
Introduction Our contributions Conclusion

Efficient Indifferentiable Hashing into Ordinary
Elliptic Curves

Éric Brier1 Jean-Sébastien Coron2 Thomas Icart2

David Madore3 Hugues Randriam3 Mehdi Tibouchi2,4

1Ingenico

2Université du Luxembourg

3TELECOM-ParisTech

4École normale supérieure

CRYPTO, 2010-08-16



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

Elliptic curve cryptography

• F finite field of characteristic > 3 (for simplicity’s sake).

• Recall that an elliptic curve over F is the set of points (x , y) ∈ F 2

such that:
y2

= x3
+ ax + b

(with a,b ∈ F fixed parameters), together with a point at infinity.

• This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

• Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ≈ 22k , keys of length ≈ 2k. Also come
with rich structures such as pairings.



Introduction Our contributions Conclusion

Elliptic curve cryptography

• F finite field of characteristic > 3 (for simplicity’s sake).

• Recall that an elliptic curve over F is the set of points (x , y) ∈ F 2

such that:
y2

= x3
+ ax + b

(with a,b ∈ F fixed parameters), together with a point at infinity.

• This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

• Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ≈ 22k , keys of length ≈ 2k. Also come
with rich structures such as pairings.



Introduction Our contributions Conclusion

Elliptic curve cryptography

• F finite field of characteristic > 3 (for simplicity’s sake).

• Recall that an elliptic curve over F is the set of points (x , y) ∈ F 2

such that:
y2

= x3
+ ax + b

(with a,b ∈ F fixed parameters), together with a point at infinity.

• This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

• Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ≈ 22k , keys of length ≈ 2k. Also come
with rich structures such as pairings.



Introduction Our contributions Conclusion

Elliptic curve cryptography

• F finite field of characteristic > 3 (for simplicity’s sake).

• Recall that an elliptic curve over F is the set of points (x , y) ∈ F 2

such that:
y2

= x3
+ ax + b

(with a,b ∈ F fixed parameters), together with a point at infinity.

• This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

• Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ≈ 22k , keys of length ≈ 2k. Also come
with rich structures such as pairings.



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

Hashing to elliptic curves is a problem

• Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

• For G = Z∗p , simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group; e.g.
one cannot put the value in the x-coordinate of a curve point,
because only about 1/2 of possible x-values correspond to actual
points.

• Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.



Introduction Our contributions Conclusion

Hashing to elliptic curves is a problem

• Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

• For G = Z∗p , simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group; e.g.
one cannot put the value in the x-coordinate of a curve point,
because only about 1/2 of possible x-values correspond to actual
points.

• Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.



Introduction Our contributions Conclusion

Hashing to elliptic curves is a problem

• Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

• For G = Z∗p , simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group; e.g.
one cannot put the value in the x-coordinate of a curve point,
because only about 1/2 of possible x-values correspond to actual
points.

• Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.



Introduction Our contributions Conclusion

Hashing to elliptic curves is a problem

• Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

• For G = Z∗p , simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group; e.g.
one cannot put the value in the x-coordinate of a curve point,
because only about 1/2 of possible x-values correspond to actual
points.

• Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.



Introduction Our contributions Conclusion

The traditional solution

• For k bits of security:

1. concatenate the hash value h with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value x = c∥h is a valid x-coordinate on the curve

(i.e. x3 + ax + b is a square in F ), return one of the two
corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.



Introduction Our contributions Conclusion

The traditional solution

• For k bits of security:

1. concatenate the hash value h with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value x = c∥h is a valid x-coordinate on the curve

(i.e. x3 + ax + b is a square in F ), return one of the two
corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.



Introduction Our contributions Conclusion

The traditional solution

• For k bits of security:

1. concatenate the hash value h with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value x = c∥h is a valid x-coordinate on the curve

(i.e. x3 + ax + b is a square in F ), return one of the two
corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.



Introduction Our contributions Conclusion

The traditional solution

• For k bits of security:

1. concatenate the hash value h with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value x = c∥h is a valid x-coordinate on the curve

(i.e. x3 + ax + b is a square in F ), return one of the two
corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.



Introduction Our contributions Conclusion

The traditional solution

• For k bits of security:

1. concatenate the hash value h with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value x = c∥h is a valid x-coordinate on the curve

(i.e. x3 + ax + b is a square in F ), return one of the two
corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.



