Efficient Indifferentiable Hashing into Ordinary Elliptic Curves

Éric Brier ${ }^{1}$ Jean-Sébastien Coron ${ }^{2}$ Thomas Icart ${ }^{2}$ David Madore ${ }^{3} \quad$ Hugues Randriam $^{3} \quad$ Mehdi Tibouchi ${ }^{2,4}$
${ }^{1}$ Ingenico
${ }^{2}$ Université du Luxembourg
${ }^{3}$ TELECOM-ParisTech
${ }^{4}$ École normale supérieure
CRYPTO, 2010-08-16

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

Outline

Introduction

Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions

Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

Elliptic curve cryptography

- F finite field of characteristic > 3 (for simplicity's sake).

Elliptic curve cryptography

- F finite field of characteristic >3 (for simplicity's sake).
- Recall that an elliptic curve over F is the set of points $(x, y) \in F^{2}$ such that:

$$
y^{2}=x^{3}+a x+b
$$

(with $a, b \in F$ fixed parameters), together with a point at infinity.

Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones) with rich structures such as pairings.

Elliptic curve cryptography

- F finite field of characteristic >3 (for simplicity's sake).
- Recall that an elliptic curve over F is the set of points $(x, y) \in F^{2}$ such that:

$$
y^{2}=x^{3}+a x+b
$$

(with $a, b \in F$ fixed parameters), together with a point at infinity.

- This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones).
with rich structures such as pairings.

Elliptic curve cryptography

- F finite field of characteristic >3 (for simplicity's sake).
- Recall that an elliptic curve over F is the set of points $(x, y) \in F^{2}$ such that:

$$
y^{2}=x^{3}+a x+b
$$

(with $a, b \in F$ fixed parameters), together with a point at infinity.

- This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones).
- Interesting for cryptography: for k bits of security, one can use elliptic curve groups of order $\approx 2^{2 k}$, keys of length $\approx 2 k$. Also come with rich structures such as pairings.

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

Hashing to elliptic curves is a problem

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
one cannot put the value in the x-coordinate of a curve point,
because only about $1 / 2$ of possible x-values correspond to actual
points.

Hashing to elliptic curves is a problem

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
- For $\mathbb{G}=\mathbb{Z}_{p}^{*}$, simply take the numeric value itself $\bmod p$. one cannot put the value in the x-coordinate of a curve point, hecause only ahout $1 / 2$ of poscihle v-values correspond to actual points. this problem (ECDSA for signature, Menezes-Vanstone for encrvntion FCMOV for kev agreement etc but doing so with all imaginable protocols is unrealistic.

Hashing to elliptic curves is a problem

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
- For $\mathbb{G}=\mathbb{Z}_{p}^{*}$, simply take the numeric value itself $\bmod p$.
- However, doesn't generalize when \mathbb{G} is an elliptic curve group; e.g. one cannot put the value in the x-coordinate of a curve point, because only about $1 / 2$ of possible x-values correspond to actual points.

Hashing to elliptic curves is a problem

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
- For $\mathbb{G}=\mathbb{Z}_{p}^{*}$, simply take the numeric value itself $\bmod p$.
- However, doesn't generalize when \mathbb{G} is an elliptic curve group; e.g. one cannot put the value in the x-coordinate of a curve point, because only about $1 / 2$ of possible x-values correspond to actual points.
- Elliptic curve-specific protocols have been developed to circumvent this problem (ECDSA for signature, Menezes-Vanstone for encryption, ECMQV for key agreement, etc.), but doing so with all imaginable protocols is unrealistic.

The traditional solution

- For k bits of security:

The traditional solution

- For k bits of security:

1. concatenate the hash value h with a counter c from 0 to $k-1$;
if the concatenated value $x=c \| h$ is a valid x-coordinate on the curve (i.e. $x^{3}+a x+b$ is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.

The traditional solution

- For k bits of security:

1. concatenate the hash value h with a counter c from 0 to $k-1$;
2. initialize the counter as 0 ;
corresponding points; otherwise increment the counter and try again.

- Heuristically, the probability of a concatenated value boing valid is 1/2, so k iterations ensure k bits of security.

The traditional solution

- For k bits of security:

1. concatenate the hash value h with a counter c from 0 to $k-1$;
2. initialize the counter as 0 ;
3. if the concatenated value $x=c \| h$ is a valid x-coordinate on the curve (i.e. $x^{3}+a x+b$ is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.

