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Abstract

Tt is well known that the quadratic Wasserstein distance Wa(+, -) is formally
equivalent, for infinitesimally small perturbations, to some weighted H~! ho-
mogeneous Sobolev norm. In this article I show that this equivalence can be
integrated to get non-asymptotic comparison results between these distances.
Then I give an application of these results to prove that the W5 distance exhibits
some localisation phenomenon: if 4 and v are measures on R” and ¢: R™ — R4
is some bump function with compact support, then under mild hypotheses, you
can bound above the Wasserstein distance between ¢ -y and ¢ - v by an explicit
multiple of Wa(u, v).
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Foreword

This article is divided into two sections, each of which having its own introduction.
§ 1 deals with general results of comparison between Wasserstein distance and ho-
mogeneous Sobolev norm, while § 2 handles an application to localisation of Wy
distance.

1 Non-asymptotic equivalence between I/, distance and
H~! norm

1.1 Introduction

In all this section, M denotes a connected Riemannian manifold endowed with its
distance dist(-,-) and its Lebesgue measure \. Let us give a few standard definitions
which will be at the core of our work:

e For p, v two positive measures on M, denoting by II(u, ) the set of (positive)
measures on M x M whose respective marginals are p and v, for m € II(u, v)
one defines

I(m) = /MXM dist(z,y)?n(dz, dy) (1)

and then
Wa(p, v) = inf{I(x) | 7 € I(p, v)}/2. (2)
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W5 is a (possibly infinite) distance, called the quadratic Wasserstein distance
[Villani, 2003, § 7.1]. Note that this distance is finite only between measures
having the same total mass.

e On the other hand, for x a (positive) measure on M, if f is a C' real function
on M, one denotes

1/2
M

i = ([ V5@ duta) 3

which defines a semi-norm; for v a signed measure on M, one then denotes
W01y = s |1 s < 1, (1)

which defines a (possibly infinite) norm, which we will call the H~! (1) weighted
homogeneous Sobolev norm. Note that this norm is finite only for measures
having zero total mass. In the case p is the Lebesgue measure, we will merely
write “H 1 for “H~1(\)".

The Wy Wasserstein distance is an important object in analysis; but it is non-
linear, which makes it harder to study. For infinitesimal perturbations however, the
linearised behaviour of W is well known: if i is a positive measure on M and dy is an
infinitesimally small perturbation of this measure,*! one has formally (see [Villani,
2003, § 7.6] or |Otto and Villani, 2000, § 7])

Wap, 1+ dp) = dull -,y + o(d). (5)

More precisely, one has the following equality, known as the Benamou—Brenier for-
mula [Benamou and Brenier, 2000, Prop. 1.1]: for two positive measures p,v on
M,

1
Walge,v) = inf{ [ sy | 0= = v} (6)

Then, a natural question is the following: are there non-asymptotic comparisons be-
tween the W distance and the H ! norm? Concretely, we are looking for inequalities
like

Callit = vl 1y < Walits ) < Collit = vl g1 (7)

for constants 0 < C, < Cp < oo, under mild assumptions on g and v.

1.2 Controlling W, by H*
Theorem 1. For any positive measures u,v on M,
Wa(, ) < 20l = vl -1 (®)

Proof. We suppose that || —v|| f-1() < 00, otherwise there is nothing to prove. For
te0,1], let
pe = (1 —t)p + tv, 9)

so that po = p, pp = v and duy = (u—v)dt. Then, by the Benamou—Brenier formula
(6):

1
Walgu) < [ =l st (10)

Now, we use the following key lemma, whose proof is postponed:

[“IBeware that here dp denotes a small measure on M, not the value of p on a small area.
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Lemma 2. If p,p/ are two measures such that u' > pu for some p > 0, then
[+l =1y < P_1/2H‘||H71(#)-[ﬂ
Here obviously p; > (1 —t)u, so

1
Wa(u,v) < /0 L= u— vl g dt =2l = vl (A1)

QED. ]

Corollary 3. If u > p\ for some p > 0, then

Wa(p,v) < 2p7 2|l = vl - (12)

—-1/2

Proof. Just use that H‘”Hﬂ(u) < p~ /2|l -1 by Lemma 2. O

Proof of Lemma 2. Take i/ > pp and let v be a signed measure on M such that
i+ v is positive; then u' + pr is also positive. For m a measure on M, we denote by
diag(m) the measure on M x M supported by the diagonal whose marginals (which
are equal) are m, i.e.:

