Fault Attacks Against EMV Signatures

Jean-Sébastien Coron¹ David Naccache² Mehdi Tibouchi^{1,2}

¹Université du Luxembourg

²École normale supérieure

CT-RSA 2010

Our Results in a Nutshell

- Simplify a former fault attack [CJKNP09] on ISO 9796-2 signatures, obtaining vastly improved efficiency.
- Simulate this new fault attack on parameters of typical size, recovering secret keys with a small number of faulty signatures.
- Show how the attack applies to EMV signature formats that where far beyond the reach of former cryptanalytic techniques.

Our Results in a Nutshell

- Simplify a former fault attack [CJKNP09] on ISO 9796-2 signatures, obtaining vastly improved efficiency.
- Simulate this new fault attack on parameters of typical size, recovering secret keys with a small number of faulty signatures.
- Show how the attack applies to EMV signature formats that where far beyond the reach of former cryptanalytic techniques.

Our Results in a Nutshell

- Simplify a former fault attack [CJKNP09] on ISO 9796-2 signatures, obtaining vastly improved efficiency.
- Simulate this new fault attack on parameters of typical size, recovering secret keys with a small number of faulty signatures.
- Show how the attack applies to EMV signature formats that where far beyond the reach of former cryptanalytic techniques.

Context 0000 0000 Our Contribution

Conclusion

Outline

Context

RSA-CRT Related Work

Our Contribution

Description of the New Attack Practical Assessment Further Work

Conclusion

Outline

Context RSA-CRT Related Work

Our Contribution

Description of the New Attack Practical Assessment Further Work

In RSA-based signature schemes, a signer with modulus N = pqand key pair (e, d) signs a message *m* by computing:

- 1. $\sigma_p = \mu(m)^d \mod p$
- 2. $\sigma_q = \mu(m)^d \mod q$
- 3. $\sigma = CRT(\sigma_p, \sigma_q) \mod N$

where $\boldsymbol{\mu}$ is the encoding function of the scheme.

In RSA-based signature schemes, a signer with modulus N = pqand key pair (e, d) signs a message m by computing:

- 1. $\sigma_p = \mu(m)^d \mod p$
- 2. $\sigma_q = \mu(m)^d \mod q$
- 3. $\sigma = CRT(\sigma_p, \sigma_q) \mod N$

where $\boldsymbol{\mu}$ is the encoding function of the scheme.

In RSA-based signature schemes, a signer with modulus N = pqand key pair (e, d) signs a message *m* by computing:

1.
$$\sigma_p = \mu(m)^d \mod p$$

2.
$$\sigma_q = \mu(m)^d \mod q$$

3. $\sigma = CRT(\sigma_p, \sigma_q) \mod N$

where $\boldsymbol{\mu}$ is the encoding function of the scheme.

In RSA-based signature schemes, a signer with modulus N = pqand key pair (e, d) signs a message *m* by computing:

1.
$$\sigma_p = \mu(m)^d \mod p$$

2.
$$\sigma_q = \mu(m)^d \mod q$$

3.
$$\sigma = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N$$

where $\boldsymbol{\mu}$ is the encoding function of the scheme.

In RSA-based signature schemes, a signer with modulus N = pqand key pair (e, d) signs a message *m* by computing:

1.
$$\sigma_p = \mu(m)^d \mod p$$

2.
$$\sigma_q = \mu(m)^d \mod q$$

3.
$$\sigma = \mathsf{CRT}(\sigma_p, \sigma_q) \mod N$$

where μ is the encoding function of the scheme.

The problem with CRT: fault attacks. A fault in signature generation makes it possible to recover the secret key:

- 1. $\sigma_{p} = \mu(m)^{d} \mod p$
- $2 : \sigma'_q \neq \mu(m)^d \mod q$
- $3 \cdot \sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N$

Then $\sigma^{(n)}$ is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$\rho = \gcd(\sigma'^{o} - \mu(m), N)$$

The problem with CRT: fault attacks. A fault in signature generation makes it possible to recover the secret key:

- 1. $\sigma_p = \mu(m)^d \mod p$
- 2. $\sigma'_q \neq \mu(m)^d \mod q$
- 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N$

Then σ'^e is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- \sim any deterministic padding; e.g. EDH, $\sigma = H(m)^d \mod N$
 - any probabilistic padding with public randomizer; e.g. PFDH, $\sigma = (r_0 H(m||r)^d \mod N)$

The problem with CRT: fault attacks. A fault in signature generation makes it possible to recover the secret key:

- 1. $\sigma_p = \mu(m)^d \mod p$
- 2. $\sigma'_q \neq \mu(m)^d \mod q$
- 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N$

Then σ'^e is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- \sim any deterministic padding; e.g. EDH, $\sigma = H(m)^d \mod N$
- any probabilistic padding with public randomizer; e.g. PFDH, $\sigma = (r_0 H(m | t))^d \mod N$

The problem with CRT: fault attacks. A fault in signature generation makes it possible to recover the secret key:

- 1. $\sigma_p = \mu(m)^d \mod p$
- 2. $\sigma'_q \neq \mu(m)^d \mod q$
- 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N$

Then σ'^e is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- \sim any deterministic padding: e.g. EDH, $\sigma = H(m)^d \mod N$
 - any probabilistic padding with public randomizer; e.g. PFDH, $\sigma = (r_0 H(m||r)^d \mod N)$

The problem with CRT: fault attacks. A fault in signature generation makes it possible to recover the secret key:

- 1. $\sigma_p = \mu(m)^d \mod p$
- 2. $\sigma'_q \neq \mu(m)^d \mod q$
- 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_q) \mod N$

Then σ'^e is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- any deterministic padding; e.g. FDH, $\sigma = H(m)^d \mod N$
- any probabilistic padding with public randomizer; e.g. PFDH, σ = (r, H(m||r)^d mod N)

The problem with CRT: fault attacks. A fault in signature generation makes it possible to recover the secret key:

1. $\sigma_p = \mu(m)^d \mod p$ 2. $\sigma'_q \neq \mu(m)^d \mod q$ 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_a) \mod N$

Then σ'^e is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- any deterministic padding; e.g. FDH, $\sigma = H(m)^d \mod N$
- any probabilistic padding with public randomizer; e.g. PFDH, σ = (r, H(m||r)^d mod N)

The problem with CRT: fault attacks. A fault in signature generation makes it possible to recover the secret key:

1. $\sigma_p = \mu(m)^d \mod p$ 2. $\sigma'_q \neq \mu(m)^d \mod q$ 3. $\sigma' = \operatorname{CRT}(\sigma_p, \sigma'_a) \mod N$

Then σ'^e is $\mu(m) \mod p$ but not mod q, so the attacker can then factor N:

$$p = \gcd(\sigma'^e - \mu(m), N)$$

- any deterministic padding; e.g. FDH, $\sigma = H(m)^d \mod N$
- any probabilistic padding with public randomizer; e.g. PFDH, $\sigma = (r, H(m||r)^d \mod N)$

The Bellcore attacks does not apply when only a part of the signed encoding is known to the attacker. Examples:

- σ = (m||r)^a mod N, where r is a large enough random nonce unknown to the attacker.
- $= \sigma = (\omega || G_1(\omega) \oplus r || G_2(\omega))^{\ell} \mod M$, where r is a random nonce and $\omega = H(m || r)$. This is PSS.
- The attacker doesn't know r_i cannot compute $\sigma' = \mu(m)$ to factor N_i the Belicore attack is thwarted.
- In fact, PSS was shown to be secure against fault attacks [CM09] However, variants of $(m|r)^{d}$ actually used in practice, such as 15G 9796-2, are vulnerable to generalizations of the Bellcore attack

The Bellcore attacks does not apply when only a part of the signed encoding is known to the attacker. Examples:

- $\sigma = (m||r)^d \mod N$, where r is a large enough random nonce unknown to the attacker.
- σ = (ω || G₁(ω) ⊕ r || G₂(ω))^d mod N, where r is a random nonce and ω = H(m||r). This is PSS.

The attacker doesn't know r, cannot compute $\sigma' - \mu(m)$ to factor N: the Bellcore attack is thwarted.

The Bellcore attacks does not apply when only a part of the signed encoding is known to the attacker. Examples:

- $\sigma = (m || r)^d \mod N$, where r is a large enough random nonce unknown to the attacker.
- $\sigma = (\omega \| G_1(\omega) \oplus r \| G_2(\omega))^d \mod N$, where *r* is a random nonce and $\omega = H(m \| r)$. This is PSS.

The attacker doesn't know r, cannot compute $\sigma' - \mu(m)$ to factor N: the Bellcore attack is thwarted.

The Bellcore attacks does not apply when only a part of the signed encoding is known to the attacker. Examples:

- $\sigma = (m || r)^d \mod N$, where r is a large enough random nonce unknown to the attacker.
- σ = (ω || G₁(ω) ⊕ r || G₂(ω))^d mod N, where r is a random nonce and ω = H(m || r). This is PSS.

The attacker doesn't know r, cannot compute $\sigma' - \mu(m)$ to factor N: the Bellcore attack is thwarted.

The Bellcore attacks does not apply when only a part of the signed encoding is known to the attacker. Examples:

- $\sigma = (m || r)^d \mod N$, where r is a large enough random nonce unknown to the attacker.
- $\sigma = (\omega \| G_1(\omega) \oplus r \| G_2(\omega))^d \mod N$, where *r* is a random nonce and $\omega = H(m \| r)$. This is PSS.

The attacker doesn't know r, cannot compute $\sigma' - \mu(m)$ to factor N: the Bellcore attack is thwarted.

The Bellcore attacks does not apply when only a part of the signed encoding is known to the attacker. Examples:

- $\sigma = (m || r)^d \mod N$, where r is a large enough random nonce unknown to the attacker.
- $\sigma = (\omega \| G_1(\omega) \oplus r \| G_2(\omega))^d \mod N$, where *r* is a random nonce and $\omega = H(m \| r)$. This is PSS.

The attacker doesn't know r, cannot compute $\sigma' - \mu(m)$ to factor N: the Bellcore attack is thwarted.

Conclusion

Outline

Our Contribution

Description of the New Attack Practical Assessment Further Work

ISO 9796-2

 ISO/IEC 9796-2 defines an encoding with partial recovery: messages m are divided as m[1]||m[2], and only m[2] is transmitted; m[1] is recovered during signature verification. More precisely:

$\mu(m) = 6A_{16} \|m[1]\|H(m)\|BC_{16}$

• In cases of interest (*e.g.* EMV signatures), we can write:

 $m[1] = \alpha \|r\| \alpha'$ m[2] = data

where α, α' are known bit patterns, and r is unknown.