The traditional solution

- For k bits of security:

1. concatenate the hash value h with a counter c from 0 to $k-1$;
2. initialize the counter as 0 ;
3. if the concatenated value $x=c \| h$ is a valid x-coordinate on the curve (i.e. $x^{3}+a x+b$ is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.

- Heuristically, the probability of a concatenated value being valid is $1 / 2$, so k iterations ensure k bits of security.

Problems with this solution

1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).

A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O\left(n^{4}\right)$

Problems with this solution

1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O\left(n^{4}\right)$.

Problems with this solution

1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O\left(n^{4}\right)$.
3. Security is difficult to analyze.

Problems with this solution

1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O\left(n^{4}\right)$.
3. Security is difficult to analyze.

- image is difficult to describe;
- does not behave at all like a random oracle to the curve; easy
distinguisher exists.

Problems with this solution

1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O\left(n^{4}\right)$.
3. Security is difficult to analyze.

- image is difficult to describe;
- image size estimate is only heuristic ($\approx q / k)$;
distinguisher exists.

Problems with this solution

1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O\left(n^{4}\right)$.
3. Security is difficult to analyze.

- image is difficult to describe;
- image size estimate is only heuristic ($\approx q / k$);
- does not behave at all like a random oracle to the curve; easy distinguisher exists.

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

$$
y^{2}=x^{3}+b
$$

over \mathbb{F}_{q} with $q \equiv 2(\bmod 3)$.

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

$$
y^{2}=x^{3}+b
$$

over \mathbb{F}_{q} with $q \equiv 2(\bmod 3)$. Admit the following deterministic encoding:

$$
f: u \mapsto\left(\left(u^{2}-b\right)^{1 / 3}, u\right)
$$

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

$$
y^{2}=x^{3}+b
$$

over \mathbb{F}_{q} with $q \equiv 2(\bmod 3)$. Admit the following deterministic encoding:

$$
f: u \mapsto\left(\left(u^{2}-b\right)^{1 / 3}, u\right)
$$

Solves the problem: efficient, constant-time, quasi-bijective and secure

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

$$
y^{2}=x^{3}+b
$$

over \mathbb{F}_{q} with $q \equiv 2(\bmod 3)$. Admit the following deterministic encoding:

$$
f: u \mapsto\left(\left(u^{2}-b\right)^{1 / 3}, u\right)
$$

Solves the problem: efficient, constant-time, quasi-bijective and secure if h is a good hash function to $\mathbb{F}_{q}, H(m)=f(h(m))$ is well-behaved: has the properties of a RO to the curve if h is modeled as a RO to \mathbb{F}_{q}.

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

$$
y^{2}=x^{3}+b
$$

over \mathbb{F}_{q} with $q \equiv 2(\bmod 3)$. Admit the following deterministic encoding:

$$
f: u \mapsto\left(\left(u^{2}-b\right)^{1 / 3}, u\right)
$$

Solves the problem: efficient, constant-time, quasi-bijective and secure if h is a good hash function to $\mathbb{F}_{q}, H(m)=f(h(m))$ is well-behaved: has the properties of a RO to the curve if h is modeled as a RO to \mathbb{F}_{q}. The IBE scheme is secure for H in the ROM for h.

The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

$$
y^{2}=x^{3}+b
$$

over \mathbb{F}_{q} with $q \equiv 2(\bmod 3)$. Admit the following deterministic encoding:

$$
f: u \mapsto\left(\left(u^{2}-b\right)^{1 / 3}, u\right)
$$

Solves the problem: efficient, constant-time, quasi-bijective and secure if h is a good hash function to $\mathbb{F}_{q}, H(m)=f(h(m))$ is well-behaved: has the properties of a RO to the curve if h is modeled as a RO to \mathbb{F}_{q}. The IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves when $q \equiv 2(\bmod 3)$. Generalization of the supersingular case.

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves when $q \equiv 2(\bmod 3)$. Generalization of the supersingular case.

Defined as $f: u \mapsto(x, y)$ with

$$
x=\left(v^{2}-b-\frac{u^{6}}{27}\right)^{1 / 3}+\frac{u^{2}}{3} \quad y=u x+v \quad v=\frac{3 a-u^{4}}{6 u}
$$

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves when $q \equiv 2(\bmod 3)$. Generalization of the supersingular case.

Defined as $f: u \mapsto(x, y)$ with

$$
x=\left(v^{2}-b-\frac{u^{6}}{27}\right)^{1 / 3}+\frac{u^{2}}{3} \quad y=u x+v \quad v=\frac{3 a-u^{4}}{6 u}
$$

Efficient, constant-time, and applies to almost all elliptic curves.

