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Abstract. ForA and B two σ-algebras, the ρ-mixing coefficient ρ(A,B)
between A and B is the supremum correlation between two real random
variables X and Y being resp. A- and B-measurable; the τ ′(A,B) co-
efficient is defined similarly, but restricting to the case where X and
Y are indicator functions. It has been known for long that the bound
ρ 6 Cτ ′(1 + |log τ ′|) holds for some constant C; in this article, I show
that C = 1 fits and that that value cannot be improved.

1. Introduction

In this article, we consider two σ-algebras A and B on a common proba-
bility space (Ω,F ,P), σ-algebras whose correlation level we aim at quantify-
ing. A classical definition for such correlation quantification is the ρ-mixing
coefficient (a.k.a. “maximal correlation coefficient”):

(1) ρ(A,B) := sup
X∈L2(A)
Y ∈L2(B)

|Cov(X, Y )|
Var(X)1/2 Var(Y )1/2

(where the supremum is taken only for non-constant X and Y ). This coeffi-
cient is 0 if and only if A and B are independent; and we will say that A and
B are as correlated (in the ρ-mixing sense) as ρ(A,B) is large. Note that
one always has ρ(A,B) 6 1, because of the Cauchy–Schwarz inequality.

There are other ways to measure dependence between A and B (see
for instance the review paper [2]): in particular, rather than looking at
correlation between A- and B-measurable random variables, we can look
at correlation between events. The most classical measure of dependence in
this category is the α-mixing coefficient :

(2) α(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|.
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Still in the same category, the τ -mixing coefficient is useful to catch strong
correlation between small probability events:

(3) τ(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|
P(A)1/2 P(B)1/2

.

In this article, we will rather consider a variant of τ :

(4) τ ′(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|
P(A)1/2(1− P(A))1/2 P(B)1/2(1− P(B))1/2

.

The τ ′-mixing coefficient is essentially the same as τ , as one has for all
σ-algebras A,B that

(5) τ(A,B) 6 τ ′(A,B) 6 2τ(A,B) :

indeed, on the one hand τ ′ > τ is obvious, and on the other hand it can
always be assumed that P(A),P(B) 6 1/2 in (4), since the right-hand side of
(4) remains unchanged when A orB is replaced by its respective complement
set.

But, (4) is the same definition as (1), except that one restricts to the
case when the r.v. X and Y are indicator functions; so one always has
τ ′(A,B) 6 ρ(A,B). Then, it is a natural question whether some kind of
converse link between τ ′ and ρ also holds, i.e., can one find some non-trivial1

bound on ρ as a function of τ ′? (or equivalently of τ). That question was
answered positively by Bradley [1] in 1983.

The next question is, what is the best bound for ρ as a function of τ ′

that one can get? Bradley & Bryc [3, Theorem 1.1-(ii)] (and independently
Bulinskĭı [5]) showed that one always has

(6) ρ 6 Cτ ′(1 + |log τ ′|)

for some constant C; and Bradley, Bryc and Janson [4, Theorem 3.1] showed
that the shape of that bound was sharp, i.e. that essentially nothing can
be improved in (6) but the value of C. However, the optimal value of C
remained unknown. . .

In this article I will show that C = 1 fits (Theorem 3.1) and that the
corresponding bound is optimal (Theorem 4.1).

2. A first result

In this section we are going to prove a first result on bounding the ρ-
mixing coefficient thanks to some condition on events. This result, in addi-
tion to having its own interest, is also interesting for its proof, which shall

1By “non-trivial”, I mean that the bound on ρ would tend to 0 as τ ′ tends to 0.
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involve some ideas which we will re-use in the proof of our main theorem
(namely Theorem 3.1).

To state our result, we first need to define a certain Sobolev space:

Definition 2.1. For f : (0, 1) → R a C1 function with compact support
—which we shall denote by “f ∈ C1

c ((0, 1))”—, one defines

(7) ‖f‖Ḣ1
0 ((0,1)) :=

(∫ 1

0

|f ′(x)|2 dx
)1/2

.

Equation (7) defines a norm on the set C1
c ((0, 1)); the completion of this set

for that norm is denoted by Ḣ1
0 ((0, 1)) —or merely H in the sequel, as there

shall be no ambiguity.

Some non-differentiable functions can nevertheless be seen as elements
of H: in particular, if f is a continuous function defined on [0, 1] with
f(0), f(1) = 0 and if f is C1 at all points but a finite number, then Equation
(7) remains valid, and f is inH if and only if

∫ 1

0
|f ′(x)|2 dx <∞. Conversely,

the Sobolev embedding theorem asserts that any element of H can be seen
as a continuous function defined on [0, 1] and being zero at 0 and 1.

The main result of this section is the following one:

Theorem 2.2. Take f, g ∈ H. Let A and B be two σ-algebras such that,
for all A ∈ A, B ∈ B:

(8) P(A ∩B)− P(A)P(B) 6 f(P(A))g(P(B)).

Then,

(9) ρ(A,B) 6 ‖f‖H‖g‖H .

Remark 2.3. Note that you need not put an absolute value in the left-hand
side of (8).

Before proving that theorem, let us give a particular case of it:

Corollary 2.4. For p, q > 1/2, define

(10) αp,q(A,B) := sup
A∈A
B∈B

|P(A ∩B)− P(A)P(B)|
P(A)p P(B)q

.

Then,

(11) ρ(A,B) 6
22−p−qpq

(2p− 1)1/2(2q − 1)1/2
αp,q(A,B).

Proof of the corollary. Since the numerator of the right-hand side of (10)
remains unchanged when A or B is replaced by its respective complement
set, the hypotheses of Theorem 2.2 are satisfied with f(x) = αp,q(A,B) ×
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(xp ∧ (1 − x)p) and g(y) = yq ∧ (1 − y)q. Then the conclusion follows from
the computation of ‖f‖H and ‖g‖H . �

Proof of Theorem 2.2. Let A and B be two σ-algebras satisfying the as-
sumption (8). Since our goal is to bound above ρ(A,B), let us consider
two L2 real r.v. X and Y being resp. A- and B-measurable; and let us try
to bound |Cov(X, Y )| by some multiple of Var(X)1/2 Var(Y )1/2. Actually
we will only bound above Cov(X, Y ), since then −Cov(X, Y ) will also be
bounded above via writing it as Cov(X,−Y ).

In order to write the covariance as a function of probabilities of events,
we need the following lemma, known as the Hoeffding identity :

Lemma 2.5 (Hoeffding [6]). Let X, Y be two L2 real r.v. defined on the
same probability space. Then,
(12)

Cov(X, Y ) =

∫
R×R

(
P(X 6 x and Y 6 y)− P(X 6 x)P(Y 6 y)

)
dxdy.

We will give a quick proof of the Hoeffding identity here for the sake of
completeness:

Proof of the Hoeffding identity. Up to using a standard approximation ar-
gument, we can assume that X and Y are bounded above. Since both mem-
bers of Equation (12) remain unchanged when a constant is added to X or
to Y , we can even assume that X and Y only take nonpositive values, so
that the integral in the right-hand side of (12) may actually be taken over
R− × R−.

Now, we start from the formula expressing covariance from expectations:

(13) Cov(X, Y ) = E(XY )− E(X)E(Y ).

But, for a nonpositive r.v. X, one has the classical relation:

(14) E(X) = −
∫
R−

P(X 6 x) dx,

which you prove by writing X(ω) = −
∫
R− 1X(ω)6x dx and then applying

Fubini’s theorem. With a similar argument, one has that for nonpositive X
and Y :

(15) E(XY ) =

∫
R−×R−

P(X 6 x and Y 6 y) dxdy.



