
Context Our Contribution Conclusion

Fault Attacks Against EMV Signatures

Jean-Sébastien Coron1 David Naccache2

Mehdi Tibouchi1,2

1Université du Luxembourg

2École normale supérieure

CT-RSA 2010

Context Our Contribution Conclusion

Our Results in a Nutshell

• Simplify a former fault attack [CJKNP09] on ISO 9796-2
signatures, obtaining vastly improved efficiency.

• Simulate this new fault attack on parameters of typical size,
recovering secret keys with a small number of faulty
signatures.

• Show how the attack applies to EMV signature formats that
where far beyond the reach of former cryptanalytic techniques.

Context Our Contribution Conclusion

Our Results in a Nutshell

• Simplify a former fault attack [CJKNP09] on ISO 9796-2
signatures, obtaining vastly improved efficiency.

• Simulate this new fault attack on parameters of typical size,
recovering secret keys with a small number of faulty
signatures.

• Show how the attack applies to EMV signature formats that
where far beyond the reach of former cryptanalytic techniques.

Context Our Contribution Conclusion

Our Results in a Nutshell

• Simplify a former fault attack [CJKNP09] on ISO 9796-2
signatures, obtaining vastly improved efficiency.

• Simulate this new fault attack on parameters of typical size,
recovering secret keys with a small number of faulty
signatures.

• Show how the attack applies to EMV signature formats that
where far beyond the reach of former cryptanalytic techniques.

Context Our Contribution Conclusion

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context Our Contribution Conclusion

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context Our Contribution Conclusion

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pq
and key pair (e, d) signs a message m by computing:

1. σp = µ(m)d mod p

2. σq = µ(m)d mod q

3. σ = CRT(σp, σq) mod N

where µ is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.

Context Our Contribution Conclusion

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pq
and key pair (e, d) signs a message m by computing:

1. σp = µ(m)d mod p

2. σq = µ(m)d mod q

3. σ = CRT(σp, σq) mod N

where µ is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.

Context Our Contribution Conclusion

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pq
and key pair (e, d) signs a message m by computing:

1. σp = µ(m)d mod p

2. σq = µ(m)d mod q

3. σ = CRT(σp, σq) mod N

where µ is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.

Context Our Contribution Conclusion

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pq
and key pair (e, d) signs a message m by computing:

1. σp = µ(m)d mod p

2. σq = µ(m)d mod q

3. σ = CRT(σp, σq) mod N

where µ is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.

Context Our Contribution Conclusion

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pq
and key pair (e, d) signs a message m by computing:

1. σp = µ(m)d mod p

2. σq = µ(m)d mod q

3. σ = CRT(σp, σq) mod N

where µ is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.

Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)

Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)

Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)

Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)

Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)

Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)

Context Our Contribution Conclusion

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′
q 6= µ(m)d mod q

3. σ′ = CRT(σp, σ
′
q) mod N

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)

Context Our Contribution Conclusion

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m‖r)d actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.

Context Our Contribution Conclusion

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m‖r)d actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.

Context Our Contribution Conclusion

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m‖r)d actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.

Context Our Contribution Conclusion

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m‖r)d actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.

Context Our Contribution Conclusion

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m‖r)d actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.

Context Our Contribution Conclusion

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m‖r)d actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.

Context Our Contribution Conclusion

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context Our Contribution Conclusion

ISO 9796-2

• ISO/IEC 9796-2 defines an encoding with partial recovery:
messages m are divided as m[1]‖m[2], and only m[2] is
transmitted; m[1] is recovered during signature verification.
More precisely:

µ(m) = 6A16‖m[1]‖H(m)‖BC16

• In cases of interest (e.g. EMV signatures), we can write:

m[1] = α‖r‖α′ m[2] = data

where α, α′ are known bit patterns, and r is unknown.

• The encoded message is thus:

µ(m) = 6A16‖α‖r‖α′‖H(m)‖BC16

where the highlighted parts are unknown.

