
Introduction Our Contribution Outlook and Conclusion

Deterministic Encoding and Hashing
to Odd Hyperelliptic Curves

Pierre-Alain Fouque Mehdi Tibouchi

École normale supérieure

Pairing 2010, 2010-12-14



Introduction Our Contribution Outlook and Conclusion

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion



Introduction Our Contribution Outlook and Conclusion

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion



Introduction Our Contribution Outlook and Conclusion

Hashing and encoding to (hyper)elliptic curves
• Many cryptographic protocols (schemes for encryption, signature,

PAKE, IBE, etc.) involve representing a certain numeric value as an
element of the group G where the computations occur.

• Two distinct settings.

Injective encoding: One must be able to retrieve the original
numeric value from the group element (e.g. for
encryption);

Hashing: The original value doesn’t have to be recovered,
but the function should “look like” a random
oracle (e.g. for signature).

• For G = Z∗
p, taking the numeric value itself is a good injective

encoding, and reducing a bit-string valued hash function of
appropriate size modp provides a good way to hash.

• However, if G is an elliptic curve group, these techniques have no
obvious counterpart; e.g. one cannot put a value in the x-coordinate
of a curve point, because only about 1/2 of possible x-values
correspond to actual points. Same problem in higher genus.



Introduction Our Contribution Outlook and Conclusion

The traditional solution for elliptic curves

• For k bits of security:

1. concatenate the numeric value or hash value with a counter from 0
to k − 1;

2. initialize the counter as 0;
3. if the concatenated value is a valid x-coordinate on the curve, i.e.

x3 + ax + b is a square in the base field, return one of the two
corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.



Introduction Our Contribution Outlook and Conclusion

Problems with this solution

• A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

• A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

• Security is difficult to analyze.

Remark: hashing as H(m) = h(m)G where G is a generator of the group
is not a good idea.



Introduction Our Contribution Outlook and Conclusion

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion



Introduction Our Contribution Outlook and Conclusion

Supersingular elliptic curves

An optimal solution to both problems was given in Boneh and Franklin’s
IBE paper for the following supersingular curves:

y 2 = x3 + b

over a field with q elements, with q ≡ 2 (mod 3).
Such a curve admits an (almost) bijective deterministic encoding:

f : u 7→
(
(u2 − b)1/3, u

)
which solves both problems at once.
Convenient for pairing-based protocols at a moderate security level, but
higher security (or non-pairing-based settings) call for ordinary curves. Or
hyperelliptic curves?



Introduction Our Contribution Outlook and Conclusion

Beyond the supersingular case?

[SW06] First deterministic “point construction algorithm” on
most ordinary elliptic curves. One can deduce a
deterministic function F : Fq → E (Fq) with large image.

[Ul07] Extension to hyperelliptic curves of the form
y 2 = x2g+1 + ax + b.

[Ic09] Alternate construction for elliptic curves when q ≡ 2
(mod 3).

[FSV10], [FT10] The image size of all such functions is about c · q for
some constant 0 < c < 1 that doesn’t depend on the
curve. In particular, neither surjective nor injective:
neither encoding nor hashing?



Introduction Our Contribution Outlook and Conclusion

Beyond the supersingular case?

[BCIMRT10] For hashing, we really need indifferentiability from a
random oracle. States some sufficient conditions to
achieve it, and gives an efficient construction based on
Icart’s function.

[KLR10] Generalizes Icart’s method to many elliptic and
hyperelliptic curves.

[FFSTV] Method to obtain indifferentiable hashing from all known
point construction algorithms.

Getting a good grasp on hashing, although even some important elliptic
curves (e.g. BN curves) are still missing, and the constructions still have
an ad-hoc feel.

Little progress on injective encoding.



Introduction Our Contribution Outlook and Conclusion

Shallue-Woestijne-Ulas

Consider a hyperelliptic curve of the form:

y 2 = x2g+1 + ax + b

with ab 6= 0. We sketch the technique by Ulas to construct a function to
this curve.

