Efficient Indifferentiable Hashing into Ordinary Elliptic Curves

Éric Brier¹ Jean-Sébastien Coron² David Madore³ Hugues Randriam³ Mehdi Tibouchi^{2,4}

Thomas Icart²

¹Ingenico

²Université du Luxembourg

³TELECOM-ParisTech

⁴École normale supérieure

CRYPTO, 2010-08-16

Our contribution

Conclusion

Outline

Introduction

Elliptic curves Hashing to elliptic curves Deterministic hashing

Our contributions

Admissible encodings A general construction An efficient construction Side contributions

Conclusion

Our contribution

Conclusion

Outline

Introduction Elliptic curves

Hashing to elliptic curves Deterministic hashing

Our contributions

Admissible encodings A general construction An efficient construction Side contributions

Conclusion

- *F* finite field of characteristic > 3 (for simplicity's sake).
- Recall that an elliptic curve over F is the set of points (x, y) ∈ F² such that:

 $y^2 = x^3 + ax + b$

- This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones).
- Interesting for cryptography: for k bits of security, one can use elliptic curve groups of order ≈ 2^{2k}, keys of length ≈ 2k. Also come with rich structures such as pairings.

- F finite field of characteristic > 3 (for simplicity's sake).
- Recall that an elliptic curve over F is the set of points (x, y) ∈ F² such that:

$$y^2 = x^3 + ax + b$$

- This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones).
- Interesting for cryptography: for k bits of security, one can use elliptic curve groups of order ≈ 2^{2k}, keys of length ≈ 2k. Also come with rich structures such as pairings.

- F finite field of characteristic > 3 (for simplicity's sake).
- Recall that an elliptic curve over F is the set of points (x, y) ∈ F² such that:

$$y^2 = x^3 + ax + b$$

- This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones).
- Interesting for cryptography: for k bits of security, one can use elliptic curve groups of order ≈ 2^{2k}, keys of length ≈ 2k. Also come with rich structures such as pairings.

- F finite field of characteristic > 3 (for simplicity's sake).
- Recall that an elliptic curve over F is the set of points (x, y) ∈ F² such that:

$$y^2 = x^3 + ax + b$$

- This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones).
- Interesting for cryptography: for k bits of security, one can use elliptic curve groups of order ≈ 2^{2k}, keys of length ≈ 2k. Also come with rich structures such as pairings.

Our contribution

Conclusion

Outline

Introduction

Elliptic curves Hashing to elliptic curves

Deterministic hashing

Our contributions

Admissible encodings A general construction An efficient construction Side contributions

Conclusion

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
- For $\mathbb{G} = \mathbb{Z}_p^*$, simply take the numeric value itself mod *p*.
- However, doesn't generalize when G is an elliptic curve group; e.g. one cannot put the value in the x-coordinate of a curve point, because only about 1/2 of possible x-values correspond to actual points.
- Elliptic curve-specific protocols have been developed to circumvent this problem (ECDSA for signature, Menezes-Vanstone for encryption, ECMQV for key agreement, etc.), but doing so with all imaginable protocols is unrealistic.

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
- For $\mathbb{G} = \mathbb{Z}_p^*$, simply take the numeric value itself mod *p*.
- However, doesn't generalize when G is an elliptic curve group; e.g. one cannot put the value in the x-coordinate of a curve point, because only about 1/2 of possible x-values correspond to actual points.
- Elliptic curve-specific protocols have been developed to circumvent this problem (ECDSA for signature, Menezes-Vanstone for encryption, ECMQV for key agreement, etc.), but doing so with all imaginable protocols is unrealistic.

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
- For $\mathbb{G} = \mathbb{Z}_p^*$, simply take the numeric value itself mod *p*.
- However, doesn't generalize when G is an elliptic curve group; e.g. one cannot put the value in the *x*-coordinate of a curve point, because only about 1/2 of possible *x*-values correspond to actual points.
- Elliptic curve-specific protocols have been developed to circumvent this problem (ECDSA for signature, Menezes-Vanstone for encryption, ECMQV for key agreement, etc.), but doing so with all imaginable protocols is unrealistic.

