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Abstract

It is well known that the quadratic Wasserstein distance W2(·, ·) is formally
equivalent, for infinitesimally small perturbations, to some weighted H−1 ho-
mogeneous Sobolev norm. In this article I show that this equivalence can be
integrated to get non-asymptotic comparison results between these distances.
Then I give an application of these results to prove that theW2 distance exhibits
some localisation phenomenon: if µ and ν are measures onRn and ϕ : Rn → R+

is some bump function with compact support, then under mild hypotheses, you
can bound above the Wasserstein distance between ϕ ·µ and ϕ ·ν by an explicit
multiple of W2(µ, ν).
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Foreword

This article is divided into two sections, each of which having its own introduction.
§ 1 deals with general results of comparison between Wasserstein distance and ho-
mogeneous Sobolev norm, while § 2 handles an application to localisation of W2

distance.

1 Non-asymptotic equivalence between W2 distance and
Ḣ−1 norm

1.1 Introduction

In all this section, M denotes a connected Riemannian manifold endowed with its
distance dist(·, ·) and its Lebesgue measure λ. Let us give a few standard definitions
which will be at the core of our work:

• For µ, ν two positive measures on M , denoting by Π(µ, ν) the set of (positive)
measures on M ×M whose respective marginals are µ and ν, for π ∈ Π(µ, ν)
one defines

I(π) :=

∫
M×M

dist(x, y)2π(dx, dy) (1)

and then
W2(µ, ν) := inf{I(π) | π ∈ Π(µ, ν)}1/2. (2)
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W2 is a (possibly infinite) distance, called the quadratic Wasserstein distance
[Villani, 2003, § 7.1]. Note that this distance is finite only between measures
having the same total mass.

• On the other hand, for µ a (positive) measure on M , if f is a C1 real function
on M , one denotes

‖f‖Ḣ1(µ) :=
(∫

M
|∇f(x)|2dµ(x)

)1/2
, (3)

which defines a semi-norm; for ν a signed measure on M , one then denotes

‖ν‖Ḣ−1(µ) := sup{|〈f, ν〉| | ‖f‖Ḣ1(µ) 6 1}, (4)

which defines a (possibly infinite) norm, which we will call the Ḣ−1(µ) weighted
homogeneous Sobolev norm. Note that this norm is finite only for measures
having zero total mass. In the case µ is the Lebesgue measure, we will merely
write “Ḣ−1” for “Ḣ−1(λ)”.

The W2 Wasserstein distance is an important object in analysis; but it is non-
linear, which makes it harder to study. For infinitesimal perturbations however, the
linearised behaviour ofW2 is well known: if µ is a positive measure onM and dµ is an
infinitesimally small perturbation of this measure,[∗] one has formally (see [Villani,
2003, § 7.6] or [Otto and Villani, 2000, § 7])

W2(µ, µ+ dµ) = ‖dµ‖Ḣ−1(µ) + o(dµ). (5)

More precisely, one has the following equality, known as the Benamou–Brenier for-
mula [Benamou and Brenier, 2000, Prop. 1.1]: for two positive measures µ, ν on
M ,

W2(µ, ν) = inf
{∫ 1

0
‖dµt‖Ḣ−1(µt)

∣∣∣ µ0 = µ, µ1 = ν
}
. (6)

Then, a natural question is the following: are there non-asymptotic comparisons be-
tween theW2 distance and the Ḣ−1 norm? Concretely, we are looking for inequalities
like

Ca‖µ− ν‖Ḣ−1(µ) 6W2(µ, ν) 6 Cb‖µ− ν‖Ḣ−1(µ) (7)

for constants 0 < Ca 6 Cb <∞, under mild assumptions on µ and ν.

1.2 Controlling W2 by Ḣ−1

Theorem 1. For any positive measures µ, ν on M ,

W2(µ, ν) 6 2‖µ− ν‖Ḣ−1(µ). (8)

Proof. We suppose that ‖µ−ν‖Ḣ−1(µ) <∞, otherwise there is nothing to prove. For
t ∈ [0, 1], let

µt := (1− t)µ+ tν, (9)

so that µ0 = µ, µ1 = ν and dµt = (µ−ν)dt. Then, by the Benamou–Brenier formula
(6):

W2(µ, ν) 6
∫ 1

0
‖µ− ν‖Ḣ−1(µt)

dt. (10)

Now, we use the following key lemma, whose proof is postponed:
[∗]Beware that here dµ denotes a small measure on M , not the value of µ on a small area.
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Lemma 2. If µ, µ′ are two measures such that µ′ > ρµ for some ρ > 0, then
‖·‖Ḣ−1(µ′) 6 ρ−1/2‖·‖Ḣ−1(µ).

[†]

Here obviously µt > (1− t)µ, so

W2(µ, ν) 6
∫ 1

0
(1− t)−1/2‖µ− ν‖Ḣ−1(µ)dt = 2‖µ− ν‖Ḣ−1(µ), (11)

qed.