Context Our Contribution Conclusion

ISO 9796-2

• ISO/IEC 9796-2 defines an encoding with partial recovery:
messages m are divided as m[1]‖m[2], and only m[2] is
transmitted; m[1] is recovered during signature verification.
More precisely:

µ(m) = 6A16‖m[1]‖H(m)‖BC16

• In cases of interest (e.g. EMV signatures), we can write:

m[1] = α‖r‖α′ m[2] = data

where α, α′ are known bit patterns, and r is unknown.

• The encoded message is thus:

µ(m) = 6A16‖α‖r‖α′‖H(m)‖BC16

where the highlighted parts are unknown.

Context Our Contribution Conclusion

ISO 9796-2

• ISO/IEC 9796-2 defines an encoding with partial recovery:
messages m are divided as m[1]‖m[2], and only m[2] is
transmitted; m[1] is recovered during signature verification.
More precisely:

µ(m) = 6A16‖m[1]‖H(m)‖BC16

• In cases of interest (e.g. EMV signatures), we can write:

m[1] = α‖r‖α′ m[2] = data

where α, α′ are known bit patterns, and r is unknown.

• The encoded message is thus:

µ(m) = 6A16‖α‖r‖α′‖H(m)‖BC16

where the highlighted parts are unknown.

Context Our Contribution Conclusion

The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).

Context Our Contribution Conclusion

The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).

Context Our Contribution Conclusion

The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).

Context Our Contribution Conclusion

The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).

Context Our Contribution Conclusion

The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).

Context Our Contribution Conclusion

The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).

Context Our Contribution Conclusion

The CJKNP Attack
Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures. However, Coron et al. [CJKNP09]
propose the following fault attack.

1. Write the encoded message as:

µ(m) = t + r · 2nr + H(m) · 28

2. A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

3. (x0, y0) = (r ,H(m)) is a small root mod p of the bivariate
polynomial A + Bx + Cy .

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HM08] can recover it.

5. Then, µ(m) can be computed to find p = gcd(σ′e − µ(m),N).

Context Our Contribution Conclusion

Limitations of the CJKNP Attack

• Severe size constraint on r ,H(m): the combined bit length of
unknown message parts (ump) must be < 0.207 · n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

• As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when ump size gets close to the limit.

• To handle larger umps, up to 0.5 · n in theory, one can take
advantage of multiple faults.

• However, complexity grows exponentially with the number of
faulty signatures. Going beyond about 0.23 · n is totally
unfeasible.

Context Our Contribution Conclusion

Limitations of the CJKNP Attack

• Severe size constraint on r ,H(m): the combined bit length of
unknown message parts (ump) must be < 0.207 · n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

• As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when ump size gets close to the limit.

• To handle larger umps, up to 0.5 · n in theory, one can take
advantage of multiple faults.

• However, complexity grows exponentially with the number of
faulty signatures. Going beyond about 0.23 · n is totally
unfeasible.

Context Our Contribution Conclusion

Limitations of the CJKNP Attack

• Severe size constraint on r ,H(m): the combined bit length of
unknown message parts (ump) must be < 0.207 · n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

• As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when ump size gets close to the limit.

• To handle larger umps, up to 0.5 · n in theory, one can take
advantage of multiple faults.

• However, complexity grows exponentially with the number of
faulty signatures. Going beyond about 0.23 · n is totally
unfeasible.

Context Our Contribution Conclusion

Limitations of the CJKNP Attack

• Severe size constraint on r ,H(m): the combined bit length of
unknown message parts (ump) must be < 0.207 · n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

• As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when ump size gets close to the limit.

• To handle larger umps, up to 0.5 · n in theory, one can take
advantage of multiple faults.

• However, complexity grows exponentially with the number of
faulty signatures. Going beyond about 0.23 · n is totally
unfeasible.

