
Introduction Our contributions Conclusion

Efficient Indifferentiable Hashing into Ordinary
Elliptic Curves
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Elliptic curve cryptography

• F finite field of characteristic > 3 (for simplicity’s sake).

• Recall that an elliptic curve over F is the set of points (x , y) ∈ F 2

such that:
y2

= x3
+ ax + b

(with a,b ∈ F fixed parameters), together with a point at infinity.

• This set of points forms an abelian group where the Discrete
Logarithm Problem and Diffie-Hellman-type problems are believed to
be hard (no attack better than the generic ones).

• Interesting for cryptography: for k bits of security, one can use
elliptic curve groups of order ≈ 22k , keys of length ≈ 2k. Also come
with rich structures such as pairings.
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Hashing to elliptic curves is a problem

• Many cryptographic protocols (schemes for encryption, signature,
PAKE, IBE, etc.) involve representing a certain numeric value, often
a hash value, as an element of the group G where the computations
occur.

• For G = Z∗p , simply take the numeric value itself modp.

• However, doesn’t generalize when G is an elliptic curve group; e.g.
one cannot put the value in the x-coordinate of a curve point,
because only about 1/2 of possible x-values correspond to actual
points.

• Elliptic curve-specific protocols have been developed to circumvent
this problem (ECDSA for signature, Menezes-Vanstone for
encryption, ECMQV for key agreement, etc.), but doing so with all
imaginable protocols is unrealistic.
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The traditional solution

• For k bits of security:

1. concatenate the hash value h with a counter c from 0 to k − 1;
2. initialize the counter as 0;
3. if the concatenated value x = c∥h is a valid x-coordinate on the curve

(i.e. x3 + ax + b is a square in F ), return one of the two
corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is
1/2, so k iterations ensure k bits of security.
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Problems with this solution

1. A natural implementation does not run in constant time: possible
timing attacks (especially for PAKE).

2. A constant time implementation (always do k steps, compute the
Legendre symbol in constant time) is very inefficient, O(n4).

3. Security is difficult to analyze.
• image is difficult to describe;
• image size estimate is only heuristic (≈ q/k);
• does not behave at all like a random oracle to the curve; easy

distinguisher exists.
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The Boneh-Franklin construction

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin
introduced the following hash function construction.

They use supersingular elliptic curves, of the form:

y2
= x3

+ b

over Fq with q ≡ 2 (mod 3). Admit the following deterministic encoding:

f ∶ u ↦ ((u2
− b)1/3,u)

Solves the problem: efficient, constant-time, quasi-bijective and secure ▶
if h is a good hash function to Fq, H(m) = f (h(m)) is well-behaved: has
the properties of a RO to the curve if h is modeled as a RO to Fq.The
IBE scheme is secure for H in the ROM for h.

Downside: limited to supersingular curves.
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Ordinary curves: Icart

Last year at CRYPTO, Icart presented a construction for ordinary curves
when q ≡ 2 (mod 3). Generalization of the supersingular case.

Defined as f ∶u ↦ (x , y) with

x = (v2
− b −

u6

27
)

1/3
+
u2

3
y = ux + v v =

3a − u4

6u

Efficient, constant-time, and applies to almost all elliptic curves.
However, image size is only ≈ 5/8 of all points. The construction
H(m) = f (h(m)) is easily distinguished from a RO to the curve even if h
is modeled as a RO. ▶ Security?

Many more deterministic encodings to ordinary curves proposed recently,
but with the same limitation.
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Security in the ROM

Is it secure to use H(m) = f (h(m)) as a hash function to the curve?

More precisely: if a scheme is proved secure assuming H is a RO, is the
security preserved if one instantiates H(m) = f (h(m)) with h modeled as
a RO?

• For a number of pairing-based schemes: yes (related to random
self-reducibility properties of the underlying security assumptions).

• In general: no, security breaks down (counterexample in the paper).

• Difficult to give a simple criterion for the security proof to go
through.

• Can we propose constructions that will work all the time instead?
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Indifferentiability

High-level formulation of our problem: find a condition under which an
ideal primitive (the RO to the curve) can be replaced by a construction
based on another ideal primitive (a RO to Fq) so that all security proof
are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the
construction is indifferentiable from the primitive if no PPT adversary can
tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function
construction to work?
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Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).



Introduction Our contributions Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).



Introduction Our contributions Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).



Introduction Our contributions Conclusion

Admissible encodings

We consider hash function constructions of the form:

H(m) = F (h(m))

where h is modeled as a RO to a some set S (easy to hash to) and F is a
deterministic function S → E(Fq).

We prove that H is indifferentiable from a RO to E(Fq) as soon as the
function F is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for s uniformly distributed in S , the distribution of F (s) is
statistically indistinguishable from the uniform distribution
in E(Fq);

Samplable there is a PPT algorithm which for any $ ∈ E(Fq) returns
an uniformly distributed element in F−1($).
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Remarks

• We can quantify precisely the “loss” in random oracle security when
instantiating H in this manner (in terms of the statistical distance
between F (s) and uniform, and the running time of the sampling
algorithm).