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves when $q \equiv 2(\bmod 3)$. Generalization of the supersingular case.

Defined as $f: u \mapsto(x, y)$ with

$$
x=\left(v^{2}-b-\frac{u^{6}}{27}\right)^{1 / 3}+\frac{u^{2}}{3} \quad y=u x+v \quad v=\frac{3 a-u^{4}}{6 u}
$$

Efficient, constant-time, and applies to almost all elliptic curves. However, image size is only $\approx 5 / 8$ of all points. The construction $H(m)=f(h(m))$ is easily distinguished from a RO to the curve even if h is modeled as a RO.
but with the same limitation.

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves when $q \equiv 2(\bmod 3)$. Generalization of the supersingular case.

Defined as $f: u \mapsto(x, y)$ with

$$
x=\left(v^{2}-b-\frac{u^{6}}{27}\right)^{1 / 3}+\frac{u^{2}}{3} \quad y=u x+v \quad v=\frac{3 a-u^{4}}{6 u}
$$

Efficient, constant-time, and applies to almost all elliptic curves. However, image size is only $\approx 5 / 8$ of all points. The construction $H(m)=f(h(m))$ is easily distinguished from a RO to the curve even if h is modeled as a RO. Security?
but with the same limitation.

Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves when $q \equiv 2(\bmod 3)$. Generalization of the supersingular case.

Defined as $f: u \mapsto(x, y)$ with

$$
x=\left(v^{2}-b-\frac{u^{6}}{27}\right)^{1 / 3}+\frac{u^{2}}{3} \quad y=u x+v \quad v=\frac{3 a-u^{4}}{6 u}
$$

Efficient, constant-time, and applies to almost all elliptic curves. However, image size is only $\approx 5 / 8$ of all points. The construction $H(m)=f(h(m))$ is easily distinguished from a RO to the curve even if h is modeled as a RO. Security?

Many more deterministic encodings to ordinary curves proposed recently, but with the same limitation.

Outline

Introduction

Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

Security in the ROM

Is it secure to use $H(m)=f(h(m))$ as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the security preserved if one instantiates $H(m)=f(h(m))$ with h modeled as

Security in the ROM

Is it secure to use $H(m)=f(h(m))$ as a hash function to the curve?
More precisely: if a scheme is proved secure assuming H is a RO , is the security preserved if one instantiates $H(m)=f(h(m))$ with h modeled as a RO?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).

Security in the ROM

Is it secure to use $H(m)=f(h(m))$ as a hash function to the curve?
More precisely: if a scheme is proved secure assuming H is a RO , is the security preserved if one instantiates $H(m)=f(h(m))$ with h modeled as a RO?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).
- In general: no, security breaks down (counterexample in the paper).

Security in the ROM

Is it secure to use $H(m)=f(h(m))$ as a hash function to the curve?
More precisely: if a scheme is proved secure assuming H is a RO , is the security preserved if one instantiates $H(m)=f(h(m))$ with h modeled as a RO?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).
- In general: no, security breaks down (counterexample in the paper).
- Difficult to give a simple criterion for the security proof to go through.

Security in the ROM

Is it secure to use $H(m)=f(h(m))$ as a hash function to the curve?
More precisely: if a scheme is proved secure assuming H is a RO , is the security preserved if one instantiates $H(m)=f(h(m))$ with h modeled as a RO?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).
- In general: no, security breaks down (counterexample in the paper).
- Difficult to give a simple criterion for the security proof to go through.
- Can we propose constructions that will work all the time instead?

Indifferentiability

High-level formulation of our problem: find a condition under which an ideal primitive (the RO to the curve) can be replaced by a construction based on another ideal primitive (a RO to \mathbb{F}_{q}) so that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the construction is indifferentiable from the primitive if no PPT adversary can tell them apart with non-negligible probability.

Indifferentiability

High-level formulation of our problem: find a condition under which an ideal primitive (the RO to the curve) can be replaced by a construction based on another ideal primitive (a RO to \mathbb{F}_{q}) so that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the construction is indifferentiable from the primitive if no PPT adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
conctruction to work?

Indifferentiability

High-level formulation of our problem: find a condition under which an ideal primitive (the RO to the curve) can be replaced by a construction based on another ideal primitive (a RO to \mathbb{F}_{q}) so that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the construction is indifferentiable from the primitive if no PPT adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function construction to work?

