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Abstract

For X and Y two random variables, the maximal correlation coefficient between X
and Y , denoted by {X : Y }, is the supremum value of |Corr( f (X ), g(Y ))| for real mea-
surable functions f and g, where “Corr” denotes the Pearson correlation coefficient. It
is well known that for independent pairs of variables (X i,Yi)i∈I , {

→
X I :

→
YI} is the supre-

mum of the {X i : Yi}; the main goal of this monograph will be to get such tensoriza-
tion results when independence between the (X i,Yi) is only partial. More generally,
for (X i)i∈I and (Y j) j∈J random variables, we will look for a bound on {

→
X I :

→
YJ} from

bounds on the {X i : Y j}, i ∈ I, j ∈ J.

Our tensorization theorems shall provide new results about decorrelation for mod-
els of statistical mechanics exhibiting asymptotic independence, like the subcritical
Ising model. Namely, we shall prove that in such models, two distant bunches of spins
are decorrelated regardless of their sizes and shapes in the sense of maximal correla-
tion: if I and J are sets of spins with dist(i, j) Ê d for all i ∈ I, j ∈ J, then one has a
non-trivial bound on {

→
X I :

→
YJ} only depending on d.

This work will also get interested in using maximal decorrelations to get spatial
central limit theorems for models like subcritical Ising’s, as well as positiveness of
the spectral gap of the Glauber dynamics. Again, that shall be performed thanks to
tensorization techniques.

Last but not least, this monograph will present a new criterion to control {F : G },
F and G being two σ-algebras, from a bound on the |P[A∩B]−P[A]P[B]|/pP[A]P[B]
for all A ∈F ,B ∈G . Similar criteria were already known, but ours improves them and
can even be shown to be optimal.



Introduction

Overview of the monograph

This monograph is devoted to the study of maximal decorrelations, in particular to
showing how this concept can be ‘tensorized’ to yield new results about systems of
statistical mechanics exhibiting asymptotic independence. I have divided it into six
chapters:

• The first chapter, numbered “0”, aims at motivating the study of maximal corre-
lations and their tensorization. In this chapter, I will recall some classical results
on the subcritical Ising model, which is a classical model showing asymptotic in-
dependence for pairs of spins. When one gets interested in very large ‘bunches’ of
spins, it is known that asymptotic independance cannot be captured by β-mixing
any more, but that, in certain cases at least, it still holds in terms of ρ-mixing.
The techniques used so far to establish ρ-mixing for bunches of spins are strongly
limited by technical assumptions looking somehow artificial, which will motivate
studying ρ-mixing ‘for itself ’ and trying to tensorize it.

• In Chapter 1, I shall recall the definition of the maximal correlation coefficient
(also known as “ρ-mixing” or “Hilbertian correlation”); I shall also recall some
classical facts about this concept and give some examples. This chapter can be
seen as a ‘crash course’ on ρ-mixing for the non-specialist reader: almost nothing
in it is new.

• In Chapter 2, I shall give some new criteria to bound Hilbertian correlation be-
tween two σ-algebras, which criteria assume bounds on the (P[A∩B]−P[A]P[B])
for events A and B belonging to these respective σ-algebras. My “strong event
sufficient condition”, which improves previous results of several authors, shall
even be shown to be optimal.

• Chapter 3 is the core of this monograph: in it I will handle tensorization
of Hilbertian decorrelations. This chapter begins with a refined version of
the concept of correlation, called “subjective correlation”, which is necessary
to write the subsequent tensorization results. Then I shall state and prove
my three main tensorization theorems: Theorem 3.2.2 (‘N against 1’ theorem)
bounds the correlation between a ‘simple’ and a ‘vector’ variable; Theorem 3.3.1
(‘N against M’ theorem) deals with correlation between two vector variables, and
Theorem 3.3.10 (‘Z against Z’ theorem) refines the previous one in the case where
certain symmetries are present. Then, I will discuss some refinement and opti-
mality statements about these theorems; in § 3.9, I will also present a geometric
corollary of tensorization results which underlines quite well the Hilbertian as-
pect of maximal correlations.
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• In Chapter 4, I will continue to use the tensorization techniques of Chapter 3,
but this time instead of proving tensorization results stricto sensu I will turn
to different types of results, namely the spatial central limit theorem and the
presence of spectral gap for the Glauber dynamics.

• Finally, Chapter 5 will present some concrete applications of the results of this
monograph. For instance, I shall prove new results about decorrelation between
distant bunches of spins in Ising’s model [see Theorem 5.1.1]; I will also give re-
sults of the same type for quite general models of statistical mechanics [see e.g.
Theorems 5.2.10 and 5.3.7], also proving spatial CLT and spectral gap for the
Glauber dynamics for these models. I will also show how tensorization of Hilber-
tian correlations can be used to get ‘hypocoercivity’ results [Theorem 5.4.6].

Conventions and notation

This monograph is written assuming that the reader has a graduate knowledge of
probability theory; whenever areas of mathematics less familiar to a probabilist are
involved, references on these areas shall be provided. In particular, a good deal of
analysis will be used, especially about linear operators between Hilbert spaces: a good
reference on that topic is [45].

Notation will not always be perfectly rigorous: to make reading easier, it may oc-
cur sometimes that formalism is slightly loose, or that some writing conventions or
assumptions are implicit. However this shall only be done in situations where adding
the missing information by the reader is (hopefully) obvious.

Here is some notation used throughout this text:

Miscellaneous

• The symbol N denotes the set of nonnegative integers, including 0. The set of
positive integers Nà {0} is denoted by N∗.

• For a,b real numbers, a∧ b denotes min{a,b}, resp. a∨ b denotes max{a,b}; a+
denotes the positive part of a, i.e. a∨0.

• For A a set, Ac denotes the complement set of A (the set of reference shall always
be clear); 1A denotes the indicator function of A, that is, the function being 1
on A and 0 on Ac.

• For A,B sets, A 4B denotes the symmetric difference of A and B, i.e. (AàB)]
(Bà A), where “]” means the same as “∪”, but with underlining that the union
is disjoint.

• The identity matrix in dimension n will be denoted by In. The transpose of a
matrix A will be denoted by AT.

• If Θ is a set endowed with a metric dist, then for I, J ⊂Θ, dist(I, J) denotes the
distance between I and J, that is, dist(I, J) ··= inf{dist(i, j) : i ∈ I, j ∈ J}.

• As is customary in physical literature, ∝ means “proportional to”.
• Whenever I is a set and X a symbol,

→
X I will be a shorthand for “(X i)i∈I”.

Probability
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• We will always work on an implicit probability space (Ω,B) equipped with a
probability measure P. Sub-σ-algebras of B will be merely called “σ-algebras”; I
will also often write “variable” for “random variable”. Unless explicitly specified,
variables on Ω can be valued in any set.

• If f is a real random variable, the expectation of f is denoted by E[ f ]; its variance
is denoted Var( f ); its standard deviation is denoted Sd( f ) ··=

√
Var( f ); if g is

another real variable, the covariance between f and g is denoted by Cov( f , g) ··=
E[ f g]−E[ f ]E[g]. All that notation extends to the case where f and g are valued
in some vector space RN , except that in this case it refers to vectors or matrices.

• If B is an event with P[B] > 0, then P[A|B], E[ f |B], Var( f |B), . . . stand resp.
for the probability of A, the expectation of f , the variance of f , . . . under the
conditional law dP[·|B] ··= 1B dP[·]/P[B]. Similarly, if F is a σ-algebra, P[A|F ],
E[ f |F ], . . . stand for the conditional probability of A, the conditional expectation
of f , . . . w.r.t. F .

• Concerning conditional expectations, I will actually use two different conven-
tions: for G a σ-algebra, E[ f |G ] can also be denoted by f G . Both conventions can
be used inside the same formula.[∗][†]

• If X is a variable on Ω, the σ-algebra generated by X (that is, the smallest σ-
algebra w.r.t. which X is measurable) is denoted by σ(X ). If F and G are σ-
algebras, the σ-algebra generated by F and G (that is, the smallest σ-algebra
containing both F and G ) is denoted by F ∨G , and this notation extends into the
∞-ary operator

∨
for an arbitrary number of σ-algebras.

• An event A ∈B is said to have trivial probability, or to be trivial, if P[A] ∈ {0,1}.
A σ-algebra is said to be trivial if all its events are trivial. The σ-algebra {;,Ω},
which is trivial under any law P, will be denoted by O and refered to as “the”
trivial sigma-algebra.

• The Lebesgue measure on Rn will be denoted by dx, “x” being the name of the
integration variable. For a Borel set A ⊂ Rn,

∫
x∈A dx will sometimes be denoted

by |A|.
• For C a positive-semidefinite matrix (possibly of dimension 1, in which case it is

identified with σ2 ∈ R+), N (C) denotes the law of the centered Gaussian vector
with covariance matrix C. I will write N (C)+ m to denote the non-centered
Gaussian vector with variance C and mean m.

Functional analysis

• Unless otherwise specified, all the functional spaces considered in this mono-
graph will be real.

