Deterministic Encoding and Hashing to Odd Hyperelliptic Curves

Pierre-Alain Fouque Mehdi Tibouchi

École normale supérieure

Pairing 2010, 2010-12-14

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves Deterministic hashing

Our Contribution

Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion

Hashing and encoding to (hyper)elliptic curves

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value as an element of the group \mathbb{G} where the computations occur.
- Two distinct settings.

Injective encoding: One must be able to retrieve the original numeric value from the group element (e.g. for encryption);
Hashing: The original value doesn't have to be recovered, but the function should "look like" a random oracle (e.g. for signature).

- For $\mathbb{G}=\mathbb{Z}_{p}^{*}$, taking the numeric value itself is a good injective encoding, and reducing a bit-string valued hash function of appropriate size $\bmod p$ provides a good way to hash.
- However, if \mathbb{G} is an elliptic curve group, these techniques have no obvious counterpart; e.g. one cannot put a value in the x-coordinate of a curve point, because only about $1 / 2$ of possible x-values correspond to actual points. Same problem in higher genus.

The traditional solution for elliptic curves

- For k bits of security:

1. concatenate the numeric value or hash value with a counter from 0 to $k-1$;
2. initialize the counter as 0 ;
3. if the concatenated value is a valid x-coordinate on the curve, i.e. $x^{3}+a x+b$ is a square in the base field, return one of the two corresponding points; otherwise increment the counter and try again.

- Heuristically, the probability of a concatenated value being valid is $1 / 2$, so k iterations ensure k bits of security.

Problems with this solution

- A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
- A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O\left(n^{4}\right)$.
- Security is difficult to analyze.

Remark: hashing as $H(m)=h(m) G$ where G is a generator of the group is not a good idea.

Outline

Introduction
Hashing and encoding to (hyper)elliptic curves
Deterministic hashing

Our Contribution

Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion

Supersingular elliptic curves

An optimal solution to both problems was given in Boneh and Franklin's IBE paper for the following supersingular curves:

$$
y^{2}=x^{3}+b
$$

over a field with q elements, with $q \equiv 2(\bmod 3)$.
Such a curve admits an (almost) bijective deterministic encoding:

$$
f: u \mapsto\left(\left(u^{2}-b\right)^{1 / 3}, u\right)
$$

which solves both problems at once.
Convenient for pairing-based protocols at a moderate security level, but higher security (or non-pairing-based settings) call for ordinary curves. Or hyperelliptic curves?

Beyond the supersingular case?

[SW06] First deterministic "point construction algorithm" on most ordinary elliptic curves. One can deduce a deterministic function $F: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q}\right)$ with large image.
[UI07] Extension to hyperelliptic curves of the form $y^{2}=x^{2 g+1}+a x+b$.
[lc09] Alternate construction for elliptic curves when $q \equiv 2$ $(\bmod 3)$.
[FSV10], [FT10] The image size of all such functions is about $c \cdot q$ for some constant $0<c<1$ that doesn't depend on the curve. In particular, neither surjective nor injective: neither encoding nor hashing?

Beyond the supersingular case?

[BCIMRT10] For hashing, we really need indifferentiability from a random oracle. States some sufficient conditions to achieve it, and gives an efficient construction based on Icart's function.
[KLR10] Generalizes Icart's method to many elliptic and hyperelliptic curves.
[FFSTV] Method to obtain indifferentiable hashing from all known point construction algorithms.

Getting a good grasp on hashing, although even some important elliptic curves (e.g. BN curves) are still missing, and the constructions still have an ad-hoc feel.
Little progress on injective encoding.

Shallue-Woestijne-Ulas

Consider a hyperelliptic curve of the form:

$$
y^{2}=x^{2 g+1}+a x+b
$$

with $a b \neq 0$. We sketch the technique by Ulas to construct a function to this curve.

Let $g(x)=x^{2 g+1}+a x+b$. For any $u \in \mathbb{F}_{q}$, there is a unique x_{u} such that $g\left(u x_{u}\right)=u^{2 g+1} g\left(x_{u}\right)$. This x_{u} is a rational function of u.
Now take $u=u_{0} t^{2}$ for some fixed quadratic nonresidue u_{0}. Then exactly one of $g\left(x_{u}\right)$ and $g\left(u x_{u}\right)$ is a square. The image of t is one of the two points on the curve of abscissa x_{u}.