Admissible encodings

We consider hash function constructions of the form:

$$
H(m)=F(h(m))
$$

where h is modeled as a RO to a some set S (easy to hash to) and F is a deterministic function $S \rightarrow E\left(\mathbb{F}_{q}\right)$.

We prove that H is indifferentiable from a $R O$ to $E\left(\mathbb{F}_{q}\right)$ as soon as the function F is admissible in the following sense:

Admissible encodings

We consider hash function constructions of the form:

$$
H(m)=F(h(m))
$$

where h is modeled as a RO to a some set S (easy to hash to) and F is a deterministic function $S \rightarrow E\left(\mathbb{F}_{q}\right)$.

We prove that H is indifferentiable from a RO to $E\left(\mathbb{F}_{q}\right)$ as soon as the function F is admissible in the following sense:
Computable in deterministic polynomial time;
statistically indistinguishable from the uniform distribution
there is a PPT algorithm which for any $\varpi \in E\left(\mathbb{F}_{q}\right)$ returns an uniformly distributed element in $F^{-1}(\varpi)$

Admissible encodings

We consider hash function constructions of the form:

$$
H(m)=F(h(m))
$$

where h is modeled as a RO to a some set S (easy to hash to) and F is a deterministic function $S \rightarrow E\left(\mathbb{F}_{q}\right)$.

We prove that H is indifferentiable from a RO to $E\left(\mathbb{F}_{q}\right)$ as soon as the function F is admissible in the following sense:
Computable in deterministic polynomial time;
Regular for s uniformly distributed in S, the distribution of $F(s)$ is statistically indistinguishable from the uniform distribution in $E\left(\mathbb{F}_{q}\right)$;

Admissible encodings

We consider hash function constructions of the form:

$$
H(m)=F(h(m))
$$

where h is modeled as a RO to a some set S (easy to hash to) and F is a deterministic function $S \rightarrow E\left(\mathbb{F}_{q}\right)$.

We prove that H is indifferentiable from a RO to $E\left(\mathbb{F}_{q}\right)$ as soon as the function F is admissible in the following sense:
Computable in deterministic polynomial time;
Regular for s uniformly distributed in S, the distribution of $F(s)$ is statistically indistinguishable from the uniform distribution in $E\left(\mathbb{F}_{q}\right)$;
Samplable there is a PPT algorithm which for any $\varpi \in E\left(\mathbb{F}_{q}\right)$ returns an uniformly distributed element in $F^{-1}(\varpi)$.

Remarks

- We can quantify precisely the "loss" in random oracle security when instantiating H in this manner (in terms of the statistical distance between $F(s)$ and uniform, and the running time of the sampling algorithm).
not regular
A construction like $H(m)=h(m) \cdot G$ with G a generator, is not admissible: computable and regular but not samplable. Bad idea leaks the discrete logarithm of the digest!

Remarks

- We can quantify precisely the "loss" in random oracle security when instantiating H in this manner (in terms of the statistical distance between $F(s)$ and uniform, and the running time of the sampling algorithm).
- Icart's function is not admissible: computable and samplable, but not regular.

A construction like $H(m)=h(m) \cdot G$, with G a generator, is not admissible: computable and regular but not samplable. Bad idea: leaks the discrete logarithm of the digest!

Remarks

- We can quantify precisely the "loss" in random oracle security when instantiating H in this manner (in terms of the statistical distance between $F(s)$ and uniform, and the running time of the sampling algorithm).
- Icart's function is not admissible: computable and samplable, but not regular.
- A construction like $H(m)=h(m) \cdot G$, with G a generator, is not admissible: computable and regular but not samplable. Bad idea: leaks the discrete logarithm of the digest!

Outline

Introduction

Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

General construction

E ordinary elliptic curve over \mathbb{F}_{q}, G generator of $E\left(\mathbb{F}_{q}\right)$ (assumed cyclic of cardinality N) and $f: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q}\right)$ deterministic encoding like Icart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_{q} \times \mathbb{Z} / N \mathbb{Z} \rightarrow E\left(\mathbb{F}_{q}\right):$

$$
F(u, v)=f(u)+v \cdot G
$$

General construction

E ordinary elliptic curve over \mathbb{F}_{q}, G generator of $E\left(\mathbb{F}_{q}\right)$ (assumed cyclic of cardinality N) and $f: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q}\right)$ deterministic encoding like Icart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_{q} \times \mathbb{Z} / N \mathbb{Z} \rightarrow E\left(\mathbb{F}_{q}\right):$

$$
F(u, v)=f(u)+v \cdot G
$$

Thus, $H(m)=f\left(h_{1}(m)\right)+h_{2}(m) \cdot G$ is indifferentiable from a RO, in the ROM for h_{1}, h_{2}.

