Context Our Contribution Conclusion

0000 0000
0000 00000
(e]e]

Fault Attacks Against EMV Signatures

Jean-Sébastien Coron! David Naccache?

Mehdi Tibouchil:2

LUniversité du Luxembourg

2Ecole normale supérieure

CT-RSA 2010

Context

0000

(0] Conclusion
0000
0000 O
O

Our Results in a Nutshell

e Simplify a former fault attack [CJKNPO09] on I1SO 9796-2
signatures, obtaining vastly improved efficiency.

Our Results in a Nutshell

e Simplify a former fault attack [CJKNPO09] on I1SO 9796-2
signatures, obtaining vastly improved efficiency.

e Simulate this new fault attack on parameters of typical size,
recovering secret keys with a small number of faulty
signatures.

Our Results in a Nutshell

e Simplify a former fault attack [CJKNPO09] on I1SO 9796-2
signatures, obtaining vastly improved efficiency.

e Simulate this new fault attack on parameters of typical size,
recovering secret keys with a small number of faulty
signatures.

e Show how the attack applies to EMV signature formats that
where far beyond the reach of former cryptanalytic techniques.

ontribution

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Conclusion

(o]}

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context
[e] lele}

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pg
and key pair (e, d) signs a message m by computing:

where 1 is the encoding function of the scheme.

Context
[e] lele}

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pg
and key pair (e, d) signs a message m by computing:

1. op = pu(m)? mod p

where 1 is the encoding function of the scheme.

Context
[e] lele}

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pg
and key pair (e, d) signs a message m by computing:

d

1. op = p(m)? mod p

)
)9 mod g

2. 0g=p(m

where 1 is the encoding function of the scheme.

Context
[e] lele}

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pg
and key pair (e, d) signs a message m by computing:

1. op = pu(m)? mod p

2. 04 = pu(m)? mod q

3. 0 = CRT(0p,04) mod N

where i is the encoding function of the scheme.

Context
[e] lele}

Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pg
and key pair (e, d) signs a message m by computing:

1. op = p(m)? mod p

2. 04 = pu(m)? mod q

3. 0 = CRT(0p,04) mod N
where i is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.

Context Our Contribution Conclusion
[e]e] e} 0000
0000 00000

[e]e]

The Bellcore Fault Attack
The problem with CRT: fault attacks.

Context Our Contribution Conclusion
[e]e] e} 0000
0000 00000

[e]e]

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

Context

[e]e] o]

(0] Conclusion
0000
0000 O
O

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. 0p = p(m)? mod p

Context Our Contribution Conclusion
[e]e] e} 0000
0000 00000

[e]e]

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. 0p = p(m)? mod p
2. g, # p(m)9 mod g

Context Our Contribution Conclusion
[e]e] e} 0000
0000 00000

[e]e]

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. 0p = p(m)? mod p
2. o), # p(m)? mod g
3. ¢/ = CRT(0p, 0,) mod N

Context Our Contribution Conclusion
00e0

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. 0p = p(m)? mod p

2. o), # p(m)? mod g

3. ¢/ = CRT(0p, 0,) mod N
Then ¢’¢ is u(m) mod p but not mod g, so the attacker can then
factor N:

p = ged(a'® — p(m), N)

Context
[e]e] e}

The Bellcore Fault Attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. 0p = p(m)? mod p
2. o), # p(m)? mod g
3. ¢/ = CRT(0p, 0,) mod N
Then ¢’¢ is u(m) mod p but not mod g, so the attacker can then
factor N:
p = ged(a'® — p(m), N)

This attack applies to:
e any deterministic padding; e.g. FDH, o0 = H(m)? mod N

e any probabilistic padding with public randomizer; e.g. PFDH,
o = (r,H(m||r)¥ mod N)

Context Our Contribution Conclusion
oooe 0000
0000 00000

[e]e]

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker.

Context Our Contribution Conclusion
oooe 0000
0000 00000

[e]e]

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

Context
oooe

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

e o = (ml/r)¥ mod N, where r is a large enough random nonce
unknown to the attacker.

Context
oooe

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

e o = (ml/r)¥ mod N, where r is a large enough random nonce
unknown to the attacker.

o 0= (w|G(w)® rHGz(w))d mod N, where r is a random
nonce and w = H(m||r). This is PSS.

Context
oooe

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

e o = (ml/r)¥ mod N, where r is a large enough random nonce
unknown to the attacker.

o 0= (w|G(w)® rHGz(w))d mod N, where r is a random
nonce and w = H(m||r). This is PSS.