EQUIVALENCY BETWEEN ρ- AND τ -MIXING 5

Then, (13) turns into:

(16) Cov(X, Y ) =∫
R−×R−

P(X 6 x and Y 6 y) dxdy −
∫
R−

P(X 6 x) dx

∫
R−

P(Y 6 y) dy

=

∫
R−×R−

(
P(X 6 x and Y 6 y)− P(X 6 x)P(Y 6 y)

)
dxdy.

�

Now we go back to proving Theorem 2.2. In our case, the hypothesis (8)
yields:

(17) Cov(X, Y ) 6
∫
R×R

f
(
P(X 6 x)

)
g
(
P(Y 6 y)

)
dxdy

=

∫
R
f
(
P(X 6 x)

)
dx

∫
R
g
(
P(Y 6 y)

)
dy.

Thus, to prove the theorem, it suffices to show that for all r.v. X ∈ L2(P):

(18)
∫
R
f
(
P(X 6 x)

)
dx 6 ‖f‖H Var(X)1/2.

So, let us consider such a random variable. For p ∈ (0, 1), denote

(19) χ(p) := inf{x ∈ R : P(X 6 x) > p}.

Up to using a perturbation argument, we can assume that χ is strictly
increasing, so that P(X 6 χ(p)) = p for all p ∈ (0, 1), and also that χ ∈
C1([0, 1]).2 Then we can perform the change of variables x = χ(p), getting:

(20)
∫
R
f
(
P(X 6 x)

)
dx =

∫ 1

0

f(p)χ′(p) dp.

(This change of variables is legal here because f(0), f(1) = 0, so that you
can actually take the integral in the left-hand side of (18) over the interval
[χ(0), χ(1)]).

Var(X) can also be expressed as a function of χ′. Indeed, applying Equa-
tion (12) to the case Y = X, one finds:

(21)

Var(X) =

∫
R×R

(
P(X 6 x1)∧P(X 6 x2)−P(X 6 x1)P(X 6 x2)

)
dx1dx2

=

∫
(0,1)2

(p1 ∧ p2 − p1p2)χ′(p1)χ′(p2) dp1dp2.

2When we write χ as a function over the closed interval [0, 1], the values of χ(0) and
χ(1) are taken by continuous continuation.
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In the end, our goal has become the following one: to show that for all
f ∈ H, ϕ ∈ C([0, 1]), one has

(22)
∫ 1

0

f(p)ϕ(p) dp 6 ‖f‖H
(∫

(0,1)2
(p1 ∧ p2 − p1p2)ϕ(p1)ϕ(p2) dp1dp2

)1/2

.

Note that, by a density argument, it will be enough to show (22) only for
f ∈ C2

c ((0, 1)).
Now we have to deal a bit with bilinear forms. Denote, for f, g ∈ C([0, 1]),

(23) 〈f, g〉L2 :=

∫
(0,1)

f(p)g(p) dp

and

(24) 〈f, g〉V :=

∫
(0,1)2

(p1 ∧ p2 − p1p2)f(p1)g(p2) dp1dp2,

so that (22) may be written as

(25) 〈f, ϕ〉L2 6 ‖f‖H〈ϕ, ϕ〉1/2V .

When ϕ is of the form χ′, 〈ϕ, ϕ〉V is nonnegative since it corresponds to
Var(X) in (21); and for general ϕ, drawing our inspiration from the formula

(26) Var(X) =
1

2

∫
R×R

(x1 − x2)2 dP(X = x1)dP(X = x2),

we find that

(27) 〈ϕ, ϕ〉V =

∫
p1<p2

(∫ p2

p1

ϕ(q) dq
)2

dp1dp2 > 0,

which shows that 〈···, ···〉V is a scalar product indeed.
Having this scalar product property at hand suggests us to use the

Cauchy–Schwarz inequality to show (25). We define

(28)
L : Cc((0, 1))→ C0([0, 1])(

Lf
)
(q) :=

∫ 1

0
(p ∧ q − pq)f(p) dp,

so that we can write

(29) 〈f, g〉V = 〈Lf, g〉L2 .

Then, if we could find a (right) inverse M for L (i.e. an operator such that
LM = Id), we would have

(30) 〈f, ϕ〉L2 = 〈L(Mf), ϕ〉L2 = 〈Mf,ϕ〉V 6 ‖Mf‖V ‖ϕ‖V ,

which would be a good step towards our goal. But, indeed, such a right
inverse is given by the operator “minus second derivative”, that is, M : f ∈
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C2
c ((0, 1)) 7→ −f ′′ ∈ Cc((0, 1))! We compute indeed that, for q ∈ (0, 1):

(31)
(
L(−f ′′)

)
(q) = −

∫ 1

0

(p ∧ q − pq)f ′′(p) dp

= −(1− q)
∫ q

0

pf ′′(p) dp− q
∫ 1

q

(1− p)f ′′(p) dp

= −(1− q)
[
pf ′(p)

]q
0

+ (1− q)
∫ q

0

f ′(p) dp− q
[
(1− p)f ′(p)

]1
q
− q

∫ 1

q

f ′(p) dp

= −q(1− q)f ′(q) + (1− q)f(q) + q(1− q)f ′(q) + qf(q) = f(q)

by integrating by parts (and using that f ′(0), f ′(1), f(0), f(1) = 0).
So, we have got that

(32) 〈f, ϕ〉L2 6 ‖f ′′‖V ‖ϕ‖V .

To end the proof, we finally observe that ‖f ′′‖V is actually equal to ‖f‖H :

(33) ‖f ′′‖2
V = 〈f ′′, f ′′〉V = 〈L(f ′′), f ′′〉L2 = −〈f, f ′′〉L2

= −
∫ 1

0

f ′′(p)f(p) dp =

∫ 1

0

f ′(p)2 dp = ‖f‖2
H

(where the penultimate equality ensues from integrating by parts). �

3. ρ 6 τ ′(1 + |log τ ′|)

3.1. Statement. The goal of this third section is to prove the statement
of its title:

Theorem 3.1. For A,B any two σ-algebras, the coefficient ρ(A,B) can be
bounded using the coefficient τ ′(A,B), according to the following formula:

(34) ρ 6 τ ′(1− log τ ′)

(where we take by continuity, for τ ′ = 0, τ ′(1− log τ ′) = 0).

Remark 3.2. Since τ ′(A,B) is always 6 1, we can re-write the right-hand
side of (34) as “τ ′(1 + |log τ ′|)”, which makes easier to see that that right-
hand side is never less than τ ′ —it is obvious indeed that one always has
ρ > τ ′.

3.2. Comparison technique.

Proof of Theorem 3.1 (first part). Let A and B be two σ-algebras on the
same probability space; we denote τ := τ ′(A,B). If τ = 0 or τ = 1 then
Theorem 3.1 is immediate, since in the first case A and B are independent,
while in the second case (34) is automatic by the Cauchy–Schwarz inequality.
Therefore we will assume that τ ∈ (0, 1).
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0 τ ′ 1
0
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1

ρ
=
τ
′ (1
−

lo
g τ
′ )

ρ
=
τ
′

Figure 1. How we bound ρ as a function of τ ′.

So, let X and Y be L2 real r.v. being resp. A- and B- measurable; our
goal is to bound above Cov(X, Y ) (as in the proof of Theorem 2.2, bounding
above Cov(X, Y ) will actually yield a bound for |Cov(X, Y )|). We start from
the formula (12):
(35)

Cov(X, Y ) =

∫
R×R

(
P(X 6 x and Y 6 y)− P(X 6 x)P(Y 6 y)

)
dxdy.