• For I an open interval of R and k ∈N∪ {∞}, C k
0 (I) denotes the subset of functions

of C k(I) with compact support.
• If µ is a nonnegative measure on some measurable space (Ω,B), L2(µ) denotes

the set of measurable functions f (up to µ-a.e. equality) such that
∫
Ω f (ω)2 dµ(ω)<

[∗]The use of the first or the second convention will depend on the way we prefer to see the conditional
expectation of f w.r.t. G : if it is rather seen as the expectation of f knowing the information of G , nota-
tion E[ f |G ] will be chosen, while if it is more seen like the G -measurable function best approximating
f , we will use the notation f G .

[†]One must not confuse Var( f |G ), which is the variance of f under the law P[·|G ], with Var( f G )
which is the (unconditioned) variance of the random variable f G . One has the well-known identity
Var( f )=Var( f G )+E[Var( f |G )], which I shall refer to as associativity of variance.
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∞. If I is a countable set, L2(I) denotes the set of functions f : I → R such that∑
i∈I f (i)2 < ∞. If F is a σ-algebra, L2(F ) denotes the space of F -measurable

functions (up to a.s. equality) which are square-integrable w.r.t. P. All these
spaces are equipped with their natural Hilbertian product 〈·,·〉 and the associ-
ated norm ‖·‖.

• For µ a finite measure, in L2(µ) the constant functions make a line which can
be identified with R; then, L̄2(µ) will denote the quotient L2(µ)/R, equipped
with its natural Hilbert structure. In other words, if f̄ ∈ L̄2(µ) is the projec-
tion of f ∈ L2(µ), ‖ f̄ ‖L̄2 ··= inf{‖ f − a‖L2 : a ∈R} = (‖ f ‖2

L2 −〈 f ,1/‖1‖〉2
L2)1/2. L̄2(µ)

can also be seen as the subspace of centered functions of L2(µ), i.e. as { f ∈ L2(µ) :
〈 f ,1〉 = 0}; throughout the monograph we will implicitly switch between both
interpretations.

• If L : H1 → H2 is a linear operator between two Hilbert spaces, then L∗ :
H2 → H1 denotes the adjoint operator of L, characterized by the relationship
〈L∗y, x〉H1 = 〈y,Lx〉H2 .

• If L : E → F is a linear operator between two Banach spaces (not necessarily
Hilbert) with respective norms ‖·‖E and ‖·‖F , the operator norm of f , denoted
by � f �, is defined as sup{‖Lx‖F : ‖x‖E = 1}.

• If L : E → E is a linear operator on a Banach space, then ρ(L) denotes the spec-
tral radius of f , that is, ρ(L) ··= limk→∞�Lk�1/k —that limit always exists.

• A column vector (ai)i∈I will automatically be identified with the corresponding
element of L2(I). Likewise, a matrix A = ((ai j))(i, j)∈I×J will be identified with the
corresponding linear operator from L2(J) to L2(I).

• In our computations we will often use the Cauchy–Schwarz inequality and its
variants[‡]; when using such an inequality, we shall indicate it by writing “CS”
under the inequality sign concerned. Similarly, “IP” under an equality sign will
mean that this equality follows from an integration by parts.
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Chapter 0

Motivation

0.1 Some results on Ising’s model

In this subsection we recall the definition of Ising’s model and give two classical results
on it, namely Theorems 0.1.8 and 0.1.9. In § 0.2, considerations on these results will
serve as a motivation to the whole monograph.

0.1.a Ising’s model

Ising’s celebrated model is a basic model of equilibrium thermodynamics, which repre-
sents a ferromagnetic material:

0.1.1 Definition. For n an integer, consider the lattice Zn endowed with its usual
graph structure (each vertex has 2n neighbours), and denote by dist the graph dis-
tance. Define Ω= {±1}Z

n
, and for →

ω ∈Ω, set formally:

H(→ω)=−1
2

∑
dist(i, j)=1

ωiω j. (1)

Then, for T Ê 0, the Ising model on Zn at temperature T is, formally, a probability
measure P on Ω such that P[→ω]∝ exp(−T−1H(→ω)). In rigorous terms, saying that P is
an equilibrium measure for Ising’s model means that for all i ∈Zn, for all

→
ω̂{i}c ∈ {±1}{i}c ,

P[ωi = ω̂i|→ω{i}c =
→
ω̂{i}c]∝ exp(T−1 ∑

dist(i, j)=1
ω̂iω̂ j). (2)

Ising’s model and the phase transition it exhibits have been the subject of dozens
of works; see [21] for an overview. Here we are interested in the subcritical regime:

0.1.2 Theorem (Subcritical regime, [32]). There is a Tc <∞ (the ‘Curie temperature’)
such that the solution of (2) is unique for T > Tc .

For T > Tc one says that they are in the subcritical regime. An interesting feature
of this regime is that for distant i and j, the random variables ωi and ω j are ‘almost
independent’. That phenomenon, called exponential decay of correlations, is stated by
the following theorem:
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0.1.3 Theorem (Exponential decay of correlations, [2]). For Ising’s model on Zn in the
subcritical regime,

(i) For all i ∈Zn, P[ωi =−1]=P[ωi = 1]= 1/2.
(ii) There exists ψ> 0 and C <∞ such that for all i, j ∈Zn,

|E[ωiω j]| É C exp(−ψdist(i, j)). (3)

0.1.b Absence of β-mixing

Theorem 0.1.3 states that two distant spins i and j are exponentially decorrelated.
However, it does not inform us about the dependence of ‘bunches’ of spins. The question
is the following: if I and J are two disjoint, distant subsets of Zn, to what extent are →

ωI
and →

ωJ independent?

To answer such a question, the first thing to do is to define a way of measuring
independence between ‘complicated’ variables like →

ωI and →
ωJ , having an arbitrarily

large range. The most common choice is the β-mixing coefficient:

0.1.4 Definition.
(i) Recall that for µ, ν two probability measures on the same measurable space

(Ω,F ), the total variation distance between µ and ν is the total mass of both the
positive and the negative parts of the signed measure ν−µ, that is, distTV(µ,ν)=
supA⊂F |ν(A)−µ(A)|.

(ii) If X and Y are two random variables (with arbitrary ranges) defined on the same
space, then one defines the β-mixing coefficient between X and Y as

β(X ,Y ) ··= distTV(LawX ⊗LawY , Law(X ,Y )). (4)

Notice that β(X ,Y ) actually only depends on the σ-algebras σ(X ) and σ(Y ) [7, For-
mula (1.5)]. The following proposition is immediate:

0.1.5 Proposition.
(i) One has always β(X ,Y ) ∈ [0,1], and

(ii) β(X ,Y )= 0 if and only if X and Y are independent ;
(iii) β(X ,Y )= 1 if and only if LawX ⊗LawY and Law(X ,Y ) are mutually disjoint.
(iv) If X ′ is X -measurable and Y ′ is Y -measurable, then β(X ′,Y ′)Éβ(X ,Y ).

So, β(X ,Y ) is a measure of ‘how much X and Y are correlated’.

With that tool at hand, decorrelation of bunches of spins in statistical physics mod-
els has already been thoroughly studied. Concerning Ising’s model, there are two well-
known great results:

0.1.6 Theorem (Weak mixing property, [29]). For Ising’s model on Zn in the subcritical
regime, there exists ψ > 0 and C <∞ (the same as in Theorem 0.1.3) such that for all
disjoint I, J ⊂Zn:

β(→ωI , →ωJ) É C
∑

(i, j)∈I×J
exp(−ψdist(i, j)). (5)
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0.1.7 Theorem (Complete analyticity, [15]). There exists some Tc É T ′
c <∞[∗] such that

for T > T ′
c, Ising’s model is completely analytical, i.e. there exists ψ′ > 0 and C′ > 0

such that the following holds: for all K ⊂ Zn, for all ‘boundary’ condition
→
ω̂K ∈ {±1}K ,

denoting P→
ω̂K

··=P[·|→ωK = →
ω̂K ], Formula (5) holds with Law replaced by Law→

ω̂K
and ψ,C

replaced resp. by ψ′ and C′.

Thanks to Theorem 0.1.6, we get an exponential decay of correlation between two
bunches of spins of fixed size when the distance between these bunches increases.
However, we cannot say much about decorrelation between bunches of variable size
which are at fixed distance from each other. For instance, consider n = 2; for x > 0,
define I l ··= {(0, y) : |y| É l}, resp. Jl ··= {(x, y) : |y| É l}. Then Theorem 0.1.6 cannot give
us anything better than something like:

β(→ωI l ,
→
ωJl ). Cle−ψx. (6)

But recall that a β-mixing coefficient is always bounded by 1; so, for l& eψx/C, (6) tell
us absolutely nothing about the decorrelation between I l and Jl .