• The encoded message is thus:

 $\mu(m) = 6A_{16} \|\alpha\| r \|\alpha'\| H(m) \| BC_{16}$

where the highlighted parts are unknown.

ISO 9796-2

 ISO/IEC 9796-2 defines an encoding with partial recovery: messages m are divided as m[1]||m[2], and only m[2] is transmitted; m[1] is recovered during signature verification. More precisely:

$$\mu(m) = 6A_{16} \|m[1]\|H(m)\|BC_{16}$$

• In cases of interest (e.g. EMV signatures), we can write:

$$m[1] = \alpha \|r\| \alpha'$$
 $m[2] = data$

where α, α' are known bit patterns, and r is unknown.

• The encoded message is thus:

 $\mu(m) = 6\mathbb{A}_{16} \|\alpha\| r \|\alpha'\| H(m) \| \mathbb{BC}_{16}$

where the highlighted parts are unknown.

ISO 9796-2

 ISO/IEC 9796-2 defines an encoding with partial recovery: messages m are divided as m[1]||m[2], and only m[2] is transmitted; m[1] is recovered during signature verification. More precisely:

$$\mu(m) = 6A_{16} \|m[1]\|H(m)\|BC_{16}$$

• In cases of interest (e.g. EMV signatures), we can write:

$$m[1] = \alpha \|r\| \alpha'$$
 $m[2] = data$

where α, α' are known bit patterns, and r is unknown.

• The encoded message is thus:

$$\mu(\boldsymbol{m}) = 6\mathbb{A}_{16} \|\boldsymbol{\alpha}\| \boldsymbol{r} \|\boldsymbol{\alpha}'\| \boldsymbol{H}(\boldsymbol{m}) \| \mathbb{B}\mathbb{C}_{16}$$

where the highlighted parts are unknown.

Due to unknown message parts, the Bellcore attack does not apply to ISO 9796-2 signatures. However, Coron *et al.* [CJKNP09] propose the following fault attack.

1. Write the encoded message as:

$\mu(m) = t + r \cdot 2^{n_r} + H(m) \cdot 2^8$

2. A faulty signature σ' yields an equation of the form:

 $A + B \cdot r + C \cdot H(m) \equiv 0 \pmod{p}$

with $A = t - \sigma'^{e}$, $B = 2^{r_{e}}$, $C = 2^{\theta}$.

- $(x_0, y_0) = (r, H(m))$ is a small root mod p of the bivariate polynomial A + Bx + Cy.
- Hermann and May [HM08] can recover it.
- 5. Then, $\mu(m)$ can be computed to find $p = \gcd(a^{\prime v} \mu(m), N)$:

Due to unknown message parts, the Bellcore attack does not apply to ISO 9796-2 signatures. However, Coron *et al.* [CJKNP09] propose the following fault attack.

 Write the encoded message as: μ(m) = t + r · 2ⁿ + H(m) · 2⁸

A faulty signature σ' yields an equation of the formula formu

 $A + B \cdot r + C \cdot H(m) \equiv 0 \pmod{p}$

with $A = t - {\sigma'}^{e}$, $B = 2^{n_{r}}$, $C = 2^{8}$.

- $(r_0, y_0) = (r_1 H(m))$ is a small root mod p of the bivariate polynomial A + Bx + Cy.
- Hermann and May [HM08] can recover it.
- 5. Then, $\mu(m)$ can be computed to find $p = \gcd(\sigma^m \mu(m), N)$.

Due to unknown message parts, the Bellcore attack does not apply to ISO 9796-2 signatures. However, Coron *et al.* [CJKNP09] propose the following fault attack.

1. Write the encoded message as:

$$\mu(m) = t + r \cdot 2^{n_r} + H(m) \cdot 2^8$$

2. A faulty signature σ' yields an equation of the form:

 $A + B \cdot r + C \cdot H(m) \equiv 0 \pmod{p}$

with $A = t - {\sigma'}^{e}$, $B = 2^{n_{r}}$, $C = 2^{8}$.

- 3. $(x_0, y_0) = (r, H(m))$ is a small root mod p of the bivariate polynomial A + Bx + Cy.
- 4. If (x_0, y_0) is small enough, Coppersmith-like techniques by Hermann and May [HM08] can recover it.
- 5. Then, $\mu(m)$ can be computed to find $p = \gcd(\sigma'^e \mu(m), N)$.

Due to unknown message parts, the Bellcore attack does not apply to ISO 9796-2 signatures. However, Coron *et al.* [CJKNP09] propose the following fault attack.

1. Write the encoded message as:

$$\mu(m) = t + r \cdot 2^{n_r} + H(m) \cdot 2^{\varepsilon}$$

2. A faulty signature σ' yields an equation of the form:

 $A + B \cdot r + C \cdot H(m) \equiv 0 \pmod{p}$

with $A = t - {\sigma'}^{e}$, $B = 2^{n_{r}}$, $C = 2^{8}$.

- 3. $(x_0, y_0) = (r, H(m))$ is a small root mod p of the bivariate polynomial A + Bx + Cy.
- 4. If (x_0, y_0) is small enough, Coppersmith-like techniques by Hermann and May [HM08] can recover it.

5. Then, $\mu(m)$ can be computed to find $p = \gcd(\sigma'^e - \mu(m), N)$.

Due to unknown message parts, the Bellcore attack does not apply to ISO 9796-2 signatures. However, Coron *et al.* [CJKNP09] propose the following fault attack.