Considered for European e-passports.

Outline

Introduction

Hashing and encoding to (hyper)elliptic curves Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion

Odd hyperelliptic curves

In this work, we consider hyperelliptic curves of the following form:

$$
y^{2}=x^{2 g+1}+a_{1} x^{2 g-1}+\cdots+a_{g} x
$$

(the right-hand side is an odd polynomial), over finite fields \mathbb{F}_{q} with $q \equiv 3(\bmod 4)$.

Many examples in the literature:

- Joux's supersingular curves $y^{2}=x^{3}+a x$;
- Kawazoe-Takahashi Type II pairing-friendly curves of genus 2;
- the genus 2 curves $y^{2}=x^{5}+a x^{3}+b x$ for which Satoh gave an efficient class group counting algorithm;
- certain Freeman-Satoh pairing-friendly curves of genus 2;
- and more.

Outline

Introduction

Hashing and encoding to (hyper)elliptic curves Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion

Our new function

Write the curve equation as:

$$
H: y^{2}=f(x)
$$

We define a function $F: \mathbb{F}_{q} \rightarrow H\left(\mathbb{F}_{q}\right)$ as follows. For any $t \in \mathbb{F}_{q}$, one of $f(t)$ or $f(-t)$ is a square; the x-coordinate of $F(t)$ is $\pm t$ accordingly, and the y-coordinate is chosen such that $F(-t)=-F(t)$.

In short:

$$
F(t)=(\varepsilon(t) \cdot t ; \varepsilon(t) \sqrt{\varepsilon(t) \cdot f(t)})
$$

where $\varepsilon(t)=\left(\frac{f(t)}{q}\right)$, and $\sqrt{ }$. is the usual square root function in \mathbb{F}_{q} (raising to the power $(q-1) / 4$).
This is well-defined, and almost a bijection $\mathbb{F}_{q} \rightarrow H\left(\mathbb{F}_{q}\right)$. In particular, the curve H has exactly $q+1$ rational points.

Efficient computation

We give an efficient, constant-time algorithm for computing the function F :

1. $\alpha \leftarrow f(t)$
2. $\beta \leftarrow \alpha^{r}$
3. return $\left(\alpha \beta^{2} t, \alpha \beta\right)$
where $r=(q-3) / 4$ or $(q-3) / 4+(q-1) / 2$ depending on $q \bmod 8$.
Single exponentiation and a few multiplications in the base field. Probably the simplest, most efficient encoding function since Boneh-Franklin.

Outline

Introduction

Hashing and encoding to (hyper)elliptic curves Deterministic hashing

Our Contribution
Odd hyperelliptic curves
Our new function
Encoding and hashing to the Jacobian

Outlook and Conclusion

Encoding and hashing to the Jacobian

- When $g=1, H$ is a supersingular elliptic curve, and just as in the Boneh-Franklin case, the function F provides both injective encoding and hashing to the curve directly.
- When $g>1$, the set of points on the curve is not a group. The group attached to H is the set of points of its Jacobian J. It is this group that we should seek to encode or hash to.
- Injective encoding with large image:

$$
\begin{aligned}
F_{\text {inj }}:\left\{g \text {-element subsets of } \mathbb{F}_{q}\right\} & \longrightarrow J\left(\mathbb{F}_{q}\right) \\
\left\{t_{1}, \ldots, t_{g}\right\} & \longmapsto F\left(t_{1}\right)+\cdots+F\left(t_{g}\right)
\end{aligned}
$$

Reaches a fraction of about $1 / g$! of all divisors in $J\left(\mathbb{F}_{q}\right)$.

- Using [BCIMRT10] and [FFSTV], we know that the following is a well-behaved hash function to the Jacobian:

$$
m \mapsto F\left(h_{1}(m)\right)+\cdots+F\left(h_{g+1}(m)\right)
$$

when h_{1}, \ldots, h_{g+1} are seen as independent random oracles into \mathbb{F}_{q}.

Summary

- New, particularly simple bijective function to a nice family of hyperelliptic curves (many pairing-friendly hyperelliptic curves constructed in this form!).
- Efficient to compute in constant-time.
- Gives hashing and injective encoding to the Jacobians of these curves.
- Outlook
- Injective encodings to more elliptic curves?
- More systematic, less ad-hoc approach to construction such functions?
- Applications in actual protocols?

Thank you!