Now we use the τ ′-mixing property. τ ′-mixing means that for A-, resp. B-
measurables events A,B,

(36) P(A∩B) 6 P(A)P(B)+τ P(A)1/2(1−P(A))1/2 P(B)1/2(1−P(B))1/2.

Yet, if we use that formula naively, we shall not get anything better than
Theorem 2.2 —which in the present case would yield an infinite bound,
that is to say, nothing. The new idea consists in noticing that (36) can be
automatically improved into:

(37) P(A ∩B) 6(
P(A)P(B)+ τ P(A)1/2(1−P(A))1/2 P(B)1/2(1−P(B))1/2

)
∧P(A)∧P(B).

To alleviate notation, we pose

(38) Z(p, q) :=
(
pq + τp1/2(1− p)1/2q1/2(1− q)1/2

)
∧ p ∧ q

(actually Z is also a function of τ , but in all the sequel of the proof τ will
be fixed), so that the right-hand side of (37) becomes “Z(P(A),P(B))”. So,
we get
(39)

Cov(X, Y ) 6
∫
R×R

(
Z
(
P(X 6 x),P(Y 6 y)

)
− P(X 6 x)P(Y 6 y)

)
dxdy.
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As in the proof of Theorem 2.2, we now define

(40) χ(p) := inf{x ∈ R : P(X 6 x) > p}

and likewise

(41) υ(q) := inf{y ∈ R : P(Y 6 y) > q}.

Then, the change of variables (x, y) = (χ(p), υ(q)) in (39) yields:

(42) Cov(X, Y ) 6
∫

(0,1)2
(Z(p, q)− pq)χ′(p)υ′(q) dpdq

(using if needed an approximation argument to make as if χ and υ were C1

and strictly increasing). As in the proof of 2.2 again, one also has

Var(X) =

∫
(0,1)2

(p1 ∧ p2 − p1p2)χ′(p1)χ′(p2) dp1dp2,(43)

resp. Var(Y ) =

∫
(0,1)2

(q1 ∧ q2 − q1q2)υ′(q1)υ′(q2) dq1dq2.(44)

Then, it turns out that the right-hand sides of (42), (43) and (44) can be
seen as the covariance and variances of two random variables which we will
now introduce. But first, we need define a probability law which shall play
a central role in the sequel:

Definition 3.3. The Chogosov law 3, denoted by Γ, is the probability law
on (0, 1)2 characterized by

(45) ∀p, q ∈ (0, 1)2 Γ
(
(0, p)× (0, q)

)
= Z(p, q).

(It shall be proved in Subsection 3.3 that that law actually exists).

Now, on the space {(p, q) ∈ (0, 1)2} equipped with the Chogosov law, we
define the following random variables:

X∗ := χ(p);(46)

Y ∗ := υ(q).(47)

I claim that X∗ and Y ∗ have the same distributions as resp. X and Y . Under
the Chogosov law indeed, both p and q have a Uniform(0, 1) distribution
(this follows from taking q = 1, resp. p = 1 in (45)), so that the function
“χX∗” got by replacing X by X∗ in (40) coincides with the actual function χ
(which proves that X and X∗ have the same law), and likewise υY ∗ = υ. So,
the respective right-hand sides of (43) and (44) are equal to Var(X∗) and
Var(Y ∗). Furthermore, applying (35) to X∗ and Y ∗, the very definition of

3So called in honour of my dear friend M. K. Chogosov.
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the Chogosov law shows that Cov(X∗, Y ∗) is exactly equal to the right-hand
side of (42). In the end, proving the theorem is tantamount to proving that

(48) Cov(X∗, Y ∗) 6 τ(1− log τ) Var(X∗)1/2 Var(Y ∗)1/2.

Now, denoting by A∗ the σ-algebra on (0, 1)2 spanned by p, resp. by B∗

the σ-algebra spanned by q, we observe that X∗ and Y ∗ are resp. A∗- and
B∗-measurable; thus, to show (48), it will be enough to show that

(49) ρ(A∗,B∗) 6 τ(1− log τ).

end of the first part of the proof

3.3. The Chogosov law. * To alleviate notation, from now on
we will denote p̄ := 1 − p and p̂ := p − 1

2
(with similar notation for

q).

In this subsection, we make a pause in the proof of Theorem (3.1) to
prove the existence of the Chogosov law and to describe its structure. We
recall that the Chogosov law Γ is the probability law on {(p, q) ∈ (0, 1)2}
defined by

(50) Γ
(
(0, p)× (0, q)

)
=
(
pq + τ(pp̄)1/2(qq̄)1/2

)
∧ p ∧ q =: Z(p, q).

First we notice that, due to the presence of minimum symbols in the
definition of Z(p, q), its analytic expression shall depend on the zone of
(0, 1)2 in which (p, q) lies (see Figure 2):

(1) If qp̄ / pq̄ < τ 2, then Z(p, q) = q; in this case we will say that we are
in Zone 1;

(2) If τ 2 < qp̄ / pq̄ < τ−2, then Z(p, q) = pq + τ(pp̄)1/2(qq̄)1/2; in this
case we will say that we are in Zone 2;

(3) If qp̄ / pq̄ > τ−2, then Z(p, q) = p; in this case we will say that we
are in Zone 3.

It will be convenient too to give a name to the boundaries between the
different zones: the boundary between Zones 1 and 2 (corresponding to
qp̄/pq̄ = τ 2) will be denoted by d, and the boundary between Zones 2 and 3
(corresponding to qp̄ / pq̄ = τ−2) will be denoted by u. One can parametrize
these boundaries by p: d is the graph of the function “q = qd(p)” and u

is the graph of “q = qu(p)”, where we define qd(p) := τ 2p / (p̄ + τ 2p) and
qu(p) := p / (τ 2p̄+ p).

First, we have to check that the Chogosov law actually exists. In fact,
(50) automatically describes a measure on (0, 1)2 whose density is ∂2Z/∂q∂p

(in the sense of distributions), but we have to make sure that this measure
is nonnegative!
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Figure 2. The Chogosov law Γ. On the left are drawn the
different zones relative to the support of the measure; on the
right is a cloud of 1,024 independent points with law Γ. (The
drawings are made for τ = 1/2).

So, we have to compute ∂2Z/∂q∂p to know its sign. We start with com-
puting ∂Z/∂p:

• In Zone 1, ∂Z(p, q)/∂p = 0;
• In Zone 2, ∂Z(p, q)/∂p = q − τ(qq̄)1/2p̂ / (pp̄)1/2;
• In Zone 3, ∂Z(p, q)/∂p = 1.

(As Z is continuous at the boundaries d and u, it is not important to know
what happens there). Next we compute ∂2Z/∂q∂p:

• In Zone 1, ∂2Z/∂q∂p = 0;
• At q = qd(p), ∂Z(p, ···)/∂p makes a jump of amplitude qd(p) − τ ×

(qd(p)q̄d(p))
1/2p̂/(pp̄)1/2; since q̄d(p)/p̄ = τ−2qd(p)/p, that amplitude

can be simplified into qd(p)− p̂qd(p) / p = qd(p) / 2p;
• In Zone 2, ∂2Z/∂q∂p = 1 + τ p̂q̂ / (pp̄)1/2(qq̄)1/2;
• At q = qu(p), ∂Z(p, ···)/∂p makes a jump of amplitude q̄u(p) + τ ×

(qu(p)q̄u(p))
1/2p̂/(pp̄)1/2; since qu(p)/p = τ−2q̄u(p)/p̄, that amplitude

can be simplified into q̄u(p) + p̂q̄u(p) / p̄ = q̄u(p) / 2p̄;
• Finally, in Zone 3, ∂2Z/∂q∂p = 0.