Works for any deterministic encoding. Extends to the case when $E\left(\mathbb{F}_{q}\right)$ is not cyclic in an obvious way.

General construction

E ordinary elliptic curve over \mathbb{F}_{q}, G generator of $E\left(\mathbb{F}_{q}\right)$ (assumed cyclic of cardinality N) and $f: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q}\right)$ deterministic encoding like Icart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_{q} \times \mathbb{Z} / N \mathbb{Z} \rightarrow E\left(\mathbb{F}_{q}\right):$

$$
F(u, v)=f(u)+v \cdot G
$$

Thus, $H(m)=f\left(h_{1}(m)\right)+h_{2}(m) \cdot G$ is indifferentiable from a RO, in the ROM for h_{1}, h_{2}.

Works for any deterministic encoding. Extends to the case when $E\left(\mathbb{F}_{q}\right)$ is not cyclic in an obvious way.

General construction

E ordinary elliptic curve over \mathbb{F}_{q}, G generator of $E\left(\mathbb{F}_{q}\right)$ (assumed cyclic of cardinality N) and $f: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q}\right)$ deterministic encoding like Icart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_{q} \times \mathbb{Z} / N \mathbb{Z} \rightarrow E\left(\mathbb{F}_{q}\right):$

$$
F(u, v)=f(u)+v \cdot G
$$

Thus, $H(m)=f\left(h_{1}(m)\right)+h_{2}(m) \cdot G$ is indifferentiable from a RO, in the ROM for h_{1}, h_{2}.

Works for any deterministic encoding. Extends to the case when $E\left(\mathbb{F}_{q}\right)$ is not cyclic in an obvious way.

Downside: quite inefficient (≈ 10 times slower than Icart's function alone).

Proof sketch

The function F is:
Computable Clearly.
With v uniformly distributed in $\mathbb{Z} / N \mathbb{Z}$ it is clear that $f(u)+v \cdot G$ is uniformly distributed in $E\left(\mathbb{F}_{q}\right)$, regardless of the behavior of f. the algebraic equation $f(u)=\varpi-v \cdot G$ for u. For Icart, there are at most 4 solutions, easy to enumerate. Return (u, v) for one of those solutions u at random, or try again if there are none.

Proof sketch

The function F is:
Computable Clearly.
Regular With v uniformly distributed in $\mathbb{Z} / N \mathbb{Z}$ it is clear that $f(u)+v \cdot G$ is uniformly distributed in $E\left(\mathbb{F}_{q}\right)$, regardless of the behavior of f.

Proof sketch

The function F is:
Computable Clearly.
Regular With v uniformly distributed in $\mathbb{Z} / N \mathbb{Z}$ it is clear that $f(u)+v \cdot G$ is uniformly distributed in $E\left(\mathbb{F}_{q}\right)$, regardless of the behavior of f.
Samplable To sample $F^{-1}(\varpi)$, pick a random $v \in \mathbb{Z} / N \mathbb{Z}$ and solve the algebraic equation $f(u)=\varpi-v \cdot G$ for u. For Icart, there are at most 4 solutions, easy to enumerate. Return (u, v) for one of those solutions u at random, or try again if there are none.

Outline

Introduction

Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as follows:

$$
F(u, v)=f(u)+f(v)
$$

where f is Icart's function.

Efficient construction

A much more efficient construction of an admissible encoding is as follows:

$$
F(u, v)=f(u)+f(v)
$$

where f is Icart's function.
Thus, $H(m)=f\left(h_{1}(m)\right)+f\left(h_{2}(m)\right)$ is indifferentiable from a RO, in the ROM for h_{1}, h_{2}.

Only requires two evaluations of lcart's function, so quite efficient. No restriction on the curve.
\qquad Icart's function, not other deterministic encodings.

Efficient construction

A much more efficient construction of an admissible encoding is as follows:

$$
F(u, v)=f(u)+f(v)
$$

where f is Icart's function.
Thus, $H(m)=f\left(h_{1}(m)\right)+f\left(h_{2}(m)\right)$ is indifferentiable from a RO, in the ROM for h_{1}, h_{2}.