- Many cryptographic protocols (schemes for encryption, signature, PAKE, IBE, etc.) involve representing a certain numeric value, often a hash value, as an element of the group \mathbb{G} where the computations occur.
- For $\mathbb{G} = \mathbb{Z}_p^*$, simply take the numeric value itself mod *p*.
- However, doesn't generalize when G is an elliptic curve group; e.g. one cannot put the value in the *x*-coordinate of a curve point, because only about 1/2 of possible *x*-values correspond to actual points.
- Elliptic curve-specific protocols have been developed to circumvent this problem (ECDSA for signature, Menezes-Vanstone for encryption, ECMQV for key agreement, etc.), but doing so with all imaginable protocols is unrealistic.

• For *k* bits of security:

- 1. concatenate the hash value h with a counter c from 0 to k 1;
- 2. initialize the counter as 0;
- if the concatenated value x = c || h is a valid x-coordinate on the curve (i.e. x³ + ax + b is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.
- Heuristically, the probability of a concatenated value being valid is 1/2, so k iterations ensure k bits of security.

- For *k* bits of security:
 - 1. concatenate the hash value h with a counter c from 0 to k 1;
 - 2. initialize the counter as 0;
 - if the concatenated value x = c || h is a valid x-coordinate on the curve (i.e. x³ + ax + b is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.
- Heuristically, the probability of a concatenated value being valid is 1/2, so k iterations ensure k bits of security.

- For *k* bits of security:
 - 1. concatenate the hash value h with a counter c from 0 to k 1;
 - 2. initialize the counter as 0;
 - if the concatenated value x = c || h is a valid x-coordinate on the curve (i.e. x³ + ax + b is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.
- Heuristically, the probability of a concatenated value being valid is 1/2, so k iterations ensure k bits of security.

- For *k* bits of security:
 - 1. concatenate the hash value h with a counter c from 0 to k 1;
 - 2. initialize the counter as 0;
 - if the concatenated value x = c || h is a valid x-coordinate on the curve (i.e. x³ + ax + b is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.

• Heuristically, the probability of a concatenated value being valid is 1/2, so k iterations ensure k bits of security.

- For *k* bits of security:
 - 1. concatenate the hash value h with a counter c from 0 to k 1;
 - 2. initialize the counter as 0;
 - if the concatenated value x = c || h is a valid x-coordinate on the curve (i.e. x³ + ax + b is a square in F), return one of the two corresponding points; otherwise increment the counter and try again.
- Heuristically, the probability of a concatenated value being valid is 1/2, so k iterations ensure k bits of security.

- 1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
- 2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O(n^4)$.
- 3. Security is difficult to analyze.
 - image is difficult to describe;
 - \ast image size estimate is only heuristic (lpha q/k):
 - does not behave at all like a random oracle to the curve; easy distinguisher exists.

- 1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
- 2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O(n^4)$.
- 3. Security is difficult to analyze.
 - image is difficult to describe;
 image size estimate is only heuristic. (*m.g/k*);
 does not behave at all like a random oracle to the curve;

- 1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
- 2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O(n^4)$.
- 3. Security is difficult to analyze.
 - image is difficult to describe;
 - image size estimate is only heuristic ($\approx q/k$);
 - does not behave at all like a random oracle to the curve; easy distinguisher exists.

- 1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
- 2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O(n^4)$.
- 3. Security is difficult to analyze.
 - image is difficult to describe;
 - image size estimate is only heuristic ($\approx q/k$);
 - does not behave at all like a random oracle to the curve; easy distinguisher exists.

- 1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
- 2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O(n^4)$.
- 3. Security is difficult to analyze.
 - image is difficult to describe;
 - image size estimate is only heuristic (≈ q/k);
 - does not behave at all like a random oracle to the curve; easy distinguisher exists.

- 1. A natural implementation does not run in constant time: possible timing attacks (especially for PAKE).
- 2. A constant time implementation (always do k steps, compute the Legendre symbol in constant time) is very inefficient, $O(n^4)$.
- 3. Security is difficult to analyze.
 - image is difficult to describe;
 - image size estimate is only heuristic (≈ q/k);
 - does not behave at all like a random oracle to the curve; easy distinguisher exists.