• Icart’s function is not admissible: computable and samplable, but
not regular.

• A construction like H(m) = h(m) ⋅G , with G a generator, is not
admissible: computable and regular but not samplable. Bad idea:
leaks the discrete logarithm of the digest!
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General construction

E ordinary elliptic curve over Fq, G generator of E(Fq) (assumed cyclic
of cardinality N) and f ∶Fq → E(Fq) deterministic encoding like Icart’s
function.

Under mild assumptions on f (verified for all deterministic encodings
proposed so far), the following is an admissible function
Fq ×Z/NZ→ E(Fq):

F (u, v) = f (u) + v ⋅G

Thus, H(m) = f (h1(m)) + h2(m) ⋅G is indifferentiable from a RO, in the
ROM for h1,h2.

Works for any deterministic encoding. Extends to the case when E(Fq)

is not cyclic in an obvious way.

Downside: quite inefficient (≈ 10 times slower than Icart’s function alone).
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Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u) + v ⋅G is uniformly distributed in E(Fq), regardless of
the behavior of f .

Samplable To sample F−1($), pick a random v ∈ Z/NZ and solve
the algebraic equation f (u) =$ − v ⋅G for u. For Icart,
there are at most 4 solutions, easy to enumerate. Return
(u, v) for one of those solutions u at random, or try again
if there are none.



Introduction Our contributions Conclusion

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u) + v ⋅G is uniformly distributed in E(Fq), regardless of
the behavior of f .

Samplable To sample F−1($), pick a random v ∈ Z/NZ and solve
the algebraic equation f (u) =$ − v ⋅G for u. For Icart,
there are at most 4 solutions, easy to enumerate. Return
(u, v) for one of those solutions u at random, or try again
if there are none.



Introduction Our contributions Conclusion

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in Z/NZ it is clear that
f (u) + v ⋅G is uniformly distributed in E(Fq), regardless of
the behavior of f .

Samplable To sample F−1($), pick a random v ∈ Z/NZ and solve
the algebraic equation f (u) =$ − v ⋅G for u. For Icart,
there are at most 4 solutions, easy to enumerate. Return
(u, v) for one of those solutions u at random, or try again
if there are none.



Introduction Our contributions Conclusion

Outline

Introduction
Elliptic curves
Hashing to elliptic curves
Deterministic hashing

Our contributions
Admissible encodings
A general construction
An efficient construction
Side contributions

Conclusion



Introduction Our contributions Conclusion

Efficient construction

A much more efficient construction of an admissible encoding is as
follows:

F (u, v) = f (u) + f (v)

where f is Icart’s function.

Thus, H(m) = f (h1(m)) + f (h2(m)) is indifferentiable from a RO, in the
ROM for h1,h2.

Only requires two evaluations of Icart’s function, so quite efficient. No
restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to
Icart’s function, not other deterministic encodings.

More precisely, computability and samplability are proved like before. The
hard part is regularity: showing that the cardinality of F−1($) is almost
constant along the curve.
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Proof idea
We want to show that the number of solutions (u, v) ∈ (Fq)

2 to the
equation f (u) + f (v) =$ is constant up to negligible deviations when $
varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The
Hasse-Weil bound ensures that such a curve always has q +O(

√
q)

points. QED.

Technical difficulties:

• Icart’s function f is not a morphism, only an algebraic
correspondance. The correct geometric pictures involves a curve C
with morphisms h∶C → E and p∶C → P1 such that f = h ○ p−1.

• Show that s ∶C × C → E is geometrically “nice”, except at a few
exceptional points (to be found and dealt with).

• Show that the preimage of “nice” points is indeed an irreducible
curve on C × C . Compute its genus (it’s 49).

• Justify that we can ignore what happens at infinity (intersection
theory on C × C ), and push everything down to (Fq)

2.
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Additional contributions

Extensions of our construction:

• hashing to a subgroup;

• extension to even characteristic;

• using a bit-string-valued hash function as the basis;

• formal results on the composition of admissible encodings, etc.

New encodings to ordinary curves:

• simpler, more efficient variant of the Shallue-Woestijne-Ulas
encoding;

• deterministic encodings to curves of characteristic 3.
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Summary and Outlook

• Consider the instantiations of random oracles in elliptic curve-based
cryptosystems;

• Suggest a framework for constructing well-behaved hash functions to
ordinary elliptic curves;

• Propose two such constructions, one more general, the other more
efficient.

Further problems:

• Extend the efficient construction to any deterministic encoding to
elliptic and hyperelliptic curves (done!)

• Construct injective encodings to ordinary curves?

• Understand how the possibility of encoding scalars as curve points
affects elliptic curve-based protocols?
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Thank you!
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