Introduction Our contributions Conclusion

Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

3. Security is difficult to analyze.
• image is difficult to describe;
• image size estimate is only heuristic (≈ q/k);
• does not behave at all like a random oracle to the curve; easy

distinguisher exists.



Introduction Our contributions Conclusion

Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

3. Security is difficult to analyze.
• image is difficult to describe;
• image size estimate is only heuristic (≈ q/k);
• does not behave at all like a random oracle to the curve; easy

distinguisher exists.



Introduction Our contributions Conclusion

Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

3. Security is difficult to analyze.
• image is difficult to describe;
• image size estimate is only heuristic (≈ q/k);
• does not behave at all like a random oracle to the curve; easy

distinguisher exists.



Introduction Our contributions Conclusion

Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

3. Security is difficult to analyze.
• image is difficult to describe;
• image size estimate is only heuristic (≈ q/k);
• does not behave at all like a random oracle to the curve; easy

distinguisher exists.



Introduction Our contributions Conclusion

Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

3. Security is difficult to analyze.
• image is difficult to describe;
• image size estimate is only heuristic (≈ q/k);
• does not behave at all like a random oracle to the curve; easy

distinguisher exists.



Introduction Our contributions Conclusion

Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

3. Security is difficult to analyze.
• image is difficult to describe;
• image size estimate is only heuristic (≈ q/k);
• does not behave at all like a random oracle to the curve; easy

distinguisher exists.



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.



Introduction Our contributions Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.



Introduction Our contributions Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.



Introduction Our contributions Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.



Introduction Our contributions Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.



Introduction Our contributions Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.



Introduction Our contributions Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.



Introduction Our contributions Conclusion

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when q ≡ 2 (mod 3). Generalization of the supersingular case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.



Introduction Our contributions Conclusion

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when q ≡ 2 (mod 3). Generalization of the supersingular case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.



Introduction Our contributions Conclusion

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when q ≡ 2 (mod 3). Generalization of the supersingular case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.



Introduction Our contributions Conclusion

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when q ≡ 2 (mod 3). Generalization of the supersingular case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.



Introduction Our contributions Conclusion

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when q ≡ 2 (mod 3). Generalization of the supersingular case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.



Introduction Our contributions Conclusion

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when q ≡ 2 (mod 3). Generalization of the supersingular case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

Security in the ROM

Is it secure to use H(m) = f (h(m)) as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the
security preserved if one instantiates H(m) = f (h(m)) with h modeled as
a RO?

• For a number of pairing-based schemes: yes (related to random
self-reducibility properties of the underlying security assumptions).

• In general: no, security breaks down (counterexample in the paper).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time instead?



Introduction Our contributions Conclusion

Security in the ROM

Is it secure to use H(m) = f (h(m)) as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the
security preserved if one instantiates H(m) = f (h(m)) with h modeled as
a RO?

• For a number of pairing-based schemes: yes (related to random
self-reducibility properties of the underlying security assumptions).

• In general: no, security breaks down (counterexample in the paper).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time instead?



Introduction Our contributions Conclusion

Security in the ROM

Is it secure to use H(m) = f (h(m)) as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the
security preserved if one instantiates H(m) = f (h(m)) with h modeled as
a RO?

• For a number of pairing-based schemes: yes (related to random
self-reducibility properties of the underlying security assumptions).

• In general: no, security breaks down (counterexample in the paper).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time instead?



Introduction Our contributions Conclusion

Security in the ROM

Is it secure to use H(m) = f (h(m)) as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the
security preserved if one instantiates H(m) = f (h(m)) with h modeled as
a RO?

• For a number of pairing-based schemes: yes (related to random
self-reducibility properties of the underlying security assumptions).

• In general: no, security breaks down (counterexample in the paper).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time instead?



Introduction Our contributions Conclusion

Security in the ROM

Is it secure to use H(m) = f (h(m)) as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the
security preserved if one instantiates H(m) = f (h(m)) with h modeled as
a RO?

• For a number of pairing-based schemes: yes (related to random
self-reducibility properties of the underlying security assumptions).

• In general: no, security breaks down (counterexample in the paper).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time instead?