The attacker doesn't know r, cannot compute o’ — p(m) to factor
N: the Bellcore attack is thwarted.

Context

oooe

Countermeasures and Extensions

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker. Examples:

e o = (ml/r)¥ mod N, where r is a large enough random nonce
unknown to the attacker.

o 0= (w|G(w)® rHGz(w))d mod N, where r is a random
nonce and w = H(ml||r). This is PSS.

The attacker doesn't know r, cannot compute o’ — p(m) to factor
N: the Bellcore attack is thwarted.
In fact, PSS was shown to be secure against fault attacks [CM09].
However, variants of (m||r)9 actually used in practice, such as
ISO 9796-2, are vulnerable to generalizations of the Bellcore
attack.

(o]}

Outline

Context
RSA-CRT
Related Work

Our Contribution
Description of the New Attack
Practical Assessment
Further Work

Context

0e00

ISO 9796-2

e ISO/IEC 9796-2 defines an encoding with partial recovery:
messages m are divided as m[1]||m[2], and only m[2] is
transmitted; m[1] is recovered during signature verification.
More precisely:

p(m) = 6As6||m[1]||H(m)[[BC16

Context

0e00

ISO 9796-2

e ISO/IEC 9796-2 defines an encoding with partial recovery:
messages m are divided as m[1]||m[2], and only m[2] is
transmitted; m[1] is recovered during signature verification.
More precisely:

p(m) = 6Ase||m([1]||H(m)||BC16
e In cases of interest (e.g. EMV signatures), we can write:
m[1] = af|r||o/ m[2] = DATA

where o, @/ are known bit patterns, and r is unknown.

Context

0e00

ISO 9796-2

e ISO/IEC 9796-2 defines an encoding with partial recovery:
messages m are divided as m[1]||m[2], and only m[2] is
transmitted; m[1] is recovered during signature verification.
More precisely:

p(m) = 6Ase||m([1]||H(m)||BC16
e In cases of interest (e.g. EMV signatures), we can write:
m[1] = af|r||o/ m[2] = DATA

where o, @/ are known bit patterns, and r is unknown.

e The encoded message is thus:
pu(m) = 6Asel|al|rlla’]|H(m)||BC16

where the highlighted parts are unknown.

Context Our Contribution Conclusion

0000

The CJKNP Attack

Due to unknown message parts, the Bellcore attack does not apply
to ISO 9796-2 signatures.

Context

[e]e] o]

The CJKNP Attack

Due to unknown message parts, the Bellcore attack does not apply
to 1ISO 9796-2 signatures. However, Coron et al. [CJKNPQ9]
propose the following fault attack.

Context

[e]e] o]

The CJKNP Attack

Due to unknown message parts, the Bellcore attack does not apply
to 1ISO 9796-2 signatures. However, Coron et al. [CJKNPQ9]
propose the following fault attack.

1. Write the encoded message as:

p(m) =t —+r-2" + H(m)-28

Context

[e]e] o]

The CJKNP Attack

Due to unknown message parts, the Bellcore attack does not apply
to 1ISO 9796-2 signatures. However, Coron et al. [CJKNPQ9]
propose the following fault attack.

1. Write the encoded message as:
p(m) =t+4r-2" 4 H(m)- 28
2. A faulty signature ¢’ yields an equation of the form:
A+B-r+C-H(m)=0 (mod p)
with A=t —o'¢, B=2", C =28

Context

[e]e] o]

The CJKNP Attack

Due to unknown message parts, the Bellcore attack does not apply
to 1ISO 9796-2 signatures. However, Coron et al. [CJKNPQ9]
propose the following fault attack.

1. Write the encoded message as:
p(m) =t —+r-2" + H(m)-28
2. A faulty signature ¢’ yields an equation of the form:
A+B-r+C-H(m)=0 (mod p)

with A=t —¢'¢, B=2" C =28

3. (x0,¥0) = (r, H(m)) is a small root mod p of the bivariate
polynomial A+ Bx + Cy.

Context

[e]e] o]

The CJKNP Attack

Due to unknown message parts, the Bellcore attack does not apply
to 1ISO 9796-2 signatures. However, Coron et al. [CJKNPQ9]
propose the following fault attack.

1. Write the encoded message as:
p(m) =t —+r-2" + H(m)-28
2. A faulty signature ¢’ yields an equation of the form:
A+B-r+C-H(m)=0 (mod p)

with A=t —o'¢, B=2", C =28
3. (x0,¥0) = (r, H(m)) is a small root mod p of the bivariate
polynomial A+ Bx + Cy.