1. Write the encoded message as:

$$\mu(m) = t + r \cdot 2^{n_r} + H(m) \cdot 2^{\varepsilon}$$

2. A faulty signature σ' yields an equation of the form:

 $A + B \cdot r + C \cdot H(m) \equiv 0 \pmod{p}$

with $A = t - {\sigma'}^{e}$, $B = 2^{n_{r}}$, $C = 2^{8}$.

- 3. $(x_0, y_0) = (r, H(m))$ is a small root mod p of the bivariate polynomial A + Bx + Cy.
- 4. If (x_0, y_0) is small enough, Coppersmith-like techniques by Hermann and May [HM08] can recover it.
- 5. Then, $\mu(m)$ can be computed to find $p = \gcd(\sigma'^e \mu(m), N)$.

Due to unknown message parts, the Bellcore attack does not apply to ISO 9796-2 signatures. However, Coron *et al.* [CJKNP09] propose the following fault attack.

1. Write the encoded message as:

$$\mu(m) = t + r \cdot 2^{n_r} + H(m) \cdot 2^{\varepsilon}$$

2. A faulty signature σ' yields an equation of the form:

$$A + B \cdot r + C \cdot H(m) \equiv 0 \pmod{p}$$

with $A = t - {\sigma'}^{e}$, $B = 2^{n_{r}}$, $C = 2^{8}$.

- 3. $(x_0, y_0) = (r, H(m))$ is a small root mod p of the bivariate polynomial A + Bx + Cy.
- 4. If (x_0, y_0) is small enough, Coppersmith-like techniques by Hermann and May [HM08] can recover it.
- 5. Then, $\mu(m)$ can be computed to find $p = \gcd(\sigma'^e \mu(m), N)$.

Due to unknown message parts, the Bellcore attack does not apply to ISO 9796-2 signatures. However, Coron *et al.* [CJKNP09] propose the following fault attack.

1. Write the encoded message as:

$$\mu(m) = t + r \cdot 2^{n_r} + H(m) \cdot 2^{\varepsilon}$$

2. A faulty signature σ' yields an equation of the form:

$$A + B \cdot r + C \cdot H(m) \equiv 0 \pmod{p}$$

with $A = t - {\sigma'}^{e}$, $B = 2^{n_{r}}$, $C = 2^{8}$.

- 3. $(x_0, y_0) = (r, H(m))$ is a small root mod p of the bivariate polynomial A + Bx + Cy.
- 4. If (x_0, y_0) is small enough, Coppersmith-like techniques by Hermann and May [HM08] can recover it.

5. Then, $\mu(m)$ can be computed to find $p = \gcd(\sigma'^e - \mu(m), N)$.

Limitations of the CJKNP Attack

- Severe size constraint on r, H(m): the combined bit length of unknown message parts (UMP) must be < 0.207 · n. For a 160-bit digest and 1024-bit modulus, r can be at most 52 bits.
- As usual with multivariate Coppersmith techniques, the Hermann-May algorithm is only heuristic, performs poorly or fails when UMP size gets close to the limit.
- To handle larger UMPs, up to $0.5 \cdot n$ in theory, one can take advantage of multiple faults.
- However, complexity grows exponentially with the number of faulty signatures. Going beyond about 0.23 · *n* is totally unfeasible.
Limitations of the CJKNP Attack

- Severe size constraint on r, H(m): the combined bit length of unknown message parts (UMP) must be < 0.207 · n. For a 160-bit digest and 1024-bit modulus, r can be at most 52 bits.
- As usual with multivariate Coppersmith techniques, the Hermann-May algorithm is only heuristic, performs poorly or fails when UMP size gets close to the limit.
- To handle larger UMPs, up to 0.5 · *n* in theory, one can take advantage of multiple faults.
- However, complexity grows exponentially with the number of faulty signatures. Going beyond about 0.23 \cdot *n* is totally unfeasible.

Limitations of the CJKNP Attack

- Severe size constraint on r, H(m): the combined bit length of unknown message parts (UMP) must be < 0.207 · n. For a 160-bit digest and 1024-bit modulus, r can be at most 52 bits.
- As usual with multivariate Coppersmith techniques, the Hermann-May algorithm is only heuristic, performs poorly or fails when UMP size gets close to the limit.
- To handle larger UMPs, up to $0.5 \cdot n$ in theory, one can take advantage of multiple faults.
- However, complexity grows exponentially with the number of faulty signatures. Going beyond about 0.23 · *n* is totally unfeasible.

Limitations of the CJKNP Attack

- Severe size constraint on r, H(m): the combined bit length of unknown message parts (UMP) must be < 0.207 · n. For a 160-bit digest and 1024-bit modulus, r can be at most 52 bits.
- As usual with multivariate Coppersmith techniques, the Hermann-May algorithm is only heuristic, performs poorly or fails when UMP size gets close to the limit.
- To handle larger UMPs, up to $0.5 \cdot n$ in theory, one can take advantage of multiple faults.
- However, complexity grows exponentially with the number of faulty signatures. Going beyond about $0.23 \cdot n$ is totally unfeasible.

Context 0000 0000 Our Contribution

Outline

Context RSA-CRT Related Work

Our Contribution Description of the New Attack Practical Assessment

Further Work

Pushing Beyond CJKNP

- Simpler and purely linear: doesn't suffer from algebraic independence problems of multivariate Coppersmith techniques.
- Scales well with the number of faults: easy to handle UMPs almost as large as the theoretical maximum of 0.5 · n.
- Applicable to many EMV signature formats well beyond the reach of CJKNP attacks.