Corollary 3. If µ > ρλ for some ρ > 0, then

W2(µ, ν) 6 2ρ−1/2‖µ− ν‖Ḣ−1 . (12)

Proof. Just use that ‖·‖Ḣ−1(µ) 6 ρ−1/2‖·‖Ḣ−1 by Lemma 2.

Proof of Lemma 2. Take µ′ > ρµ and let ν be a signed measure on M such that
µ+ ν is positive; then µ′+ ρν is also positive. For m a measure on M , we denote by
diag(m) the measure on M ×M supported by the diagonal whose marginals (which
are equal) are m, i.e.: (

diag(m)
)
(A×B) := m(A ∩B); (13)

with that notation,

π ∈ Π(µ, µ+ ν)⇒ ρπ + diag(µ′ − ρµ) ∈ Π(µ′, µ′ + ρν), (14)

and
I
(
ρπ + diag(µ′ − ρµ)

)
= ρI(π). (15)

Therefore, taking infima,

W2(µ
′, µ′ + ρν)2 = inf{I(π′) | π′ ∈ Γ(µ′, µ′ + ρν)}

6 inf
{
I
(
ρπ + diag(µ′ − ρµ)

) ∣∣ π ∈ Γ(µ, µ+ ν)
}

= ρ inf{I(π) | π ∈ Γ(µ, µ+ ν)} = ρW2(µ, ν)2. (16)

For infinitesimally small ν, it follows by Equation (5) that ‖ρν‖2
Ḣ−1(µ′) 6 ρ‖ν‖2

Ḣ−1(µ)
,

hence ‖ν‖Ḣ−1(µ′) 6 ρ−1/2‖ν‖Ḣ−1(µ). This relation remains true even for non-
infinitesimal ν by linearity, which ends the proof.

Remark 4. Lemma 2 could also be proved very quickly by using the definition (3)-(4)
of the Ḣ−1(µ) norm. The proof above, however, has the advantage that it does not
need the precise expression of ‖·‖Ḣ−1(µ), but only the fact that it is the linearised
W2 distance.

[†]Beware that here ‘·’ stands for a measure, not for a function: otherwise the formula would be
false.—When f is a function, ‖f‖Ḣ−1(µ) stands for the Ḣ

−1(µ) norm of the measure having density
f w.r.t. µ.
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1.3 Controlling Ḣ−1 by W2

Theorem 5. Assume M has nonnegative Ricci curvature. Then for any positive
measures µ, ν on M such that µ 6 ρ0λ and ν 6 ρ1λ,

‖µ− ν‖Ḣ−1 6
2(ρ

1/2
0 − ρ1/21 )

ln(ρ0 / ρ1)
W2(µ, ν). (17)

(For ρ1 = ρ0, the right-hand side of (17) is to be taken as ρ1/20 W2(µ, ν) by continuity).

Remark 6. For M = Rn a similar result was already stated in [Loeper, 2006, Propo-
sition 2.8], with a different proof.

Proof. Let (µt)06t61 be the displacement interpolation between µ and ν (cf. [Vil-
lani, 2009, chap. 7]), which is such that µ0 = µ, µ1 = ν and the infimum in (6) is
attained with ‖dµt‖Ḣ−1(µt)

= W2(µ, ν)dt ∀t. Since Ricci curvature is nonnegative,
the Lott–Sturm–Villani theory tells us that, denoting by ‖µ‖∞ the essential supre-
mum of the density of µ w.r.t. λ, one has ‖µt‖∞ 6 ‖µ0‖1−t∞ ‖µ1‖

t
∞ = ρ1−t0 ρt1 (see

[Villani, 2009, Corollary 17.19] or [Cordero-Erausquin et al., 2001, Lemma 6.1]); so
that ‖·‖Ḣ−1 6 ρ

(1−t)/2
0 ρ

t/2
1 ‖·‖Ḣ−1(µt)

by Lemma 2.
Then, by the integral triangle inequality for normed vector spaces,

‖µ− ν‖Ḣ−1 =
∥∥∥∫ 1

0
dµt

∥∥∥
Ḣ−1

6
∫ 1

0
‖dµt‖Ḣ−1

6
∫ 1

0
ρ
(1−t)/2
0 ρ

t/2
1 ‖dµt‖Ḣ−1(µt)

=
(∫ 1

0
ρ
(1−t)/2
0 ρ

t/2
1 dt

)
W2(µ, ν)

=
2(ρ

1/2
0 − ρ1/21 )

ln(ρ0 / ρ1)
W2(µ, ν), (18)

qed.

Remark 7. Taking into account the dimension n of the manifold M , the bound on
‖µt‖∞ could be refined into

‖µt‖∞ 6
(
(1− t)‖µ0‖−1/n∞ + t‖µ1‖−1/n∞

)−n
, (19)

which would yield a slightly sharper bound in Equation (17), namely:

‖µ− ν‖Ḣ−1 6
(∫ 1

0

(
(1− t)ρ−1/n0 + tρ

−1/n
1

)−n/2
dt
)
W2(µ, ν)

=


ρ
1/2−1/n
0 −ρ1/2−1/n

1

(n/2−1)(ρ−1/n
1 −ρ−1/n

0 )
W2(µ, ν) n > 2;

ln(ρ1/ρ0)

2(ρ
−1/2
0 −ρ−1/2

1 )
W2(µ, ν) n = 2.