Our contribution

Conclusion

Outline

Introduction

Elliptic curves Hashing to elliptic curves Deterministic hashing

Our contributions

Admissible encodings A general construction An efficient construction Side contributions

Conclusion

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use *supersingular* elliptic curves, of the form:

 $y^2 = x^3 + b$

over \mathbb{F}_q with $q \equiv 2 \pmod{3}$. Admit the following deterministic encoding:

$$f: u \mapsto \left(\left(u^2 - b \right)^{1/3}, u \right)$$

Solves the problem: efficient, constant-time, quasi-bijective and secure \blacktriangleright if *h* is a good hash function to \mathbb{F}_q , H(m) = f(h(m)) is well-behaved: has the properties of a RO to the curve if *h* is modeled as a RO to \mathbb{F}_q . The IBE scheme is secure for *H* in the ROM for *h*.

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use *supersingular* elliptic curves, of the form:

$$y^2 = x^3 + b$$

over \mathbb{F}_q with $q \equiv 2 \pmod{3}$. Admit the following deterministic encoding:

$$f: u \mapsto \left(\left(u^2 - b \right)^{1/3}, u \right)$$

Solves the problem: efficient, constant-time, quasi-bijective and secure \blacktriangleright if *h* is a good hash function to \mathbb{F}_q , H(m) = f(h(m)) is well-behaved: has the properties of a RO to the curve if *h* is modeled as a RO to \mathbb{F}_q . The IBE scheme is secure for *H* in the ROM for *h*.

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use *supersingular* elliptic curves, of the form:

$$y^2 = x^3 + b$$

over \mathbb{F}_q with $q \equiv 2 \pmod{3}$. Admit the following deterministic encoding:

$$f:u\mapsto \left((u^2-b)^{1/3},u\right)$$

Solves the problem: efficient, constant-time, quasi-bijective and secure \blacktriangleright if *h* is a good hash function to \mathbb{F}_q , H(m) = f(h(m)) is well-behaved: has the properties of a RO to the curve if *h* is modeled as a RO to \mathbb{F}_q . The IBE scheme is secure for *H* in the ROM for *h*.

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use *supersingular* elliptic curves, of the form:

$$y^2 = x^3 + b$$

over \mathbb{F}_q with $q \equiv 2 \pmod{3}$. Admit the following deterministic encoding:

$$f:u\mapsto \left((u^2-b)^{1/3},u\right)$$

Solves the problem: efficient, constant-time, quasi-bijective and secure \triangleright if *h* is a good hash function to \mathbb{F}_q , H(m) = f(h(m)) is well-behaved: has the properties of a RO to the curve if *h* is modeled as a RO to \mathbb{F}_q . The IBE scheme is secure for *H* in the ROM for *h*.

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use *supersingular* elliptic curves, of the form:

$$y^2 = x^3 + b$$

over \mathbb{F}_q with $q \equiv 2 \pmod{3}$. Admit the following deterministic encoding:

$$f:u\mapsto \left((u^2-b)^{1/3},u\right)$$

Solves the problem: efficient, constant-time, quasi-bijective and secure \blacktriangleright if *h* is a good hash function to \mathbb{F}_q , H(m) = f(h(m)) is well-behaved: has the properties of a RO to the curve if *h* is modeled as a RO to \mathbb{F}_q . The IBE scheme is secure for *H* in the ROM for *h*.

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use *supersingular* elliptic curves, of the form:

$$y^2 = x^3 + b$$

over \mathbb{F}_q with $q \equiv 2 \pmod{3}$. Admit the following deterministic encoding:

$$f:u\mapsto \left((u^2-b)^{1/3},u\right)$$

Solves the problem: efficient, constant-time, quasi-bijective and secure \blacktriangleright if *h* is a good hash function to \mathbb{F}_q , H(m) = f(h(m)) is well-behaved: has the properties of a RO to the curve if *h* is modeled as a RO to \mathbb{F}_q . The IBE scheme is secure for *H* in the ROM for *h*.

For their elliptic curve-based IBE scheme [BF01], Boneh and Franklin introduced the following hash function construction.

They use *supersingular* elliptic curves, of the form:

$$y^2 = x^3 + b$$

over \mathbb{F}_q with $q \equiv 2 \pmod{3}$. Admit the following deterministic encoding:

$$f:u\mapsto \left((u^2-b)^{1/3},u\right)$$

Solves the problem: efficient, constant-time, quasi-bijective and secure \blacktriangleright if *h* is a good hash function to \mathbb{F}_q , H(m) = f(h(m)) is well-behaved: has the properties of a RO to the curve if *h* is modeled as a RO to \mathbb{F}_q . The IBE scheme is secure for *H* in the ROM for *h*.