Pushing Beyond CJKNP

- Simpler and purely linear: doesn't suffer from algebraic independence problems of multivariate Coppersmith techniques.
- Scales well with the number of faults: easy to handle UMPs almost as large as the theoretical maximum of $0.5 \cdot n$.
- Applicable to many EMV signature formats well beyond the reach of CJKNP attacks.

Pushing Beyond CJKNP

- Simpler and purely linear: doesn't suffer from algebraic independence problems of multivariate Coppersmith techniques.
- Scales well with the number of faults: easy to handle UMPs almost as large as the theoretical maximum of $0.5 \cdot n$.
- Applicable to many EMV signature formats well beyond the reach of CJKNP attacks.

Pushing Beyond CJKNP

- Simpler and purely linear: doesn't suffer from algebraic independence problems of multivariate Coppersmith techniques.
- Scales well with the number of faults: easy to handle UMPs almost as large as the theoretical maximum of $0.5 \cdot n$.
- Applicable to many EMV signature formats well beyond the reach of CJKNP attacks.

Recall that each faulty ISO 9796-2 signature σ'_i gives an equation $A_i + Bx_i + Cy_i \equiv 0 \pmod{p}$, with $(x_i, y_i) = (r_i, H(m_i))$. Dividing by B, we get affine relations:

$$a_i + x_i + cy_i \equiv 0 \pmod{p} \qquad (*)$$

- 1. Linearize: find vectors $\mathbf{u}_{\mathbf{j}} = (u_{1j}, \dots, u_{\ell j})$ such that $\mathbf{u}_{\mathbf{j}} \cdot \mathbf{a} \equiv 0$ (mod *N*). Use them to cancel constant terms between the relations (*).
- Orthogonalize: if the vectors as small enough, each u_j is orthogonal to x and y. Deduce a Z-lattice containing x and y.
- 3.) Factor: find a vector v orthogonal to both x and y mod N, but not to a. Then p == gcd(v - a, N).

Recall that each faulty ISO 9796-2 signature σ'_i gives an equation $A_i + Bx_i + Cy_i \equiv 0 \pmod{p}$, with $(x_i, y_i) = (r_i, H(m_i))$. Dividing by B, we get affine relations:

$$a_i + x_i + cy_i \equiv 0 \pmod{p}$$
 (*)

- Linearize: find vectors u_j = (u_{1j},..., u_{ℓj}) such that u_j · a ≡ 0 (mod N). Use them to cancel constant terms between the relations (*).
- Orthogonalize: if the vectors as small enough, each u_j is orthogonal to x and y. Deduce a Z-lattice containing x and y.
- 3. Factor: find a vector **v** orthogonal to both **x** and **y** mod N, but not to **a**. Then $p = \text{gcd}(\mathbf{v} \cdot \mathbf{a}, N)$.

Recall that each faulty ISO 9796-2 signature σ'_i gives an equation $A_i + Bx_i + Cy_i \equiv 0 \pmod{p}$, with $(x_i, y_i) = (r_i, H(m_i))$. Dividing by B, we get affine relations:

$$a_i + x_i + cy_i \equiv 0 \pmod{p}$$
 (*)

- 1. Linearize: find vectors $\mathbf{u}_{\mathbf{j}} = (u_{1j}, \dots, u_{\ell j})$ such that $\mathbf{u}_{\mathbf{j}} \cdot \mathbf{a} \equiv 0$ (mod *N*). Use them to cancel constant terms between the relations (*).
- Orthogonalize: if the vectors as small enough, each u_j is orthogonal to x and y. Deduce a Z-lattice containing x and y.
- 3. Factor: find a vector **v** orthogonal to both **x** and **y** mod N, but not to **a**. Then $p = \text{gcd}(\mathbf{v} \cdot \mathbf{a}, N)$.

Recall that each faulty ISO 9796-2 signature σ'_i gives an equation $A_i + Bx_i + Cy_i \equiv 0 \pmod{p}$, with $(x_i, y_i) = (r_i, H(m_i))$. Dividing by B, we get affine relations:

$$a_i + x_i + cy_i \equiv 0 \pmod{p}$$
 (*)

- 1. Linearize: find vectors $\mathbf{u}_{\mathbf{j}} = (u_{1j}, \dots, u_{\ell j})$ such that $\mathbf{u}_{\mathbf{j}} \cdot \mathbf{a} \equiv 0$ (mod *N*). Use them to cancel constant terms between the relations (*).
- Orthogonalize: if the vectors as small enough, each u_j is orthogonal to x and y. Deduce a Z-lattice containing x and y.
- 3. Factor: find a vector **v** orthogonal to both **x** and **y** mod N, but not to **a**. Then $p = \text{gcd}(\mathbf{v} \cdot \mathbf{a}, N)$.

All three steps involve standard orthogonal lattice techniques, as used by Nguyen and Stern in the late 90's.

