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Elliptic curve cryptography

F finite field of characteristic > 3 (for simplicity’'s sake).

Recall that an elliptic curve over F is the set of points (x,y) € F?
such that:
y2 =x3+ax+b

(with a, b € F fixed parameters), together with a point at infinity.

This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ~ 22, keys of length ~ 2k. Also come
with rich structures such as pairings.
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Hashing to elliptic curves is a problem

e Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

e For G =Zj, simply take the numeric value itself modp.

e However, doesn't generalize when G is an elliptic curve group; e.g.
one cannot put the value in the x-coordinate of a curve point,
because only about 1/2 of possible x-values correspond to actual
points.

e Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.
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The traditional solution

e For k bits of security:
1. concatenate the hash value h with a counter ¢ from 0 to k - 1;
2. initialize the counter as 0;
3. if the concatenated value x = c||h is a valid x-coordinate on the curve
(i.e. x> +ax + b is a square in F), return one of the two
corresponding points; otherwise increment the counter and try again.

e Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.
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Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n*).
3. Security is difficult to analyze.
e image is difficult to describe;
e image size estimate is only heuristic (~ q/k);
e does not behave at all like a random oracle to the curve; easy
distinguisher exists.
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The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:
v =x>+b
over Fg with ¢ =2 (mod 3). Admit the following deterministic encoding:

fium ((uz—b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure »
if his a good hash function to Fq, H(m) = f(h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to F;.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.
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Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when g =2 (mod 3). Generalization of the supersingular case.

Defined as f:u+~ (x,y) with

1/3
5 u® / u? 3a-u*
x=\vi-b-— + — y=ux+v v=

27 3 6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ~ 5/8 of all points. The construction

H(m) = f(h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. » Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.
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Security in the ROM

Is it secure to use H(m) = f(h(m)) as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the
security preserved if one instantiates H(m) = f(h(m)) with h modeled as
a RO?

For a number of pairing-based schemes: yes (related to random
self-reducibility properties of the underlying security assumptions).

In general: no, security breaks down (counterexample in the paper).

Difficult to give a simple criterion for the security proof to go
through.

Can we propose constructions that will work all the time instead?
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High-level formulation of our problem: find a condition under which an
ideal primitive (the RO to the curve) can be replaced by a construction
based on another ideal primitive (a RO to Fy) so that all security proof
are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the
construction is indifferentiable from the primitive if no PPT adversary can
tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?
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Admissible encodings

We consider hash function constructions of the form:
H(m) = F(h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S — E(Fy).

We prove that H is indifferentiable from a RO to E(FFy) as soon as the
function F is admissible in the following sense:
Computable in deterministic polynomial time;

Regular for s uniformly distributed in S, the distribution of F(s) is
statistically indistinguishable from the uniform distribution
in E(Fg);

Samplable there is a PPT algorithm which for any w € E(FF4) returns
an uniformly distributed element in F~!(w).
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Remarks

e We can quantify precisely the “loss” in random oracle security when
instantiating H in this manner (in terms of the statistical distance
between F(s) and uniform, and the running time of the sampling
algorithm).

e |cart’s function is not admissible: computable and samplable, but
not regular.

e A construction like H(m) = h(m) - G, with G a generator, is not
admissible: computable and regular but not samplable. Bad idea:
leaks the discrete logarithm of the digest!
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General construction

E ordinary elliptic curve over Fy, G generator of E(F,) (assumed cyclic
of cardinality N) and f:F, - E(F,) deterministic encoding like lcart’s
function.

Under mild assumptions on f (verified for all deterministic encodings
proposed so far), the following is an admissible function
FyxZ/NZ — E(Fg):

F(u,v)=f(u)+v-G

Thus, H(m) = f(hi(m)) + ha(m) - G is indifferentiable from a RO, in the
ROM for hy, hy.

Works for any deterministic encoding. Extends to the case when E(Fy)
is not cyclic in an obvious way.

Downside: quite inefficient (~ 10 times slower than lcart’s function alone).
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Proof sketch

The function F is:
Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f(u)+v- G is uniformly distributed in E(FF,), regardless of
the behavior of f.

Samplable To sample F~(w), pick a random v € Z/NZ and solve
the algebraic equation f(u) =w - v- G for u. For Icart,
there are at most 4 solutions, easy to enumerate. Return
(u, v) for one of those solutions u at random, or try again
if there are none.
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Efficient construction

A much more efficient construction of an admissible encoding is as
follows:
F(u,v)=1~f(u)+17(v)

where f is lcart’s function.

Thus, H(m) = f(hy(m)) + f(hy(m)) is indifferentiable from a RO, in the
ROM for hy, hs.

Only requires two evaluations of Icart’s function, so quite efficient. No
restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to
Icart’s function, not other deterministic encodings.

More precisely, computability and samplability are proved like before. The
hard part is regularity: showing that the cardinality of F~1(co) is almost
constant along the curve.
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Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has g + O(\/q)
points. QED.

Technical difficulties:

e |cart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h: C — E and p: C - P! such that f = hop~L.

e Show that s: C x C — E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).
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Proof idea
We want to show that the number of solutions (u, v) € (F4)? to the
equation f(u) + f(v) = w is constant up to negligible deviations when
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has g + O(\/q)
points. QED.

Technical difficulties:

e |cart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h: C — E and p: C - P! such that f = hop~L.

e Show that s: C x C — E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

e Show that the preimage of “nice” points is indeed an irreducible
curve on C x C. Compute its genus (it's 49).

e Justify that we can ignore what happens at infinity (intersection
theory on C x C), and push everything down to (F,)2.



[ele]o) 000
[ ]e]

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions

(e]e} 00000
0000 000
[e]e]e} 000

oe

Additional contributions

Extensions of our construction:

e hashing to a subgroup;

New encodings to ordinary curves:

Conclusion



Introduction Our contributions Conclusion

Additional contributions

Extensions of our construction:
e hashing to a subgroup;

e extension to even characteristic;

New encodings to ordinary curves:



uction ntributions Conclusion

Additional contributions

Extensions of our construction:
e hashing to a subgroup;
e extension to even characteristic;

e using a bit-string-valued hash function as the basis;

New encodings to ordinary curves:



Our contributions

oe

Additional contributions

Extensions of our construction:
e hashing to a subgroup;
e extension to even characteristic;
e using a bit-string-valued hash function as the basis;

e formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:



Our contributions

oe

Additional contributions

Extensions of our construction:
e hashing to a subgroup;
e extension to even characteristic;
e using a bit-string-valued hash function as the basis;

e formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:
e simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;



Our contributions

oe

Additional contributions

Extensions of our construction:
e hashing to a subgroup;
e extension to even characteristic;
e using a bit-string-valued hash function as the basis;

e formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:
e simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;
e deterministic encodings to curves of characteristic 3.
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Conclusion

Summary and Outlook

e Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

e Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

e Propose two such constructions, one more general, the other more
efficient.

Further problems:

e Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

e Construct injective encodings to ordinary curves?

e Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?



Thank you!



	Introduction
	Elliptic curves
	Hashing to elliptic curves
	Deterministic hashing

	Our contributions
	Admissible encodings
	A general construction
	An efficient construction
	Side contributions

	Conclusion