Last year at CRYPTO, lcart presented a construction for ordinary curves when $q \equiv 2 \pmod{3}$. Generalization of the supersingular case.

Defined as $f: u \mapsto (x, y)$ with

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3} \qquad y = ux + v \qquad v = \frac{3a - u^4}{6u}$$

Efficient, constant-time, and applies to almost all elliptic curves. However, image size is only $\approx 5/8$ of all points. The construction H(m) = f(h(m)) is easily distinguished from a RO to the curve even if h is modeled as a RO. \blacktriangleright Security?

Last year at CRYPTO, lcart presented a construction for ordinary curves when $q \equiv 2 \pmod{3}$. Generalization of the supersingular case.

Defined as $f: u \mapsto (x, y)$ with

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3} \qquad y = ux + v \qquad v = \frac{3a - u^4}{6u}$$

Efficient, constant-time, and applies to almost all elliptic curves. However, image size is only $\approx 5/8$ of all points. The construction H(m) = f(h(m)) is easily distinguished from a RO to the curve even if his modeled as a RO. \blacktriangleright Security?

Last year at CRYPTO, lcart presented a construction for ordinary curves when $q \equiv 2 \pmod{3}$. Generalization of the supersingular case.

Defined as $f: u \mapsto (x, y)$ with

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3} \qquad y = ux + v \qquad v = \frac{3a - u^4}{6u}$$

Efficient, constant-time, and applies to almost all elliptic curves. However, image size is only $\approx 5/8$ of all points. The construction H(m) = f(h(m)) is easily distinguished from a RO to the curve even if h is modeled as a RO. \blacktriangleright Security?

Last year at CRYPTO, lcart presented a construction for ordinary curves when $q \equiv 2 \pmod{3}$. Generalization of the supersingular case.

Defined as $f: u \mapsto (x, y)$ with

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3} \qquad y = ux + v \qquad v = \frac{3a - u^4}{6u}$$

Efficient, constant-time, and applies to almost all elliptic curves. *However*, image size is only $\approx 5/8$ of all points. The construction H(m) = f(h(m)) is easily distinguished from a RO to the curve even if h is modeled as a RO. \blacktriangleright Security?

Last year at CRYPTO, lcart presented a construction for ordinary curves when $q \equiv 2 \pmod{3}$. Generalization of the supersingular case.

Defined as $f: u \mapsto (x, y)$ with

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3} \qquad y = ux + v \qquad v = \frac{3a - u^4}{6u}$$

Efficient, constant-time, and applies to almost all elliptic curves. *However*, image size is only $\approx 5/8$ of all points. The construction H(m) = f(h(m)) is easily distinguished from a RO to the curve even if h is modeled as a RO. \blacktriangleright Security?
Ordinary curves: Icart

Last year at CRYPTO, lcart presented a construction for ordinary curves when $q \equiv 2 \pmod{3}$. Generalization of the supersingular case.

Defined as $f: u \mapsto (x, y)$ with

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3} \qquad y = ux + v \qquad v = \frac{3a - u^4}{6u}$$

Efficient, constant-time, and applies to almost all elliptic curves. *However*, image size is only $\approx 5/8$ of all points. The construction H(m) = f(h(m)) is easily distinguished from a RO to the curve even if h is modeled as a RO. \blacktriangleright Security?

Many more deterministic encodings to ordinary curves proposed recently, but with the same limitation.

Our contributions

Conclusion

Outline

Introduction

Elliptic curves Hashing to elliptic curves Deterministic hashing

Our contributions

Admissible encodings

A general construction An efficient construction Side contributions

Conclusion

Is it secure to use H(m) = f(h(m)) as a hash function to the curve?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions)
- In general: no, security breaks down (counterexample in the paper).
- Difficult to give a simple criterion for the security proof to go through.
- . Can we propose constructions that will work all the time instead?

Is it secure to use H(m) = f(h(m)) as a hash function to the curve?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).
- In general: no, security breaks down (counterexample in the paper).
- Difficult to give a simple criterion for the security proof to go through.
- Can we propose constructions that will work all the time instead?

Is it secure to use H(m) = f(h(m)) as a hash function to the curve?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).
- In general: no, security breaks down (counterexample in the paper).
- Difficult to give a simple criterion for the security proof to go through.
- Can we propose constructions that will work all the time instead?