Though the bound (5) is not completely optimal, the previous point is an intrinsic
shortcoming of β-mixing coefficients, in the sense that it can be proved that bounds
like (6) must become trivial when l →∞:

0.1.8 Theorem. For all Tc < T <∞, for all x > 0, denoting I ··= {0}×Z and J ··= {x}×Z,
one has

β(→ωI , →ωJ)= 1. (7)

Proof. Denote i0 ··= (0,0), resp. j0 ··= (x,0). As we told in Theorem 0.1.3-(i),
E[ωi0],E[ω j0]= 0. Interpretation of Ising’s model as a random-cluster model [21, § 1.4]
shows that P[ωi0 =ω j0]> 1/2, so we define

γ ··=E[ωi0ω j0]> 0. (8)

Now, let N be some large integer, fixed for the time being. Let p be some large in-
teger and define i1, . . . , iN , resp. j1, . . . , jN , by ik ··= (0,kp), resp. jk ··= (x,kp); by trans-
lation invariance, for each k, (ωik ,ω jk ) has the same law as (ωi0 ,ω j0). Now denote
by PN,p the joint law of (ωi1 , . . . ,ωiN ,ω j1 , . . . ,ω jN ). By Theorem 0.1.6, when p →∞ PN,p
tends to the law PN,∞[†] where all the (ωik ,ω jk ) are independent—with the same law
as previous, namely,

PN,∞[ωik = η and ω jk = θ]= 1+γηθ
4

. (9)

Therefore, the value of β((ωik )k, (ω jk )k) under the law PN,p, which is known by Propo-
sition 0.1.5-(iv) to be a lower bound for β(→ωI , →ωJ), tends to its value under PN,∞
when p →∞. This is summed up by the following formula:

β(→ωI , →ωJ)ÊβPN,∞((ωik )1ÉkÉN , (ω jk )1ÉkÉN). (10)

[∗]It is not known whether T ′
c = Tc today, but in general situations, weak mixing does not always imply

complete analyticity. A classical counterexample is Ising’s model with external field, cf. [30, § 2].
[†]Note that PN,p takes its values in a space of finite dimension, so there is no ambiguity when speak-

ing of its convergence.
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To end the proof, we will bound the right-hand side of (10) below by a quantity
which tends to 1 when N → ∞. Denote by

~
PN,∞ the product of two the marginals

of PN,∞ relative resp. to the (ωik )k and the (ω jk )k, so that βPN,∞((ωik )k, (ω jk )k) =
distTV(PN,∞,

~
PN,∞) by the very definition of the β-mixing coefficient. Obviously the

expression of
~
PN,∞ is the same as the expression of

~
PN,∞, but with γ replaced by 0

in (9). Under PN,∞, (ωikω jk )1ÉkÉN is a sequence of i.i.d. random variables having a
certain law with mean γ> γ/2, so that by the law of large numbers,

PN,∞
[
N−1

N∑
k=1

ωikω jk É
γ

2

]
N→∞→ 0. (11)

Similarly, since 0< γ/2,

PN,∞
[
N−1

N∑
k=1

ωikω jk É
γ

2

]
N→∞→ 1, (12)

so that

distTV(PN,∞,
~
PN,∞)Ê

∣∣∣~PN,∞
[
N−1

N∑
k=1

ωikω jk É
γ

2

]
−PN,∞[the same]

∣∣∣ N→∞→ 1, (13)

which proves our point.

0.1.c Presence of ρ-mixing

So, Theorem 0.1.8 tells us that, for Ising’s model on Z2, there is a ‘full’ correlation
between →

ωI and →
ωJ in the sense of β-mixing. Yet it is well known too that Theo-

rem 0.1.6 nevertheless implies a Hilbertian form of decorrelation (called “ρ-mixing”,
cf. Remark 1.1.2) between these variables:

0.1.9 Theorem. For Ising’s model on Z2 in the subcritical regime, defining as before
I = {0}×Z and J = {x}×Z for some x > 0, one has for all f ∈ L̄2(→ωI) and g ∈ L̄2(→ωJ):

|E[ f g]| É e−ψx Sd( f )Sd(g), (14)

where ψ is the same as in Theorem 0.1.6.

Proof. Define the operator

P : L̄2(→ωI) → L̄2(→ωJ)
f 7→ f σ(→ωJ ).

(15)

(Recall that f σ(→ωJ ) is an alternative notation for E[ f |→ωJ], insisting on the its being a
σ(→ωJ)-measurable function). Then (14) is equivalent to proving that �P� É e−ψx (see
§ 1.1.c). Now for all t ∈ {0, . . . , x}, denote ω(t) ··= →

ω{t}×Z, and for all t ∈ {1, . . . , x},

πt : L̄2(ω(t−1)) → L̄2(ω(t))
f 7→ f σ(ω(t)).

(16)

Due to the fact that the interactions in Ising’s model have only range 1, ω(0) →ω(1) →
···→ω(x) is a Markov chain, and therefore

P =πx ◦ · · · ◦π2 ◦π1. (17)
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Now, by horizontal translation all the L̄2(ω(t)) can be identified with a common Hilbert
space H. Then all the πt are identified with operators on L̄2(H), and by the translation
invariance of the model all these operators are actually the same. P is also identified
with an operator on L̄2(H), and (17) becomes:

P =πx. (18)

But π is self-adjoint because, as the model is invariant by translation and by reflection,
the Markov chain ω(0) → ··· → ω(x) is stationary and reversible. In particular π is a
normal operator, and thus �P� = �π�x. So, proving that �P� É e−ψx is equivalent to
proving that �π�É e−ψ, which will be our new goal.

Take C <∞ like in Theorem 0.1.6. For l an integer, denote I l and Jl to be resp. {0}×
{−l, . . . , l} and {x}× {−l, . . . , l}. Let f be a bounded[‡] function of L̄2(→ωI l ) and denote
M ··= ‖ f ‖L∞ . By translation, f can also be identified with a function of L̄2(→ωJl ), which
is also bounded by M. Now, since

E[ f (→ωI l ) f (→ωJl )]=Cov( f (→ωI l ) , →
ωJl )=

∫
f (→ωI l ) f (→ωJl )d(Law(→ωI l]Jl )−Law(→ωI l )⊗Law(→ωJl )),

(19)
we can apply (5) to I l and Jl to obtain:

|E[ f (→ωI l ) f (→ωJl )]| É M2 ·2C(2l+1)2e−ψx. (20)

In terms of operators, (20) means that

|〈 f ,P f 〉̄L2(H)|É 2(2l+1)2M2Ce−ψx. (21)

As the value of x played no particular role to establish (21), that formula can be gener-
alized into

|〈 f ,πt f 〉̄L2(H)|É 2(2l+1)2M2Ce−ψt (22)

for all t ∈N∗. Letting t tend to infinity, we obtain that for all l, for all f ∈ L̄2(→ωI l )∩L∞,

lim
t→∞( log |〈 f ,πt f 〉|)1/t É e−ψ. (23)

But
⋃

l∈N (L̄2(→ωI l )∩L∞) is a dense subset of L̄2(→ωI), so by Lemma 0.3.1 set in appendix,
we conclude that �π�L̄2(H) É e−ψ, which is what we wanted.

0.1.10 Remark. Claim 0.1.8 and Theorem 0.1.9 adapt straighforwardly, with similars
proof, to any n Ê 2, replacing I by {0}×Zn−1 and J by {x}×Zn−1.

0.2 Problematics

Thanks to Theorem 0.1.9, we see that the Hilbertian concept of ρ-mixing can reveal
some independence between infinite bunches of lowly correlated variables in situations
where the β-mixing coefficient does not show any independence at all. In the proof
we gave, ρ-mixing appeared as a corollary of β-mixing decorrelation results. What
additional hypotheses did we need to get our corollary? We used at least the following:

[‡]In fact here it is superfluous to impose that f is bounded since →
ωI l can only take a finite number of

values. I wrote the proof like this just to underline that the finiteness of the range of the ωi does not
play any role in the proof.
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• To introduce the Markov chain ω(0) → ···→ω(x), we used that the interactions of
our model had finite range.

• To identify all the spaces L̄2(ω(t)), we used that I and J were shaped such that
one could tile up Z2 with a sequence of tiles of the same shape (namely, here,
tiles of the form {t}×Z).

• To say that all the πt were the same modulo that identification, we used the
translation invariance of the model.

• To state that the stationary Markov chain ω(0) → ··· → ω(x) was reversible, we
used the reflection invariance of the model.

• To use Lemma 0.3.1, we used the exponential decay of correlations.

All these points make the proof of Theorem 0.1.9 we gave in § 0.1 quite difficult to
generalize. What, for instance, if we take I and J with arbitrary shapes, just requiring
that dist(I, J) Ê x? What if we consider statistical physics models with infinite-range
interactions? Etc.. The above arguments would not work any more! Yet, we do not
have the impression that the presence of ρ-mixing relies fundamentally on the peculiar
symmetries of the case we treated. . .

So, here will be the goal of this monograph: establishing ρ-mixing estimates by
general methods. To achieve this goal, I shall try to concentrate on the properties of ρ-
mixing ‘for itself ’ rather than to its links with other forms of decorrelation. I will carry
out a thorough study of the ρ-mixing coefficient, also called “maximal correlation”,
in order to get ρ-mixing results for ‘complicated’ variables from decorrelation results
of the same type for more ‘basic’ variables; in other words, I will tensorize maximal
decorrelations. It turns out that tensorization for such type of decorrelations gives
results which are quite robust as the size of bunches of variables increases. Thanks
to this methods, I shall obtain fairly new decorrelation theorems for various models of
statistical physics.

This work is intended to be complete in some sense. I mean, besides the core of
this monograph—namely, tensorization results—, I have tried to answer several other
questions which appeared natural to me concerning maximal decorrelation. This in-
cludes studying many examples, finding sharp criteria for maximal decorrelation, look-
ing at the optimality issues in the tensorization results or showing other applications
of the tensorization techniques. Though these topics were initially thought as ‘side-
work’, some of them may be quite interesting for themselves.