(diag(m))(A x B) := m(AN B); (13)
with that notation,
m € My, p+v) = pr + diag(y' — pp) € (W', p’ + pv), (14)
and
I(pm + diag(1' — pp)) = pI (7). (15)

Therefore, taking infima,

Wa(p', 1’ + pv)® = inf{I(a") | 7 € T(u', i + pr)}
< inf{I(pr + diag(p' — pp)) ‘ Tel(p,p+v)}
= pinf{I(x) | m € T(p, p+v)} = pWa(p,v)>. (16)

For infinitesimally small v, it follows by Equation (5) that Hpqu,l(m < p|]1/||12q,1(“),

hence HVHH*(M’) < p_l/QHVHH*l(M)' This relation remains true even for non-
infinitesimal v by linearity, which ends the proof. O

Remark 4. Lemma 2 could also be proved very quickly by using the definition (3)-(4)
of the H~'(x1) norm. The proof above, however, has the advantage that it does not
need the precise expression of ||-|[;-1(,, but only the fact that it is the linearised
W5 distance.

[{1Beware that here ‘-’ stands for a measure, not for a function: otherwise the formula would be
false.—When f is a function, [|f|| -1, stands for the H ~!(u) norm of the measure having density

f wrt. p.
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1.3 Controlling H~! by W,

Theorem 5. Assume M has nonnegative Ricci curvature. Then for any positive
measures (v on M such that p < poA and v < p1A,

2p5* — 1"*)

[ — vl < WWQ(M’ v). (17)

(For p1 = po, the right-hand side of (17) is to be taken as p(l)/QWg(u, v) by continuity).

Remark 6. For M = R"™ a similar result was already stated in [Loeper, 2006, Propo-
sition 2.8|, with a different proof.

Proof. Let (ut)o<t<1 be the displacement interpolation between p and v (cf. [Vil-
lani, 2009, chap. 7]), which is such that gy = p, p1 = v and the infimum in (6) is
attained with ”d“tHH—l(ut) = Wa(u,v)dt Vt. Since Ricci curvature is nonnegative,
the Lott-Sturm—Villani theory tells us that, denoting by ||u||,, the essential supre-

mum of the density of p w.r.t. A, one has ||p,, < ||u0||(1>;tH/11Ht = pg "ol (see

[Villani, 2009, Corollary 17.19] or [Cordero-Erausquin et al., 2001, Lemma 6.1]); so
1—t)/2 t2

that ||| ;-1 < pé ) / 1l =1 1) by Lemma 2.

Then, by the mtegral triangle inequality for normed vector spaces,

1 1
=l = | | ], < [ el

1 1
</0 oy " t/QHdutHH = (/0 p(()lit)/2pi/2dt)W2(M7V)
2(p5/> — p/?)
= —W ’I/ 5 18
(o /oy 2 (18)
QED. ]

Remark 7. Taking into account the dimension n of the manifold M, the bound on
|| 4t ]| o could be refined into

liaellao < (1 =)ol ™ + tllpall ™), (19)
which would yield a slightly sharper bound in Equation (17), namely:

1
e = Vil -1 < (/0 (1 =t)p " +tpy ") n/2dt)W2(u,V)

p1/271/n 1/271/71,
o ——Wa(u,v) n>2;
_ Ve el ) n=2

In(p1/po) —
2('031/2_'0171/2)VVZ(,ua v) n=2.
For n = 1 it turns out that one can let tend p; — oo in (20) without making the
integral diverge; which leads to a much more powerful result:

(20)

Theorem 8. When M 1is an interval of R, then under the sole assumption that p <
poA, one has for all positive measures v on M :

1/2
i = vll g1 < 208/ *Wap, v). (21)

Remark 9. For n > 2 there is no hope to get a bound valid for all v, because then it
can occur that Wo(u,v) < oo but ||u — v| ;-1 = oo: for instance, take u to be the
uniform measure on the 2-dimensional sphere and v a Dirac mass.
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2 Application to localisation of Wasserstein distance

2.1 Introduction

In all this section, we work in the Euclidian space R", whose norm is denoted by |-|.
dist(x, A) == inf{|x — y| | y € A} denotes the distance between a point x and a set
A; A° denotes the complement of A; A denotes the Lebesgue measure. We will use
the following notation to handle measures:

e For p a measure on R™ and f: R™ — R" a measurable map, f . u denotes the

pushforward of p by f, that is, (f X u)(A) = u(f~1(4)).

e For p1 a measure on R" and ¢: R™ — R a nonnegative measurable function,
¢ - v denotes the measure such that d(¢ - p)(z) = @(z)du(z).