(20)

For n = 1 it turns out that one can let tend ρ1 → ∞ in (20) without making the
integral diverge; which leads to a much more powerful result:

Theorem 8. When M is an interval of R, then under the sole assumption that µ 6
ρ0λ, one has for all positive measures ν on M :

‖µ− ν‖Ḣ−1 6 2ρ
1/2
0 W2(µ, ν). (21)

Remark 9. For n > 2 there is no hope to get a bound valid for all ν, because then it
can occur that W2(µ, ν) < ∞ but ‖µ − ν‖Ḣ−1 = ∞: for instance, take µ to be the
uniform measure on the 2-dimensional sphere and ν a Dirac mass.
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2 Application to localisation of Wasserstein distance

2.1 Introduction

In all this section, we work in the Euclidian space Rn, whose norm is denoted by |·|.
dist(x,A) := inf{|x − y| | y ∈ A} denotes the distance between a point x and a set
A; Ac denotes the complement of A; λ denotes the Lebesgue measure. We will use
the following notation to handle measures:

• For µ a measure on Rn and f : Rn → Rn a measurable map, f ∗ µ denotes the
pushforward of µ by f , that is,

(
f ∗ µ

)
(A) := µ(f−1(A)).

• For µ a measure on Rn and ϕ : Rn → R+ a nonnegative measurable function,
ϕ · µ denotes the measure such that d

(
ϕ · µ

)
(x) := ϕ(x)dµ(x).

We will also use the following norms on measures:

• ‖µ‖Ḣ−1(ν) has the same definition as in § 1;

• ‖µ‖1 :=
∫
Rn |dµ(x)| is the total variation norm of µ;[‡]

• For ν a positive measure with µ� ν, we define

‖µ‖L2(ν) :=

(∫
supp ν

(
dµ

dν
(x)

)2

dν(x)

)1/2

. (22)

For A ⊂ Rn, we also denote ‖·‖L2(A) for ‖·‖L2(1A·λ).

The goal of this section is to give an application of Theorem 1 to the problem
of localisation of the quadratic Wasserstein distance. Morally, the question is the
following: take two measures µ, ν on Rn being close to each other in the sense of W2

distance; is it true that µ and ν remain close when you consider their restrictions to
a subset of Rn? Concretely, if ϕ is a non-negative real function on Rn with compact
support (plus some technical assumptions to be specified later), we want to bound
aboveW2(aϕ·µ, ϕ·ν) by some multiple ofW2(µ, ν)—where, in the former expression,
a is a constant factor ensuring that aϕ ·µ and ϕ ·ν have the same mass (for otherwise
the distance between ϕ · µ and ϕ · ν is generically infinite).

This question, which was my initial motivation for the results of § 1, was asked
to me by Xavier Tolsa, who needed such a result for his paper [Tolsa, 2012] on
characterizing uniform rectifiability in terms of mass transport. Actually Xavier
managed to devise a proof of his own [Tolsa, 2012, Theorem 1.1], but it was quite
long (about thirty pages) and involved arguments of multi-scale analysis. With
Theorem 1 at hand, however, the reasoning becomes far more direct; moreover we
will be able to relax some of the assumptions of Xavier’s theorem.

2.2 Statement of the theorem

Theorem 10. Let µ, ν be (positive) measures on Rn having the same total mass; let
B be a ball of Rn (whose radius will be denoted by R when needed). Assume that on
B, the density of µ w.r.t. the Lebesgue measure is bounded above and below:

∃ 0 < m1 6 m2 <∞ ∀x ∈ B m1λ(dx) 6 dµ(x) 6 m2λ(dx). (23)

Let ϕ : Rn → R+ be a function such that:
[‡]Note that in the case µ is a positive measure on Rn, then ‖µ‖1 is noting but µ(Rn).
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(i) ϕ is zero outside B;

(ii) There exist 0 < c1 6 c2 <∞ such that for all x ∈ B, c1 dist(x,Bc)2 6 ϕ(x) 6
c2 dist(x,B

c)2.

(iii) ϕ is k-Lipschitz for some k <∞.