0.3 Appendix: On the norm of self-adjoint operators

In this appendix we prove the following

0.3.1 Lemma. Let L be a self-adjoint operator on a real Hilbert space H, and let C <∞.
Then, to prove that �L�É C, it suffices to ensure that

{x ∈ H : lim
k→∞

|〈Lkx, x〉|1/k É C} (24)

is a dense subset of H.

Proof. Reasoning by contraposition, we have to show that, for L a self-adjoint operator
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on H, for all C <�L�, the set of the x ∈ H such that

lim
k→∞

|〈Lkx, x〉|1/k > C (25)

contains a non-empty open subset of H.

Since L is self-adjoint, by the spectral theorem [45, Theorem 7.18], it is unitarily
equivalent to the “multiplication by identity” operator M on a space

⊕
α∈A L2(ρα), for A

some set and ρα some Radon measures on R, that is (in the following equation, the
variable λ is free, so that f (λ) is synonymous with f ):

M(
∑
α

fα(λ))=
∑
α

λ fα(λ). (26)

So we will assume L is of that form.

One has obviously:

�L�= sup{λÊ 0 : (∃α ∈ A) (ρα([−λ,λ]c)> 0)}; (27)

moreover, for all f ∈ H, f =∑
α∈A fα with fα ∈ L2(ρα),

〈Lk f , f 〉 = ∑
α∈A

∫
R
λk| fα(λ)|2 dρα(λ), (28)

so that (observing that, for k even, λk Ê 0 ∀λ)

lim
k→∞ |〈Lk f , f 〉|1/k = sup{λÊ 0 : (∃α ∈ A) (

∫
[−λ,λ]c

| fα(λ′)|2 dρα(λ′)> 0)}. (29)

Now, for C <�L�, the set

U = { f ∈ H : (∃α ∈ A) (
∫

[−C,C]c
| fα(λ)|2 dρα(λ)> 0)} (30)

is open because
∫

[−C,C]c | fα(λ)|2 dρα(λ) is a continuous function of f , and it is non-empty
by (27). But (25) is satisfied for all x ∈U by (29), so U fulfills our quest.
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Chapter 1

A first approach to maximal
correlations

1.1 Definition and first properties

1.1.a Equivalent definitions

1.1.1 Definition. Let (Ω,B,P) be a probability space. For F ,G two sub-σ-algebras
of B, the maximal correlation coefficient (or merely “correlation”) between F and G is
defined as

{F : G } ··= sup
f ∈̄L2(F )à{0}
g∈̄L2(G )à{0}

|E[ f g]|
Sd( f )Sd(g)

. (31)

If the supremum in (31) is taken over an empty set, that is, if F or G is trivial, we
define this supremum to be 0.

1.1.2 Remark. {F : G } is often called “ρ-mixing coefficient” between F and G and de-
noted by ρ(F ,G ), cf. [7].

1.1.3 Remark. In other words, {F : G } is the best k ∈R+ such that the following refined
Cauchy–Schwarz inequality holds in the Hilbert space L̄2(B):

∀ f ∈ L̄2(F ) ∀g ∈ L̄2(G ) |〈 f , g〉| É k‖ f ‖‖g‖. (32)

Yet another formulation is that {F : G } is the cosine of the angle between L̄2(F )
and L̄2(G ), seen as subspaces of L̄2(B) —this angle being defined as the infimum angle
between any two non-zero vectors of these respective subspaces.

If we speak in terms of L2 spaces rather than L̄2 spaces, {F : G } is the best k ∈ R+
such that for all non-constant square-integrable f , g resp. F and G -measurable,

|Corr( f , g)| É k, (33)

where Corr( f , g) ··= Cov( f , g)/Sd( f )Sd(g) is the Pearson correlation coefficient be-
tween f and g.
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1.1.4 Definition. We say that F and G are ε-decorrelated, resp. ε-correlated, if {F :
G }É ε, resp. {F : G }Ê ε.
1.1.5 Definition. If X and Y are random variables (with arbitrary range), then {X : Y }
denotes {σ(X ) :σ(Y )}.

1.1.6 Remark. One can rewrite Definition 1.1.5 as

{X : Y }= sup
f ,g

Cov( f (X ), g(Y ))
Sd( f (X ))Sd(g(Y ))

, (34)

where it is implied that f and g have to be measurable, real, and such that 0 <
Sd( f (X )),Sd(g(Y ))<∞.

* More generally, all the questions relative to maximal correlations may be handled
either in terms of σ-algebras or in terms of random variables. In the sequel, we will
frequently switch implicitly between these two paradigms.

It is natural to enquire what happens if one deals with complex L̄2 spaces. In fact
it does not change anything:

1.1.7 Proposition ([46, Theorem 1.1]). Let F and G be two σ-algebras and let f , g be
two complex centered L2 variables, measurable w.r.t. resp. F and G . Then, with Sd( f )
meaning

√
E[| f −E[ f ]|2], one has:

|E[ f g]| É {F : G }Sd( f )Sd(g). (35)

Proof. I recall the proof for the sake of completeness. Up to multiplying g by a well-
chosen unit complex number, we can assume that E[ f g]∈R+. Then we can apply Defi-
nition 1.1.1 to the real L̄2 variables Re f and Re g, resp. Im f and Im g, getting:

|E[ f g]| =ReE[ f g]=E[Re f Re g]−E[Im f Im g]
É {F : G }(Sd(Re f )Sd(Re g)+Sd(Im f )Sd(Im g))

É
CS

{F : G }
√

Var(Re f )+Var(Im f )
√

Var(Re g)+Var(Im g)

= {F : G }Sd( f )Sd(g). (36)

Now we turn to a different way of seeing correlation levels.

1.1.8 Definition. For F ,G two σ-algebras, we denote by πGF the ‘projection’ operator

πGF : L̄2(F ) → L̄2(G )
f 7→ f G .

(37)

For F , . . . ,Z σ-algebras, we denote πZ Y X ...GF ··=πZ Y ◦πY X ◦ · · · ◦πGF .

With this vocabulary at hand,

1.1.9 Proposition. For F ,G two σ-algebras, {F : G }=�πGF�.
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Proof. πGF is the orthogonal projection from L̄2(F ) to L̄2(G ) in the Hilbert space
L̄2(B), so its norm is the cosine of the angle between L̄2(F ) and L̄2(G ), i.e. {F : G }.

1.1.10 Remark. One has πFG = π∗
GF

, since 〈πGF f , g〉 = E[ f g] = 〈 f ,πFG g〉. Therefore
the expression �πGF� in Proposition 1.1.9 can be rewritten into

p�πFGF�, which is
also ρ(πFGF ) since πFGF is self-adjoint.

1.1.b Immediate properties

Having defined Hilbertian correlations, it is now time to study their behaviour.

The following properties are trivial from Definition 1.1.1:

1.1.11 Proposition. For all σ-algebras F , G and G ′,
(i) {G : F }= {F : G };

(ii) G ⊂G ′ ⇒ {F : G }É {F : G ′};
(iii) {F : G } ∈ [0,1];
(iv) {F : G }= 0 if and only if F and G are independent;
(v) If F is not trivial, then {F : F }= 1.

When one is concerned by correlation between variables, it often occurs that some
of these variables are vector-valued. The following proposition means that it suffices to
know the behaviour of finite-length vectors to understand the behaviour of all vectors:

1.1.12 Proposition. Let I, J be possibly infinite sets and let
→
X I ,

→
YJ be vector-valued

variables. Then, denoting “I ′b I” to mean that I ′ is a finite subset of I,

{
→
X I :

→
YJ}= sup

I ′bI,J′bJ
{
→
X I ′ :

→
YJ′}. (38)

Proof. This is because
⋃

I ′bI L̄2(
→
X I ′), resp.

⋃
J′bJ L̄2(

→
XJ′), is a dense subset of L̄2(

→
X I),

resp. L̄2(
→
YJ). That property follows by classical approximation arguments like in the

proof of [42, Theorem 3.14]. See [8, Theorem 3.16(II-3)] for a more detailed proof.

1.1.c Operator interpretation

1.1.13 Proposition. If X →Y → Z is a Markov chain, then {X : Z}É {X : Y }{Y : Z}.

Proof. The Markov chain property is equivalent to meaning that πZX = πZY X , so the
result is a consequence of the submultiplicativity of operator norms. See also [41,
§ VII-4].

There is a refined version of Proposition 1.1.13 which is particularly interesting for
reversible chains:

1.1.14 Proposition. If X →Y → Z is a Markov chain, then {X : Z}=√
ρ(πY ZY ◦πY XY ).
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Proof. Because of the Markov chain property, πX Z = πXY ◦πY Z and πZX = πZY ◦πY X .
Using that for any pair of operators π : H1 → H2 and τ : H2 → H1, one has ρ(π◦τ) =
ρ(τ◦π), we get that {X : Z}2 = ρ(πXY )= ρ(πXY ZY X )= ρ(πXY ◦πY ZY X )= ρ(πY ZY X◦πXY )=
ρ(πY ZY ◦πY XY ).