Then, checking the nonnegativity of Γ is equivalent to verifying that
both ∂2Z/∂q∂p (wherever it is defined) and the jumps of ∂Z/∂p are non-
negative. Obviously the only non-trivial case is Zone 2. To show that 1+τ ×
p̂q̂ /(pp̄)1/2(qq̄)1/2 is nonnegative on the whole Zone 2, we consider four cases
separately:

• If p 6 1/2 and q 6 1/2, then p̂q̂ > 0, so that the nonnegativity of
the density is trivial.
• Likewise, nonnegativity is trivial if p > 1/2 and q > 1/2.
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• If p 6 1/2 and q > 1/2, we use that qp̄ / pq̄ 6 τ−2 (since we are in
Zone 2) to get that |τ p̂q̂ / (pp̄)1/2(qq̄)1/2| 6 |p̂q̂| / qp̄ = |p̂ / p̄||q̂ / q|;
and since p 6 1/2 and q > 1/2, one has |p̂ / p̄||q̂ / q| 6 1/2×1/2 6 1,
which shows that the density is nonnegative.
• Likewise, if p > 1/2 and q 6 1/2, we use that qp̄ / pq̄ > τ 2 to get
that |τ p̂q̂ / (pp̄)1/2(qq̄)1/2| 6 |p̂q̂| / pq̄ = |p̂ / p||q̂ / q̄| 6 1/2× 1/2 6 1.

So we have proved that the Chogosov law actually exists (see also Figure
2). Moreover, the computations we have been making permit us to get a
more detailed description of this law:

Definition 3.4. For p ∈ (0, 1), we define the law Γp on (0, 1) in the following
way:

• On (qd(p), qu(p)), Γp has density 1 + τ p̂q̂ / (pp̄)1/2(qq̄)1/2 w.r.t. the
Lebesgue measure;
• At qd(p), Γp has an atom of mass qd(p) / 2p; and at qu(p), it has an
atom of mass q̄u(p) / 2p̄;
• Outside [qd(p), qu(p)], Γp is zero.

Then we may describe the Chogosov law in the following way:

Proposition 3.5. (p, q) is distributed according to the Chogosov law Γ if
and only if p is uniformly distributed on (0, 1) and that, conditionally to p, q
is distributed according to the law Γp. In other words, for all A,B ⊂ (0, 1),

(51) Γ(A×B) =

∫
A

Γp(B) dp.

3.4. ρ-mixing for the Chogosov law.

Proof of Theorem 3.1 (second part). The second and last part of the proof is
to show (49). Remember that we are working on the space {(p, q) ∈ (0, 1)2}
equipped with the Chogosov law (whose law was defined by (50)), and that
A∗ is the σ-algebra spanned by p, resp. B∗ the σ-algebra spanned by q.

Let us consider random variables X and Y being resp. A∗ and B∗-
measurable, that is to say, X and Y are resp. of the form X = f(p)

and Y = g(q). Our goal will be to bound |Cov(X, Y )| by some multiple
of Var(X)1/2 Var(Y )1/2. Up to substracting their respective expectations
from X and Y (which will not change any of the sides of the inequality
to be proved), it will be convenient to assume that X and Y are centered:
then, indeed, one will have Var(X) = E(X2) = ‖f‖2

L2((0,1)) and likewise
Var(Y ) = ‖g‖2

L2((0,1)), since both p and q are uniformly distributed on (0, 1).
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Moreover, centering X and Y means that f and g lie in the (closed) sub-
space of the zero mean functions of L2((0, 1)): in the sequel of the proof,
this Hilbert (sub)space will be denoted by H.

Since X and Y are centered, one has Cov(X, Y ) = E(XY ). Thus, we
can write Cov(X, Y ) in terms of some linear operator:

Definition 3.6. We define L : H → H by

(52)
(
Lg
)
(p) := EΓp(g),

where we recall that Γp is the Chogosov law conditioned to the value of
p (cf. Definition 3.4 and Proposition 3.5). In other words,

(
Lg
)
(p) is the

expectation of g(q) conditionally to p when (p, q) is distributed according
to the Chogosov law. (That interpretation ensures that L actually maps H
into itself).

Thus, conditioning w.r.t. p, one gets that

(53) Cov(X, Y ) = 〈f, Lg〉H .

Therefore, to show (49), it is (necessary and) sufficient to prove that the
operator norm ‖L‖H→H is not greater than τ(1− log τ).

But, it turns out that L has the nice property of being self-adjoint on
H. Indeed, we have defined L so that 〈f, Lg〉H = EΓ

(
f(p)g(q)

)
; but the

law Γ is invariant under the permutation (p, q) 7→ (q, p) (since Z(p, q) is),
so that 〈f, Lg〉H = EΓ

(
f(p)g(q)

)
= EΓ

(
f(q)g(p)

)
= 〈Lf, g〉H , that is, L is

self-adjoint.
In the sequel we will use the following lemma on self-adjoint operators,

whose proof you can find in § 3.5:

Lemma 3.7. Let L be a self-adjoint operator (possibly unbounded) on a
Hilbert space H. Assume there exists a dense subset D ⊂ H such that, for
some C <∞,

(54) ∀h ∈ D lim sup
k→∞

|〈Lkh, h〉H |1/k 6 C.

Then ‖L‖H→H 6 C.

Thanks to Lemma 3.7, we can focus on some dense subset of H on which
the work is easier:

Definition 3.8. Let ε > 0 be a parameter that we fix for the time being
(though in the sequel we will make it tend to 0). We define formally, for
f ∈ H,

(55) ‖f‖Lip := sup
p∈(0,1)

|f ′(p)|
(pp̄)−3/2+ε

,
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or, in rigorous terms,

(56) ‖f‖Lip := sup
p1<p2

|f(p2)− f(p1)|∫ p2
p1

(pp̄)−3/2+ε dp
.

We denote by Lip the space of the functions of H such that ‖f‖Lip <∞,
which we equip with the norm ‖ ··· ‖Lip .

Obviously Lip is a dense subset of H. Moreover the canonical injection
Lip ↪→ H is continuous: indeed, for f ∈ Lip, we write that

∫ p
1/2
f ′(p1) dp1 =

f(p)− f(1/2) (here we do as if f ∈ C1((0, 1)) to alleviate notations, but it
would actually work for all f ∈ Lip), and since f is orthogonal in L2((0, 1))

to the constant functions (for it has zero mean),

(57)
∥∥∥p 7→ ∫ p

1/2

f ′(p1) dp1

∥∥∥2

L2((0,1))
= ‖f‖2

L2((0,1)) + ‖f(1/2)‖2
L2((0,1)),

whence

(58) ‖f‖H = ‖f‖L2((0,1)) 6
∥∥∥p 7→ ∫ p

1/2

f ′(p1) dp1

∥∥∥
L2((0,1))

=
(∫ 1

0

(∫ p

1/2

f ′(p1) dp1

)2

dp
)1/2

6
(∫ 1

0

(∫ p

1/2

|f ′(p1)| dp1

)2

dp
)1/2

6 ‖f‖Lip ×
(∫ 1

0

(∫ p

1/2

(p1p̄1)−3/2+ε dp1

)2

dp
)1/2

.