Then, denoting a := ‖ϕ · ν‖1 / ‖ϕ · µ‖1,

W2(aϕ · µ, ϕ · ν) 6 C(n)
c
3/2
2 m

3/2
2

c
3/2
1 m

3/2
1

kc
−1/2
1 W2(µ, ν), (24)

for C(n) <∞ some absolute constant only depending on n. Moreover, one can bound
explicitly C(n) in such a way that C(n) = O(n1/2) when n→∞.[§]

Remark 11. Actually the constraint that the support of ϕ is a ball is of little impor-
tance: we could assume as well that it would be a cube, a simplex, or many other
shapes, as the corollary below shows:

Corollary 12. Make the same assumptions as in Theorem 10, except that B need not
be a ball: instead, we only assume that, denoting by B◦ the (true) ball having the
same volume as B, there exists a bijection Φ: B ↔ B◦ mapping the uniform measure
on B onto the uniform measure on B◦ (i.e. such that Φ ∗ (1B ·λ) = 1B◦ ·λ) such that
Φ is bi-Lipschitz (i.e. such that both Φ and Φ−1 are Lipschitz). Denote by ‖Φ‖Lip and
‖Φ−1‖Lip the optimal Lipschitz constants for resp. Φ and Φ−1. Then, the conclusion
of Theorem 10 remains true, except that now you have to replace the factor C(n) by

(‖Φ‖Lip‖Φ
−1‖Lip)5C(n). (25)

Proof. Consider the measures µ◦ := Φ ∗ µ and ν◦ := Φ ∗ ν, and the bump function
ϕ◦ := ϕ ◦ Φ−1; then, µ◦, ν◦ and ϕ◦ satisfy the original assumptions of Theorem 10,
the roles of ‘m1’ and ‘m2’ (in the ball situation) being held by m1 and m2 (in the
general situation) themselves, the role of ‘k’ being held by ‖Φ−1‖Lipk, and the roles
of ‘c1’ and ‘c2’ being held by c1 / ‖Φ‖2Lip and c2‖Φ−1‖2Lip . Therefore, applying (24):

W2(aϕ◦ · µ◦, ϕ◦ · ν◦) 6 C(n)‖Φ‖4Lip‖Φ
−1‖4Lip

c
3/2
2 m

3/2
2

c
3/2
1 m

3/2
1

W2(aµ◦, ν◦). (26)

But the optimal transportation plan from aµ to ν, with cost W2(µ, ν)2, can be
pushed forward by Φ into a (not optimal in general) transportation plan from aµ◦ to
ν◦, whose cost will then be 6 ‖Φ‖2LipW2(µ, ν)2; so W2(aµ◦, ν◦) 6 ‖Φ‖LipW2(aµ, ν).
Similarly W2(aϕ · µ, ϕ · ν) 6 ‖Φ−1‖LipW2(aϕ◦ · µ◦, ϕ◦ · ν◦). The announced result
follows.

2.3 Proof of the main theorem

In the sequel we will shorthand W2(µ, ν) =: w, and also ϕ · µ =: µ̂, resp. ϕ · ν =: ν̂.
Let g =: Id + S be a map achieving optimal transportation from ν to µ, i.e. such
that µ = g ∗ ν with

∫
Rn |S(y)|2dν(y) = w2.[¶]

[§]For instance, with the estimates of this article, one finds that C(n) := 47n1/2 fits—though this
may be strongly suboptimal.

[¶]Actually such an g does not always exist, as it can occur that the optimal transportation plan
from ν to µ “splits points” if ν is not regular enough. However it would suffice to use the general


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Our strategy will consist in transforming ν̂ into aµ̂ according to the following
procedure:

¬ We apply the transportation plan g to ν̂; this transforms ν̂ into some measure
µ̂∗. The measure µ̂∗ is not supported by B a priori, so we split it into µ̂∗B+µ̂∗c :=
1B · µ̂∗ + 1Bc · µ̂∗.

­ Denoting ac := ‖µ̂∗c‖1 / ‖µ̂‖1, we then transform µ̂∗c into acµ̂ according to an
arbitrary transference plan.

® Finally, denoting aB := ‖µ̂∗B‖1 / ‖µ̂‖1,[‖] we transform µ̂∗B into aBµ̂ according
to the optimal transference plan: the cost of this operation is W2(µ̂

∗
B, aBµ̂),

which we bound above by 2‖µ̂∗B − aBµ̂‖Ḣ−1(aB µ̂)
thanks to Theorem 1.

Then, denoting by W2(¬),W2(­),W2(®) the respective Wasserstein distances of
these steps, we shall have W2(ν̂, aµ̂) 6W2(¬) + (W2(­)2 +W2(®)2)1/2.

Let us begin with bounding the cost of Step ¬. The squared cost of this step is

W2(¬)2 =

∫
|S(y)|2dν̂(y) =

∫
|S(y)|2ϕ(y)dν(y)

6 supϕ×
∫
|S(y)|2dν(y) = supϕ× w2 6 c2R

2w2, (27)

whence W2(¬) 6 c
1/2
2 Rw.