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HMO08] can recover it.

Context

[e]e] o]

The CJKNP Attack

Due to unknown message parts, the Bellcore attack does not apply
to 1ISO 9796-2 signatures. However, Coron et al. [CJKNPQ9]
propose the following fault attack.

1. Write the encoded message as:
p(m) =t —+r-2" + H(m)-28
2. A faulty signature ¢’ yields an equation of the form:
A+B-r+C-H(m)=0 (mod p)

with A=t —o'¢, B=2", C =28
3. (x0,¥0) = (r, H(m)) is a small root mod p of the bivariate
polynomial A+ Bx + Cy.

4. If (x0, y0) is small enough, Coppersmith-like techniques by
Hermann and May [HMO08] can recover it.

5. Then, u(m) can be computed to find p = ged(o’® — pu(m), N).

Context

oooe

Limitations of the CJKNP Attack

e Severe size constraint on r, H(m): the combined bit length of
unknown message parts (UMP) must be < 0.207 - n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

Context

oooe

Limitations of the CJKNP Attack

e Severe size constraint on r, H(m): the combined bit length of
unknown message parts (UMP) must be < 0.207 - n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

e As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when UMP size gets close to the limit.

Context

oooe

Limitations of the CJKNP Attack

e Severe size constraint on r, H(m): the combined bit length of
unknown message parts (UMP) must be < 0.207 - n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

e As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when UMP size gets close to the limit.

e To handle larger uMmPs, up to 0.5 - n in theory, one can take
advantage of multiple faults.

Context

oooe

Limitations of the CJKNP Attack

Severe size constraint on r, H(m): the combined bit length of
unknown message parts (UMP) must be < 0.207 - n. For a
160-bit digest and 1024-bit modulus, r can be at most 52 bits.

As usual with multivariate Coppersmith techniques, the
Hermann-May algorithm is only heuristic, performs poorly or
fails when UMP size gets close to the limit.

To handle larger UMPs, up to 0.5 - n in theory, one can take
advantage of multiple faults.

However, complexity grows exponentially with the number of

faulty signatures. Going beyond about 0.23 - n is totally
unfeasible.

Context Our Contribution
0000 9000
0000 00000

[e]e]

Outline

Our Contribution
Description of the New Attack

Conclusion

Context Our Contribution Conclusion
oe

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

Our Contribution
[e] Tele]

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

e Simpler and purely linear: doesn't suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

Our Contribution
[e] Tele]

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

e Simpler and purely linear: doesn't suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

e Scales well with the number of faults: easy to handle UMPs
almost as large as the theoretical maximum of 0.5 - n.

Our Contribution
[e] Tele]

Pushing Beyond CJKNP

Our paper introduces a new multiple fault attack on ISO 9796-2
lifting most limitations of the CJKNP attack.

e Simpler and purely linear: doesn't suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

e Scales well with the number of faults: easy to handle UMPs
almost as large as the theoretical maximum of 0.5 - n.

e Applicable to many EMV signature formats well beyond the
reach of CJKNP attacks.

Our Contribution
[e]e] o]

Rundown of Our Attack
Recall that each faulty ISO 9796-2 signature o/ gives an equation
Ai+Bxi+ Cy; =0 (mod p), with (X,',y,') = (r,-, H(m,)) Dividing

by B, we get affine relations:

ai+x+cyi=0 (mod p) (%)

Our Contribution
[e]e] o]

Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature o/ gives an equation
Ai+Bxi+ Cy; =0 (mod p), with (X,',y,') = (r,-, H(m,)) Dividing
by B, we get affine relations:

ai+x+cyi=0 (mod p) (%)

Given /£ faulty signatures, our attack proceeds as follows:
1. Linearize: find vectors uj = (uyj,. .., ug) such that uj-a =0
(mod N). Use them to cancel constant terms between the
relations (x).

Our Contribution
[e]e] o]

Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature o/ gives an equation
Ai+Bxi+ Cy; =0 (mod p), with (X,',y,') = (r,-, H(m,)) Dividing
by B, we get affine relations:

ai+x+cyi=0 (mod p) (%)

Given /£ faulty signatures, our attack proceeds as follows:
1. Linearize: find vectors uj = (uyj,. .., ug) such that uj-a =0
(mod N). Use them to cancel constant terms between the
relations (x).