The factor in the very-right-hand side of (58) being finite because ε > 0,
this proves that the injection Lip ↪→ H is continuous. Denoting by C

the continuity constant of this injection, it ensues that for all f ∈ Lip

and k ∈ N, one has |〈Lkf, f〉H | 6 ‖f‖H‖Lkf‖H 6 ‖f‖HC‖Lkf‖Lip 6
‖f‖HC‖L‖kLip→Lip‖f‖Lip (note that C‖f‖Lip‖f‖H <∞), whence

(59) lim sup
k→∞

|〈Lkf, f〉H |1/k 6 ‖L‖Lip→Lip .

Thus, by Lemma 3.7,

(60) ‖L‖H→H 6 ‖L‖Lip→Lip .

As we will see, ‖L‖Lip→Lip is easier to bound than ‖L‖H→H .
To bound ‖L‖Lip→Lip , we will use the idea of monotone coupling between

the Γp’s. For ω ∈ (0, 1), let

(61) Q(p, ω) := inf{q ∈ (0, 1) : Γp((0, q]) > ω}

be the inverse repartition function of Γp. Then, Γp is the pushforward of the
Uniform(0, 1) distribution by the map Q(p, ···), so that

(62)
(
Lf
)
(p) =

∫ 1

0

f
(
Q(p, ω)

)
dω.
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To alleviate notation, we will do as if f were of class C1 (treating the
general case f ∈ Lip would raise absolutely no more difficulty but heavier
formalism). Then, differentiating (62), one finds

(63)
(
Lf
)′

(p) =

∫ 1

0

Q′(p, ω)f ′
(
Q(p, ω)

)
dω,

where Q′ is the derivative of Q(p, ω) with respect to p. (Justification for
having differentiated under the integral sign will follow from the upcoming
computations on Q′).

Consequently,

(64)
∣∣(Lf)′(p)∣∣ 6 ‖f‖Lip ∫ 1

0

|Q′(p, ω)|
(
Q(p, ω)Q̄(p, ω)

)−3/2+ε
dω.

As that formula is valid for all p and f , it follows that
(65)

‖L‖Lip→Lip 6 sup
p∈(0,1)

{
(pp̄)3/2−ε

∫ 1

0

|Q′(p, ω)|
(
Q(p, ω)Q̄(p, ω)

)−3/2+ε
dω
}
,

hence

(66) ‖L‖H→H 6 Right-hand side of (65).

Before starting with explicit computations, we prove that it is licit to
take directly ε = 0 in Equation (66) (recall that ε was a priori defined to be
any strictly positive parameter). To prove that point, we first notice that,
denoting by Sp := [qd(p), qu(p)] the support of Γp, one always has Q(p, ω) ∈
Sp. But for all q ∈ Sp, one has qq̄/pp̄ 6 τ−2: in the case q 6 p indeed, having
q ∈ Sp implies that qp̄/pq̄ > τ 2, thus qq̄/pp̄ = (q/p)2/(qp̄/pq̄) 6 1/τ 2 = τ−2;
and there is a similar argument for the case q > p. Then, for all p:

(67) (pp̄)3/2−ε
∫ 1

0

|Q′(p, ω)|
(
Q(p, ω)Q̄(p, ω)

)−3/2+ε
dω 6

τ−2ε × (pp̄)3/2

∫ 1

0

|Q′(p, ω)|
(
Q(p, ω)Q̄(p, ω)

)−3/2
dω.

In that formula, the factor τ−2ε does not depend on p and tends to 1 when
ε→ 0; therefore (66) remains valid for ε = 0.

So, we have to compute the right-hand side of (66) for ε = 0. The first
step is to compute Q and Q′. Because of the strcture of Γp (see Definition
3.4), there are three cases for the analytic expression of Q(p, ω):

• If 0 < ω 6 qd(p) / 2p, then Q(p, ω) = qd(p);
• Likewise, if 1− q̄u(p) / 2p̄ 6 ω < 1, then Q(p, ω) = qu(p);
• The case qd(p) / 2p < ω < 1− q̄u(p) / 2p̄ is more complicated. . . As

Γp is the p-conditional law of Γ, the definition (50) of Γ implies that
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Γp((0, q]) = ∂pZ(p, q); thus Q(p, ω) is the number Q such that

(68) Q− τ p̂(QQ̄)1/2 / (pp̄)1/2 = ω.

(Indeed, remember that in that case one has Q(p, ω) ∈ (qd(p), qu(p)),
so that Z(p,Q) = pQ+ τ(pp̄)1/2(QQ̄)1/2).

From that we get the formula forQ′(p, ω) —recall thatQ′ is the derivative
of Q w.r.t. p—:

• For ω < qd(p) / 2p, one has Q′(p, ω) = dqd/dp. Since qd is char-
acterized by “qd(p)p̄ = τ 2pq̄d(p)”, differentiating the latter formula
w.r.t. p yields that Q′(p, ω) = (qd(p) + τ 2q̄d(p)) / (p̄ + τ 2p). Us-
ing again that qdp̄ = τ 2pq̄d, that expression then simplifies into
“Q′(p, ω) = qd(p)q̄d(p) / pp̄”.
• Likewise, for ω > 1− q̄u(p) / 2p̄, one has Q′(p, ω) = qu(p)q̄u(p) / pp̄.
• Finally for qd(p) / 2p < ω < 1 − q̄u(p) / 2p̄, we differentiate (68),
getting

(69) Q′(p, ω) =
τ(QQ̄)1/2

4(pp̄)3/2
(
1 + τ p̂Q̂ / (pp̄QQ̄)1/2

)
—where “Q” is a shorthand for “Q(p, ω)”.

(Note by the way that these computations ensure that Q′(p, ω) actually
exists [for all p, for almost-all ω] and that |Q′| is bounded by τ−2 [that
point, which is unsubstantial and tedious, is left to the reader to verify],
which gives a posteriori justification to (63)).

Then we can compute the right-hand side of (66) (for ε = 0):

(pp̄)3/2

∫ 1

0

|Q′(p, ω)|
(
Q(p, ω)Q̄(p, ω)

)−3/2
dω =

(pp̄)3/2 qd(p)

2p

qd(p)q̄d(p)

pp̄

(
qd(p)q̄d(p)

)−3/2

(70)

+(pp̄)3/2 q̄u(p)

2p̄

qu(p)q̄u(p)

pp̄

(
qu(p)q̄u(p)

)−3/2

(71)

+(pp̄)3/2

∫ 1−q̄u/2p̄

qd/2p

τ(Q(ω)Q̄(ω))1/2

4(pp̄)3/2
(
1 + τ p̂Q̂(ω) / (pp̄Q(ω)Q̄(ω))1/2

)(Q(ω)Q̄(ω)
)−3/2

dω

(72)

—where, in (72), “qd”, “qu” and “Q(ω)” are shortcuts for resp. “qd(p)”, “qu(p)”
and “Q(p, ω)”.

Using the formula characterizing qd(p), Term (70) simplifies into
(
qd(p)p̄/

pq̄d(p)
)1/2

/2 = τ/2. Similarly, Term (71) simplifies into τ/2 too. To compute
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the value of Term (72), we make the change of variables “q = Q(ω)”. Differ-
entiating (68) with respect to ω, we get that for that change of variables,

(73)
(

1 +
τ p̂Q̂(ω)(

pp̄Q(ω)Q̄(ω)
)1/2

)
dq = dω,

whence
(74)

(pp̄)3/2

∫ 1−q̄u/2p̄

qd/2p

τ(Q(ω)Q̄(ω))1/2

4(pp̄)3/2
(
1 + τ p̂Q̂(ω) / (pp̄Q(ω)Q̄(ω))1/2

)(Q(ω)Q̄(ω)
)−3/2

dω

=
τ

4

∫ qu(p)

qd(p)

1

qq̄
dq =

τ

4

[
log

q

q̄

]qu(p)

qd(p)
=
τ

4

(
log

qu(p)

q̄u(p)
− log

qd(p)

q̄d(p)

)
which, using the formulas characterizing qd(p) and qu(p), is finally equal to

(75)
τ

4

(
log

p

τ 2p̄
− log

pτ 2

p̄

)
=
τ

4
log

1

τ 4
= −τ log τ.