1.1.15 Corollary. If · · · → X−1 → X0 → X1 → ··· is a stationary Markov chain so that
πX1 X0 and πX0 X1 commute[∗], then for all k ∈Zà {0}, {X0 : Xk}= {X0 : X1}|k|.

Proof. Since the chain is stationary, all the Xn have the same law and thus all
the L̄2(Xn) can be identified; then the stationarity property is equivalent to saying
that πXn+1 Xn = πX1 X0 for all n ∈ Z. Thanks to the commutation hypothesis, one can
write for k > 0:

{X0 : Xk}=
√
ρ(πX0 Xk X0)=

√
ρ(πk

X0 X1
◦πk

X1 X0
)=

√
ρ(πk

X0 X1 X0
)=

√
ρ(πX0 X1 X0)k = {X0 : X1}k.

(39)
For the case k < 0, we use that {X0 : Xk}= {X−k : X0}.

1.1.d First criteria for decorrelation

Density sufficient condition
1.1.16 Proposition. Let X and Y be two random variables resp. valued in E and F.
Suppose that Law(X ,Y ) has a density h w.r.t. the product probability Law(X )⊗Law(Y ).
Then

{X : Y }É (
∫

E×F
(h−1)2 dLawX dLawY )1/2. (40)

1.1.17 Remark. The integral expression in (40) is nothing but the bilinearized version
of the mutual information

I(X ;Y ) ··=
∫

E×F
h logh dLawX dLawY . (41)

Yet Example 1.3.2 shows that one does not have {X : Y }É I(X ;Y ) in general.

Proof. To alleviate notation, denote resp. PX ,PY ,P(X ,Y ) for Law(X ),Law(Y ),
Law(X ,Y ). Let f and g be centered L2 functions being resp. X - and Y -measurable.
Observe first that∫

E×F
f (x)g(y)dPX [x]dPY [y]= (

∫
E

f dPX)(
∫

F
g dPY )= 0×0= 0, (42)

so that
E[ f g]=

∫
f g dP(X ,Y ) =

∫
hf g dPX dPY =

∫
(h−1) f g dPX dPY (43)

and thus
|E[ f g]| É (

∫
(h−1)2 dPX dPY )1/2(

∫
f 2 g2 dPX dPY )1/2 (44)

by the Cauchy–Schwarz inequality. But the last factor in the right-hand side of (44) is

(
∫

f 2(x)g2(y)dPX [x]dPY [y])1/2 = (
∫

f 2dPX)1/2(
∫

g2dPY )1/2 =Sd( f )Sd(g), (45)

so that (40) is proved.

You may also see [9, Theorem 2.5] for an analogous result.
[∗]Reversible chains always satisfy this condition since then πX1 X0 =πX0 X1 .
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Event necessary condition

1.1.18 Proposition (event necessary condition). Let F and G be two σ-algebras. If
{F : G }É ε, then for all events A ∈F and B ∈G with respective probabilities p and q,

|P[A∩B]− pq|É ε√p(1− p)q(1− q). (46)

In particular, if there exists two non-trivial events A ∈F ,B ∈G which are equivalent
(in the sense that P[A 4B]= 0), then {F : G }= 1.[†]

Proof. It follows from (33) applied to 1A and 1B.

1.1.e Independent tensorization

Now we are turning to the basic tensorization theorem, which will motivate § 3:

1.1.19 Theorem ([13, Theorem 6.2]). Let I be a set and let
→
X I ,

→
YI be vectors of variables.

Suppose all the pairs (X i,Yi), i ∈ I are independent, then

{
→
X :

→
Y }= sup

i∈I
{X i : Yi}. (47)

Proof. The simplest proof of Theorem 1.1.19 relies on the operator interpretation of
correlations, see e.g. the proof of [47, Theorem 1]. Here however I shall give a proof
based on decomposing functions of several variables into telescopic sums, for this kind
of arguments will be used again in the proofs of the more general tensorization theo-
rems of § 3.

First, observe that the “Ê” inequality (47) is trivial, so we only have to prove the “É”
inequality. We denote εi ··= {X i : Yi}, and to alleviate notation, xi will implictly stand
for an element in the range of X i, resp. yi for an element in the range of Yi.

By Proposition 1.1.12, we may assume that I is finite, say I = {1, . . . , N} for some N ∈
N. Let f and g be resp.

→
X I-measurable and

→
YI-measurable centered L2 real functions;

our goal is to bound above |E[ f g]|.
For i ∈ {0, . . . , N}, define Fi = ∨

jÉiσ(X j,Y j). I claim that, because of the indepen-
dence hypothesis, f Fi only depends on the values of X1, . . . , X i and not on Y1, . . . ,Yi,
and similarly that gFi only depends on the values of Y1, . . . ,Yi: one can write indeed
(in the case of f ):

f Fi (x1, y1, . . . , xi, yi)=
∫

f (x1, . . . , xi, xi+1, . . . , xn)dP[xi+1, . . . , xn|x1, y1, . . . , xi, yi]

=
∫

f (x1, . . . , xi, xi+1, . . . , xn)dP[xi+1, . . . , xn]. (48)

[†]The converse is not true: it can occur that {F : G } = 1 while no non-trivial events of F and G are
equivalent. A counterexample is the following: let (Xn)n∈N be independent Bernoulli(1/2) variables, and
define independently Yn = 1−Xn with probability εn and Yn = Xn otherwise, where (εn)n∈N be a sequence
of numbers such that 0< εn É 1/2 for all n and εn

n→∞→ 0. Then the vectorial variables
→
X and

→
Y obviously

satisfy {
→
X :

→
Y } = 1, but it is not hard to prove that no

→
X -measurable non-trivial event is equivalent to a→

Y -measurable one.
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Now, for i ∈ {1, . . . , N}, define

f i(x1, . . . , xi)= f Fi (x1, . . . , xi)−E[ f |x1, . . . , xi−1], (49)

with a similar definition for g. One has f = ∑
i f i, resp. g = ∑

i g i, and f i and g i are
Fi-measurable and centered w.r.t. Fi−1 (that is, ( f i)Fi−1 , (g i)Fi−1 ≡ 0), so

Var f =∑
i

Var f i, (50)

resp. Var g =∑
i Var g i.

We expand:
E[ f g]= ∑

(i, j)∈I×I
E[ f i g j]. (51)

In the right-hand side of (51), if i 6= j then E[ f i g j] = 0 since if, say, i < j, f i is Fi-
measurable while g j is centered w.r.t. F j−1 ⊃Fi, so (51) turns into:

E[ f g]= ∑
i∈I

E[ f i g i]. (52)

Writing the law of total expectation,

E[ f i g i]=
∫

E[ f i g i|x1, y1, . . . , xi−1, yi−1]dP[x1, y1, . . . , xi−1, yi−1]. (53)

But, as we noticed before, under P[·|x1, y1, . . . , xi−1, yi−1], f i only depends on X i and g i
only depends on Yi. Moreover, because of the independence property the law of (X i,Yi)
is the same under P[·|x1, y1, . . . , xi−1, yi−1] as under P, so under P[·|x1, y1, . . . , xi−1, yi−1],
f i and g i are centered and εi-independent. Thus

|E[ f i g i]| É εi

∫
Sd( f i|x1, y1, . . . , xi−1, yi−1)Sd(g i|x1, y1, . . . , xi−1, yi−1)dP[x1, y1, . . . , xi−1, yi−1]

É
CS
εi

√∫
Var( f i|x1, y1, . . . , xi−1, yi−1)dP[x1, y1, . . . , xi−1, yi−1]

√
the same for g

= εi Sd( f i)Sd(g i), (54)

the last equality following from the fact that f i and g i are centered w.r.t. Fi−1. Sum-
ming over i,

|E[ f g]| É ∑
i∈I
εi Sd( f i)Sd(g i)É sup

i∈I
εi ·

∑
i∈I

Sd( f i)Sd(g i)

É
CS

sup
i∈I

εi ·
√∑

i∈I
Var( f i)

√∑
i∈I

Var(g i)= sup
i∈I

εi ·Sd( f )Sd(g), (55)

which is the desired bound.

1.2 Examples

1.2.a Finite-ranged variables

1.2.1 Proposition. Let X ,Y be random variables with finite ranges resp. {1, . . . , N}
and {1, . . . , M}, and denote pa ··= P[X = a], pb ··= P[Y = b], pb

a ··= P[X = a and Y = b].
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Then {X : Y }=�Π�, where Π is the N ×M matrix with general entry

Πab =
pb

a − pa pb√
pa pb

. (56)

1.2.2 Remark. In particular, if both X and Y have range {1,2}, using the same notation
as before, one has

{X : Y }= |pb
a − pa pb|√
p1 p2 p1 p2

, (57)

where the right-hand side of (57) does not depend on the choice of a,b ∈ {1,2}.

Proof of Proposition 1.2.1. By Proposition 1.1.9, {X : Y } is the norm of the operator
πXY : L̄2(Y )→ L̄2(X ). Here it will be more convenient to work in L2 spaces than in L̄2

spaces, so we rather compute the norm of

~
π : L2(Y ) → L2(X )

g 7→ gX −E[g], (58)

which is obviously the same as �πXY�.