2. Orthogonalize: if the vectors as small enough, each u; is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

Our Contribution
[e]e] o]

Rundown of Our Attack

Recall that each faulty ISO 9796-2 signature o/ gives an equation
Ai+Bxi+ Cy; =0 (mod p), with (X,',y,') = (r,-, H(m,)) Dividing
by B, we get affine relations:

ai+x+cyi=0 (mod p) (%)

Given /£ faulty signatures, our attack proceeds as follows:

1. Linearize: find vectors uj = (uyj,. .., ug) such that uj-a =0
(mod N). Use them to cancel constant terms between the
relations (x).

2. Orthogonalize: if the vectors as small enough, each u; is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v - a, N).

Our Contribution
[e]e]e])

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

Our Contribution
[e]e]e])

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.
1. Linearization: to find short vectors uj such that u;-a =0
(mod N), apply LLL-reduction to the lattice:

Rai Ray N
1 0
1 0

for some large enough constant k.

Our Contribution
[e]e]e])

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors u;j such that u;-a =0
(mod N), apply LLL-reduction. Then, letting o = uj - X,
Bj =uj-y, we get oj +cfj =0 (mod p).

Our Contribution
[e]e]e])

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.
1. Linearization: to find short vectors u;j such that u;-a =0
(mod N), apply LLL-reduction. Then, letting oj = uj - x,
Bj =uj-y, we get oj +cfj =0 (mod p).
2. Orthogonalization: (aj, 3;) is a short vector in a lattice
L(c,p) C Z2. If it is short enough, it must be (0,0), hence
the u; are all orthogonal to x, y over Z.

Our Contribution
[e]e]e])

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90’s.

1. Linearization: to find short vectors u;j such that u;-a =0
(mod N), apply LLL-reduction. Then, letting oj = uj - x,

Bj =uj-y, we get oj +cfj =0 (mod p).

2. Orthogonalization: (aj, 3;) is a short vector in a lattice
L(c,p) C Z2. If it is short enough, it must be (0,0), hence
the u; are all orthogonal to x, y over Z.

Say we have ¢ — 2 of those u;: then their orthogonal lattice in
7 is 2-dimensional and contains x,y. Find a basis of this
lattice using LLL.

Our Contribution
[e]e]e])

More details

All three steps involve standard orthogonal lattice techniques, as
used by Nguyen and Stern in the late 90's.
1. Linearization: to find short vectors u;j such that u;-a =0
(mod N), apply LLL-reduction. Then, letting oj = uj - x,
Bj =uj-y, we get oj +cfj =0 (mod p).
2. Orthogonalization: (aj, 3;) is a short vector in a lattice
L(c,p) C Z2. If it is short enough, it must be (0,0), hence
the u; are all orthogonal to x, y over Z.
Say we have ¢ — 2 of those u;: then their orthogonal lattice in
7 is 2-dimensional and contains x,y. Find a basis of this
lattice using LLL.
3. Factoring: finding a vector v orthogonal to both x and y mod
N is then a simple matter. It will not be orthogonal to a with
overwhelming probability.

Context Our Contribution
0000 0000
0000 90000

[e]e]

Outline

Our Contribution

Practical Assessment

Conclusion

Our Contribution

0@000

Size Constraints

For the attack to work, we need the («aj, 3;) from the previous slide
to be “short enough.” How short is short enough?

Our Contribution

0@000

Size Constraints

For the attack to work, we need the («aj, 3;) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) C Z? is of
length ~ \/p. Thus, if o] - 5] < p = N'/2, we expect the attack
to work.

Our Contribution

0@000

Size Constraints

For the attack to work, we need the («aj, 3;) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) C Z? is of
length ~ \/p. Thus, if o] - 5] < p = N'/2, we expect the attack
to work.

Let N7 and N9 be the bounds on x; and ¥i. The LLL-reduced
vectors u;j have components smaller than about NYE, so:

1/¢ 1/046
laj = uj - x| S NV 1] = Juy - y| S NVEF

Our Contribution

0@000

Size Constraints

For the attack to work, we need the («aj, 3;) from the previous slide
to be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice L(c, p) C Z? is of
length ~ \/p. Thus, if o] - 5] < p = N'/2, we expect the attack
to work.

Let N7 and N9 be the bounds on x; and ¥i. The LLL-reduced
vectors u;j have components smaller than about NYE, so:

oy = Juj - x| S NV 8| = Juy - y| S NV
Hence the heuristic size constraint:

2+ +6<1
¢ 7 2

Our Contribution

[e]e] Jele}

Implementation

We implemented the attack in SAGE, and simulated its application
to random faults on ISO 9796-2 signatures:

Our Contribution

[e]e] Jele}

Implementation

We implemented the attack in SAGE, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (0p); = p(m;)9 (mod p).