Context Our Contribution Conclusion

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context Our Contribution Conclusion

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

• Simpler and purely linear: doesn’t suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

• Scales well with the number of faults: easy to handle umps
almost as large as the theoretical maximum of 0.5 · n.

• Applicable to many EMV signature formats well beyond the
reach of CJKNP attacks.

Context Our Contribution Conclusion

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

• Simpler and purely linear: doesn’t suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

• Scales well with the number of faults: easy to handle umps
almost as large as the theoretical maximum of 0.5 · n.

• Applicable to many EMV signature formats well beyond the
reach of CJKNP attacks.

Context Our Contribution Conclusion

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

• Simpler and purely linear: doesn’t suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

• Scales well with the number of faults: easy to handle umps
almost as large as the theoretical maximum of 0.5 · n.

• Applicable to many EMV signature formats well beyond the
reach of CJKNP attacks.

Context Our Contribution Conclusion

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

• Simpler and purely linear: doesn’t suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

• Scales well with the number of faults: easy to handle umps
almost as large as the theoretical maximum of 0.5 · n.

• Applicable to many EMV signature formats well beyond the
reach of CJKNP attacks.

Context Our Contribution Conclusion

Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature σ′
i gives an equation

Ai + Bxi + Cyi ≡ 0 (mod p), with (xi , yi) = (ri ,H(mi)). Dividing
by B, we get affine relations:

ai + xi + cyi ≡ 0 (mod p) (∗)

Given ` faulty signatures, our attack proceeds as follows:

1. Linearize: find vectors uj = (u1j , . . . , u`j) such that uj · a ≡ 0
(mod N). Use them to cancel constant terms between the
relations (∗).

2. Orthogonalize: if the vectors as small enough, each uj is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v · a,N).

Context Our Contribution Conclusion

Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature σ′
i gives an equation

Ai + Bxi + Cyi ≡ 0 (mod p), with (xi , yi) = (ri ,H(mi)). Dividing
by B, we get affine relations:

ai + xi + cyi ≡ 0 (mod p) (∗)

Given ` faulty signatures, our attack proceeds as follows:

1. Linearize: find vectors uj = (u1j , . . . , u`j) such that uj · a ≡ 0
(mod N). Use them to cancel constant terms between the
relations (∗).

2. Orthogonalize: if the vectors as small enough, each uj is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v · a,N).

Context Our Contribution Conclusion

Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature σ′
i gives an equation

Ai + Bxi + Cyi ≡ 0 (mod p), with (xi , yi) = (ri ,H(mi)). Dividing
by B, we get affine relations:

ai + xi + cyi ≡ 0 (mod p) (∗)

Given ` faulty signatures, our attack proceeds as follows:

1. Linearize: find vectors uj = (u1j , . . . , u`j) such that uj · a ≡ 0
(mod N). Use them to cancel constant terms between the
relations (∗).

2. Orthogonalize: if the vectors as small enough, each uj is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v · a,N).

Context Our Contribution Conclusion

Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature σ′
i gives an equation

Ai + Bxi + Cyi ≡ 0 (mod p), with (xi , yi) = (ri ,H(mi)). Dividing
by B, we get affine relations:

ai + xi + cyi ≡ 0 (mod p) (∗)

Given ` faulty signatures, our attack proceeds as follows:

1. Linearize: find vectors uj = (u1j , . . . , u`j) such that uj · a ≡ 0
(mod N). Use them to cancel constant terms between the
relations (∗).

2. Orthogonalize: if the vectors as small enough, each uj is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v · a,N).

Context Our Contribution Conclusion

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors uj such that uj · a ≡ 0
(mod N), apply lll-reduction. Then, letting αj = uj · x,
βj = uj · y, we get αj + cβj ≡ 0 (mod p).

2. Orthogonalization: (αj , βj) is a short vector in a lattice
L(c , p) ⊂ Z2. If it is short enough, it must be (0, 0), hence
the uj are all orthogonal to x, y over Z.
Say we have `− 2 of those uj: then their orthogonal lattice in
Z` is 2-dimensional and contains x, y. Find a basis of this
lattice using lll.