So, the sum (70)–(72) is equal to τ(1−log τ) for all p, and thus the rigt-hand
side of (66) (for ε = 0) is τ(1− log τ), which proves the theorem. �

3.5. Appendix: On the norm of self-adjoint operators. This appen-
dix aims at proving Lemma 3.7.

Proof of Lemma 3.7. Let L be a self-adjoint operator on H. Then by the
spectral theorem for self-adjoint operators, we have that, up to some iso-
morphism, we may assume that H is the space L2(µ) corresponding to some
measured Radon space (X,µ) and that L is a real multiplication operator
on that space —i.e. that there exists λ ∈ L∞(µ,R) such that

(76) ∀x ∈ X
(
Lf
)
(x) = λ(x)f(x)

(where “∀x” actually means “for µ-almost all x”).
Once L is written under that form, we have that for all f ∈ L2(µ),

(77) lim sup
k→∞

|〈Lkf, f〉H |1/k = sup
{
c > 0 : µ({f 6= 0 and |λ| > c}) > 0

}
.

(To prove the “>” sense, use that for even k one has λ(x)k > 0 ∀x). But
if one had µ({|λ| > C}) > 0, the set of the f ∈ H such that µ({f 6=
0 and |λ| > C}) > 0 would be a non-empty open subset of H, and then (77)
would contradict the assumption of the lemma. Therefore one necessarily
has µ({|λ| > C}) = 0, thus ‖L‖H→H 6 C, qed. �

4. Optimality of our bound

* In all this section, all the sets considered will be tacitly un-
derstood to be Borel.
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4.1. Statement of the theorem and outline of the proof. In this sec-
tion we will prove that our bound (34) cannot be improved. More precisely,
we are going to prove the following theorem:

Theorem 4.1. Let τ ∈ [0, 1]; let ρ < τ(1 − log τ). Then, there exists a
probability space (Ω,F ,P) and two σ-algebras A,B of this space such that
τ ′(A,B) 6 τ and ρ(A,B) > ρ.

Since the map τ 7→ τ(1 − log τ) is continuous, that theorem will occur
as an immediate corollary of the following one:

Theorem 4.2. Let τ ∈ [0, 1]; let τ1 > τ . Then, there exists a probability
space (Ω,F ,P) and two σ-algebras A,B of this space such that ρ(A,B) >

τ(1− log τ) and τ ′(A,B) 6 τ1.

Note that Theorem 4.2 is immediate for τ = 0 and for τ = 1, so it is
enough to prove it for τ ∈ (0, 1).

In order to prove Theorem 4.2, we will have to find a sharp bound for
some τ ′-mixing coefficient, which is not an easy challenge in general. For
that reason, we are first going to focus on some particular measure for
which finding this kind of bound is easier. However this measure will not be
a probability measure (it shall have infinite total mass), so that we will have
to use a truncation argument in a second step to get a genuine probability
measure.

* In all the sequel of this section, we are considering some fixed
τ ∈ (0, 1), and our goal is to prove 4.2 for that value of τ .

4.2. The measure Γ∞.

Definition 4.3.

(1) We define, for (p, q) ∈ (0,∞)2,

(78) Z∞(p, q) := τp1/2q1/2 ∧ p ∧ q.

(2) We define the measure Γ∞ on (0,∞)2 by

(79) ∀p, q ∈ (0,∞)2 Γ∞
(
(0, p)× (0, q)

)
= Z∞(p, q).

(This actually defines a nonnegative measure: the reasoning to prove
that point is similar —and easier— to the one we followed for the
Chogosov law. See also Figure 3).

(3) For p ∈ (0,∞), we define the measure Γp∞ on (0,∞) in the following
way:
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0 p

q

Figure 3. The measure Γ∞: this is a Poisson cloud of points
with density Γ∞. (The scale and density of the cloud are con-
sistent with Figure 2).

• On (τ 2p, τ−2p), Γp∞ has the density τ/4p1/2q1/2 w.r.t. the Lebesgue
measure;
• At τ 2p, Γp∞ has an atom of mass τ 2/2; and at τ−2p, it has an
atom of mass 1/2;
• Outside [τ 2p, τ−2p], Γp∞ is zero.

(Note that Γp∞ is a probability measure).

Like for the Chogosov law, we can prove the following properties of the
measure Γ∞:

Proposition 4.4.

(1) Both marginals of Γ∞ (i.e. its marginals on p and on q) are equal to
the Lebesgue measure on (0,∞).

(2) Γp∞ is the “p-conditional law” of Γ∞, in the sense that for all A,B ⊂
(0,∞), one has Γ∞(A×B) =

∫
A

Γp∞(B)dp.

So, like for the Chogosov law, the measure Γ∞ is made of several com-
ponents: first, a component with density τ / 4p1/2q1/2 w.r.t. the Lebesgue
measure on the cone {(p, q) ∈ (0,∞)2 : τ 2p < q < τ−2p}; then, components
with a lineic density on the half-lines {(p, τ 2p)} and {(p, τ−2p)}. We will
give a name to the (surfacic) density component:

Definition 4.5.

(1) We denote by Γ̃∞ the absolutely continuous part of the measure Γ∞

w.r.t. the Lebesgue measure; in other words, Γ̃∞ is the measure on
(0,∞)2 defined by

(80) dΓ̃∞(p, q) = 1τ2p<q<τ−2p

τ

4p1/2q1/2
dpdq.



20 R. PEYRE

(2) We also denote by Γ̃p∞ the “p-conditional measure” of Γ̃∞, that is,
the measure on (0,∞) defined by

(81) dΓ̃p∞(q) = 1τ2p<q<τ−2p

τ

4p1/2q1/2
dq,

which is such that Γ̃∞(A×B) =
∫
A

Γ̃p∞(B)dp. (Beware, Γ̃p∞ is not a
probability measure).

Now we are going to state and prove two lemmas essential for the proof
of Theorem 4.2:

Lemma 4.6. For all A,B ⊂ (0,∞) such that τ 2A ⊂ B and τ 2|B| 6 |A| <
∞ (|A| denotes the Lebesgue measure of A):

(82) Γ̃∞(A×B) 6 τ |A|1/2|B|1/2 − τ 2(|A|+ |B|)/2.

Proof. We start from the “p-conditional” decomposition of Γ̃∞:

(83) Γ̃∞(A×B) =

∫
A

Γ̃p∞(B)dp.

For x ∈ (0, |A|), we pose

(84) π(x) := inf{p ∈ (0,∞) : |(0, p] ∩ A| > x},

so that the restriction of the Lebesgue measure to A is the pushforward
by π of the Lebesgue measure on (0, |A|). Then, changing variables in the
right-hand side of (83), one has

(85) Γ̃∞(A×B) =

∫ |A|
0

Γ̃π(x)
∞ (B) dx.

Now we are going to bound Γ̃
π(x)
∞ (B). (In the next computations I will

shorthand “π(x)” into “π”, not to be confused with Archimedes’ constant
[which is nowhere involved in this article]). There are three steps:

(1) First, observing that Γ̃π∞ does not give any mass to (0, τ 2π], we have
that Γ̃π∞(B) = Γ̃π∞

(
B r (0, τ 2π]

)
. Let us denote B r (0, τ 2π] =: B×.

