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partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.
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The Desmedt-Odlyzko Attack

Suppose the encoded messages µ(m) are relatively short. In
[DO85], Desmedt and Odlyzko proposed the following attack.

1. Choose a bound B and let p1, . . . , p` be the primes smaller
than B.

2. Find `+ 1 messages mi such that the µ(mi ) are B-smooth:

µ(mi ) = p
vi,1

1 · · · pvi,`

`

3. Obtain a linear dependence relation between the exponent
vectors vi = (vi ,1 mod e, . . . , vi ,` mod e) and deduce the
expression of one µ(mj) as a multiplicative combination of the
µ(mi ), i 6= j .

4. Ask for the signatures of the mi and forge the signature of mj .
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• The ISO 9796-2 encoding µ(m) has full size, so the [DO85]
attack doesn’t apply.

• However, Coron et al. noticed that the attack generalizes to
the case where, for some fixed a, the ti = a · µ(mi ) mod N are
small.

• Moreover, they show that for a = 28, one can choose the
message prefix m[1] such that all the corresponding
a · µ(m) mod N are of size ≤ kh + 16 bits.

• Attacking the instances kh = 128 and kh = 160 requires 254

and 261 operations respectively.
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We improve upon [CNS99] using the following techniques.

1. Bernstein’s batch smoothness detection algorithm: we use the
technique of [B04] to find smooth numbers in a large
collection of integers much faster than trial division (speed-up
factor ≈ 1000).

2. The large prime variant: we looked for semi-smooth numbers
in addition to smooth numbers to obtain additional relations
(speed-up factor ≈ 1.4).

3. Smaller ti values: in [CNS99], ti = a · µ(mi ) mod N with
a = 28; we show that a careful choice of a depending on N
yields smaller ti values (speed-up factor ≈ 2).

4. Exhaustive search: we reduce the size of ti further by selecting
messages whose hash values match a certain bit pattern
(speed-up factor ≈ 2).
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Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi ) mod N, and hence sha-1(mi ), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.
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Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.
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Cost Estimates

Not counting speed-ups by exhaustive search, the CPU time and
equivalent “Amazon cost” of our attack for various sizes of ti
should be as follows.

a = log2 ti log2 ` Estimated Time log2 τ EC2 cost (us$)

64 11 15 seconds 20 negligible
128 19 4 days 33 10

160 21 6 months 38 470

170 22 1.8 years 40 1,620

176 23 3.8 years 41 3,300

204 25 95 years 45 84,000

232 27 19 centuries 49 1,700,000

256 30 320 centuries 52 20,000,000
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The EMV Data Formats

• The EMV specifications define several message formats for
signing data related to payment cards with ISO 9796-2.

• For example, SDA-IPKD consists of messages of the following
form:

m = 0216‖X‖Y ‖Ni‖0316
including 2 fixed bytes, 7 bytes Y that cannot be controlled
by the adversary, and other bits controlled by the adversary.

• Other formats are similar, but not all of them are vulnerable.
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Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

µ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16

• Since the adversary cannot completely choose m, adapt the
attack by finding a and X such that ti = a · µ(mi ) mod N is
small. Possible to find such an a < 236.

• The size of ti is then 204 bits, corresponding to a $84,000
attack on Amazon ($45,000 with 8-bit exhaustive search).
The search for a costs an additional $11,000. Within reach!

• However, the CA for payment cards will not sign thousands of
chosen messages: not an immediate threat to EMV cards.
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Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?
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Thank you!
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