3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.

Context Our Contribution Conclusion

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors uj such that uj · a ≡ 0
(mod N), apply lll-reduction to the lattice:

κa1 · · · κa` N
1 0

. . .
...

1 0

for some large enough constant κ. Then, letting αj = uj · x,
βj = uj · y, we get αj + cβj ≡ 0 (mod p).

2. Orthogonalization: (αj , βj) is a short vector in a lattice
L(c , p) ⊂ Z2. If it is short enough, it must be (0, 0), hence
the uj are all orthogonal to x, y over Z.
Say we have `− 2 of those uj: then their orthogonal lattice in
Z` is 2-dimensional and contains x, y. Find a basis of this
lattice using lll.

3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.

Context Our Contribution Conclusion

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors uj such that uj · a ≡ 0
(mod N), apply lll-reduction. Then, letting αj = uj · x,
βj = uj · y, we get αj + cβj ≡ 0 (mod p).

2. Orthogonalization: (αj , βj) is a short vector in a lattice
L(c , p) ⊂ Z2. If it is short enough, it must be (0, 0), hence
the uj are all orthogonal to x, y over Z.
Say we have `− 2 of those uj: then their orthogonal lattice in
Z` is 2-dimensional and contains x, y. Find a basis of this
lattice using lll.

3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.

Context Our Contribution Conclusion

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors uj such that uj · a ≡ 0
(mod N), apply lll-reduction. Then, letting αj = uj · x,
βj = uj · y, we get αj + cβj ≡ 0 (mod p).

2. Orthogonalization: (αj , βj) is a short vector in a lattice
L(c , p) ⊂ Z2. If it is short enough, it must be (0, 0), hence
the uj are all orthogonal to x, y over Z.
Say we have `− 2 of those uj: then their orthogonal lattice in
Z` is 2-dimensional and contains x, y. Find a basis of this
lattice using lll.

3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.

Context Our Contribution Conclusion

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors uj such that uj · a ≡ 0
(mod N), apply lll-reduction. Then, letting αj = uj · x,
βj = uj · y, we get αj + cβj ≡ 0 (mod p).

2. Orthogonalization: (αj , βj) is a short vector in a lattice
L(c , p) ⊂ Z2. If it is short enough, it must be (0, 0), hence
the uj are all orthogonal to x, y over Z.
Say we have `− 2 of those uj: then their orthogonal lattice in
Z` is 2-dimensional and contains x, y. Find a basis of this
lattice using lll.

3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.

Context Our Contribution Conclusion

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors uj such that uj · a ≡ 0
(mod N), apply lll-reduction. Then, letting αj = uj · x,
βj = uj · y, we get αj + cβj ≡ 0 (mod p).

2. Orthogonalization: (αj , βj) is a short vector in a lattice
L(c , p) ⊂ Z2. If it is short enough, it must be (0, 0), hence
the uj are all orthogonal to x, y over Z.
Say we have `− 2 of those uj: then their orthogonal lattice in
Z` is 2-dimensional and contains x, y. Find a basis of this
lattice using lll.

3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.

Context Our Contribution Conclusion

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context Our Contribution Conclusion

Size Constraints

For the attack to work, we need the (αj , βj) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) ⊂ Z2 is of
length ≈ √p. Thus, if |αj | · |βj | < p ≈ N1/2, we expect the attack
to work.

Let Nγ and Nδ be the bounds on xi and yi . The lll-reduced
vectors uj have components smaller than about N1/`, so:

|αj | = |uj · x| . N1/`+γ |βj | = |uj · y| . N1/`+δ

Hence the heuristic size constraint:

2

`
+ γ + δ <

1

2

Context Our Contribution Conclusion

Size Constraints

For the attack to work, we need the (αj , βj) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) ⊂ Z2 is of
length ≈ √p. Thus, if |αj | · |βj | < p ≈ N1/2, we expect the attack
to work.