Introduction Our contributions Conclusion

Indifferentiability

High-level formulation of our problem: find a condition under which an
ideal primitive (the RO to the curve) can be replaced by a construction
based on another ideal primitive (a RO to Fq) so that all security proof
are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the
construction is indifferentiable from the primitive if no PPT adversary can
tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?



Introduction Our contributions Conclusion

Indifferentiability

High-level formulation of our problem: find a condition under which an
ideal primitive (the RO to the curve) can be replaced by a construction
based on another ideal primitive (a RO to Fq) so that all security proof
are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the
construction is indifferentiable from the primitive if no PPT adversary can
tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?



Introduction Our contributions Conclusion

Indifferentiability

High-level formulation of our problem: find a condition under which an
ideal primitive (the RO to the curve) can be replaced by a construction
based on another ideal primitive (a RO to Fq) so that all security proof
are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the
construction is indifferentiable from the primitive if no PPT adversary can
tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?



Introduction Our contributions Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).



Introduction Our contributions Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).



Introduction Our contributions Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).



Introduction Our contributions Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).



Introduction Our contributions Conclusion

Remarks

• We can quantify precisely the “loss” in random oracle security when
instantiating H in this manner (in terms of the statistical distance
between F (s) and uniform, and the running time of the sampling
algorithm).

• Icart’s function is not admissible: computable and samplable, but
not regular.

• A construction like H(m) = h(m) ⋅G , with G a generator, is not
admissible: computable and regular but not samplable. Bad idea:
leaks the discrete logarithm of the digest!



Introduction Our contributions Conclusion

Remarks

• We can quantify precisely the “loss” in random oracle security when
instantiating H in this manner (in terms of the statistical distance
between F (s) and uniform, and the running time of the sampling
algorithm).

• Icart’s function is not admissible: computable and samplable, but
not regular.

• A construction like H(m) = h(m) ⋅G , with G a generator, is not
admissible: computable and regular but not samplable. Bad idea:
leaks the discrete logarithm of the digest!



Introduction Our contributions Conclusion

Remarks

• We can quantify precisely the “loss” in random oracle security when
instantiating H in this manner (in terms of the statistical distance
between F (s) and uniform, and the running time of the sampling
algorithm).

• Icart’s function is not admissible: computable and samplable, but
not regular.

• A construction like H(m) = h(m) ⋅G , with G a generator, is not
admissible: computable and regular but not samplable. Bad idea:
leaks the discrete logarithm of the digest!



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

General construction

E ordinary elliptic curve over Fq, G generator of E(Fq) (assumed cyclic
of cardinality N) and f ∶Fq → E(Fq) deterministic encoding like Icart’s
function.

Under mild assumptions on f (verified for all deterministic encodings
proposed so far), the following is an admissible function
Fq ×Z/NZ→ E(Fq):

F (u, v) = f (u) + v ⋅G

Thus, H(m) = f (h1(m)) + h2(m) ⋅G is indifferentiable from a RO, in the
ROM for h1,h2.

Works for any deterministic encoding. Extends to the case when E(Fq)

is not cyclic in an obvious way.

Downside: quite inefficient (≈ 10 times slower than Icart’s function alone).



Introduction Our contributions Conclusion

General construction

E ordinary elliptic curve over Fq, G generator of E(Fq) (assumed cyclic
of cardinality N) and f ∶Fq → E(Fq) deterministic encoding like Icart’s
function.

Under mild assumptions on f (verified for all deterministic encodings
proposed so far), the following is an admissible function
Fq ×Z/NZ→ E(Fq):

F (u, v) = f (u) + v ⋅G

Thus, H(m) = f (h1(m)) + h2(m) ⋅G is indifferentiable from a RO, in the
ROM for h1,h2.

Works for any deterministic encoding. Extends to the case when E(Fq)

is not cyclic in an obvious way.

Downside: quite inefficient (≈ 10 times slower than Icart’s function alone).



Introduction Our contributions Conclusion

General construction

E ordinary elliptic curve over Fq, G generator of E(Fq) (assumed cyclic
of cardinality N) and f ∶Fq → E(Fq) deterministic encoding like Icart’s
function.