Now consider Step ­. As acµ̂ is supported by B, one has obviously

W2(­)2 6
∫ (

dist(x,B) + 2R
)2
dµ̂∗c(x) =

∫
Bc

(
dist(x,B) + 2R

)2
dµ̂∗(x). (28)

From that we deduce that W2(­) 6 2c
1/2
2 Rw by the following computation:∫

Bc

(
dist(x,B) + 2R

)2
dµ̂∗(x) =

∫
g(y)/∈B

(
dist(g(y), B) + 2R

)2
ϕ(y)dν(y)

6 c2

∫
y∈B
g(y)/∈B

(
dist(g(y), B) + 2R

)2
dist(y,Bc)2dν(y)

6 c2

∫
y∈B
g(y)/∈B

(
R dist(g(y), B) + 2R dist(y,Bc)

)2
dν(y)

6 4c2R
2

∫
y∈B
g(y)/∈B

(
dist(g(y), B) + dist(y,Bc)

)2
dν(y)

6 4c2R
2

∫
|y − g(y)|2dν(y) = 4c2R

2w2. (29)

formalism of transportation plans to handle that case: we do not do it here to keep notation light,
but this is straightforward. Also note that it is not obvious that the infimum in (2) is attained:
again, that is not a real problem as our proof still works by considering a sequence of transportation
plans approaching optimality.

[‖]Observe that aB + ac = a.


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Step ® is the difficult one. We begin with observing that it is easy to bound the
L2(B) distance between µ̂∗B and µ̂: indeed, denoting by f =: Id +T the inverse map
of g[∗∗],

‖µ̂∗B − µ̂‖
2
L2(1B ·µ) =

∫
B

(
dµ̂∗(x)− ϕ(x)dµ(x)

dµ(x)

)2

dµ(x)

=

∫
B

(
ϕ(f(x))− ϕ(x)

)2
dµ(x)

6 k2
∫
Rn

|x− f(x)|2dµ(x) = k2
∫
|T (x)|2dµ(x) = k2w2, (30)

(where we used that dµ̂∗(x) = dν̂(f(x)) = ϕ(f(x))dν(f(x)) = ϕ(f(x))dµ(x)), so
that

‖µ̂∗B − µ̂‖
2
L2(B) 6 k2m2w

2. (31)

Now we have to link ‖·‖L2(B) with ‖·‖Ḣ−1(µ). This is achieved by the following
lemma, whose proof is postponed:

Lemma 13. Define λ̂ to be the measure on B such that λ̂(dx) := dist(x,Bc)2λ(dx).
Then, for any signed measure m on B having total mass zero:

‖m‖Ḣ−1(λ̂) 6 C1(n)1/2‖m‖L2(B), (32)

where C1(n) is some absolute constant only depending on n. Moreover, taking
C1(n) :=

(
(2e+ 1)n− 1

)
∨ 8e fits.

Thanks to Theorem 1 and Lemma 13, we have that

W2(®) 6 2‖aBµ̂− µ̂∗B‖Ḣ−1(aB µ̂)
6 2(aBc1m1)

−1/2‖aBµ̂− µ̂∗B‖Ḣ−1(λ̂)

6 2C1(n)1/2(aBc1m1)
−1/2‖aBµ̂− µ̂∗B‖L2(B). (33)

Next, we compute

‖aBµ̂− µ̂∗B‖L2(B) =
∥∥∥‖µ̂∗B‖1‖µ̂‖1

µ̂− µ̂∗B
∥∥∥
L2(B)

6
|‖µ̂∗B‖1−‖µ̂‖1|

‖µ̂‖1
‖µ̂‖L2(B) + ‖µ̂∗B − µ̂‖L2(B)

6
‖µ̂‖L2(B)

‖µ̂‖1
‖µ̂∗B − µ̂‖1 + ‖µ̂∗B − µ̂‖L2(B) 6

(‖µ̂‖L2(B)

‖µ̂‖1
λ(B)1/2 + 1

)
‖µ̂∗B − µ̂‖L2(B)

6
(
c2m2
c1m1

λ(B)1/2‖λ̂‖L2(B)

‖λ̂‖1
+ 1
)
‖µ̂∗B − µ̂‖L2(B) 6

[††]

(√
6 c2m2
c1m1

+ 1
)
‖µ̂∗B − µ̂‖L2(B)

6
(31)

(
√

6 + 1) c2m2
c1m1

km
1/2
2 w, (34)

so that, combining (33) and (34), we have got:

W2(®) 6 (2
√

6 + 2)C1(n)1/2a
−1/2
B

c2m
3/2
2

c1m
3/2
1

k

c
1/2
1

w. (35)

[∗∗]For f to exist, g should be bijective, which is not always true stricto sensu; but we can safely
carry out the reasoning with pretending so, by the same argument as in Footnote [¶] on page 6.

[††]This step comes from the computation λ(B)1/2‖λ̂‖L2(B) / ‖λ̂‖1 = (
∫ 1

0
rn−1dr)1/2×(∫ 1

0
(1− r)4rn−1dr

)1/2
/
(∫ 1

0
(1− r)2rn−1dr

)
=
(
6(1 + n)(2 + n) / (3 + n)(4 + n)

)1/2
6
√
6 ∀n.