Let Nγ and Nδ be the bounds on xi and yi . The lll-reduced
vectors uj have components smaller than about N1/`, so:

|αj | = |uj · x| . N1/`+γ |βj | = |uj · y| . N1/`+δ

Hence the heuristic size constraint:

2

`
+ γ + δ <

1

2

Context Our Contribution Conclusion

Size Constraints

For the attack to work, we need the (αj , βj) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) ⊂ Z2 is of
length ≈ √p. Thus, if |αj | · |βj | < p ≈ N1/2, we expect the attack
to work.

Let Nγ and Nδ be the bounds on xi and yi . The lll-reduced
vectors uj have components smaller than about N1/`, so:

|αj | = |uj · x| . N1/`+γ |βj | = |uj · y| . N1/`+δ

Hence the heuristic size constraint:

2

`
+ γ + δ <

1

2

Context Our Contribution Conclusion

Size Constraints

For the attack to work, we need the (αj , βj) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) ⊂ Z2 is of
length ≈ √p. Thus, if |αj | · |βj | < p ≈ N1/2, we expect the attack
to work.

Let Nγ and Nδ be the bounds on xi and yi . The lll-reduced
vectors uj have components smaller than about N1/`, so:

|αj | = |uj · x| . N1/`+γ |βj | = |uj · y| . N1/`+δ

Hence the heuristic size constraint:

2

`
+ γ + δ <

1

2

Context Our Contribution Conclusion

Implementation

We implemented the attack in sage, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (σp)i ≡ µ(mi)
d (mod p).

2. Pick random mod-q parts (σ′
q)i ∈ Zq.

3. Compute the corresponding faulty σ′
i with the CRT, and carry

out the attack.

We used random 1024-bit moduli, and tested various parameters
γ, δ, first to verify the heuristic size constraint, and then to
compare our attack to CJKNP. Experiments where conducted on a
single 2.5 GHz Intel cpu core.

Context Our Contribution Conclusion

Implementation

We implemented the attack in sage, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (σp)i ≡ µ(mi)
d (mod p).

2. Pick random mod-q parts (σ′
q)i ∈ Zq.

3. Compute the corresponding faulty σ′
i with the CRT, and carry

out the attack.

We used random 1024-bit moduli, and tested various parameters
γ, δ, first to verify the heuristic size constraint, and then to
compare our attack to CJKNP. Experiments where conducted on a
single 2.5 GHz Intel cpu core.

Context Our Contribution Conclusion

Implementation

We implemented the attack in sage, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (σp)i ≡ µ(mi)
d (mod p).

2. Pick random mod-q parts (σ′
q)i ∈ Zq.

3. Compute the corresponding faulty σ′
i with the CRT, and carry

out the attack.

We used random 1024-bit moduli, and tested various parameters
γ, δ, first to verify the heuristic size constraint, and then to
compare our attack to CJKNP. Experiments where conducted on a
single 2.5 GHz Intel cpu core.

Context Our Contribution Conclusion

Implementation

We implemented the attack in sage, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (σp)i ≡ µ(mi)
d (mod p).

2. Pick random mod-q parts (σ′
q)i ∈ Zq.

3. Compute the corresponding faulty σ′
i with the CRT, and carry

out the attack.

We used random 1024-bit moduli, and tested various parameters
γ, δ, first to verify the heuristic size constraint, and then to
compare our attack to CJKNP. Experiments where conducted on a
single 2.5 GHz Intel cpu core.

Context Our Contribution Conclusion

Implementation

We implemented the attack in sage, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (σp)i ≡ µ(mi)
d (mod p).

2. Pick random mod-q parts (σ′
q)i ∈ Zq.

3. Compute the corresponding faulty σ′
i with the CRT, and carry

out the attack.