(2) For y ∈ (0, |B×|), let us define

(86) κ(y) := inf{q ∈ (τ 2π,∞) : |(τ 2π, q] ∩B×| > y},

so that the restriction of the Lebesgue measure to B× is the push-
forward by κ of the Lebesgue measure on (0, |B×|). Then, changing
variables,

(87) Γ̃π∞(B) =

∫
B×

1q<τ−2π

τ

4π1/2q1/2
dq =

∫ |B×|
0

1κ(y)<τ−2π

τ

4π1/2κ(y)1/2
dy.
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But, for all y, one has κ(y) > τ 2π + y (that is obvious from (86)),
so that (87) yields:

(88) Γ̃π∞(B) 6
∫ |B×|

0

1τ2π+y<τ−2π

τ

4π1/2
(
τ 2π + y

)1/2
dy

=
τ(τ 2π + |B×|)1/2

2π1/2
∧ 1/2− τ 2/2 6

τ(τ 2x+ |B×|)1/2

2x1/2
∧ 1/2− τ 2/2,

where the last inequality comes from the fact that π > x (because
of (84)).

(3) Finally, I claim that |B×| 6 |B|−τ 2x: indeed, we have assumed that
B ⊃ τ 2A, so |B ∩ (0, τ 2π]| > |τ 2A ∩ (0, τ 2π]| = τ 2|A ∩ (0, π]| = τ 2x.
Therefore (88) yields:

(89) Γ̃π∞(B) 6
τ |B|1/2

2x1/2
∧ 1/2− τ 2/2.

To conclude, we just have to put (89) inside (85) (it is here that the
assumption that τ 2|B| 6 |A| is used):

(90) Γ̃∞(A×B) 6
∫ |A|

0

(
τ |B|1/2

2x1/2
∧ 1/2− τ 2/2

)
dx

= τ 2|B|/2 +

∫ |A|
τ2|B|

τ |B|1/2

2x1/2
dx− τ 2|A|/2 = τ |A|1/2|B|1/2− τ 2(|A|+ |B|)/2.

�

Lemma 4.7. Let A,B ⊂ (0,∞) be such that |A| > τ 2|B|. Then there exists
A′ ⊂ (0,∞) such that |A′| = |A|, Γ∞(A′×B) > Γ∞(A×B) and A′ ⊃ τ 2B.

Proof. Denote A1 := A ∩ τ 2B. Since we have assumed that |A| > τ 2|B|,
we have |A r A1| = |A| − |A1| > τ 2|B| − |A1| = |τ 2B r A1|, so that we
can find A2 ⊂ |A r A1| such that |A2| = |τ 2B r A1|. Now let us denote
A3 := A r A1 r A2 and A′2 := τ 2B r A1, and define A′ := A1 ∪ A′2 ∪ A3.
It is clear by construction that |A′| = |A| and A′ ⊃ τ 2B; and still by
construction,

(91) Γ∞(A′ ×B) = Γ∞(A×B)− Γ∞(A2 ×B) + Γ∞(A′2 ×B),

so to prove the lemma it only remains to show that Γ∞(A2×B) 6 Γ∞(A′2×
B).

Using the “p-conditional” decomposition of Γ∞, one has

Γ∞(A2 ×B) =

∫
A2

Γp∞(B)dp,(92)

resp. Γ∞(A′2 ×B) =

∫
A′2

Γp∞(B)dp.(93)
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But, recalling the structure of Γp∞ (cf. Definition 4.3-3), we have that Γp∞(B) >

1/2 as soon as τ−2p ∈ B, and thus also that Γp∞(B) 6 1−1/2 = 1/2 as soon
as τ−2p /∈ B. Since, by construction, τ−2A2 ∩B = ∅, resp. τ−2A′2 ⊂ B, one
thus has

Γ∞(A2 ×B) =

∫
A2

Γp∞(B)dp 6 |A2|/2,(94)

resp. Γ∞(A′2 ×B) =

∫
A′2

Γp∞(B)dp > |A′2|/2 = |A2|/2,(95)

so that Γ∞(A2 ×B) 6 Γ∞(A′2 ×B), which is the desired result. �

As the function Z∞(p, q) used to define Γ∞ is invariant by switching p
and q, we have for all A,B that Γ∞(A×B) = Γ∞(B ×A), so that Lemma
4.7 yields the following corollary:

Lemma 4.8. Let A,B ⊂ (0,∞) be such that |B| > τ 2|A|. Then there exists
B′ ⊂ (0,∞) such that |B′| = |B|, Γ∞(A×B′) > Γ∞(A×B) and B′ ⊃ τ 2A.

Thanks to Lemmas 4.6 and 4.8, we can prove the main result of this
subsection:

Lemma 4.9. For all A,B ⊂ (0,∞),

(96) Γ∞(A×B) 6 τ |A|1/2|B|1/2.

Proof. First observe that one automatically has Γ∞(A × B) 6 |A| ∧ |B|
(since both marginals of Γ∞ are equal to the Lebesgue measure), so that
the lemma is immediate if |A| 6 τ 2|B| or |B| 6 τ 2|A|; in the sequel we
will therefore assume that τ 2|A| 6 |B| 6 τ−2|A|. Then the assumptions of
Lemma 4.8 are satisfied, so that up to replacing B by B′ we can assume
that τ 2A ⊂ B, and then apply Lemma 4.6, getting:

(97) Γ̃∞(A×B) 6 τ |A|1/2|B|1/2 − τ 2(|A|+ |B|)/2.

So we have bounded the absolutely continuous component of Γ∞(A×B).
Now we have to bound the lineic density components. The first of these
components is
(98)

Γ∞
({

(p, q) ∈ A×B : q = τ 2p
})
6 Γ∞

({
(p, q) : p ∈ A and q = τ 2p

})
,

which, using the “p-conditional” decomposition of Γ∞ and the structure of
Γp∞, is equal to |A| × τ 2/2. Likewise, the second lineic density component is

(99) Γ∞
({

(p, q) ∈ A×B : q = τ−2p
})

6 Γ∞
({

(p, q) : p ∈ τ 2B and q = τ−2p
})

= τ 2|B| × 1/2.

Summing (97)–(99), we finally get the wanted result. �
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Figure 4. A schematic representation of the measure Γb.

4.3. Proof of optimality. Now that we are equipped with Lemma 4.9,
we can at last prove Theorem 4.2. The measurable space we are going to
consider is the square {(p, q) ∈ (0, 1)2}, on which the σ-algebras A and
B will be the ones spanned by resp. p and q, so that the A-measurable
events are the events of the form A× (0, 1) (resp. the B-measurable events
are the events of the form (0, 1) × B) and the A-measurable functions are
the functions of the form f(p) (resp. the B-measurable functions are the
functions of the form g(q)).

The probability measure P we are going to build on (0, 1)2 will be devised
so that both its p- and q-marginals are equal to the Lebesgue measure on
(0, 1) in order to simplify computations. The principle of the definition we
are now giving is that the probability P —which we will call Γb— coincides
with Γ∞ in some neighborhood of (0, 0):

Definition 4.10. Take a parameter ε ∈ (0, 1). On (0, 1)2, we define the
probability measure Γb by

Γb(A×B) = Γ∞(A×B) for A×B ⊂ (0, ε]× (0, ε];

Γb(A×B) =
|B|

1− ε

(
|A| − Γ∞

(
A× (0, ε]

))
for A×B ⊂ (0, ε]× (ε, 1);

Γb(A×B) =
|A|

1− ε

(
|B| − Γ∞

(
(0, ε]×B

))
for A×B ⊂ (ε, 1)× (0, ε];

Γb(A×B) =
|A||B|

(1− ε)2

(
1− 2ε+ Γ∞

(
(0, ε)2

))
for A×B ⊂ (ε, 1)× (ε, 1).