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Equation (35) is the kind of bound we were looking for, provided aB . 1. Though
this will be the case in practice (since we are mainly interested in cases where ν is
close to µ and thus µ̂∗ is close to µ̂), this is not quite satisfactory yet. So, what
can we do when aB � 1, that is, when ‖µ̂∗B‖1 � ‖µ̂‖1? In fact that case is easier,
because transportation between small measures has low cost, while w has to be large
to make µ̂∗B very different from µ̂.

The computations are the following. First, it is obvious that

W2(®) = W2(µ̂
∗
B, aBµ̂) 6 2R‖µ̂∗B‖

1/2
1 . (36)

Next, observing that ϕ(f(x)) > c1
c2
ϕ(x)− 2c1 dist(x,B

c)|T (x)|,[‡‡] we compute that

‖µ̂∗B‖1 =

∫
B
ϕ(f(x))dµ(x) >

∫
B

(
c1
c2
ϕ(x)− 2c1 dist(x,B

c)|T (x)|
)
dµ(x)

> c1
c2
‖µ̂‖1 − 2c1

(∫
B
dist(x,Bc)2dµ(x)

)1/2(∫
B
|T (x)|2dµ(x)

)1/2
= c1

c2
‖µ̂‖1 − 2c1‖dist(·, Bc)2 · µ‖1/21 w > c1

c2
‖µ̂‖1 − 2c1m

1/2
2 ‖λ̂‖

1/2
1 w, (38)

whence

w >

(
c1
c2
‖µ̂‖1 − ‖µ̂∗B‖1

)
+

2c1m
1/2
2 ‖λ̂‖

1/2
1

=

(
c1
c2
− aB

)
+
‖µ̂‖1

2c1m
1/2
2 ‖λ̂‖

1/2
1

>
m

1/2
1

2c1m
1/2
2

(
c1
c2
− aB

)
+
‖µ̂‖1/21 . (39)

So,

W2(®) 6 2R‖µ̂∗B‖
1/2
1 = 2Ra

1/2
B ‖µ̂‖

1/2
1 6 4Rc

1/2
1

m
1/2
2

m
1/2
1

a
1/2
B

( c1c2 − aB)+
w. (40)

In the end, choosing either (35) if aB > c1 / 2c2 or (40) if c1 / 2c2, and observing
that c1 6 kR−1, one has always:

W2(®) 6
(
(4
√

3 + 2
√

2)C1(n)1/2 ∨ 4
√

2
)c3/22 m

3/2
2

c
3/2
1 m

3/2
1

k

c
1/2
1

w. (41)

Remark 14. To bound W2(®) in the situation where aB � 1, we could also
have started from “ϕ(f(x)) > ϕ(x) − k|T (x)|” (instead of “ϕ(f(x)) > c1

c2
ϕ(x) −

2c1 dist(x,B
c)|T (x)|”) to get another bound analogous to (38). Following such an

approach, the factor (c2 / c1)
3/2 in (40) would be improved into (c2 / c1) in the anal-

ogous formula; however the dimensional factor would behave in O(n) rather than in
O(n1/2).

2.4 Proof of Lemma 13

It still remains to prove Lemma 13, whose statement we recall to be:
[‡‡]This follows from the computation:

ϕ(f(x)) > c1 dist(f(x), B
c)2 > c1

(
dist(x,Bc)− |T (x)|

)2
+

> c1 dist(x,B
c)2 − 2c1 dist(x,B

c)|T (x)| > c1
c2
ϕ(x)− 2c1 dist(x,B

c)|T (x)|. (37)


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Lemma. Denoting λ̂ := dist(·, Bc)2 · λ, one has, for any signed measure m on B
having total mass zero:

‖m‖Ḣ−1(λ̂) 6
((

(2e+ 1)n− 1
)
∨ 8e

)1/2‖m‖L2(B). (42)

—In the sequel, “
(
(2e+ 1)n− 1

)
∨ 8e” will be shorthanded into “C1(n)”.

Remark 15. The bound (42) is within a constant factor of being optimal, uniformly
in n, as one sees by f in (45) to be linear.

Proof of the lemma. We begin with translating the lemma into a functional analysis
statement by a duality argument. Recall the duality definition of ‖m‖Ḣ−1(λ̂) from
§ 1:

‖m‖Ḣ−1(λ̂)
:= sup{|〈f,m〉| | ‖f‖Ḣ1(λ̂) 6 1}. (43)

There is a similar duality formula for ‖m‖L2(B):

‖m‖L2(B) = sup{|〈f,m〉| | ‖f‖L2(B) 6 1}, (44)

where, for f a function, ‖f‖L2(B) has its usual meaning, namely ‖f‖L2(B) :=(∫
B f(x)2dλ(x)

)1/2. Since m is assumed to have total mass zero, |〈f,m〉| does not
change when one adds a constant to f . On the other hand, when f describes the set
{‖f0 + a‖ | a ∈ R}, ‖f‖L2(B) is minimal when a is such that f has zero mean on B,
while the value of ‖f‖Ḣ1(λ̂) remains constant.[∗] As a consequence, we can restrict
the supremum in (43) and (44) to those f having zero mean on B. Thus, the lemma
will be implied[†] by proving that

