches of 2^{19} each.
- 3. 684,365 smooth *t_i*'s and 366,302 collisions between 2,786,327 semi-smooth *t_i*'s.
- 4. 1,050,667-column matrix $(2^{20} + 1 = 1,048,577 \text{ needed})$.
- 5. Algebra on 839,908 columns having > 1 nonzero entries.
- 6. 124 kernel vectors.
- 7. Forgery involving 432,903 signatures.

- 1. 16,230,259,553,940 ($\approx 2^{44}$) digest computations.
- 2. 739,686,719,488 ($\approx 2^{39}$) t_i 's in 647,901 batches of 2^{19} each.
- 3. 684,365 smooth *t_i*'s and 366,302 collisions between 2,786,327 semi-smooth *t_i*'s.
- 4. 1,050,667-column matrix ($2^{20} + 1 = 1,048,577$ needed).
- 5. Algebra on 839,908 columns having > 1 nonzero entries.
- 6. 124 kernel vectors.
- 7. Forgery involving 432,903 signatures.

- 1. 16,230,259,553,940 ($\approx 2^{44}$) digest computations.
- 2. 739,686,719,488 ($\approx 2^{39}$) t_i 's in 647,901 batches of 2^{19} each.
- 684,365 smooth t_i's and 366,302 collisions between 2,786,327 semi-smooth t_i's.
- 4. 1,050,667-column matrix $(2^{20} + 1 = 1,048,577 \text{ needed})$.
- 5. Algebra on 839,908 columns having > 1 nonzero entries.
- 6. 124 kernel vectors.
- 7. Forgery involving 432,903 signatures.

- 1. 16,230,259,553,940 ($\approx 2^{44}$) digest computations.
- 2. 739,686,719,488 ($\approx 2^{39}$) t_i 's in 647,901 batches of 2^{19} each.
- 684,365 smooth t_i's and 366,302 collisions between 2,786,327 semi-smooth t_i's.
- 4. 1,050,667-column matrix $(2^{20} + 1 = 1,048,577 \text{ needed})$.
- 5. Algebra on 839,908 columns having > 1 nonzero entries.
- 6. 124 kernel vectors.
- 7. Forgery involving 432,903 signatures.

Cost Estimates

Not counting speed-ups by exhaustive search, the CPU time and equivalent "Amazon cost" of our attack for various sizes of t_i should be as follows.

$a = \log_2 t_i$	$\log_2 \ell$	Estimated Time		$\log_2\tau$	EC2 cost (US \$)
64	11	15	seconds	20	negligible
128	19	4	days	33	10
160	21	6	months	38	470
170	22	1.8	years	40	1,620
176	23	3.8	years	41	3,300
204	25	95	years	45	84,000
232	27	19	centuries	49	1,700,000
256	30	320	centuries	52	20,000,000

Context 0000 000 Our Contribution

Conclusion

Outline

Context

Signing with RSA (or Rabin) Previous Work

Our Contribution

Building Blocks Implementation Application to EMV Signatures

The EMV Data Formats

- The EMV specifications define several message formats for signing data related to payment cards with ISO 9796-2.
- For example, SDA-IPKD consists of messages of the following form:

 $m = 02_{16} \|X\| Y\| N_{\rm I} \| 03_{16}$

including 2 fixed bytes, 7 bytes Y that cannot be controlled by the adversary, and other bits controlled by the adversary

The EMV Data Formats

- The EMV specifications define several message formats for signing data related to payment cards with ISO 9796-2.
- For example, SDA-IPKD consists of messages of the following form:

$$m = 02_{16} \|X\| Y\| N_{\mathrm{I}} \| 03_{16}$$

including 2 fixed bytes, 7 bytes Y that cannot be controlled by the adversary, and other bits controlled by the adversary.

The EMV Data Formats

- The EMV specifications define several message formats for signing data related to payment cards with ISO 9796-2.
- For example, SDA-IPKD consists of messages of the following form:

 $m = \frac{02_{16}}{X} \| X \| Y \| N_{\rm I} \| \frac{03_{16}}{X} \| \frac{1}{X} \| N_{\rm I} \| \frac{03_{16}}{X} \| \frac{1}{X} \| \frac{1}{X}$

including 2 fixed bytes, 7 bytes Y that cannot be controlled by the adversary, and other bits controlled by the adversary.

The EMV Data Formats

- The EMV specifications define several message formats for signing data related to payment cards with ISO 9796-2.
- For example, SDA-IPKD consists of messages of the following form:

$$m = 02_{16} \|X\| \frac{Y}{V} \|N_{\rm I}\| 03_{16}$$

including 2 fixed bytes, 7 bytes Y that cannot be controlled by the adversary, and other bits controlled by the adversary.

The EMV Data Formats

- The EMV specifications define several message formats for signing data related to payment cards with ISO 9796-2.
- For example, SDA-IPKD consists of messages of the following form:

$$m = 02_{16} \| X \| Y \| N_{\mathrm{I}} \| 03_{16}$$

including 2 fixed bytes, 7 bytes Y that cannot be controlled by the adversary, and other bits controlled by the adversary.

The EMV Data Formats

- The EMV specifications define several message formats for signing data related to payment cards with ISO 9796-2.
- For example, SDA-IPKD consists of messages of the following form:

$$m = 02_{16} \|X\| Y\| N_{\rm I} \| 03_{16}$$

including 2 fixed bytes, 7 bytes Y that cannot be controlled by the adversary, and other bits controlled by the adversary.