(100)

(See Figure 4).

We see that outside (0, ε]2, the measure Γb is absolutely continuous w.r.t.
the Lebesgue measure. For (p, q) ∈ (0, ε]×(ε, 1), we can compute the density
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of Γb to be

(101)
dΓb(p, q)

dpdq
=

{
0 if p 6 τ 2ε;(
1− τε1/2 / 2p1/2

)
/(1− ε) if p > τ 2ε.

So, provided ε was chosen so that ε 6 τ/2 —which we will assume from now
on—, that density is bounded by 1 on the whole set (0, ε]× (ε, 1), and thus,
using the symmetry of Γb under switching p and q, also on (ε, 1) × (0, ε].
Besides, for (p, q) ∈ (ε, 1)×(ε, 1) we compute that the density of Γb at (p, q)

is

(102)
dΓb(p, q)

dpdq
=

1− 2ε+ τε

(1− ε)2
.

Now let us consider A,B ⊂ (0, 1). We denote A1 := A ∩ (0, ε] and
A2 := A ∩ (ε, 1), resp. B1 := B ∩ (0, ε], B2 := B ∩ (ε, 1). Using the density
computations we have been doing, we then have Γb(A1 × B2) 6 |A1||B2|,
resp. Γb(A2 × B1) 6 |A2||B1|. Thus, splitting A × B into A1 × B1 ∪ A1 ×
B2 ∪ A2 ×B1 ∪ A2 ×B2,

(103)
Γb(A×B)− |A||B| 6 Γb(A1 ×B1)− |A1||B1|+ Γb(A2 ×B2)− |A2||B2|

6 τ |A1|1/2|B1|1/2 +
τε− ε2

(1− ε)2
|A2||B2|,

where the second inequality comes from using simultaneously Lemma 4.9,
nonnegativity of |A1||B1|, and the value of the density of Γb on (ε, 1)2.

Our goal is to prove that for P = Γb, one has τ ′(A,B) 6 τ1 (where τ1 > τ

is the arbitrary number which was fixed in the statement of Theorem 4.2).
In other words, we want to get that
(104)
∀A,B ⊂ (0, 1)

∣∣Γb(A×B)−|A||B|
∣∣ 6 τ1|A|1/2|B|1/2(1−|A|)1/2(1−|B|)1/2.

First, we notice that is suffices to prove (104) with no absolute value in the
left-hand side:
(105)
∀A,B ⊂ (0, 1) Γb(A×B)−|A||B| 6 τ1|A|1/2|B|1/2(1−|A|)1/2(1−|B|)1/2;

indeed, if one replaces B by its complement set Bc := (0, 1) r B, the left-
hand side of (105) just change signs while the right-hand side remains un-
changed. It is even sufficient to prove (105) only for |A| 6 1/2, since none
of the sides of (105) changes when one replaces simultaneously A by Ac and
B by Bc. Therefore, from now on we will assume that |A| 6 1/2. But then,
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(105) is automatic for |B| > 1/(1 + τ 2
1 ), since in that case

(106) Γb(A×B)− |A||B| 6 Γb(A× (0, 1))− |A||B| = |A|(1− |B|)

6 |A|1/2(1− |A|)1/2 × τ1|B|1/2(1− |B|)1/2.

So, it will be enough to prove (105) for |A| 6 1/2 and |B| 6 1/(1 + τ 2
1 ).

We start from Equation (103):

(107) Γb(A×B)− |A||B| 6 τ |A1|1/2|B1|1/2 +
τε− ε2

(1− ε)2
|A2||B2|.

Our goal is to bound above the right-hand side of (107) by some multiple
of |A|1/2|B|1/2(1 − |A|)1/2(1 − |B|)1/2. Recall that A1 := A ∩ (0, ε], resp.
B1 := B ∩ (0, ε], so that |A1|, |B1| 6 ε. First we have

(108) |A1|1/2 6 |A1|1/2
(1− |A1|)1/2

(1− ε)1/2
6 (1− ε)−1/2|A|1/2(1− |A|)1/2,

where the second inequality comes from the fact that |A1| 6 |A| and that
p 7→ p1/2(1− p)1/2 is increasing on [0, 1/2]. Similarly, provided ε was chosen
small enough,

(109)

|B1|1/2 6 |B1|1/2
(1− |B1|)1/2

(1− ε)1/2
6 (1− ε)−1/2(|B| ∧ ε)1/2(1− |B| ∧ ε)1/2

6 (1− ε)−1/2|B|1/2(1− |B|)1/2,

where the last inequality comes from the fact that ε1/2(1− ε)1/2 6 q1/2(1−
q)1/2 for all q ∈ [ε, 1 − ε], hence for all q ∈ [ε, 1/(1 + τ 2

1 )] provided ε 6

τ 2
1 /(1 + τ 2

1 ) (which we will assume from now on). Next,

(110) |A2| 6 |A| 6 |A|1/2(1− |A|)1/2

(using again that |A| 6 1/2), and similarly

(111) |B2| 6 |B| 6 τ−1
1 |B|1/2(1− |B|)1/2.

Putting the previous bounds into (107), we get that for all A,B such that
|A| 6 1/2, |B| 6 1/(1 + τ 2

1 ) (and provided ε was chosen small enough):
(112)

Γb(A×B)−|A||B| 6
(

τ

1− ε
+

ετ − ε2

τ1(1− ε)2

)
|A|1/2|B|1/2(1−|A|)1/2(1−|B|)1/2.

The numerical factor in front of the right-hand side of (112) tends to τ when
ε ↘ 0, so it is actually 6 τ1 provided ε was chosen small enough. In the
end we have proved that for P = Γb, one has τ ′(A,B) 6 τ1.

To end the proof of Theorem 4.2, it remains for us to prove that ρ(A,B) >

τ(1− log τ). That will be easier, as it suffices to find A- and B-measurable
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L2 r.v. X and Y such that |Cov(X, Y )| /Var(X)1/2 Var(Y )1/2 is arbitrarily
close to τ(1− log τ). To do that, we take l ∈ (0, ε) and we pose

(113) X := 1l6p6εp
−1/2,

resp.

(114) Y := 1l6q6εq
−1/2.

Since both p- and q-marginals of Γb are equal to the Lebesgue measure, we
have E(X),E(Y ) = 2ε1/2 − 2l1/2 and E(X2),E(Y 2) = log ε − log l, whence
Var(X),Var(Y ) ∼ |log l| when l↘ 0. On the other hand,XY is zero outside
(0, ε]2, so according to the structure of Γb we have E(XY ) =

∫
1l6p,q6ε×

p−1/2q−1/2dΓ∞(p, q). According to the structure of Γ∞, we compute that
that quantity is equal to

(115) E(XY ) = τ
(
log τ log l − log τ log ε− log2 τ − log l + 2 log τ + log ε

)
∼l↘0 τ(1− log τ)|log l|.

(In our computation we assumed that l 6 τ 4ε). So, when l ↘ 0, the Pear-
son correlation between X and Y tends to τ(1 − log τ). This shows that
ρ(A,B) > τ(1− log τ), thus ending the proof of Theorem 4.2.
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