〈f,1B · λ〉 = 0 ⇒ ‖f‖L2(B) 6 C1(n)1/2‖f‖Ḣ1(λ̂). (45)

Going back to the definitions of ‖·‖Ḣ−1(λ̂) and ‖·‖L2(B), relaxing the condition on f
to be centred by projecting it orthogonally in L2(B) onto the subspace of centred
functions, and denoting by P the uniform probability measure on B, Equation (45)
turns into:

∀f VarP (f) 6 C1(n)

∫
dist(x,Bc)2|∇f(x)|2dP (x), (46)

which we recognize to be a weighted Poincaré inequality.
To prove (46), the first key idea (inspired by [Bobkov, 2003]) is to separate radial

and spherical coordinates. This is, considering the bijection

ϕ : (0, R)× Sn−1 → B r {0}
(r, θ) 7→ rθ

(47)

(the origin of space being set at the center of B), we introduce the measure P̃ :=
ϕ−1 ∗P , which is obviously the product measure P̃r⊗ P̃θ, where P̃r is the probability
measure on (0, R) such that dP̃r(r) := nR−nrn−1dr, resp. P̃θ is the uniform measure

[∗]Here we implicitly assume that
∫
B
|f(x)|dλ(x) < ∞, which is legit since an approximation

argument allows to restrict the suprema in (43) and (44) to those f having a C∞ continuation on
cl(B).

[†]Actually there is even equivalence.
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on the sphere Sn−1. With this notation, we perform can a change of variables to see
that (46) is equivalent to proving that, for all g ∈ L2(P̃ ):

C1(n)−1 VarP̃ (g) 6
∫ R

0

∫
Sn−1

(R− r)2
(
|∇rg(r, θ)|2 + r−2|∇θg(r, θ)|2

)
dP̃r(r)dP̃θ(θ),

(48)
where ∇r and ∇θ denote the gradient along resp. the r coordinate and the θ coordi-
nate.[‡] We will denote the right-hand side of (48) by E(g, g).

Because P̃ = P̃r ⊗ P̃θ, we know that L2(P̃ ) can be seen as (the closure of) the
tensor product of L2(P̃r) and L2(P̃θ):

L2(P̃ ) = cl(L2(P̃r)
⊥
⊗ L2(P̃θ)), (49)

where the symbol ‘
⊥
⊗’ means that the Hilbertian structure of L2(P̃ ) is compatible with

the Hilbertian structures of L2(P̃r) and L2(P̃θ)—i.e., that 〈ha ⊗ ua, hb ⊗ ub〉L2(P̃ ) =

〈ha, hb〉L2(P̃r)
× 〈ua, ub〉L2(P̃θ)

. Now consider the spherical harmonics Y0, Y1, . . .,
which by definition are an orthonormal basis, in L2(P̃θ), of eigenfunctions of the
Laplace–Beltrami operator ∆ on Sn−1; and call `0, `1, . . . the associated eigenval-
ues, which are known to be such that (up to permuting indices) Y0 ≡ 1 with
`0 = 0, and `i 6 −(n − 1) ∀i 6= 0 (see for instance [Seeley, 1966]). By construc-

tion, L2(P̃θ) = cl
( ⊥⊕

i∈N(R · Yi)
)
; therefore, one has that

L2(P̃ ) = cl
( ⊥⊕
i∈N

L2(P̃r) · Yi
)

: (50)

in other words, the functions of L2(P̃ ) are those of the form

g(r, θ) =
∑
i∈N

hi(r)Yi(θ), (51)

with
∑

i‖hi‖
2
L2(P̃r)

<∞, and the correspondence is bijective. An interesting point is
that, then, one has:

VarP̃ (g) = VarP̃r(h0) +
∑
i 6=0

‖hi‖2L2(P̃r)
. (52)

On the other hand, one has

E(g, g) = −〈Lg, g〉L2(P̃ ), (53)

where(
Lg
)
(r, θ) := (R−r)2∆rg+

(
(n−1)

(R− r)2

r
−2(R−r)

)
er·∇rg+

(R− r)2

r2
∆θg. (54)

From (54) we see that, since the Yi are eigenfunctions of ∆θ, all the L2(P̃r) · Yi are
invariant by L, and that one has:

E(g, g) =
∑
i∈N

∫ R

0

(
(R− r)2|∇hi(r)|2 − `i

(R− r)2

r2
hi(r)

2

)
P̃r(dr). (55)

[‡]In the latter case, we have to use the Riemannian definition of the gradient on Sn−1.
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So, proving (48) becomes equivalent to proving that both following formulas hold
for all h ∈ L2(P̃r):

VarP̃r(h) 6 C1(n)

∫ R

0
(R− r)2|∇h(r)|2P̃r(dr); (56)

‖h‖2
L2(P̃r)

6 C1(n)

∫ R

0

(
(R− r)2|∇h(r)|2 + (n− 1)