We used random 1024-bit moduli, and tested various parameters
γ, δ, first to verify the heuristic size constraint, and then to
compare our attack to CJKNP. Experiments where conducted on a
single 2.5 GHz Intel cpu core.

Context Our Contribution Conclusion

Verifying the Size Constraint

For γ + δ = 1/3, our heuristic argument predicts that 13 faults are
needed to factor N. Very well verified in practice, both for
balanced and unbalanced γ, δ.

Number of faults ` 12 13 14

Success rate with γ = δ = 1
6 13% 100% 100%

Success rate with γ = 1
4 , δ = 1

12 0% 100% 100%
Average cpu time (seconds) 0.19 0.14 0.17

Context Our Contribution Conclusion

Comparison to CJKNP
Number of required faults, lattice dimension and cpu time for
various ump sizes, in our new attack (left) and the CJKNP attack
(right).

γ + δ `new ωnew cpu time `old ωold cpu time

0.204 7 8 0.03 s 3 84 49 s
0.214 8 9 0.04 s 2 126 22 min
0.230 8 9 0.04 s 2 462 centuries?
0.280 10 11 0.07 s 6 6188 —
0.330 14 15 0.17 s 8 221 —
0.400 25 26 1.44 s — — —
0.450 70 71 36.94 s — — —

Fast with parameters well beyond the reach of CJKNP. However,
more faults needed for any given ump size: the CJKNP attack is
preferable for very small sizes.

Context Our Contribution Conclusion

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context Our Contribution Conclusion

Further Work

• Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.
We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which γ + δ = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

• Recovering unknown moduli: we show how similar techniques
make it possible to recover the modulus N from a set of
sufficiently many valid ISO 9796-2 signatures.
This makes sense when attacking a proprietary protocol,
where the public parameters are not available to the attacker.

Context Our Contribution Conclusion

Further Work

• Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.
We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which γ + δ = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

• Recovering unknown moduli: we show how similar techniques
make it possible to recover the modulus N from a set of
sufficiently many valid ISO 9796-2 signatures.
This makes sense when attacking a proprietary protocol,
where the public parameters are not available to the attacker.

Context Our Contribution Conclusion

Further Work

• Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.
We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which γ + δ = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

• Recovering unknown moduli: we show how similar techniques
make it possible to recover the modulus N from a set of
sufficiently many valid ISO 9796-2 signatures.
This makes sense when attacking a proprietary protocol,
where the public parameters are not available to the attacker.

Context Our Contribution Conclusion

Further Work

• Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.
We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which γ + δ = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

• Recovering unknown moduli: we show how similar techniques
make it possible to recover the modulus N from a set of
sufficiently many valid ISO 9796-2 signatures.
This makes sense when attacking a proprietary protocol,
where the public parameters are not available to the attacker.

Context Our Contribution Conclusion

Conclusion

• Given a few faulty ISO 9796-2 signatures, it is fast and easy
to factor the public modulus.

• Signature formats based on this standard, such as EMV, are
vulnerable.

• In situations where fault attacks are a concern, provably
secure encodings, such as PSS, should be prefered.

Context Our Contribution Conclusion

Conclusion

• Given a few faulty ISO 9796-2 signatures, it is fast and easy
to factor the public modulus.

• Signature formats based on this standard, such as EMV, are
vulnerable.

• In situations where fault attacks are a concern, provably
secure encodings, such as PSS, should be prefered.

Context Our Contribution Conclusion

Conclusion

• Given a few faulty ISO 9796-2 signatures, it is fast and easy
to factor the public modulus.

• Signature formats based on this standard, such as EMV, are
vulnerable.

• In situations where fault attacks are a concern, provably
secure encodings, such as PSS, should be prefered.

Context Our Contribution Conclusion

Thank you!

	Context
	RSA-CRT
	Related Work

	Our Contribution
	Description of the New Attack
	Practical Assessment
	Further Work

	Conclusion