Is it secure to use H(m) = f(h(m)) as a hash function to the curve?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).
- In general: no, security breaks down (counterexample in the paper).
- Difficult to give a simple criterion for the security proof to go through.
- Can we propose constructions that will work all the time instead?

Is it secure to use H(m) = f(h(m)) as a hash function to the curve?

- For a number of pairing-based schemes: yes (related to random self-reducibility properties of the underlying security assumptions).
- In general: no, security breaks down (counterexample in the paper).
- Difficult to give a simple criterion for the security proof to go through.
- Can we propose constructions that will work all the time instead?

Indifferentiability

High-level formulation of our problem: find a condition under which an ideal primitive (the RO to the curve) can be replaced by a construction based on another ideal primitive (a RO to \mathbb{F}_q) so that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the construction is indifferentiable from the primitive if no PPT adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function construction to work?

Conclusion

Indifferentiability

High-level formulation of our problem: find a condition under which an ideal primitive (the RO to the curve) can be replaced by a construction based on another ideal primitive (a RO to \mathbb{F}_q) so that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the construction is indifferentiable from the primitive if no PPT adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function construction to work?

Conclusion

Indifferentiability

High-level formulation of our problem: find a condition under which an ideal primitive (the RO to the curve) can be replaced by a construction based on another ideal primitive (a RO to \mathbb{F}_q) so that all security proof are preserved.

Answer: indifferentiability (Maurer et al., 2004). Roughly speaking, the construction is indifferentiable from the primitive if no PPT adversary can tell them apart with non-negligible probability.

But this is a bit abstract. Easy to test criterion for a hash function construction to work?

We consider hash function constructions of the form:

H(m)=F(h(m))

where *h* is modeled as a RO to a some set *S* (easy to hash to) and *F* is a deterministic function $S \to E(\mathbb{F}_q)$.

We prove that H is indifferentiable from a RO to $E(\mathbb{F}_q)$ as soon as the function F is admissible in the following sense:

Computable in deterministic polynomial time;

- Regular for s uniformly distributed in S, the distribution of F(s) is statistically indistinguishable from the uniform distribution in $E(\mathbb{F}_q)$;
- there is a PPT algorithm which for any $\infty \in E(\mathbb{F}_q)$ returns an uniformly distributed element. In $F^{-1}(\infty)$.

We consider hash function constructions of the form:

H(m) = F(h(m))

where *h* is modeled as a RO to a some set *S* (easy to hash to) and *F* is a deterministic function $S \to E(\mathbb{F}_q)$.

We prove that *H* is indifferentiable from a RO to $E(\mathbb{F}_q)$ as soon as the function *F* is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for *s* uniformly distributed in *S*, the distribution of F(s) is statistically indistinguishable from the uniform distribution in $E(\mathbb{F}_q)$;

Samplable there is a PPT algorithm which for any $\varpi \in E(\mathbb{F}_q)$ returns an uniformly distributed element in $F^{-1}(\varpi)$.

We consider hash function constructions of the form:

H(m) = F(h(m))

where *h* is modeled as a RO to a some set *S* (easy to hash to) and *F* is a deterministic function $S \to E(\mathbb{F}_q)$.

We prove that *H* is indifferentiable from a RO to $E(\mathbb{F}_q)$ as soon as the function *F* is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for *s* uniformly distributed in *S*, the distribution of F(s) is statistically indistinguishable from the uniform distribution in $E(\mathbb{F}_q)$;

Samplable there is a PPT algorithm which for any $\varpi \in E(\mathbb{F}_q)$ returns an uniformly distributed element in $F^{-1}(\varpi)$.

We consider hash function constructions of the form:

H(m) = F(h(m))

where *h* is modeled as a RO to a some set *S* (easy to hash to) and *F* is a deterministic function $S \to E(\mathbb{F}_q)$.

We prove that *H* is indifferentiable from a RO to $E(\mathbb{F}_q)$ as soon as the function *F* is admissible in the following sense:

Computable in deterministic polynomial time;

Regular for *s* uniformly distributed in *S*, the distribution of F(s) is statistically indistinguishable from the uniform distribution in $E(\mathbb{F}_q)$;

Samplable there is a PPT algorithm which for any $\varpi \in E(\mathbb{F}_q)$ returns an uniformly distributed element in $F^{-1}(\varpi)$.