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to lcart's function, not other deterministic encodings. More precisely, computability and samplability are proved like before. The hard part is regularity: showing that the cardinality of $F^{-1}(\varpi)$ is almost constant along the curve.

Efficient construction

A much more efficient construction of an admissible encoding is as follows:

$$
F(u, v)=f(u)+f(v)
$$

where f is Icart's function.
Thus, $H(m)=f\left(h_{1}(m)\right)+f\left(h_{2}(m)\right)$ is indifferentiable from a RO, in the ROM for h_{1}, h_{2}.

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to Icart's function, not other deterministic encodings.
\qquad

Efficient construction

A much more efficient construction of an admissible encoding is as follows:

$$
F(u, v)=f(u)+f(v)
$$

where f is Icart's function.
Thus, $H(m)=f\left(h_{1}(m)\right)+f\left(h_{2}(m)\right)$ is indifferentiable from a RO, in the ROM for h_{1}, h_{2}.

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to Icart's function, not other deterministic encodings.
More precisely, computability and samplability are proved like before. The hard part is regularity: showing that the cardinality of $F^{-1}(\varpi)$ is almost constant along the curve.

Proof idea

We want to show that the number of solutions $(u, v) \in\left(\mathbb{F}_{q}\right)^{2}$ to the equation $f(u)+f(v)=\varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Proof idea

We want to show that the number of solutions $(u, v) \in\left(\mathbb{F}_{q}\right)^{2}$ to the equation $f(u)+f(v)=\varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q+O(\sqrt{q})$ points. QED.

Proof idea

We want to show that the number of solutions $(u, v) \in\left(\mathbb{F}_{q}\right)^{2}$ to the equation $f(u)+f(v)=\varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q+O(\sqrt{q})$ points. QED.

Technical difficulties:

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms $h: C \rightarrow E$ and $p: C \rightarrow \mathbb{P}^{1}$ such that $f=h \circ p^{-1}$.

Proof idea

We want to show that the number of solutions $(u, v) \in\left(\mathbb{F}_{q}\right)^{2}$ to the equation $f(u)+f(v)=\varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q+O(\sqrt{q})$ points. QED.

Technical difficulties:

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms $h: C \rightarrow E$ and $p: C \rightarrow \mathbb{P}^{1}$ such that $f=h \circ p^{-1}$.
- Show that s: $C \times C \rightarrow E$ is geometrically "nice", except at a few exceptional points (to be found and dealt with).

Proof idea

We want to show that the number of solutions $(u, v) \in\left(\mathbb{F}_{q}\right)^{2}$ to the equation $f(u)+f(v)=\varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q+O(\sqrt{q})$ points. QED.

Technical difficulties:

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms $h: C \rightarrow E$ and $p: C \rightarrow \mathbb{P}^{1}$ such that $f=h \circ p^{-1}$.
- Show that s: $C \times C \rightarrow E$ is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on $C \times C$. Compute its genus (it's 49).

Proof idea

We want to show that the number of solutions $(u, v) \in\left(\mathbb{F}_{q}\right)^{2}$ to the equation $f(u)+f(v)=\varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q+O(\sqrt{q})$ points. QED.

Technical difficulties:

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms $h: C \rightarrow E$ and $p: C \rightarrow \mathbb{P}^{1}$ such that $f=h \circ p^{-1}$.
- Show that s: $C \times C \rightarrow E$ is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on $C \times C$. Compute its genus (it's 49).
- Justify that we can ignore what happens at infinity (intersection theory on $C \times C)$, and push everything down to $\left(\mathbb{F}_{q}\right)^{2}$.

Outline

Introduction

Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion

Additional contributions

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic
- using a bit-string-valued hash function as the basis;

New encodings to ordinary curves:

Additional contributions

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc

New encodings to ordinary curves:

Additional contributions

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;

Additional contributions

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3.

Additional contributions

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3 .

Additional contributions

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3 .

Summary and Outlook

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
ordinary elliptic curves;
- Pronose two such constructions, one more general, the other more

Further problems:

Summary and Outlook

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;

Further problems:

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)

Summary and Outlook

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

Further problems:

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)

Summary and Outlook

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

Further problems:

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)

Summary and Outlook

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

Further problems:

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct injective encodings to ordinary curves?
affects elliptic curve-based protocols?

Summary and Outlook

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

Further problems:

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct injective encodings to ordinary curves?
- Understand how the possibility of encoding scalars as curve points affects elliptic curve-based protocols?

Thank you!