- 1. Linearization: to find short vectors \mathbf{u}_j such that $\mathbf{u}_j \cdot \mathbf{a} \equiv 0$ (mod *N*), apply LLL-reduction. Then, letting $\alpha_j = \mathbf{u}_j \cdot \mathbf{x}$, $\beta_j = \mathbf{u}_j \cdot \mathbf{y}$, we get $\alpha_j + c\beta_j \equiv 0 \pmod{p}$.
- 2. Orthogonalization: (α_j, β_j) is a short vector in a lattice $L(c, p) \subset \mathbb{Z}^2$. If it is short enough, it must be (0, 0), hence the $\mathbf{u_i}$ are all orthogonal to \mathbf{x} , \mathbf{y} over \mathbb{Z} .
 - Say we have $\ell = -2$ of those up then their orthogonal lattice in \mathbb{Z}^{ℓ} is 2-dimensional and contains x, y. Find a basis of this lattice using 0.00.
- Factoring: finding a vector v orthogonal to both x and y mod N is then a simple matter. It will not be orthogonal to a with overwhelming probability.

All three steps involve standard orthogonal lattice techniques, as used by Nguyen and Stern in the late 90's.

1. Linearization: to find short vectors $\mathbf{u}_{\mathbf{j}}$ such that $\mathbf{u}_{\mathbf{j}} \cdot \mathbf{a} \equiv 0$ (mod *N*), apply LLL-reduction to the lattice:

$$\begin{pmatrix} \kappa a_1 & \cdots & \kappa a_\ell & N \\ 1 & & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{pmatrix}$$

for some large enough constant κ. Then, letting α_j = u_j · x, β_j = u_j · y, we get α_j + cβ_j ≡ 0 (mod p).
Orthogonalization: (α_j, β_j) is a short vector in a lattice L(c, p) ⊂ Z². If it is short enough, it must be (0,0), hence the u_j are all orthogonal to x, y over Z.

All three steps involve standard orthogonal lattice techniques, as used by Nguyen and Stern in the late 90's.

- 1. Linearization: to find short vectors \mathbf{u}_j such that $\mathbf{u}_j \cdot \mathbf{a} \equiv 0$ (mod N), apply LLL-reduction. Then, letting $\alpha_j = \mathbf{u}_j \cdot \mathbf{x}$, $\beta_j = \mathbf{u}_j \cdot \mathbf{y}$, we get $\alpha_j + c\beta_j \equiv 0 \pmod{p}$.
- Orthogonalization: (α_j, β_j) is a short vector in a lattice L(c, p) ⊂ Z². If it is short enough, it must be (0,0), hence the u_j are all orthogonal to x, y over Z.
 Say we have ℓ − 2 of those u_j: then their orthogonal lattice in Z^ℓ is 2-dimensional and contains x, y. Find a basis of this lattice using LLL.
- 3. Factoring: finding a vector **v** orthogonal to both **x** and **y** mod *N* is then a simple matter. It will not be orthogonal to **a** with overwhelming probability.

All three steps involve standard orthogonal lattice techniques, as used by Nguyen and Stern in the late 90's.

- 1. Linearization: to find short vectors \mathbf{u}_j such that $\mathbf{u}_j \cdot \mathbf{a} \equiv 0$ (mod N), apply LLL-reduction. Then, letting $\alpha_j = \mathbf{u}_j \cdot \mathbf{x}$, $\beta_j = \mathbf{u}_j \cdot \mathbf{y}$, we get $\alpha_j + c\beta_j \equiv 0 \pmod{p}$.
- 2. Orthogonalization: (α_j, β_j) is a short vector in a lattice $L(c, p) \subset \mathbb{Z}^2$. If it is short enough, it must be (0, 0), hence the $\mathbf{u_j}$ are all orthogonal to \mathbf{x}, \mathbf{y} over \mathbb{Z} .

Say we have $\ell - 2$ of those u_j : then their orthogonal lattice in \mathbb{Z}^{ℓ} is 2-dimensional and contains x, y. Find a basis of this lattice using LLL.

 Factoring: finding a vector v orthogonal to both x and y mod N is then a simple matter. It will not be orthogonal to a with overwhelming probability.

All three steps involve standard orthogonal lattice techniques, as used by Nguyen and Stern in the late 90's.

- 1. Linearization: to find short vectors \mathbf{u}_j such that $\mathbf{u}_j \cdot \mathbf{a} \equiv 0$ (mod N), apply LLL-reduction. Then, letting $\alpha_j = \mathbf{u}_j \cdot \mathbf{x}$, $\beta_j = \mathbf{u}_j \cdot \mathbf{y}$, we get $\alpha_j + c\beta_j \equiv 0 \pmod{p}$.
- Orthogonalization: (α_j, β_j) is a short vector in a lattice L(c, p) ⊂ Z². If it is short enough, it must be (0,0), hence the u_j are all orthogonal to x, y over Z. Say we have ℓ − 2 of those u_j: then their orthogonal lattice in Z^ℓ is 2-dimensional and contains x, y. Find a basis of this lattice using LLL.
- Factoring: finding a vector v orthogonal to both x and y mod N is then a simple matter. It will not be orthogonal to a with overwhelming probability.

All three steps involve standard orthogonal lattice techniques, as used by Nguyen and Stern in the late 90's.

- 1. Linearization: to find short vectors \mathbf{u}_j such that $\mathbf{u}_j \cdot \mathbf{a} \equiv 0$ (mod N), apply LLL-reduction. Then, letting $\alpha_j = \mathbf{u}_j \cdot \mathbf{x}$, $\beta_j = \mathbf{u}_j \cdot \mathbf{y}$, we get $\alpha_j + c\beta_j \equiv 0 \pmod{p}$.
- Orthogonalization: (α_j, β_j) is a short vector in a lattice L(c, p) ⊂ Z². If it is short enough, it must be (0,0), hence the u_j are all orthogonal to x, y over Z. Say we have ℓ − 2 of those u_j: then their orthogonal lattice in Z^ℓ is 2-dimensional and contains x, y. Find a basis of this lattice using LLL.
- Factoring: finding a vector v orthogonal to both x and y mod N is then a simple matter. It will not be orthogonal to a with overwhelming probability.