Remarks

- We can quantify precisely the "loss" in random oracle security when instantiating *H* in this manner (in terms of the statistical distance between *F*(*s*) and uniform, and the running time of the sampling algorithm).
- Icart's function is *not* admissible: computable and samplable, but not regular.
- A construction like $H(m) = h(m) \cdot G$, with G a generator, is *not* admissible: computable and regular but not samplable. Bad idea: leaks the discrete logarithm of the digest!

Remarks

- We can quantify precisely the "loss" in random oracle security when instantiating *H* in this manner (in terms of the statistical distance between *F*(*s*) and uniform, and the running time of the sampling algorithm).
- Icart's function is *not* admissible: computable and samplable, but not regular.
- A construction like $H(m) = h(m) \cdot G$, with G a generator, is *not* admissible: computable and regular but not samplable. Bad idea: leaks the discrete logarithm of the digest!

Remarks

- We can quantify precisely the "loss" in random oracle security when instantiating *H* in this manner (in terms of the statistical distance between *F*(*s*) and uniform, and the running time of the sampling algorithm).
- Icart's function is *not* admissible: computable and samplable, but not regular.
- A construction like $H(m) = h(m) \cdot G$, with G a generator, is not admissible: computable and regular but not samplable. Bad idea: leaks the discrete logarithm of the digest!

Our contributions

Conclusion

Outline

Introduction

Elliptic curves Hashing to elliptic curves Deterministic hashing

Our contributions

Admissible encodings

A general construction

An efficient construction Side contributions

Conclusion

E ordinary elliptic curve over \mathbb{F}_q , *G* generator of $E(\mathbb{F}_q)$ (assumed cyclic of cardinality *N*) and $f:\mathbb{F}_q \to E(\mathbb{F}_q)$ deterministic encoding like lcart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_q \times \mathbb{Z}/N\mathbb{Z} \to E(\mathbb{F}_q)$:

 $F(u,v)=f(u)+v\cdot G$

Thus, $H(m) = f(h_1(m)) + h_2(m) \cdot G$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Works for any deterministic encoding. Extends to the case when $E(\mathbb{F}_q)$ is not cyclic in an obvious way.

Downside: quite inefficient (≈ 10 times slower than lcart's function alone).

E ordinary elliptic curve over \mathbb{F}_q , *G* generator of $E(\mathbb{F}_q)$ (assumed cyclic of cardinality *N*) and $f:\mathbb{F}_q \to E(\mathbb{F}_q)$ deterministic encoding like lcart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_q \times \mathbb{Z}/N\mathbb{Z} \to E(\mathbb{F}_q)$:

 $F(u,v)=f(u)+v\cdot G$

Thus, $H(m) = f(h_1(m)) + h_2(m) \cdot G$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Works for any deterministic encoding. Extends to the case when $E(\mathbb{F}_q)$ is not cyclic in an obvious way.

Downside: quite inefficient (\approx 10 times slower than lcart's function alone).

E ordinary elliptic curve over \mathbb{F}_q , *G* generator of $E(\mathbb{F}_q)$ (assumed cyclic of cardinality *N*) and $f:\mathbb{F}_q \to E(\mathbb{F}_q)$ deterministic encoding like lcart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_q \times \mathbb{Z}/N\mathbb{Z} \to E(\mathbb{F}_q)$:

 $F(u,v)=f(u)+v\cdot G$

Thus, $H(m) = f(h_1(m)) + h_2(m) \cdot G$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Works for any deterministic encoding. Extends to the case when $E(\mathbb{F}_q)$ is not cyclic in an obvious way.

Downside: quite inefficient (\approx 10 times slower than lcart's function alone).

E ordinary elliptic curve over \mathbb{F}_q , *G* generator of $E(\mathbb{F}_q)$ (assumed cyclic of cardinality *N*) and $f:\mathbb{F}_q \to E(\mathbb{F}_q)$ deterministic encoding like lcart's function.

Under mild assumptions on f (verified for all deterministic encodings proposed so far), the following is an admissible function $\mathbb{F}_q \times \mathbb{Z}/N\mathbb{Z} \to E(\mathbb{F}_q)$:

 $F(u,v)=f(u)+v\cdot G$

Thus, $H(m) = f(h_1(m)) + h_2(m) \cdot G$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Works for any deterministic encoding. Extends to the case when $E(\mathbb{F}_q)$ is not cyclic in an obvious way.

Downside: quite inefficient (\approx 10 times slower than lcart's function alone).