Our Contribution

[e]e] Jele}

Implementation

We implemented the attack in SAGE, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (0p); = p(m;)9 (mod p).
2. Pick random mod-gq parts (07,); € Zg.

Our Contribution

[e]e] Jele}

Implementation

We implemented the attack in SAGE, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (0p); = p(m;)9 (mod p).
2. Pick random mod-gq parts (07,); € Zg.

3. Compute the corresponding faulty o/ with the CRT, and carry
out the attack.

Our Contribution

[e]e] Jele}

Implementation

We implemented the attack in SAGE, and simulated its application
to random faults on ISO 9796-2 signatures:

1. Generate correct mod-p parts (0p); = p(m;)9 (mod p).

2. Pick random mod-gq parts (07,); € Zg.

3. Compute the corresponding faulty o/ with the CRT, and carry
out the attack.

We used random 1024-bit moduli, and tested various parameters
v, 6, first to verify the heuristic size constraint, and then to
compare our attack to CJKNP. Experiments where conducted on a
single 2.5 GHz Intel CcPU core.

Our Contribution

[e]e]e] lo}

Verifying the Size Constraint

For v+ & = 1/3, our heuristic argument predicts that 13 faults are

needed to factor N. Very well verified in practice, both for

balanced and unbalanced v, d.

Number of faults ¢ 12 13 14

Success rate with y =6 = ¢ 13% | 100% | 100%
Success rate with y = 1, § = 35 0% 100% | 100%
Average CPU time (seconds) 0.19 0.14 0.17

Our Contribution

[e]e]e]e] }

Comparison to CJKNP

Number of required faults, lattice dimension and CPU time for
various UMP sizes, in our new attack (left) and the CJKNP attack

(right).

Y40 || lhew | Wnew | CPU time || £ Wold | CPU time

o
o

0.204 || 7 8 0.03s 3 84 49 s
0214 || 8 9 0.04 s 2 | 126 22 min
0.230 | 8 9 0.04 s 2 | 462 | centuries?
0.280 | 10 11 0.07 s 6 | 6188 —
0.330 || 14 15 0.17 s g | 22 —

0.400 || 25 26 1.44 s — [— —
0.450 || 70 71 36.94 s — | = —

Fast with parameters well beyond the reach of CJKNP. However,
more faults needed for any given UMP size: the CJKNP attack is
preferable for very small sizes.

Context Our Contribution
0000 0000
0000 00000

[Je]

Outline

Our Contribution

Further Work

Conclusion

Our Contribution

oce

Further Work

e Application to EMV: the EMV specification defines a number
of 1ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.

Our Contribution

oce

Further Work

e Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.

We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which v+ 6 = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

Our Contribution

oce

Further Work

e Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.

We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which v+ 6 = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

e Recovering unknown moduli: we show how similar techniques
make it possible to recover the modulus N from a set of
sufficiently many valid 1SO 9796-2 signatures.

Our Contribution

oce

Further Work

e Application to EMV: the EMV specification defines a number
of ISO 9796-2-based signature formats for all sorts of data,
and most of them are vulnerable to this attack.

We give an explicit example (EMV Test 2CC.086.1 Case 07)
in which v+ 6 = 0.28: broken with 10 faulty signatures with
our attack, but impossible to attack using CJKNP.

e Recovering unknown moduli: we show how similar techniques
make it possible to recover the modulus N from a set of
sufficiently many valid 1SO 9796-2 signatures.

This makes sense when attacking a proprietary protocol,
where the public parameters are not available to the attacker.

Context

(0] Conclusion
0000 0000
0000 00000
00
Conclusion

e Given a few faulty 1ISO 9796-2 signatures, it is fast and easy
to factor the public modulus.

Conclusion

Conclusion

e Given a few faulty 1ISO 9796-2 signatures, it is fast and easy
to factor the public modulus.

e Signature formats based on this standard, such as EMV, are
vulnerable.

Conclusion

Conclusion

e Given a few faulty 1ISO 9796-2 signatures, it is fast and easy
to factor the public modulus.

e Signature formats based on this standard, such as EMV, are
vulnerable.

e In situations where fault attacks are a concern, provably
secure encodings, such as PSS, should be prefered.

Thank you!

	Context
	RSA-CRT
	Related Work

	Our Contribution
	Description of the New Attack
	Practical Assessment
	Further Work

	Conclusion