A function g ∈ L2(Y ) can be identified with a M-dimensional vector also denoted
by g, and similarly ~

πg ∈ L2(X ) can be identified with a N-dimensional vector. De-
note P ··= ((pb

a))a,b ∈ RN×M , IX ··= ((δaa′ pa))a,a′ ∈ RN×N , IY ··= ((δbb′ pb))b,b′ ∈ RM×M ,
1N ··= 1{1,...,N} ∈RN . Applying Bayes’ formula yields that

~
πg = I−1

X P g − 1N (1N)T P g. (59)

Now, ‖g‖L2(Y ) = ‖I1/2
Y g‖, resp. ‖~πg‖L2(X ) = ‖I1/2

X (~πg)‖, so:

{X : Y }= sup
g 6=0

�( I−1/2
X P − I1/2

X 1N (1N)T P ) g�
‖ I1/2

Y g‖ . (60)

Performing the change of variables h = I1/2
Y g, (60) becomes {X : Y }= suph 6=0 ‖Πh‖/‖h‖ =

�Π�, with
Π= I−1/2

X P I−1/2
Y − I1/2

X 1N (1N)T P I−1/2
Y , (61)

which is Equation (56) indeed.

1.2.3 Remark. With the same kind of proof, one has even a similar proposition to cal-
culate {X ,Y } if either X or Y has finite range, provided you know (in the case it is X
which has finite range) all the P[X = x] and all the∫

y

dP[Y = y|X = x]dP[Y = y|X = x′]
dP[Y = y]

. (62)

1.2.4 Remark. In the case X or Y has range of cardinality 2, applying Proposi-
tion (1.2.1) yields that {X : Y }2 depends smoothly on Law(X ,Y ). Yet this is not the
case in general: in fact, maximal correlations are nothing more than a particular case
of operator norms (cf. § 1.1.c), and thus they have the same behaviour—they are a con-
tinuous function of the parameters, but they have some C 1 singularity. The following
example exhibits such a singularity.
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1.2.5 Example. Suppose both X and Y have range {1,2,3} and

((P[X = a and Y = b]))a,b =
 2/9 1/18 1/18

1/18 2/9+α 1/18−α
1/18 1/18−α 2/9+α

 (63)

for a parameter α ∈ [−2/9,1/18]. Then the matrix Π defined by (56) is

Π=
 1/3 −1/6 −1/6
−1/6 1/3+3α −1/6−3α
−1/6 −1/6−3α 1/3+3α

=U

1/2+6α 0 0
0 1/2 0
0 0 0

U−1, (64)

with

U =

 0 −2/
p

6 1/
p

3
1/
p

2 1/
p

6 1/
p

3
−1/

p
2 1/

p
6 1/

p
3

 (65)

being orthogonal. So by Proposition 1.2.1, {X : Y }= 1/2+6α+.

1.2.b Gaussian variables

The following theorem, which I will frequently use in the sequel, computes exactly the
maximal correlation between two jointly Gaussian variables:

1.2.6 Theorem ([27, 26]). Let (
→
X ,

→
Y ) be an (N+M)-dimensional Gaussian vector whose

covariance matrix writes blockwise

Var(
→
X ,

→
Y )=

(
IN C
CT IM

)
, (66)

then {
→
X :

→
Y }=�C�.

1.2.7 Remark. In other words, Theorem 1.2.6 tells that in the Gaussian case, the supre-
mum in (34) defining {

→
X :

→
Y } can be restricted to linear functions f and g.

1.2.8 Remark. By a linear change of variables, Theorem 1.2.6 actually allows us to
compute {

→
X :

→
Y } for any Gaussian vector (

→
X ,

→
Y ).

Proof of Theorem 1.2.6. I recall (a sketch of) the proof for the sake of completeness. By
the properties of Gaussian vectors, the law of Y knowing that X = x [I dropped the
vector arrows] is the normal law N (IM −CTC)+CTx, and similarly the law of X know-
ing that Y = y is the normal law N (IN −CCT)+Cy. Consequently, the operator πXY X
is the generator of the following random walk on RN (whose equilibrium measure is
the standard Gaussian law): when one is at x, they jump to a point distributed ac-
cording to the normal law N (IN −CCTCCT)+CCTx. This walk is a multidimensional
AR(1)-process (see. [34, § 2.6]), whose properties are perfectly known; in particular,
the eigenvalue f of πXY X responsible for its spectral radius will be a linear function,
so we only have to consider linear f in the supremum (34). For such f , the optimal g
will also be linear by the Gaussian nature of the system, so in the end {

→
X :

→
Y } is equal

to �C�.
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X

Y

Figure 1: Schematic representation of Example 1.2.9 for n = 5 and p = 2.

1.2.c Miscellaneous examples

Random conditional laws
1.2.9 Example. Let 0 < p < n be integers. (X ,Y ) is a random variable such that Y
has range Y ··= {1, . . . ,n} and X has range X ··=Pp(Y ), the set of subsets y ⊂ Y with
cardinality p —so, #X = (n

p
)

and #Y = n —, and we take the law of (X ,Y ) uniform on
the pairs (x, y) such that y ∈ x: see Figure 1.

When considered as operators on L2 spaces, it is obvious that πXY and πY X are
characterized by (πXY f )(x)= p−1 ∑

y∈x f (y), resp. (πY X g)(y)= (n−1
p−1

)−1 ∑
y∈x g(x), so that

(πY XY f )(y)= 1
p

f (y)+ ∑
y′ 6=y

p−1
p(n−1)

f (y′). (67)

Thus, on L̄2(Y ), πY XY is nothing but the scalar operator n−p
p(n−1)I, and therefore

{X : Y }=
√

n− p
p(n−1)

(68)

by Proposition 1.1.9 and Remark 1.1.10.

Weakly coupled particles

1.2.10 Proposition. Let V1 and V2 be potentials on Rn, n Ê 1, i.e. the Vi are real-
valued measurable functions on Rn with

∫
Rn e−Vi(x) dx <∞. For i ∈ {1,2}, denote by Pi

the probability measure on Rn proportional to e−Vi(x)dx, which is to be thought as the
law of the position X i of a particle i subjected to the potential Vi. Denote P⊗ ··=P1⊗P2,
which is the joint law of (X1, X2) in absence of interaction.

Now let W be an interaction potential on (Rn)2, such that e−[V1(x1)+V2(x2)+W(x1, x2)]

is integrable; denote by P the probability measure on (Rn)2 proportional to
e−[V1+V2+W] dx1dx2, which is the joint law of (X1, X2) in presence of interaction po-
tential W .

Then, under the law P,

{X1 : X2}É Sd⊗(e−W )
E⊗[e−W ]

. (69)
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Proof. The law P has density h = e−W /E⊗[e−W ] w.r.t. P⊗, whence the result by Propo-
sition 1.1.16.

1.2.11 Remark. Proposition 1.2.10 gives a rigorous sense to the intuition that two
weakly coupled particles must have nearly independent positions. This is valid in
a quite general setting, in particular, W does not have to be bounded.

Non-reversible Markov chain

1.2.12 Example. Here is a example showing that the inequality in Proposition 1.1.13
is strict in general. Consider the stationary Markov chain on {1,2,3} defined by

P = ((P[Xk+1 = a|Xk = b]))ab =
0 1/2 1

1 0 0
0 1/2 0

 , (70)

which has equilibrium measure (2/5,2/5,1/5). Diagonalizing P shows that

P t =
2/5 2/5 2/5

2/5 2/5 2/5
1/5 1/5 1/5

+O(2−t/2), (71)

whence {Xk : Xk+t} = O(2−t/2) when t → +∞ by Proposition 1.2.1. Yet {Xk : Xk+1} =
1, since the non-trivial events {Xk = 1} and {Xk+1 = 2} are equivalent (cf. Proposi-
tion 1.1.18).

Hyperplanes in Ising’s model As I told in Chapter 0, the initial motivation of this
monograph was to understand the presence ρ-mixing in Ising’s model (cf. § 0.1.a); in
particular, I intended to re-get a result similar to Theorem 0.1.9 by a more ‘natural’
method. That will be achieved indeed in § 5.1:

1.2.13 Theorem (Theorem 5.1.1-(i)). For Ising’s model on Zn in the completely analyt-
ical regime, for all disjoint I, J ⊂Zn,

{→ωI : →
ωJ}É exp[− (ψ′+ o(1))dist(I, J)], (72)

where ψ′ is the same as in Theorem 0.1.7 and where the “o(1)” (to be understood “as
dist(I, J)→∞”) is uniform in I, J.

If we apply this result to the case of parallel ‘hyperplanes’ of Zn (I mean, sets of the
form {t}×Zn−1), Formula (72) looks far less neat than Formula (14) in Theorem 0.1.9.

This bound can however be improved by using Proposition 1.1.14. Indeed, as we
noticed in § 0.1.c, the states of two parallel hyperplanes are elements of some reversible
stationary Markov chain. Then, applying Corollary 1.1.15 (in which we let k →∞), we
get a result exactly similar to (14), except that we have to replace ψ by ψ′ —recall that
it is not known whether ψ′ =ψ.
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1.3 Comparing ρ-mixing to other measures of depen-
dence

The material of this section is classical; most of it can be found for instance in [8,
§§ 3 & 5]. Here we will say that a sequence of pairs (F n,G n) of σ-algebras is ρ-mixing
to mean that {F n : G n}n→∞→ 0.