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in $\mathbb{Z}/N\mathbb{Z}$ it is clear that $f(u) + v \cdot G$ is uniformly distributed in $E(\mathbb{F}_q)$, regardless of the behavior of f.

Samplable To sample $F^{-1}(\varpi)$, pick a random $v \in \mathbb{Z}/N\mathbb{Z}$ and solve the algebraic equation $f(u) = \varpi - v \cdot G$ for u. For lcart, there are at most 4 solutions, easy to enumerate. Return (u, v) for one of those solutions u at random, or try again if there are none.

Proof sketch

The function F is:

Computable Clearly.

Regular With v uniformly distributed in $\mathbb{Z}/N\mathbb{Z}$ it is clear that $f(u) + v \cdot G$ is uniformly distributed in $E(\mathbb{F}_q)$, regardless of the behavior of f.

Samplable To sample $F^{-1}(\varpi)$, pick a random $v \in \mathbb{Z}/N\mathbb{Z}$ and solve the algebraic equation $f(u) = \varpi - v \cdot G$ for u. For lcart, there are at most 4 solutions, easy to enumerate. Return (u, v) for one of those solutions u at random, or try again if there are none.

Proof sketch

The function F is:

Computable Clearly.

- Regular With v uniformly distributed in $\mathbb{Z}/N\mathbb{Z}$ it is clear that $f(u) + v \cdot G$ is uniformly distributed in $E(\mathbb{F}_q)$, regardless of the behavior of f.
- Samplable To sample $F^{-1}(\varpi)$, pick a random $v \in \mathbb{Z}/N\mathbb{Z}$ and solve the algebraic equation $f(u) = \varpi - v \cdot G$ for u. For lcart, there are at most 4 solutions, easy to enumerate. Return (u, v) for one of those solutions u at random, or try again if there are none.

Our contributions

Outline

Introduction

Elliptic curves Hashing to elliptic curves Deterministic hashing

Our contributions

Admissible encodings A general construction **An efficient construction** Side contributions

Conclusion

A much more efficient construction of an admissible encoding is as follows:

$$F(u,v) = f(u) + f(v)$$

where f is lcart's function.

Thus, $H(m) = f(h_1(m)) + f(h_2(m))$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to lcart's function, not other deterministic encodings.

A much more efficient construction of an admissible encoding is as follows:

$$F(u,v) = f(u) + f(v)$$

where f is lcart's function.

Thus, $H(m) = f(h_1(m)) + f(h_2(m))$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to lcart's function, not other deterministic encodings.

A much more efficient construction of an admissible encoding is as follows:

$$F(u,v) = f(u) + f(v)$$

where f is lcart's function.

Thus, $H(m) = f(h_1(m)) + f(h_2(m))$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to lcart's function, not other deterministic encodings.

A much more efficient construction of an admissible encoding is as follows:

$$F(u,v) = f(u) + f(v)$$

where f is lcart's function.

Thus, $H(m) = f(h_1(m)) + f(h_2(m))$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to lcart's function, not other deterministic encodings.

A much more efficient construction of an admissible encoding is as follows:

$$F(u,v) = f(u) + f(v)$$

where f is lcart's function.

Thus, $H(m) = f(h_1(m)) + f(h_2(m))$ is indifferentiable from a RO, in the ROM for h_1, h_2 .

Only requires two evaluations of Icart's function, so quite efficient. No restriction on the curve.

Downside: the proof is significantly more difficult, and only applies to lcart's function, not other deterministic encodings.

We want to show that the number of solutions $(u, v) \in (\mathbb{F}_q)^2$ to the equation $f(u) + f(v) = \varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q + O(\sqrt{q})$ points. QED.

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms $h: C \to E$ and $\rho: C \to \mathbb{P}^1$ such that $f = h \circ \rho^{-1}$.
- Show that $s: C \times C \rightarrow E$ is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on C × C. Compute its genus (it's 49).
- Justify that we can ignore what happens at infinity (intersection theory on CovC), and push everything down to $(\mathbb{F}_g)^2$.

We want to show that the number of solutions $(u, v) \in (\mathbb{F}_q)^2$ to the equation $f(u) + f(v) = \varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q + O(\sqrt{q})$ points. QED.

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms h: C → E and p: C → P¹ such that f = h ∘ p⁻¹.
- Show that s: C × C → E is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on C × C. Compute its genus (it's 49).
- Justify that we can ignore what happens at infinity (intersection theory on Cot(C), and push everything down to $(\mathbb{F}_{q})^{2}$.

