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Introduction Our Proof Conclusion

Elliptic curve cryptography

• F finite field of characteristic > 3 (for simplicity’s sake).

• Recall that an elliptic curve over F is the set of points (x , y) ∈ F 2

such that:
y2 = x3 + ax + b

(with a, b ∈ F fixed parameters), together with a point at infinity.

• This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

• Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ≈ 22k , keys of length ≈ 2k. Also come
with rich structures such as pairings.
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Hashing to elliptic curves is a problem

• Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

• For G = Z∗
p, simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group; e.g.
one cannot put the value in the x-coordinate of a curve point,
because only about 1/2 of possible x-values correspond to actual
points.

• Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.
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The traditional solution

• For k bits of security:

1. concatenate the hash value with a counter from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value is a valid x-coordinate on the curve, i.e.

x3 + ax + b is a square in F , return one of the two corresponding
points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations provide k bits of security.

• However, a number of problems with this solution:

1. natural implementation doesn’t run in constant time: possible timing
attacks (especially for PAKE);

2. constant time implementations are very inefficient, O(n4);
3. security is difficult to analyze.
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Shallue-Woestijne-Ulas

First deterministic point construction algorithm on ordinary elliptic curves
due to Shallue and Woestijne (ANTS 2006). Later generalized and
simplified by Ulas (2007).

Based on Ska lba’s identity: if g(x) = x3 + ax + b, there are rational
functions Xi (t) such that

g(X1(t)) · g(X2(t)) · g(X3(t)) = X4(t)2

Hence, on a finite field, at least one of g(X1(t)), g(X2(t)), g(X3(t)) is a
square.

Gives a deterministic point construction algorithm, which is efficient if
q ≡ 3 (mod 4). Considered for implementation in European e-passports.



Introduction Our Proof Conclusion

Shallue-Woestijne-Ulas

First deterministic point construction algorithm on ordinary elliptic curves
due to Shallue and Woestijne (ANTS 2006). Later generalized and
simplified by Ulas (2007).

Based on Ska lba’s identity: if g(x) = x3 + ax + b, there are rational
functions Xi (t) such that

g(X1(t)) · g(X2(t)) · g(X3(t)) = X4(t)2

Hence, on a finite field, at least one of g(X1(t)), g(X2(t)), g(X3(t)) is a
square.

Gives a deterministic point construction algorithm, which is efficient if
q ≡ 3 (mod 4). Considered for implementation in European e-passports.



Introduction Our Proof Conclusion

Shallue-Woestijne-Ulas

First deterministic point construction algorithm on ordinary elliptic curves
due to Shallue and Woestijne (ANTS 2006). Later generalized and
simplified by Ulas (2007).

Based on Ska lba’s identity: if g(x) = x3 + ax + b, there are rational
functions Xi (t) such that

g(X1(t)) · g(X2(t)) · g(X3(t)) = X4(t)2

Hence, on a finite field, at least one of g(X1(t)), g(X2(t)), g(X3(t)) is a
square.

Gives a deterministic point construction algorithm, which is efficient if
q ≡ 3 (mod 4). Considered for implementation in European e-passports.



Introduction Our Proof Conclusion

Icart

Particularly simple deterministic encoding on ordinary elliptic curves when
q ≡ 2 (mod 3), presented by Icart at CRYPTO last year. Generalization
of the supersingular case.

Defined as f : u 7→ (x , y) with

x =

(
v2 − b − u6

27

)1/3

+
u2

3
y = ux + v v =

3a− u4

6u

This simple idea sparked new research into the subject of deterministic
hashing into elliptic curves.
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Statement

In his CRYPTO paper, Icart observed that his function did not reach all
points of the curve, and formulated the following conjecture regarding
the size of the image.

Conjecture (Icart)
E ordinary elliptic curve over Fq, with q ≡ 2 (mod 3), and
f : Fq → E (Fq) Icart’s deterministic encoding. There exists a universal
constant C such that:∣∣#f (Fq)− 5

8
#E (Fq)

∣∣ ≤ C
√
q

This conjecture, and its generalization to even characteristic as well as to
the SWU encoding, is the object of this paper.
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Why does Icart’s conjecture matter?

• For the encoding to be interesting, its image needs to be large
enough.

• Knowing the precise constant makes it possible to assess the security
of hash functions based on it.

• Since 5/8 < 1, Icart’s function is neither injective nor surjective.

• However, as 5/8 > 1/2, a pigeonhole argument ensures that
(u, v) 7→ f (u) + f (v) is surjective. This encoding is quite interesting.

• Most importantly, Icart’s conjecture is a nice mathematical problem,
and the solution involves interesting results and arguments.
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Proof sketch
• Key fact: u maps to (x , y) under f if and only if:

P(u) = u4 − 6xu2 + 6yu − 3a = 0

• Regard P as a polynomial over the function field Fq(x , y) of E . A
point (x , y) is in the image if P reduces into a polynomial with a
linear factor at place (x , y).

• Assume P is irreducible. The reduction type of P at a given place is
related to the cycle decomposition of a certain permutation in its
Galois group. There is a linear factor if that permutation has a fixed
point.

• A famous theorem by Chebotarev says that the “density” of places
with a certain reduction type is equal to the proportion of elements
in the Galois group with the corresponding cycle decomposition. Use
an effective version to get practical bounds for places of degree 1.