1.3.a α-mixing

1.3.1 Definition. The α-mixing coefficient of two σ-algebras F and G is

α(F ,G ) ··= sup
A∈A
B∈B

|P[A∩B]−P[A]P[B]|. (73)

Proposition 1.1.18 shows that ‘ρ-mixing implies α-mixing’, in the sense that one

has α(F ,G )É A({F : G }) for some universal function A : [0,1]→ [0,1] with A(ρ)
ρ→0→ 0.

The following example shows that the converse is not true:

1.3.2 Example. For ε ∈ (0,1/2], define (X ε,Y ε) in the following way:

• With probability ε, one samples X ε and Y ε independently with common uniform
law on [0,ε];

• With probability (1−ε), one samples X ε and Y ε independently with common law
uniform on [ε,1].

Then for all ε> 0 one has {X ε : Y ε}= 1, since the non-trivial events {X ε É ε} and {Y ε É ε}
are equivalent (cf. Proposition 1.1.18). However is is easy to show that α(X ε,Y ε) =
ε−ε2 ε→0→ 0.

1.3.3 Remark. Saying that the correlation of two variables tends to 0 means that their
joint law tends in some sense to the product law. When variables take place in a Pol-
ish space, a common notion of convergence is weak convergence, that is, convergence
against all bounded continuous function. [3, Theorem 2.2] states that weak conver-
gence is implied by α-mixing, hence by ρ-mixing. The precise statement is the fol-
lowing: if (X n,Y n)n∈N is a sequence of pairs of random variables such that all the Xn
(resp. Yn) have the same law Law(X ) (resp. Law(Y )) in some Polish space E (resp. F),
then (α(X n,Y n) n→∞→ 0) ⇒ (Law(X n,Y n) n→∞

* Law(X )⊗Law(Y )).

1.3.b β-mixing

Recall the definition of the β-mixing coefficient from the previous chapter [Defini-
tion 0.1.4].

1.3.4 Example. For ε ∈ (0,1), consider two random sequences (X i)i∈N and (Yi)i∈N de-
fined in the following way: (X i)i∈N is a sequence of i.i.d. variables with uniform law
on {±1}, and for each i ∈N, independently, one sets Yi = X i with probability ε, and with
probability (1−ε) one chooses Yi uniformly on {±1}. Then all the (X i,Yi) are i.i.d. with
P[X i = η and Yi = θ] = (1+ηθε)/4 for all η,θ ∈ {±1}, thus {X i : Yi} = ε by Remark 1.2.2,

27



whence {
→
X :

→
Y }= ε by Theorem 1.1.19. Yet Law(

→
X ,

→
Y ) and Law(

→
X )⊗Law(

→
Y ) are mutu-

ally singular for all ε> 0.

This shows that ρ-mixing does not imply β-mixing, and a fortiori that there can be
no kind of converse to Proposition 1.1.16.

1.3.c Mutual information

Recall the definition (41) of mutual information. [8, Theorem 5.3(III)] states that mu-
tual information controls the β-mixing coefficient, so Example 1.3.4, which shows that
ρ-mixing does not imply β-mixing in general, shows that it does not imply mutual
information to tend to 0 either.

Proposition 1.1.16 suggests that, on the other hand, maximal correlation could be
controlled by mutual information, but it is not true either: in Example 1.3.2 indeed,
{X ε : Y ε}= 1 for all ε> 0, but

I(X ε;Y ε)= ε log(ε−1)+ (1−ε) log((1−ε)−1) ε→0→ 0. (74)

Mutual information measures the quantity of information shared by two random
variables, which explains intuitively the following property ([12, Theorem 2.5.2]): if
X → Y → Z is a Markov chain, then I(Y ; X , Z) É I(X ;Y )+ I(Y ; Z). Does a similar
inequality hold for Hilbertian correlations? In the Gaussian case, the answer is “yes”
thanks to Theorem 1.2.6: one gets that

{Y : X , Z}2 É 1− (1− {X : Y }2)(1− {Y : Z}2)
1− {X : Y }2{Y : Z}2

É {X : Y }2 + {Y : Z}2. (75)

But that property does not hold in general, as the following example shows:

1.3.5 Example. Consider a Markov chain X →Y → Z, where (Y , X ) and (Y , Z) have the
same law, which is the joint law described in Example 1.2.9—the role of “Y ” in that
example being played here by Y in both cases. Fix y ∈ Y ; define event A as “Y = y”
and event B as “y ∈ X ∩Z”. Then one computes that P[A]= n−1, while

P[B]= 1
n
+ (p−1)2

n(n−1)
. (76)

Since A ⊂ B, Proposition 1.1.18 then yields that

{Y : X , Z}Ê
√

P[Bc]P[A]/P[Ac]P[B]=
(

(n−1)2 − (p−1)2

(n−1)2 + (n−1)(p−1)2

)1/2

. (77)

Comparing (68) and (77), one sees that taking n À 1 and 1¿ p ¿ n1/2 makes {X : Y }
and {Y : Z} arbitrarily close to 0 while {Y : X , Z} gets arbitrarily close to 1.

1.3.6 Remark. Lack of stationarity or reversibility has nothing to do with Exam-
ple 1.3.5: there are indeed similar examples, though more complicated, in the case
X ,Y , Z are three successive states of some reversible continuous-time Markov pro-
cess [36].
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Chapter 2

Event sufficient conditions

In § 1.1.d we saw that the maximal correlation coefficient {F : G } controls the dif-
ference between P[A ∩ B] and P[A]P[B] for A and B two events resp. F - and G -
measurable. A natural question is whether the opposite is true, i.e. whether saying
that P[A∩B] is always close in some sense to P[A]P[B] implies a control on {F : G }.
We saw in § 1.3.a that α-mixing does not fit, but maybe stronger conditions of the same
type would work.

In § 2.1 I will present a simple such condition [Theorem 2.1.3]. This condition
demands |P[A∩B]−P[A]P[B]| to be bounded uniformly by ζ(P[A])θ(P[B]) for functions
ζ,θ : [0,1]→R+ sufficiently well behaved. This result, whose proof is rather simple, is
apparently new.

Proposition 1.1.18, however, suggests that the natural condition on events would
be a uniform control on |P[A∩B]−P[A]P[B]|/pP[Ac]P[A]

p
P[Bc]P[B], which is out

of the scope of Theorem 2.1.3. Bradley [5] proved in 1983 that that condition was
indeed sufficient to get ρ-mixing. His result was improved in the next few years (see
for instance the bound of [10]), but the optimal bound remained unknown, though its
value was conjectured. In § 2.2, I will prove this optimal bound. My method, different
from the techniques of [5, 10], relies on the analysis of the spectral properties of a
Markov process which I call the “Chogosov process”, whose study is proceeded to in
§ 2.2.b.

2.1 Weak event sufficient condition

To state our next result we need some functional analysis reminders first:

2.1.1 Definition. On the space C ∞
0 (0,1) of compactly supported fuctions of C ∞(0,1),

one defines the scalar product

〈ϕ,ψ〉H1
0
=

∫ 1

0
ϕ′(x)ψ′(x)dx. (78)

C ∞
0 (0,1) endowed with 〈·,·〉H1

0
is a prehilbertian space; its completion is denoted

by H1
0(0,1).

29



Recall that elements of H1
0(0,1) may be seen as ordinary functions:

2.1.2 Lemma (Sobolev, [1, Theorem 4.12]). Any element f ∈ H1
0(0,1) can be identified

with a unique function f̄ ∈ C 0
0 [0,1], the space of continuous functions on [0,1] with

f̄ (0), f̄ (1) = 0. Conversely, a function f̄ ∈ C 0
0 [0,1] corresponds to an element of H1

0(0,1)
if and only if

sup
g∈C ∞

0 (0,1)

|∫ 1
0 f (x)g′′(x)dx|√∫ 1

0 g′(x)2dx
(79)

is finite, and then there is a unique f ∈ H1
0(0,1) associated to f̄ , whose norm is (79).

In accordance with Lemma 2.1.2, we will identify functions of C 0
0 [0,1] with ele-

ments of H1
0(0,1) whenever it is possible. If f ∈ C 0

0 [0,1] does not correspond to an
element of H1

0(0,1), then we set ‖ f ‖H1
0
=+∞.

Now we can state the

2.1.3 Theorem (Weak event sufficient condition). Let F and G be two σ-algebras such
that, for all A ∈F and B ∈G with respective probabilities p and q,

P[A∩B]− pq É ζ(p)θ(q)[∗] (80)

for some ζ,θ ∈C 0
0 [0,1]. Then,

{F : G }É ‖ζ‖H1
0
‖θ‖H1

0
. (81)

Proof. We begin with the following formula for covariance:

2.1.4 Lemma. For f and g two real L2 functions,

Cov( f , g)=
∫
R×R

(P[ f É x and g É y]−P[ f É x]P[g É y])dxdy. (82)

Proof of Lemma 2.1.4. Suppose in a first time that f and g are nonnegative. A classical
Fubini argument (see [4, Problem 21.6]) shows that

E[ f ]=
∫
R+

P[ f > x]dx, (83)

with a similar formula for g. By the same method,

E[ f g]=
∫
R+×R+

P[ f > x and g > y]dxdy, (84)

so that, using the computational formula Cov( f , g)=E[ f g]−E[ f ]E[g],

Cov( f , g)=
∫
R+×R+

(P[ f > x and g < y]−P[ f > x]P[g > y])dxdy. (85)

Observing that the integrand is also (P[ f É x and g É y]−P[ f É x]P[g É y]) and that it
is zero for (x, y) ∉ R+×R+, we get (82) in the nonnegative case. By translation invari-
ance, the formula remains true for all f , g bounded below, and then by approximation
for all f , g ∈ L2.