We want to show that the number of solutions $(u, v) \in (\mathbb{F}_q)^2$ to the equation $f(u) + f(v) = \varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q + O(\sqrt{q})$ points. QED.

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms h: C → E and p: C → P¹ such that f = h ∘ p⁻¹.
- Show that s: C × C → E is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on $C \times C$. Compute its genus (it's 49).
- Justify that we can ignore what happens at infinity (intersection theory on $C \times C$), and push everything down to $(\mathbb{F}_q)^2$.

We want to show that the number of solutions $(u, v) \in (\mathbb{F}_q)^2$ to the equation $f(u) + f(v) = \varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q + O(\sqrt{q})$ points. QED.

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms h: C → E and p: C → P¹ such that f = h ∘ p⁻¹.
- Show that s: C × C → E is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on *C* × *C*. Compute its genus (it's 49).
- Justify that we can ignore what happens at infinity (intersection theory on $C \times C$), and push everything down to $(\mathbb{F}_q)^2$.

We want to show that the number of solutions $(u, v) \in (\mathbb{F}_q)^2$ to the equation $f(u) + f(v) = \varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q + O(\sqrt{q})$ points. QED.

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms h: C → E and p: C → P¹ such that f = h ∘ p⁻¹.
- Show that s: C × C → E is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on $C \times C$. Compute its genus (it's 49).
- Justify that we can ignore what happens at infinity (intersection theory on $C \times C$), and push everything down to $(\mathbb{F}_q)^2$.
Proof idea

We want to show that the number of solutions $(u, v) \in (\mathbb{F}_q)^2$ to the equation $f(u) + f(v) = \varpi$ is constant up to negligible deviations when ϖ varies along the curve (possibly with a few exceptions).

Key idea: the set of solutions (u, v) forms a curve in the plane. The Hasse-Weil bound ensures that such a curve always has $q + O(\sqrt{q})$ points. QED.

Technical difficulties:

- Icart's function f is not a morphism, only an algebraic correspondance. The correct geometric pictures involves a curve C with morphisms h: C → E and p: C → P¹ such that f = h ∘ p⁻¹.
- Show that s: C × C → E is geometrically "nice", except at a few exceptional points (to be found and dealt with).
- Show that the preimage of "nice" points is indeed an irreducible curve on $C \times C$. Compute its genus (it's 49).
- Justify that we can ignore what happens at infinity (intersection theory on $C \times C$), and push everything down to $(\mathbb{F}_q)^2$.

Our contributions

Conclusion

Outline

Introduction

Elliptic curves Hashing to elliptic curves Deterministic hashing

Our contributions

Admissible encodings A general construction An efficient construction Side contributions

Conclusion

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3.

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3.

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3.

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3.

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3.

Extensions of our construction:

- hashing to a subgroup;
- extension to even characteristic;
- using a bit-string-valued hash function as the basis;
- formal results on the composition of admissible encodings, etc.

- simpler, more efficient variant of the Shallue-Woestijne-Ulas encoding;
- deterministic encodings to curves of characteristic 3.

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct injective encodings to ordinary curves?
- Understand how the possibility of encoding scalars as curve points affects elliptic curve-based protocols?

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct injective encodings to ordinary curves?
- Understand how the possibility of encoding scalars as curve points affects elliptic curve-based protocols?

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct injective encodings to ordinary curves?
- Understand how the possibility of encoding scalars as curve points affects elliptic curve-based protocols?

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct injective encodings to ordinary curves?
- Understand how the possibility of encoding scalars as curve points affects elliptic curve-based protocols?

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct *injective encodings* to ordinary curves?
- Understand how the possibility of encoding scalars as curve points affects elliptic curve-based protocols?

- Consider the instantiations of random oracles in elliptic curve-based cryptosystems;
- Suggest a framework for constructing well-behaved hash functions to ordinary elliptic curves;
- Propose two such constructions, one more general, the other more efficient.

- Extend the efficient construction to any deterministic encoding to elliptic and hyperelliptic curves (done!)
- Construct *injective encodings* to ordinary curves?
- Understand how the possibility of encoding scalars as curve points affects elliptic curve-based protocols?

Introductio	1
0000	
000	

Our contribution

Conclusion

Thank you!