(R− r)2

r2
h(r)2

)
P̃r(dr). (57)

Let us start with (56). In all the sequel of the proof, we introduce

b := 1− n−1. (58)

By the Cauchy–Schwarz inequality, one has, for all r ∈ (bR,R):

(
h(r)−h(bR)

)2
=
(∫ r

bR
h′(s)ds

)2
6
(∫ r

bR
(R−s)−3/2ds

)
×
∫ r

bR
(R−s)3/2|∇h(s)|2ds

6 2
(
(R− r)−1/2 − (R− bR)−1/2

) ∫ r

bR
(R− s)3/2|∇h(s)|2ds

6 2(R− r)−1/2
∫ r

bR
(R− s)3/2|∇h(s)|2ds. (59)

Integrating and using Fubini’s formula, it follows that∫ R

bR

(
h(r)− h(bR)

)2
dP̃r(r) 6

2

∫ R

s=bR

(∫ R

r=s
nR−n(R− r)−1/2rn−1dr

)
(R− s)3/2|∇h(s)|2ds

6 2

∫ R

s=bR

(∫ R

r=s
nR−n(b−1s)n−1(R− r)−1/2dr

)
(R− s)3/2|∇h(s)|2ds

= 2b−(n−1)
∫ R

s=bR

(∫ R

r=s
(R− r)−1/2dr

)
(R− s)3/2|∇h(s)|2dP̃r(s)

= 4b−(n−1)
∫ R

s=bR
(R− s)2|∇h(s)|2ds. (60)

One can apply the same line of reasoning for r ∈ (0, bR): the (unweighted
this time) Cauchy–Schwarz inequality then yields

(
h(r) − h(bR)

)2
6 (bR − r)×∫ bR

r |∇h(s)|2ds, whence:∫ bR

0

(
h(r)− h(bR)

)2
dP̃r(r) 6

∫ bR

s=0

(∫ s

r=0
nR−n(bR− r)rn−1dr

)
|∇h(s)|2ds

6 bR−(n−1)
∫ bR

s=0

(∫ s

r=0
nrn−1dr

)
|∇h(s)|2ds = bR

∫ bR

0
|∇h(s)|2snds

6 bn−1R2

∫ bR

0
|∇h(s)|2dP̃r(s) 6 b(1− b)−2n−1

∫ bR

0
(R− s)2|∇h(s)|2dP̃r(s). (61)

Summing (60) and (61), we get that∫ R

0

(
h(r)− h(bR)

)2
dP̃r(r) 6

(
4b−(n−1) ∨ b(1− b)−2n−1

) ∫ s

0
(R− s)2|∇h(s)|2dP̃r(s),

(62)
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where
(
4b−(n−1) ∨ b(1 − b)−2n−1

)
can itself be bounded by

(
(n − 1) ∨ 4e

)
. The

left-hand-side of (62) being an upper bound for VarP̃r(h), this proves (56).

Now we turn to (57). For r ∈ (bR,R) we have, similarly to (59), that

(
h(r)− h(br)

)2
6 2(R− r)−1/2

∫ r

br
(R− s)3/2|∇h(s)|2ds, (63)

so that
h(r)2 6 2h(br)2 + 4(R− r)−1/2

∫ r

br
(R− s)3/2|∇h(s)|2ds. (64)

Then, integrating and applying Fubini’s formula:∫ R

bR
h(r)2dP̃r(r) 6 2

∫ R

bR
h(br)2dP̃r(r) +

4

∫ R

s=b2R

(∫ b−1s∧R

r=s∨bR
nR−nrn−1(R− r)−1/2dr

)
(R− s)3/2|∇h(s)|2ds. (65)

By change of variables, the first term of the right-hand side of (65) is equal to
2b−n

∫ bR
b2R h(s)2dP̃r(s), which we can bound by

2b−(n−2)
(1− b)−2

n− 1

∫ bR

b2R
(n− 1)

(R− r)2

r2
h(s)2dP̃r(s)

6 2ne

∫ R

0
(n− 1)

(R− r)2

r2
h(s)2dP̃r(s). (66)

The second term of the right-hand side of (65) is itself bounded by

4b−(n−1)
∫ R

s=b2R

(∫ R

r=s
(R− r)−1/2dr

)
(R− s)3/2|∇h(s)|2dP̃r(s)

6 8e

∫ R

0
(R− s)2|∇h(s)|2dP̃r(s). (67)

This way, we have bounded
∫ R
bR h(r)2dP̃r(r).

On the other hand, it is trivial that, for r 6 bR,

h(r)2 6
b2

(n− 1)(1− b)2
× (n− 1)

(R− r)2

r2
h(r)2, (68)

whence: ∫ bR

0
h(r)2dP̃r(r) 6 (n− 1)

∫ R

0
(n− 1)

(R− r)2

r2
h(r)2dP̃r(r). (69)

Combining (66), (67) and (69), we finally get the wanted bound (57).
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