We will also use the following norms on measures:

o ”NHH—l(V) has the same definition as in § 1;

o [|pll; = [gnldu(z)| is the total variation norm of Te

e For v a positive measure with y < v, we define

iz = ( | upw(;“;@))zdm)l/z. 22)

For A C R", we also denote ||-|| 124 for [|+[[ 12(1,.0)-

The goal of this section is to give an application of Theorem 1 to the problem
of localisation of the quadratic Wasserstein distance. Morally, the question is the
following: take two measures i, v on R™ being close to each other in the sense of Wy
distance; is it true that p and v remain close when you consider their restrictions to
a subset of R"™? Concretely, if ¢ is a non-negative real function on R™ with compact
support (plus some technical assumptions to be specified later), we want to bound
above Wa(ay- p, p-v) by some multiple of W (p, v)—where, in the former expression,
a is a constant factor ensuring that ay-p and ¢ - v have the same mass (for otherwise
the distance between ¢ - 1 and ¢ - v is generically infinite).

This question, which was my initial motivation for the results of § 1, was asked
to me by Xavier ToLSA, who needed such a result for his paper |Tolsa, 2012 on
characterizing uniform rectifiability in terms of mass transport. Actually Xavier
managed to devise a proof of his own [Tolsa, 2012, Theorem 1.1], but it was quite
long (about thirty pages) and involved arguments of multi-scale analysis. With
Theorem 1 at hand, however, the reasoning becomes far more direct; moreover we
will be able to relax some of the assumptions of Xavier’s theorem.

2.2 Statement of the theorem

Theorem 10. Let p, v be (positive) measures on R™ having the same total mass; let
B be a ball of R"™ (whose radius will be denoted by R when needed). Assume that on
B, the density of u w.r.t. the Lebesgue measure is bounded above and below:

J0<mi<my<oo VreB miA(dz) < du(x) < mo(dx). (23)

Let p: R™ — R be a function such that:

[{INote that in the case p is a positive measure on R™, then ||y, is noting but u(R™).
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(i) ¢ is zero outside B;

(i) There exist 0 < ¢ < ca < o0 such that for all x € B, ¢ dist(x, B)? < ¢(x) <
¢ dist(z, B€)2.

(i1i) @ is k-Lipschitz for some k < oo.
Then, denoting a = - v, /llp - sl

3/2 3/2
Cy My

Walap - p, - v) SZ(7(n)‘§7§“§z§kcfl/2vvé(ﬂaV)a (24)
¢y “my

for C(n) < oo some absolute constant only depending on n. Moreover, one can bound
explicitly C(n) in such a way that C(n) = O(n/?) when n — c0.!

Remark 11. Actually the constraint that the support of ¢ is a ball is of little impor-
tance: we could assume as well that it would be a cube, a simplex, or many other
shapes, as the corollary below shows:

Corollary 12. Make the same assumptions as in Theorem 10, except that B need not
be a ball: instead, we only assume that, denoting by B, the (true) ball having the
same volume as B, there exists a bijection ®: B <> B, mapping the uniform measure
on B onto the uniform measure on B, (i.e. such that ® . (1p-\) = 1p,-\) such that
® is bi-Lipschitz (i.e. such that both ® and @' are Lipschitz). Denote by @] ;, and
H<I>*1||Lip the optimal Lipschitz constants for resp. ® and ®~1. Then, the conclusion
of Theorem 10 remains true, except that now you have to replace the factor C(n) by

(Pl £ 127 ] £3p)>C (7). (25)

Proof. Consider the measures p, = ® , p and v, = @ , v, and the bump function
Yo = @o CIJ_l; then, uo, v and ¢, satisfy the original assumptions of Theorem 10,
the roles of ‘m;’ and ‘mg’ (in the ball situation) being held by m; and ms (in the
general situation) themselves, the role of ‘k” being held by || @~ Liph and the roles

of ‘c;” and ‘co’ being held by ¢; / H@H%ip and C2||(I)_1H2Lz‘p' Therefore, applying (24):