• Then, showing that P is irreducible and computing its Galois group
is enough to conclude.
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Galois groups

P irreducible, separable polynomial of degree n over a field K .

In a suitable extension of F , P has n distinct roots. Let L be the
extension of K generated by these roots (splitting field).

Any automorphism of L over K permutes the n roots. The group formed
by these permutations is called the Galois group of P. It is a transitive
subgroup of Sn.

Example: the Galois group of u4 + 1 over Q is generated by the double
transpositions (12)(34), (13)(24). Indeed, the roots are primitive 8-th
roots of unity ±ω,±ω3, and the permutations are of the form ω 7→ ±ωk ,
k ∈ {1, 3}.
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Computing Galois groups

Computing Galois groups in general can be difficult.

In our case, we want to compute the Galois group of

P(u) = u4 − 6xu2 + 6yu − 3a

over Fq(x , y) = Fq(x)[y ]/(y2 − x3 − ax − b), so it is made more difficult
by 3 parameters that can vary: a, b, q.

However, Galois groups of polynomials of small degree are
well-understood. For an irreducible P of degree 4, the Galois group is
essentially determined by:

1. whether the discriminant of P is a square;

2. whether the resolvent cubic of P is irreducible.

In our case, we show that P is irreducible, has an irreducible resolvent
cubic and a non-square discriminant: its Galois group is S4.
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Introduction Our Proof Conclusion

Reduction type and Chebotarev
Consider again Q(u) = u4 + 1, and factor it modp for odd primes p:

u4 + 1 ≡ (u2 + u + 2)(u2 + 2u + 2) (mod 3)

It factors either as a product of two irreducible quadratics, or splits
completely. Trying many small examples, the former happens about 3/4
of the time, and the latter 1/4.

Now recall that the Galois group is
{(12)(34), (13)(24), (14)(23), (1)(2)(3)(4)}.

This is not a coincidence: for each prime p 6= 2, there is a corresponding
element (or conjugacy class) in the Galois group G , with cycle
decomposition equal to the reduction type of Q at p.

The Chebotarev density theorem says that asymptotically, a given
reduction type happens for a proportion of primes p equal to #C/#G ,
where C is the subset of elements of G with the right cycle
decomposition.
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u4 + 1 ≡ (u2 + 3u + 1)(u2 + 4u + 1) (mod 7)
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completely. Trying many small examples, the former happens about 3/4
of the time, and the latter 1/4.

Now recall that the Galois group is
{(12)(34), (13)(24), (14)(23), (1)(2)(3)(4)}.

This is not a coincidence: for each prime p 6= 2, there is a corresponding
element (or conjugacy class) in the Galois group G , with cycle
decomposition equal to the reduction type of Q at p.
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where C is the subset of elements of G with the right cycle
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Consider again Q(u) = u4 + 1, and factor it modp for odd primes p:
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where C is the subset of elements of G with the right cycle
decomposition.
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Chebotarev for function fields

Similarly, consider P(u) = u4 − 6xu2 + 6yu − 3a over Fq(x , y). We can
plug actual points (x , y) of E and factor the resulting polynomial over
Fq. The reduction type will correspond to the cycle decomposition of a
certain conjugacy class in the Galois group G = S4.

The Chebotarev density theorem still holds: asymptotically, a given
reduction type happens for a proportion of “places” equal to #C/#G
(takes into account points of E over extensions of Fq).

Effective versions of this theorem say that a given reduction types
happens for a proportion of Fq-points equal to #C/#G + O(1/

√
q).

We are interested in the reduction types (1, 1, 1, 1), (1, 1, 2) and (1, 3)
(at least one linear factor). Now S4 contains 1 permutation of type
(1)(2)(3)(4), 6 of type (1)(2)(34) and 8 of type (1)(234), out of a total
of 24. Thus the proportion of points on E (Fq) where P has at least one
root is 15/24 + O(1/

√
q). QED.
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Even characteristic

There is a variant of Icart’s function in characteristic 2, and the proof
carries over to this variant with almost no change.

Only subtlety: the computation of quartic Galois groups is different in
characteristic 2 (one has to replace the discriminant by a “resolvent
quadratic” polynomial to decide whether the group is contained in A4 or
not).

(We actually got this part wrong in the proceedings version. Please check
out ePrint Report 2010/037 for a correct proof).
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Shallue-Woestijne-Ulas

We are also able to compute the image size of the simplified SWU
encoding introduced by Coron and Icart.

The method is mostly the same, except that the image of the encoding
comes in two “pieces” according as which of the two possible values of x
is the right one for a given value of the parameter.

The Chebotarev method applies to those pieces. We find that the
corresponding Galois group is D8 for both halves, giving a proportion of
points in the image equal 3/8 + O(1/

√
q) overall.
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Summary and Outlook

• Icart’s conjecture is true.

• We can prove analogues for characteristic 2, for SWU, and the same
method generalizes to all algebraic encodings to curves (many recent
examples).

• The proof uses nice algebraic tools (Chebotarev) which the
mathematical cryptographer can find of interest in other situations.

Further problems:

• Collision probability.

• Carry out the computations for recently proposed encodings?

• Mechanical method to prove irreducibility and compute Galois
groups? (possible in principle, but...).
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Thank you!
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