Under mild assumptions on f (verified for all deterministic encodings
proposed so far), the following is an admissible function
Fq ×Z/NZ→ E(Fq):

F (u, v) = f (u) + v ⋅G

Thus, H(m) = f (h1(m)) + h2(m) ⋅G is indifferentiable from a RO, in the
ROM for h1,h2.

Works for any deterministic encoding. Extends to the case when E(Fq)

is not cyclic in an obvious way.

Downside: quite inefficient (≈ 10 times slower than Icart’s function alone).



Introduction Our contributions Conclusion

General construction

E ordinary elliptic curve over Fq, G generator of E(Fq) (assumed cyclic
of cardinality N) and f ∶Fq → E(Fq) deterministic encoding like Icart’s
function.

Under mild assumptions on f (verified for all deterministic encodings
proposed so far), the following is an admissible function
Fq ×Z/NZ→ E(Fq):

F (u, v) = f (u) + v ⋅G

Thus, H(m) = f (h1(m)) + h2(m) ⋅G is indifferentiable from a RO, in the
ROM for h1,h2.

Works for any deterministic encoding. Extends to the case when E(Fq)

is not cyclic in an obvious way.

Downside: quite inefficient (≈ 10 times slower than Icart’s function alone).



Introduction Our contributions Conclusion

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u)+ v ⋅G is uniformly distributed in E(Fq), regardless of
the behavior of f .

Samplable To sample F−1($), pick a random v ∈ Z/NZ and solve
the algebraic equation f (u) =$ − v ⋅G for u. For Icart,
there are at most 4 solutions, easy to enumerate. Return
(u, v) for one of those solutions u at random, or try again
if there are none.



Introduction Our contributions Conclusion

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u)+ v ⋅G is uniformly distributed in E(Fq), regardless of
the behavior of f .

Samplable To sample F−1($), pick a random v ∈ Z/NZ and solve
the algebraic equation f (u) =$ − v ⋅G for u. For Icart,
there are at most 4 solutions, easy to enumerate. Return
(u, v) for one of those solutions u at random, or try again
if there are none.



Introduction Our contributions Conclusion

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u)+ v ⋅G is uniformly distributed in E(Fq), regardless of
the behavior of f .

Samplable To sample F−1($), pick a random v ∈ Z/NZ and solve
the algebraic equation f (u) =$ − v ⋅G for u. For Icart,
there are at most 4 solutions, easy to enumerate. Return
(u, v) for one of those solutions u at random, or try again
if there are none.



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO, in the
ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient. No
restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to
Icart’s function, not other deterministic encodings.

More precisely, computability and samplability are proved like before. The
hard part is regularity: showing that the cardinality of F−1($) is almost
constant along the curve.



Introduction Our contributions Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO, in the
ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient. No
restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to
Icart’s function, not other deterministic encodings.

More precisely, computability and samplability are proved like before. The
hard part is regularity: showing that the cardinality of F−1($) is almost
constant along the curve.



Introduction Our contributions Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO, in the
ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient. No
restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to
Icart’s function, not other deterministic encodings.

More precisely, computability and samplability are proved like before. The
hard part is regularity: showing that the cardinality of F−1($) is almost
constant along the curve.



Introduction Our contributions Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO, in the
ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient. No
restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to
Icart’s function, not other deterministic encodings.

More precisely, computability and samplability are proved like before. The
hard part is regularity: showing that the cardinality of F−1($) is almost
constant along the curve.



Introduction Our contributions Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO, in the
ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient. No
restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to
Icart’s function, not other deterministic encodings.

More precisely, computability and samplability are proved like before. The
hard part is regularity: showing that the cardinality of F−1($) is almost
constant along the curve.



Introduction Our contributions Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to the
equation f (u) + f (v) =$ is constant up to negligible deviations when $
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has q +O(

√
q)

points. QED.

Technical difficulties:

• Icart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h∶C → E and p∶C → P1 such that f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an irreducible
curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity (intersection
theory on C × C ), and push everything down to (Fq)

2.



Introduction Our contributions Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to the
equation f (u) + f (v) =$ is constant up to negligible deviations when $
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has q +O(

√
q)

points. QED.

Technical difficulties:

• Icart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h∶C → E and p∶C → P1 such that f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an irreducible
curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity (intersection
theory on C × C ), and push everything down to (Fq)

2.