3/2 3/2

4 —14 G M
Walago - oo 1) < )[4, |97 14, 22 Wolapo.ve). (26)

€1 My
But the optimal transportation plan from au to v, with cost Wa(u,v)?, can be
pushed forward by ® into a (not optimal in general) transportation plan from ap, to
Vs, whose cost will then be < ||<I>H%Z-pW2(u, v)?%; so Wa(apo, vo) < @] 1, Wa(ap, v).
Similarly Wa(ap - u, ¢ - v) < ||(I>_1HLZ-pW2(ag00 “ foy Yo * Vo). The announced result
follows. O

2.3 Proof of the main theorem

In the sequel we will shorthand W (u,v) = w, and also ¢ - u =: fi, resp. p - v = D.
Let ¢ = Id + S be a map achieving optimal transportation from v to u, i.e. such
that p = ¢ . v with fRn|S(y)|2dy(y) = w2 1

(81For instance, with the estimates of this article, one finds that C (n) = 47n/? fits—though this
may be strongly suboptimal.

H”Actually such an g does not always exist, as it can occur that the optimal transportation plan
from v to p “splits points” if v is not regular enough. However it would suffice to use the general
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Our strategy will consist in transforming © into aji according to the following
procedure:

@® We apply the transportation plan g to ©; this transforms 7 into some measure
ft*. The measure /1* is not supported by B a priori, so we split it into i +/% =
1 4" 4+ 1pc - ii*.

@ Denoting ac := ||&|l; / ||]];, we then transform i} into acft according to an
arbitrary transference plan.

® Finally, denoting ap = ||}, / litll,,[! we transform fi% into apji according
to the optimal transference plan: the cost of this operation is Wa(ii};, apft),
which we bound above by 2|4} — aBﬂHH_l(aBﬂ) thanks to Theorem 1.

Then, denoting by Wa(®), Wa(®@), W2(®) the respective Wasserstein distances of
these steps, we shall have Wa (7, afi) < Wa(®) 4+ (Wo (@)% + Wo(®)2)1/2.

Let us begin with bounding the cost of Step ®. The squared cost of this step is
W@ = [150)drw) = (IS0 Pewinw
< sup p X /|S(y)|2d1/(y) =supp x w? < R*w?, (27)

whence Ws(®) < c§/2Rw.

Now consider Step @. As acji is supported by B, one has obviously

Wy (@)? < / (dist(z, B) + 2R)djit (x) = / (dist(z, B) + 2R)*dji* (z).  (28)

From that we deduce that W5(®@) < 20;/ Rw by the following computation:

/ (dist(z,B) + 2R)2dﬂ*(x) = / (dist(g(y), B) + 2R)2<,0(y)du(y)
© (v)¢B

9
< e Ve B (dist(g(y), B) + 2R)2 dist(y, BS)*dv(y)
(R dist(g(y), B) + 2R dist(y, B))*dv(y)
< 4cR? /yeB (dist(g(y), B) + dist(y, Bc))zdy(y)

<tealt? [ly = gl)Pvly) = teaPu. (29

formalism of transportation plans to handle that case: we do not do it here to keep notation light,
but this is straightforward. Also note that it is not obvious that the infimum in (2) is attained:
again, that is not a real problem as our proof still works by considering a sequence of transportation
plans approaching optimality.

INObserve that aB + ac = a.
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Step @ is the difficult one. We begin with observing that it is easy to bound the
L?(B) distance between fip and fi: indeed, denoting by f =: Id + T the inverse map
of g[**]’

1*(x) — p(x z)\ >
s = il = [ (P LD

_ /B (P(f(2)) — p()) *dp(z)
< kZ/n\ﬂf — f@)[*du(z) = kQ/’T(x)IQdﬂ(w) = K’ (30)

(Khere we used that di*(z) = do(f(z)) = ¢(f(x))dv(f(z)) = @(f(x))du(z)), so
that
i — All72(m) < Kmow?. (31)

Now we have to link ||-|| 25y With |[-|[;7-1(,. This is achieved by the following
lemma, whose proof is postponed:

Lemma 13. Define A to be the measure on B such that \(dz) = dist(z, B®)2\(dz).
Then, for any signed measure m on B having total mass zero:

Ill s sy < Com)2lml 2, (32)

where C1(n) is some absolute constant only depending on n. Moreover, taking
Ci(n) = ((2e + 1)n — 1) V 8e fits.