Let g(x) = x2g+1 + ax + b. For any u ∈ Fq, there is a unique xu such
that g(uxu) = u2g+1g(xu). This xu is a rational function of u.

Now take u = u0t2 for some fixed quadratic nonresidue u0. Then exactly
one of g(xu) and g(uxu) is a square. The image of t is one of the two
points on the curve of abscissa xu.

Considered for European e-passports.



Introduction Our Contribution Outlook and Conclusion

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion



Introduction Our Contribution Outlook and Conclusion

Odd hyperelliptic curves

In this work, we consider hyperelliptic curves of the following form:

y 2 = x2g+1 + a1x2g−1 + · · ·+ agx

(the right-hand side is an odd polynomial), over finite fields Fq with
q ≡ 3 (mod 4).

Many examples in the literature:

• Joux’s supersingular curves y 2 = x3 + ax ;

• Kawazoe-Takahashi Type II pairing-friendly curves of genus 2;

• the genus 2 curves y 2 = x5 + ax3 + bx for which Satoh gave an
efficient class group counting algorithm;

• certain Freeman-Satoh pairing-friendly curves of genus 2;

• and more.



Introduction Our Contribution Outlook and Conclusion

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion



Introduction Our Contribution Outlook and Conclusion

Our new function

Write the curve equation as:

H : y 2 = f (x)

We define a function F : Fq → H(Fq) as follows. For any t ∈ Fq, one of
f (t) or f (−t) is a square; the x-coordinate of F (t) is ±t accordingly, and
the y -coordinate is chosen such that F (−t) = −F (t).

In short:
F (t) =

(
ε(t) · t ; ε(t)

√
ε(t) · f (t)

)
where ε(t) =

(
f (t)
q

)
, and

√
· is the usual square root function in Fq

(raising to the power (q − 1)/4).

This is well-defined, and almost a bijection Fq → H(Fq). In particular,
the curve H has exactly q + 1 rational points.



Introduction Our Contribution Outlook and Conclusion

Efficient computation

We give an efficient, constant-time algorithm for computing the function
F :

1. α← f (t)

2. β ← αr

3. return (αβ2t, αβ)

where r = (q − 3)/4 or (q − 3)/4 + (q − 1)/2 depending on q mod 8.

Single exponentiation and a few multiplications in the base field.
Probably the simplest, most efficient encoding function since
Boneh-Franklin.



Introduction Our Contribution Outlook and Conclusion

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion



Introduction Our Contribution Outlook and Conclusion

Encoding and hashing to the Jacobian
• When g = 1, H is a supersingular elliptic curve, and just as in the

Boneh-Franklin case, the function F provides both injective
encoding and hashing to the curve directly.

• When g > 1, the set of points on the curve is not a group. The
group attached to H is the set of points of its Jacobian J. It is this
group that we should seek to encode or hash to.

• Injective encoding with large image:

Finj : {g -element subsets of Fq} −→ J(Fq)

{t1, . . . , tg} 7−→ F (t1) + · · ·+ F (tg )

Reaches a fraction of about 1/g ! of all divisors in J(Fq).

• Using [BCIMRT10] and [FFSTV], we know that the following is a
well-behaved hash function to the Jacobian:

m 7→ F (h1(m)) + · · ·+ F (hg+1(m))

when h1, . . . , hg+1 are seen as independent random oracles into Fq.



Introduction Our Contribution Outlook and Conclusion

Summary

• New, particularly simple bijective function to a nice family of
hyperelliptic curves (many pairing-friendly hyperelliptic curves
constructed in this form!).

• Efficient to compute in constant-time.

• Gives hashing and injective encoding to the Jacobians of these
curves.

• Outlook
• Injective encodings to more elliptic curves?
• More systematic, less ad-hoc approach to construction such

functions?
• Applications in actual protocols?



Introduction Our Contribution Outlook and Conclusion

Thank you!


	Introduction
	Hashing and encoding to (hyper)elliptic curves
	Deterministic hashing

	Our Contribution
	Odd hyperelliptic curves
	Our new function
	Encoding and hashing to the Jacobian

	Outlook and Conclusion