Context 0000 0000 Our Contribution

Conclusion

Outline

Context RSA-CRT Related Work

Our Contribution Description of the New Attack Practical Assessment Further Work

For the attack to work, we need the (α_j, β_j) from the previous slide to be "short enough." How short is short enough?

Heuristically, the shortest vector in the lattice $L(c, p) \subset \mathbb{Z}^2$ is of length $\approx \sqrt{p}$. Thus, if $|\alpha_j| \cdot |\beta_j| , we expect the attack to work.$

Let N^{γ} and N^{δ} be the bounds on x_i and y_i . The LLL-reduced vectors \mathbf{u}_j have components smaller than about $N^{1/\ell}$, so:

$$|lpha_j| = |\mathbf{u_j} \cdot \mathbf{x}| \lesssim N^{1/\ell + \gamma} \quad |eta_j| = |\mathbf{u_j} \cdot \mathbf{y}| \lesssim N^{1/\ell + \delta}$$

$$\frac{2}{\ell} + \gamma + \delta < \frac{1}{2}$$

For the attack to work, we need the (α_j, β_j) from the previous slide to be "short enough." How short is short enough?

Heuristically, the shortest vector in the lattice $L(c, p) \subset \mathbb{Z}^2$ is of length $\approx \sqrt{p}$. Thus, if $|\alpha_j| \cdot |\beta_j| , we expect the attack to work.$

Let N^{γ} and N^{δ} be the bounds on x_i and y_i . The LLL-reduced vectors \mathbf{u}_j have components smaller than about $N^{1/\ell}$, so:

 $|lpha_j| = |\mathbf{u_j} \cdot \mathbf{x}| \lesssim N^{1/\ell + \gamma} \quad |eta_j| = |\mathbf{u_j} \cdot \mathbf{y}| \lesssim N^{1/\ell + \delta}$

$$\frac{2}{\ell} + \gamma + \delta < \frac{1}{2}$$

For the attack to work, we need the (α_j, β_j) from the previous slide to be "short enough." How short is short enough?

Heuristically, the shortest vector in the lattice $L(c, p) \subset \mathbb{Z}^2$ is of length $\approx \sqrt{p}$. Thus, if $|\alpha_j| \cdot |\beta_j| , we expect the attack to work.$

Let N^{γ} and N^{δ} be the bounds on x_i and y_i . The LLL-reduced vectors $\mathbf{u_j}$ have components smaller than about $N^{1/\ell}$, so:

$$|lpha_j| = |\mathbf{u}_\mathbf{j} \cdot \mathbf{x}| \lesssim N^{1/\ell + \gamma} \quad |eta_j| = |\mathbf{u}_\mathbf{j} \cdot \mathbf{y}| \lesssim N^{1/\ell + \delta}$$

$$\frac{2}{\ell} + \gamma + \delta < \frac{1}{2}$$

For the attack to work, we need the (α_j, β_j) from the previous slide to be "short enough." How short is short enough?

Heuristically, the shortest vector in the lattice $L(c, p) \subset \mathbb{Z}^2$ is of length $\approx \sqrt{p}$. Thus, if $|\alpha_j| \cdot |\beta_j| , we expect the attack to work.$

Let N^{γ} and N^{δ} be the bounds on x_i and y_i . The LLL-reduced vectors $\mathbf{u_j}$ have components smaller than about $N^{1/\ell}$, so:

$$|lpha_j| = |\mathbf{u}_\mathbf{j} \cdot \mathbf{x}| \lesssim N^{1/\ell + \gamma} \quad |eta_j| = |\mathbf{u}_\mathbf{j} \cdot \mathbf{y}| \lesssim N^{1/\ell + \delta}$$

$$\frac{2}{\ell} + \gamma + \delta < \frac{1}{2}$$

We implemented the attack in $_{\rm SAGE,}$ and simulated its application to random faults on ISO 9796-2 signatures:

- 1. Generate correct mod-*p* parts $(\sigma_p)_i \equiv \mu(m_i)^d \pmod{p}$.
- 2. Pick random mod-q parts $(\sigma'_q)_i \in \mathbb{Z}_q$.
- 3. Compute the corresponding faulty σ'_i with the CRT, and carry out the attack.

We implemented the attack in $_{\rm SAGE,}$ and simulated its application to random faults on ISO 9796-2 signatures:

- 1. Generate correct mod-*p* parts $(\sigma_p)_i \equiv \mu(m_i)^d \pmod{p}$.
- 2. Pick random mod-q parts $(\sigma'_q)_i \in \mathbb{Z}_q$.
- 3. Compute the corresponding faulty σ'_i with the CRT, and carry out the attack.

We implemented the attack in $_{\rm SAGE,}$ and simulated its application to random faults on ISO 9796-2 signatures:

- 1. Generate correct mod-*p* parts $(\sigma_p)_i \equiv \mu(m_i)^d \pmod{p}$.
- 2. Pick random mod-q parts $(\sigma'_q)_i \in \mathbb{Z}_q$.
- 3. Compute the corresponding faulty σ'_i with the CRT, and carry out the attack.