Thanks to Theorem 1 and Lemma 13, we have that

W2(®) < 2llapf — (5 g1y < 20asermn) ™ Pllasi— il 5,
< 2C1(n)"*(apermy) ™ |lapfi — i) 2 (). (33)

Next, we compute

lasi = lzem) = || i — b)), < EEE A 2y + i — il 2
||M|| 2 N N N 4l 2 N N
< ||j||(B) 2B = ally + 145 — ,UJHLQ(B) < ( HﬁH(B) )‘<B)1/2 + 1) 145 — N”LQ(B)

cm A, crm

A(B)2A N -
< (2 L0 1) | ih - il sy < S (Voezmz + 1) 0% — fll L2(p)

< (Vo + 1) 2m2kmy 2w, (34)
(31) !

so that, combining (33) and (34), we have got:

3/2
_1/92Com k
Wa(®) < (2V6 + 2)C1(n)' 20,22 TERRYE a2Y

(35)

*IFor f to exist, g should be bijective, which is not always true stricto sensu; but we can safely
carry out the reasoning with pretending so, by the same argument as in Footnote [§] on page 6.
[f1This step comes from the computation A(B)1/2\|A||L2(B) /A, = (fol rldr) 2 x

(@ =r)t=tdr) 2/ (f1 (= )2 ldr) = (6(1+n)(2+n) / B+ n)(4+n))"? < V6 Vn.
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Equation (35) is the kind of bound we were looking for, provided ap < 1. Though
this will be the case in practice (since we are mainly interested in cases where v is
close to p and thus f* is close to fi), this is not quite satisfactory yet. So, what
can we do when ap < 1, that is, when ||a}5]]; < ||2]|;? In fact that case is easier,
because transportation between small measures has low cost, while w has to be large
to make fi very different from fi.

The computations are the following. First, it is obvious that

Wa(®) = Wa(fi, apit) < 2Rl (36)

Next, observing that ¢(f(z)) = tLe(z) — 2¢1 dist(x, BY)|T(z)|,#] we compute that

il = [ etr@)in@) > [ (2o -2 dz‘st<x,3c>rT<x>r)du<x>

> il - 261 disto BPauta)) ([ @) Pt
= < ||ll, — 2¢1||dist(-, BY)? - —2 /A1/2 38
|l — 26| dist(-, B)? - plly*w > 2 ally — 2ermy Al 2w, (38)
whence
SRR I nx (S ~ 1/2
5 &l a5 ]h). :(02 5). ”“”» (e o) I 6
So,
Sk 1/2 _ 1/2 1/2 1/2mQ/2 a,lg/g
W2(®) < 2R||apl,"" = 2Rag”||Al,"" < 4Rc U ey (40)
1 o

In the end, Choosmg either (35) if ap > ¢1 / 2¢o or (40) if ¢ / 2¢2, and observing
that ¢; < kR™!, one has always:

3/2,3/2
Wa(®) < ((4v3 +2v2)Ci(n )1/2v4f)% el O (41)

Remark 14. To bound W3(®) in the situation where ap < 1, we could also
have started from “o(f(z)) > ¢(z) — k|T'(2)[” (instead of “p(f(z)) > Zop(z) —
2¢y dist(xz, B€)|T(x)|”) to get another bound analogous to (38). Following such an
approach, the factor (cz / ¢1)%/? in (40) would be improved into (cz / ¢;) in the anal-
ogous formula; however the dimensional factor would behave in O(n) rather than in

O(n'/?).

2.4 Proof of Lemma 13

It still remains to prove Lemma 13, whose statement we recall to be:

[ This follows from the computation:

o(f(x)) = a1 dist(f(z), BY)® > c1(dist(x, BS) — \T(m)\)i
> ¢ dist(x, B)? — 2¢; dist(z, BY)|T(z)| > z—;ap(x) — 2¢1 dist(z, BY)|T(z)]. (37)
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Lemma. Denoting \ = dist(+-, BS)? - X, one has, for any signed measure m on B
having total mass zero:

2
il -1y < (2 + Dn — 1) v 8e) 2 [lm]l 2. (42)

—In the sequel, “((2e + 1)n — 1) V 8¢” will be shorthanded into “Cy(n)”.