Introduction Our contributions Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to the
equation f (u) + f (v) =$ is constant up to negligible deviations when $
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has q +O(

√
q)

points. QED.

Technical difficulties:

• Icart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h∶C → E and p∶C → P1 such that f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an irreducible
curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity (intersection
theory on C × C ), and push everything down to (Fq)

2.



Introduction Our contributions Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to the
equation f (u) + f (v) =$ is constant up to negligible deviations when $
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has q +O(

√
q)

points. QED.

Technical difficulties:

• Icart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h∶C → E and p∶C → P1 such that f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an irreducible
curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity (intersection
theory on C × C ), and push everything down to (Fq)

2.



Introduction Our contributions Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to the
equation f (u) + f (v) =$ is constant up to negligible deviations when $
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has q +O(

√
q)

points. QED.

Technical difficulties:

• Icart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h∶C → E and p∶C → P1 such that f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an irreducible
curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity (intersection
theory on C × C ), and push everything down to (Fq)

2.



Introduction Our contributions Conclusion

Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to the
equation f (u) + f (v) =$ is constant up to negligible deviations when $
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has q +O(

√
q)

points. QED.

Technical difficulties:

• Icart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h∶C → E and p∶C → P1 such that f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an irreducible
curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity (intersection
theory on C × C ), and push everything down to (Fq)

2.



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

Additional contributions

Extensions of our construction:

• hashing to a subgroup;

• extension to even characteristic;

• using a bit-string-valued hash function as the basis;

• formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

• simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;

• deterministic encodings to curves of characteristic 3.



Introduction Our contributions Conclusion

Additional contributions

Extensions of our construction:

• hashing to a subgroup;

• extension to even characteristic;

• using a bit-string-valued hash function as the basis;

• formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

• simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;

• deterministic encodings to curves of characteristic 3.



Introduction Our contributions Conclusion

Additional contributions

Extensions of our construction:

• hashing to a subgroup;

• extension to even characteristic;

• using a bit-string-valued hash function as the basis;

• formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

• simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;

• deterministic encodings to curves of characteristic 3.



Introduction Our contributions Conclusion

Additional contributions

Extensions of our construction:

• hashing to a subgroup;

• extension to even characteristic;

• using a bit-string-valued hash function as the basis;

• formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

• simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;

• deterministic encodings to curves of characteristic 3.



Introduction Our contributions Conclusion

Additional contributions

Extensions of our construction:

• hashing to a subgroup;

• extension to even characteristic;

• using a bit-string-valued hash function as the basis;

• formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

• simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;

• deterministic encodings to curves of characteristic 3.



Introduction Our contributions Conclusion

Additional contributions

Extensions of our construction:

• hashing to a subgroup;

• extension to even characteristic;

• using a bit-string-valued hash function as the basis;

• formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

• simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;

• deterministic encodings to curves of characteristic 3.



Introduction Our contributions Conclusion

Summary and Outlook

• Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

• Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

• Propose two such constructions, one more general, the other more
efficient.

Further problems:

• Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves?

• Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?



Introduction Our contributions Conclusion

Summary and Outlook

• Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

• Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

• Propose two such constructions, one more general, the other more
efficient.

Further problems:

• Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves?

• Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?



Introduction Our contributions Conclusion

Summary and Outlook

• Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

• Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

• Propose two such constructions, one more general, the other more
efficient.

Further problems:

• Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves?

• Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?



Introduction Our contributions Conclusion

Summary and Outlook

• Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

• Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

• Propose two such constructions, one more general, the other more
efficient.

Further problems:

• Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves?

• Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?



Introduction Our contributions Conclusion

Summary and Outlook

• Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

• Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

• Propose two such constructions, one more general, the other more
efficient.

Further problems:

• Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves?

• Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?



Introduction Our contributions Conclusion

Summary and Outlook

• Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

• Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

• Propose two such constructions, one more general, the other more
efficient.

Further problems:

• Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves?

• Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?



Introduction Our contributions Conclusion

Thank you!


	Introduction
	Elliptic curves
	Hashing to elliptic curves
	Deterministic hashing

	Our contributions
	Admissible encodings
	A general construction
	An efficient construction
	Side contributions

	Conclusion