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

$\mu(\textbf{\textit{m}}) = \texttt{6A02}_{\texttt{16}} \| X \| Y \| \textbf{\textit{N}}_{\texttt{I},1} \| \texttt{hash}(\textbf{\textit{m}}) \| \texttt{BC}_{\texttt{16}}$

- Since the adversary cannot completely choose m, adapt the attack by finding a and X such that t_i = a · μ(m_i) mod N is small. Possible to find such an a < 2³⁶.
- The size of *t_i* is then 204 bits, corresponding to a \$84,000 attack on Amazon (\$45,000 with 8-bit exhaustive search). The search for *a* costs an additional \$11,000. Within reach!
- However, the CA for payment cards will not sign thousands of chosen messages: not an immediate threat to EMV cards.

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

 $\mu(m) = 6A02_{16} \|X\| Y\| N_{I,1} \| \text{Hash}(m) \| \text{BC}_{16}$

- Since the adversary cannot completely choose m, adapt the attack by finding a and X such that t_i = a · μ(m_i) mod N is small. Possible to find such an a < 2³⁶.
- The size of t_i is then 204 bits, corresponding to a \$84,000 attack on Amazon (\$45,000 with 8-bit exhaustive search).
 The search for a costs an additional \$11,000. Within reach!
- However, the CA for payment cards will not sign thousands of chosen messages: not an immediate threat to EMV cards.

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

 $\mu(m) = 6A02_{16} \|X\| Y\| N_{I,1} \| \text{Hash}(m) \| \text{BC}_{16}$

- Since the adversary cannot completely choose m, adapt the attack by finding a and X such that t_i = a · μ(m_i) mod N is small. Possible to find such an a < 2³⁶.
- The size of t_i is then 204 bits, corresponding to a \$84,000 attack on Amazon (\$45,000 with 8-bit exhaustive search). The search for a costs an additional \$11,000. Within reach!
- However, the CA for payment cards will not sign thousands of chosen messages: not an immediate threat to EMV cards.

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

 $\mu(m) = 6A02_{16} \|X\| Y\| N_{I,1} \| \text{Hash}(m) \| \text{BC}_{16}$

- Since the adversary cannot completely choose m, adapt the attack by finding a and X such that t_i = a · μ(m_i) mod N is small. Possible to find such an a < 2³⁶.
- The size of t_i is then 204 bits, corresponding to a \$84,000 attack on Amazon (\$45,000 with 8-bit exhaustive search). The search for a costs an additional \$11,000. Within reach!
- However, the CA for payment cards will not sign thousands of chosen messages: not an immediate threat to EMV cards.

Conclusion

- Forging ISO 9796-2 signatures using a 160-bit hash function is now easily feasible.
- Therefore, ISO 9796-2:2002 should be phased out.
- Signature encodings based on this standard, such as EMV, are potentially vulnerable.

- Implement: further speed-ups (faster hashing, more large primes)?
- Defeat ratification counters?
- Predict forgery size?

Conclusion

- Forging ISO 9796-2 signatures using a 160-bit hash function is now easily feasible.
- Therefore, ISO 9796-2:2002 should be phased out.
- Signature encodings based on this standard, such as EMV, are potentially vulnerable.

- Implement further speed-ups (faster hashing, more large primes)?
- Defeat ratification counters?
- Predict forgery size?

Conclusion

- Forging ISO 9796-2 signatures using a 160-bit hash function is now easily feasible.
- Therefore, ISO 9796-2:2002 should be phased out.
- Signature encodings based on this standard, such as EMV, are potentially vulnerable.

- Implement further speed-ups (faster hashing, more large primes)?
- Defeat ratification counters?
- Predict forgery size?

Conclusion

- Forging ISO 9796-2 signatures using a 160-bit hash function is now easily feasible.
- Therefore, ISO 9796-2:2002 should be phased out.
- Signature encodings based on this standard, such as EMV, are potentially vulnerable.

- Implement further speed-ups (faster hashing, more large primes)?
- Defeat ratification counters?
- Predict forgery size?

Conclusion

- Forging ISO 9796-2 signatures using a 160-bit hash function is now easily feasible.
- Therefore, ISO 9796-2:2002 should be phased out.
- Signature encodings based on this standard, such as EMV, are potentially vulnerable.
- Outlook
 - Implement further speed-ups (faster hashing, more large primes)?
 - Defeat ratification counters?
 - Predict forgery size?

Conclusion

- Forging ISO 9796-2 signatures using a 160-bit hash function is now easily feasible.
- Therefore, ISO 9796-2:2002 should be phased out.
- Signature encodings based on this standard, such as EMV, are potentially vulnerable.
- Outlook
 - Implement further speed-ups (faster hashing, more large primes)?
 - Defeat ratification counters?
 - Predict forgery size?

Conclusion

- Forging ISO 9796-2 signatures using a 160-bit hash function is now easily feasible.
- Therefore, ISO 9796-2:2002 should be phased out.
- Signature encodings based on this standard, such as EMV, are potentially vulnerable.
- Outlook
 - Implement further speed-ups (faster hashing, more large primes)?
 - Defeat ratification counters?
 - Predict forgery size?
Contex 0000 000 Our Contribution

Conclusion

Thank you!