Remark 15. The bound (42) is within a constant factor of being optimal, uniformly
in n, as one sees by f in (45) to be linear.

Proof of the lemma. We begin with translating the lemma into a functional analysis
statement by a duality argument. Recall the duality definition of ||m|| f-1(y) from

§ 1:
Il a5y = supd1CF )] | sy < 1 (43)

There is a similar duality formula for ||m|| L2(B)

HmHL2(B) = sup{[(f,m}] | ”f”L?(B) <1}, (44)

where, for f a function, | f|l;2p) has its usual meaning, namely [|f|[,25 =

([ f(x)?dA(z)) Y2 Since m is assumed to have total mass zero, |(f,m)| does not
change when one adds a constant to f. On the other hand, when f describes the set
{Ilfo+all [ a € R}, [[fll2(p) is minimal when a is such that f has zero mean on B,

while the value of || f]| ;. () remains constant.*l As a consequence, we can restrict

the supremum in (43) and (44) to those f having zero mean on B. Thus, the lemma
will be implied!fl by proving that

(fi1g- N =0 = |fllrzp) < Cl(n)l/QHfHHl(S\)' (45)

Going back to the definitions of H'”H—l(i) and ||-|| ,2(p), relaxing the condition on f

to be centred by projecting it orthogonally in L?(B) onto the subspace of centred
functions, and denoting by P the uniform probability measure on B, Equation (45)
turns into:

vf Varp(f) < C’l(n)/dist(:c,Bc)2Vf(a:)\QdP(a:), (46)

which we recognize to be a weighted Poincaré inequality.
To prove (46), the first key idea (inspired by [Bobkov, 2003|) is to separate radial
and spherical coordinates. This is, considering the bijection

¢: (0,R) x "' = B~ {0} (47
(r,0) — ro

(the origin of space being set at the center of B) we introduce the measure P =

@~ "« P, which is obviously the product measure P, ® Py, where P, is the probability

measure on (0, R) such that dP,(r) == nR~"r"'dr, resp. Py is the uniform measure

“IHere we implicitly assume that fB|f(ac)|d)\(m) < oo, which is legit since an approximation
argument allows to restrict the suprema in (43) and (44) to those f having a C*° continuation on
cl(B).

[l Actually there is even equivalence.

10
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on the sphere S*~!. With this notation, we perform can a change of variables to see
that (46) is equivalent to proving that, for all g € L?(P):

R
Ci(n) " Varp(g) < / /S (B2 (IVrg(r, 0 + 172 Vg (r, 0)7) APy (r)dPy(0),
’ (48)
where V, and Vy denote the gradient along resp. the r coordinate and the 6 coordi-
nate.lfl' We will denote the right-hand side of (48) by £(g, g).
Because P = P, ® Pg, we know that L?(P) can be seen as (the closure of) the
tensor product of L2(P,) and L?(Py):

L2(P) = cl(L2(P,) & LX(Py)), (49)

1 .
where the symbol ‘®” means that the Hilbertian structure of L?(P) is compatible with
the Hilbertian structures of L2(P,) and L%(Py)—i.e., that (hy ® ua, hp @ ub>L2(]5) =
(ha, hb>L2(15T) (ua, ub>L2(150). Now consider the spherlcal harmonics Yy, Y7, ...,

which by definition are an orthonormal basis, in L2(139), of eigenfunctions of the
Laplace-Beltrami operator A on S™™!; and call £y, {1,... the associated eigenval-
ues, which are known to be such that (up to permuting indices) Yy = 1 with

lyp =0, and ¢; < —(n — 1) Vi # 0 (see for instance [Seeley, 1966]). By construc-
_ L
tion, L?(Py) = cl(P,;cn(R - Y;)); therefore, one has that

2(P) = cl<® L*(B,) - Y) : (50)

1EN
in other words, the functions of L?(P) are those of the form
=Y hi(r)Yi(0), (51)
1€EN

with >, ||k |12 12 < %% and the correspondence is bijective. An interesting point is
that, then, one has:

Varp(g) = Varp, (ho) + > _[|hall 725, - (52)
i#£0
On the other hand, one has

£(9,9) = —(Lg,9) 12(p): (53)
where

(R—1)?

