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Our Results in a Nutshell

• Simplify a former fault attack [CJKNP09] on ISO 9796-2
signatures, obtaining vastly improved efficiency.

• Simulate this new fault attack on parameters of typical size,
recovering secret keys with a small number of faulty
signatures.

• Show how the attack applies to EMV signature formats that
where far beyond the reach of former cryptanalytic techniques.
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Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pq
and key pair (e, d) signs a message m by computing:

1. σp = µ(m)d mod p

2. σq = µ(m)d mod q

3. σ = CRT(σp, σq) mod N

where µ is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.
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The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)



Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)



Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)



Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)



Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)



Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)



Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)



Context Our Contribution Conclusion

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m‖r)d actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.
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ISO 9796-2

• ISO/IEC 9796-2 defines an encoding with partial recovery:
messages m are divided as m[1]‖m[2], and only m[2] is
transmitted; m[1] is recovered during signature verification.
More precisely:

µ(m) = 6A16‖m[1]‖H(m)‖BC16

• In cases of interest (e.g. EMV signatures), we can write:

m[1] = α‖r‖α′ m[2] = data

where α, α′ are known bit patterns, and r is unknown.

• The encoded message is thus:

µ(m) = 6A16‖α‖r‖α′‖H(m)‖BC16

where the highlighted parts are unknown.
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The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).
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Limitations of the CJKNP Attack

• Severe size constraint on r ,H(m): the combined bit length of
unknown message parts (ump) must be < 0.207 · n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

• As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when ump size gets close to the limit.

• To handle larger umps, up to 0.5 · n in theory, one can take
advantage of multiple faults.

• However, complexity grows exponentially with the number of
faulty signatures. Going beyond about 0.23 · n is totally
unfeasible.
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Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

• Simpler and purely linear: doesn’t suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

• Scales well with the number of faults: easy to handle umps
almost as large as the theoretical maximum of 0.5 · n.

• Applicable to many EMV signature formats well beyond the
reach of CJKNP attacks.
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Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature σ′
i gives an equation

Ai + Bxi + Cyi ≡ 0 (mod p), with (xi , yi ) = (ri ,H(mi )). Dividing
by B, we get affine relations:

ai + xi + cyi ≡ 0 (mod p) (∗)

Given ` faulty signatures, our attack proceeds as follows:

1. Linearize: find vectors uj = (u1j , . . . , u`j) such that uj · a ≡ 0
(mod N). Use them to cancel constant terms between the
relations (∗).

2. Orthogonalize: if the vectors as small enough, each uj is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v · a,N).
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1. Linearize: find vectors uj = (u1j , . . . , u`j) such that uj · a ≡ 0
(mod N). Use them to cancel constant terms between the
relations (∗).

2. Orthogonalize: if the vectors as small enough, each uj is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v · a,N).
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More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors uj such that uj · a ≡ 0
(mod N), apply lll-reduction. Then, letting αj = uj · x,
βj = uj · y, we get αj + cβj ≡ 0 (mod p).

2. Orthogonalization: (αj , βj) is a short vector in a lattice
L(c , p) ⊂ Z2. If it is short enough, it must be (0, 0), hence
the uj are all orthogonal to x, y over Z.
Say we have `− 2 of those uj: then their orthogonal lattice in
Z` is 2-dimensional and contains x, y. Find a basis of this
lattice using lll.

3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.
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Size Constraints

For the attack to work, we need the (αj , βj) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) ⊂ Z2 is of
length ≈ √p. Thus, if |αj | · |βj | < p ≈ N1/2, we expect the attack
to work.

Let Nγ and Nδ be the bounds on xi and yi . The lll-reduced
vectors uj have components smaller than about N1/`, so:

|αj | = |uj · x| . N1/`+γ |βj | = |uj · y| . N1/`+δ

Hence the heuristic size constraint:

2

`
+ γ + δ <

1

2
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Implementation

We implemented the attack in sage, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (σp)i ≡ µ(mi )
d (mod p).

2. Pick random mod-q parts (σ′
q)i ∈ Zq.

3. Compute the corresponding faulty σ′
i with the CRT, and carry

out the attack.

We used random 1024-bit moduli, and tested various parameters
γ, δ, first to verify the heuristic size constraint, and then to
compare our attack to CJKNP. Experiments where conducted on a
single 2.5 GHz Intel cpu core.
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Verifying the Size Constraint

For γ + δ = 1/3, our heuristic argument predicts that 13 faults are
needed to factor N. Very well verified in practice, both for
balanced and unbalanced γ, δ.

Number of faults ` 12 13 14

Success rate with γ = δ = 1
6 13% 100% 100%

Success rate with γ = 1
4 , δ = 1

12 0% 100% 100%
Average cpu time (seconds) 0.19 0.14 0.17
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Comparison to CJKNP
Number of required faults, lattice dimension and cpu time for
various ump sizes, in our new attack (left) and the CJKNP attack
(right).

γ + δ `new ωnew cpu time `old ωold cpu time

0.204 7 8 0.03 s 3 84 49 s
0.214 8 9 0.04 s 2 126 22 min
0.230 8 9 0.04 s 2 462 centuries?
0.280 10 11 0.07 s 6 6188 —
0.330 14 15 0.17 s 8 221 —
0.400 25 26 1.44 s — — —
0.450 70 71 36.94 s — — —

Fast with parameters well beyond the reach of CJKNP. However,
more faults needed for any given ump size: the CJKNP attack is
preferable for very small sizes.
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Further Work

• Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.
We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which γ + δ = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

• Recovering unknown moduli: we show how similar techniques
make it possible to recover the modulus N from a set of
sufficiently many valid ISO 9796-2 signatures.
This makes sense when attacking a proprietary protocol,
where the public parameters are not available to the attacker.
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to factor the public modulus.

• Signature formats based on this standard, such as EMV, are
vulnerable.

• In situations where fault attacks are a concern, provably
secure encodings, such as PSS, should be prefered.
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Thank you!
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