We implemented the attack in $_{\rm SAGE,}$ and simulated its application to random faults on ISO 9796-2 signatures:

- 1. Generate correct mod-*p* parts $(\sigma_p)_i \equiv \mu(m_i)^d \pmod{p}$.
- 2. Pick random mod-q parts $(\sigma'_q)_i \in \mathbb{Z}_q$.
- 3. Compute the corresponding faulty σ_i' with the CRT, and carry out the attack.

We implemented the attack in $_{\rm SAGE,}$ and simulated its application to random faults on ISO 9796-2 signatures:

- 1. Generate correct mod-*p* parts $(\sigma_p)_i \equiv \mu(m_i)^d \pmod{p}$.
- 2. Pick random mod-q parts $(\sigma'_q)_i \in \mathbb{Z}_q$.
- 3. Compute the corresponding faulty σ_i' with the CRT, and carry out the attack.

Verifying the Size Constraint

For $\gamma + \delta = 1/3$, our heuristic argument predicts that 13 faults are needed to factor *N*. Very well verified in practice, both for balanced and unbalanced γ, δ .

Number of faults ℓ	12	13	14
Success rate with $\gamma = \delta = \frac{1}{6}$	13%	100%	100%
Success rate with $\gamma = \frac{1}{4}, \ \delta = \frac{1}{12}$	0%	100%	100%
Average CPU time (seconds)	0.19	0.14	0.17

Comparison to CJKNP

Number of required faults, lattice dimension and $_{\rm CPU}$ time for various $_{\rm UMP}$ sizes, in our new attack (left) and the CJKNP attack (right).

$\gamma + \delta$	$\ell_{\sf new}$	$\omega_{\sf new}$	CPU time	ℓ_{old}	$\omega_{ m old}$	CPU time
0.204	7	8	0.03 s	3	84	49 s
0.214	8	9	0.04 s	2	126	22 min
0.230	8	9	0.04 s	2	462	centuries?
0.280	10	11	0.07 s	6	6188	—
0.330	14	15	0.17 s	8	2 ²¹	—
0.400	25	26	1.44 s	—	—	—
0.450	70	71	36.94 s			

Fast with parameters well beyond the reach of CJKNP. However, more faults needed for any given UMP size: the CJKNP attack is preferable for very small sizes.

Context 0000 0000 Our Contribution

Outline

ontext RSA-CRT Related Work

Our Contribution

Description of the New Attack Practical Assessment Further Work

- Application to EMV: the EMV specification defines a number of ISO 9796-2-based signature formats for all sorts of data, and most of them are vulnerable to this attack.
 - We give an explicit example (EMV Test 2CC.086.1 Case 07) in which $\gamma + \delta = 0.28$: broken with 10 faulty signatures with our attack, but impossible to attack using CJKNP.
- Recovering unknown moduli: we show how similar techniques make it possible to recover the modulus *N* from a set of sufficiently many *valid* ISO 9796-2 signatures.
 - This makes sense when attacking a proprietary protocol, where the public parameters are not available to the attackers

- Application to EMV: the EMV specification defines a number of ISO 9796-2-based signature formats for all sorts of data, and most of them are vulnerable to this attack. We give an explicit example (EMV Test 2CC.086.1 Case 07) in which γ + δ = 0.28: broken with 10 faulty signatures with our attack, but impossible to attack using CJKNP.
- Recovering unknown moduli: we show how similar techniques make it possible to recover the modulus N from a set of sufficiently many valid ISO 9796-2 signatures.
 This makes sense when attacking a proprietary protocol.

- Application to EMV: the EMV specification defines a number of ISO 9796-2-based signature formats for all sorts of data, and most of them are vulnerable to this attack.
 We give an explicit example (EMV Test 2CC.086.1 Case 07) in which γ + δ = 0.28: broken with 10 faulty signatures with our attack, but impossible to attack using CJKNP.
- Recovering unknown moduli: we show how similar techniques make it possible to recover the modulus *N* from a set of sufficiently many *valid* ISO 9796-2 signatures.

This makes sense when attacking a proprietary protocol, where the public parameters are not available to the attacker.

- Application to EMV: the EMV specification defines a number of ISO 9796-2-based signature formats for all sorts of data, and most of them are vulnerable to this attack.
 We give an explicit example (EMV Test 2CC.086.1 Case 07) in which γ + δ = 0.28: broken with 10 faulty signatures with our attack, but impossible to attack using CJKNP.
- Recovering unknown moduli: we show how similar techniques make it possible to recover the modulus N from a set of sufficiently many valid ISO 9796-2 signatures. This makes sense when attacking a proprietary protocol, where the public parameters are not available to the attacker.

Conclusion

- Given a few faulty ISO 9796-2 signatures, it is fast and easy to factor the public modulus.
- Signature formats based on this standard, such as EMV, are vulnerable.
- In situations where fault attacks are a concern, provably secure encodings, such as PSS, should be prefered.
Our Contribution

Conclusion

- Given a few faulty ISO 9796-2 signatures, it is fast and easy to factor the public modulus.
- Signature formats based on this standard, such as EMV, are vulnerable.
- In situations where fault attacks are a concern, provably secure encodings, such as PSS, should be prefered.

Our Contribution

Conclusion

- Given a few faulty ISO 9796-2 signatures, it is fast and easy to factor the public modulus.
- Signature formats based on this standard, such as EMV, are vulnerable.
- In situations where fault attacks are a concern, provably secure encodings, such as PSS, should be prefered.

Contex 0000 0000 Our Contribution

Conclusion

Thank you!