(R

)2
(29)(r:0) = (=gt (=) E o) Yo, gt 5 vy, (51

From (54) we see that, since the Y; are eigenfunctions of Ay, all the L?(P,) - Y; are
invariant by L, and that one has:

)2 _
fto.0) =Y [ (w-rrvnp -6 a6

€N

[H11n the latter case, we have to use the Riemannian definition of the gradient on S™~*.

11
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So, proving (48) becomes equivalent to proving that both following formulas hold
for all h € L%(P,):

R ~
Varp, (h) < Ci(n) /0 (R — )2 [Vh(r) 2P (dr): (56)

(R—r)?

2h(r)?) P.(dr). (57)

R
1By < €l [ (R =P+ 0= 1)

Let us start with (56). In all the sequel of the proof, we introduce
bi=1-n""1 (58)

By the Cauchy—Schwarz inequality, one has, for all r € (bR, R):

r 2 T _ T
(h(r)~h(oR)* = ( /b W(s)as) < ( /b () s /b (R (o) s
<2(R—7)"Y2 — (R—bR)"V/?) / (R — )*/2|Vh(s)[2ds
bR
<R —r) L2 / (R — )3/2|Vh(s)2ds. (59)
bR

Integrating and using Fubini’s formula, it follows that
R 9~
/ (h(r) — h(bR)) dP,(r) <
b

R
R R
2 / ( / nR"(R — r)_1/2r”_1dr) (R — 5)%/2|Vh(s)|*ds
s=bR r

=S

<2 / RbR( / R sy (R - P)72r) (R~ 5)*|Vh(s) Pds

=S

— 95D / iR( / f (R—r)"2dr) (R~ 5)?|Vh(s)*dB (5

R
= 4p~ (=) / (R — 5)%|Vh(s)[*ds. (60)
s=bR

One can apply the same line of reasoning for r € (0,bR): the (unweighted
this time) Cauchy—Schwarz inequality then yields (h(r) — h(bR))2 < (bR — 1) x
frbR|Vh(s)|2dS, whence:

bR 3 bR, fs . .
/0 (h(r)—h(bR))QdPT(r)g/szo(/r nR(bR — r)r 1dr>\Vh(s)]2ds

=0

bR s bR
< bR / ( / n"Ldr) (Vh(s)Pds = bR / Vh(s)2s"ds
5=0 =0 0
bR 5 bR -
<bn R? / IVh(s)[*dP(s) < b(1 —b)2n 1 / (R — 5)?|Vh(s)[*dP,(s). (61)
0 0
Summing (60) and (61), we get that

/ * (1) = hOR))dB, (1) < (46~ v b(1 — b)~2n1) / (R — 5)2|Vh(s)dP,(s),
0

12
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where (46_(”_1) V b(1 —b)"2n!) can itself be bounded by ((n — 1) V 4e). The
left-hand-side of (62) being an upper bound for Var (h), this proves (56).

Now we turn to (57). For r € (bR, R) we have, similarly to (59), that

(h(r) — h(br))* < 2(R—r)~ /2 /T(R — )2 Vh(s)|%ds, (63)

br

so that .,
h(r)2 < 2h(br)? + A(R — 1)~ 12 / (R — )*2|Vh(s)|%ds. (64)

br

Then, integrating and applying Fubini’s formula:

R R
/ h(r)2dBa(r) < 2 / h(br)2dB(r) +
b

R bR

R b=1sAR
4 / ( / nR"" (R — r)fl/%zr) (R — $)3/2|Vh(s)|*ds. (65)
s=b2R “Jr=sVbR

By change of variables, the first term of the right-hand side of (65) is equal to
20" f s)2dP,(s), which we can bound by

_1\—=2 bR —r)2 -
oy DB [ R

R — )2
< 2ne/0 (n— I)Mh(sydPT(s). (66)

The second term of the right-hand side of (65) is itself bounded by

R R
—(n—1) 1200 (R — )32 D2dP.(s
w0 [T ([ =) ) (R s PP
R
< 8¢ / (R — s)2|Vh(s)|2dB,(s). (67)
0

This way, we have bounded fb & h(r)2dP(r).
On the other hand, it is tr1v1al that, for r < bR,

2 )2
hr)? < (n—l)b(l—b)2 « (n— 1)(Rﬂ)h(7«)2, (68)
whence:
bR B R )2 5
/o h(r)2dPT('r’) < (n— 1)/0 (n— 1)%2)h(r)2dPr(r). (69)
Combining (66), (67) and (69), we finally get the wanted bound (57). O
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