[∗]Note that there is no need to put absolute values in the left-hand side of (80).
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Now, let f and g be L2 variables resp. F - and G -mesurable, and denote by F and G
the respective distribution functions of f and g. Up to a slight perturbation, F and G
may be supposed to be diffeomorphisms from R onto (0,1); denote by α and β their
respective inverse maps. Then a change of variables in (82) yields:

Cov( f , g)=
∫

(0,1)2
(P[ f Éα(p) and g Éβ(q)]− pq)α′(p)β′(q)dpdq, (86)

so by assumption (80):

Cov( f , g)É (
∫ 1

0
ζ(p)α′(p)dp) ·(

∫ 1

0
θ(q)β′(q)dq). (87)

Then our theorem becomes equivalent to the claim stated and proved just below.

2.1.5 Claim. If f is a random variable whose repartition function F is a diffeomor-
phism of inverse α, then for ζ ∈C 0

0 [0,1]:

|
∫ 1

0
ζ(p)α′(p)dp|É ‖ζ‖H1

0
Sd( f ). (88)

Proof. First note that, replacing g by f in (86), one has:

Var( f )=
∫

(0,1)2
[p(1− q)∧ q(1− p)]α′(p)α′(q)dpdq. (89)

In fact, one can define a scalar product[†] 〈·,·〉V on C 0(0,1) by setting

〈ϕ,ψ〉V =
∫

(0,1)2
[p(1− q)∧ q(1− p)]ϕ(p)ψ(q)dpdq, (90)

so that if α is the inverse distribution fuction of a variable f , Var( f )= ‖α′‖2
V .

So, we are considering three scalar products on some subspaces of C 0(0,1): the
ordinary L2 product, which we denote by 〈·,·〉L2 , the H1

0(0,1) product 〈·,·〉H1
0

and the
variance product 〈·,·〉V . Our goal is to show that for all ϕ ∈ H1

0(0,1),ψ ∈C 0(0,1),

|〈ϕ,ψ〉L2|É ‖ϕ‖H1
0
‖ψ‖V . (91)

By approximation we can suppose that ϕ ∈ C ∞
0 (0,1). A direct computation shows

that
〈ϕ,ψ〉V = 〈Lϕ,ψ〉L2 , (92)

where the operator L : C ∞
0 (0,1)→C 2(0,1) is defined by:

(Lϕ)(x)= x
∫ x

0
(1− y)ϕ(y)dy+ (1− x)

∫ 1

x
yϕ(y)dy. (93)

For the sequel we need a left inverse of operator L. We notice that for ϕ ∈C 2
0 (0,1), by

double integration by parts,
L(−ϕ′′)=ϕ. (94)

So,
|〈ϕ,ψ〉L2|= |〈L(−ϕ′′),ψ〉L2|= |〈−ϕ′′,ψ〉V | É

CS
‖ϕ′′‖V‖ψ‖V , (95)

where
‖ϕ′′‖2

V = 〈ϕ′′,ϕ′′〉V = 〈Lϕ′′,ϕ′′〉L2 =−〈ϕ,ϕ′′〉L2 =
IP

‖ϕ′‖2
L2 = ‖ϕ‖2

H1
0
, (96)

whence (91).
[†]The positivity of 〈·,·〉V follows from the identity: ‖ϕ‖2

V = ∫
p<q (

∫ q
p ϕ(r)dr)2dpdq.
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Figure 1: The function Λ.

2.2 Strong event sufficient condition

2.2.a The strong event sufficient condition

A natural choice of functions ζ and θ in Theorem 2.1.3 would be to ζ(p) = θ(p) =
ε1/2

√
p(1− p), since that would give a converse to Formula (46) of Proposition 1.1.18.

Unfortunately ‖√p(1− p)‖H1
0
=+∞, so Theorem 2.1.3 does not work in this case. There

is however a specific result then:

2.2.1 Theorem (Strong event sufficient condition). Let F and G be two σ-algebras
such that, for all A and B resp. in F and G with respective probabilities p and q,

P[A∩B]− pq É ε
√

p(1− p)q(1− q) (97)

for some ε ∈ [0,1]. Then
{F : G }ÉΛ(ε), (98)

where Λ : [0,1]→R+ is defined by

Λ(ε)=
{
ε(1+| logε|) if ε> 0,
0 if ε= 0.

(99)

2.2.2 Remark. The function Λ is increasing on [0,1] and satisfies Λ(0) = 0, Λ(1) = 1,
and Λ(ε) > ε for all ε ∈ (0,1). Moreover it is continuous, in particular Λ(ε) ↘ 0 as ε↘ 0
(see Figure 1).

2.2.3 Remark. I called Theorems 2.1.3 and 2.2.1 resp. “weak” and “strong” event suf-
ficient conditions, yet that vocabulary is a bit misleading, since the strong condition
does not imply the weak one stricto sensu: with the hypotheses of Theorem 2.1.3, The-
orem 2.2.1 only implies that

{F : G }ÉΛ(‖ζ‖H1
0
‖θ‖H1

0
). (100)

But the right-hand side of (100) tends to 0 as soon the right-hand side of (81) does, so
it is relevant to say that Theorem 2.2.1 is ‘qualitatively stronger’ than Theorem 2.1.3.

2.2.4 Remark. With the same informal vocabulary, Theorem 2.2.1 is a ‘qualitative
converse’ of Proposition 1.1.18: maximal decorrelation is ‘qualitatively equivalent’ to
decorrelation of events as defined by Formula (46).
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2.2.5 Remark. One can prove that the boundΛ(ε) in (98) is the best possible: see § 2.2.c.

Proof. The principle of the proof is the same as for Theorem 2.1.3, except that we
first perform a tricky refinement of the hypothesis: observing that, for A and B with
respective probabilities p and q, one has the trivially P[A∩B] É p∧ q, the bound (97)
can be strengthened into:

P[A∩B]É (pq+ε
√

p(1− p)q(1− q))∧ p∧ q. (101)

The right-hand side of (101) will be denoted by Zε(p, q).

Now, like in the proof of Theorem 2.1.3, if (97) is satisfied, for f and g are L2

real variables resp. F - and G -measurable, having respective distribution functions F
and G with respective inverses maps α and β,

Cov( f , g)É
∫

(0,1)2
(Zε(p, q)− pq)α′(p)β′(q)dpdq. (102)

Call 〈α′,β′〉Zε
the right-hand side of (102).

To bound 〈α′,β′〉Zε , this time we are remaining on a random variable paradigm.
Define the

2.2.6 Definition. The Chogosov process[‡] is the (unique in law) (0,1)-valued Markov
chain (r i)i∈Z such that, for all i ∈Z,

P(r i É p and r i+1 É q)= Zε(p, q). (103)

It will be proved in § 2.2.b that the Chogosov process actually exists. The Chogo-
sov process is obviously stationary with uniform equilibrium measure on (0,1); let L

denote its generator. The very definition of 〈·,·〉Zε yields:

〈ϕ,ψ〉Zε =Cov(α,Lβ), (104)

where by writing “Cov(α,Lβ)” I consider functions α and Lβ as real random variables
on the probability space (0,1) endowed with the uniform measure.

By the Cauchy–Schwarz inequality, it is then enough to prove that Var(Lβ) É
Λ(ε)Var(β), i.e. that the operator norm of L on L̄2(0,1) is bounded above by Λ(ε).
That work is achieved by Lemma 2.2.10 in the next subsection.

2.2.b The Chogosov process

This subsection deals with the “Chogosov process”, which we introduced in the proof of
Theorem 2.2.1.

* Throughout this subsection we suppose ε ∈ (0,1) fixed and we write Λ for Λ(ε),
resp. Z for Zε. The drawings will be made for ε= 1/2.

Recall Definition 2.2.6 of the Chogosov process. To check that the Chogosov process
actually exists, we have to prove the

[‡]So called in honour of my dear friend M. K. Chogosov.
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Figure 2: The measure µ. On the left are drawn the different zones relative to the support of
the measure; on the right is a cloud of 2,048 independent points with law µ.

2.2.7 Claim.
(i) There exists a (unique) probability measure µ on (0,1)2 such that

∀p, q ∈ [0,1] µ[{(x1, x2) ∈ (0,1)2 : x1 É p and x2 É q}]= Z(p, q), (105)

where we recall that

Z(p, q)= (pq+ε
√

p(1− p)q(1− q))∧ p∧ q. (106)

(ii) Both marginals of µ are uniform on (0,1).

Proof. Provided (i) is true, (ii) is immediate since Z(p,1)≡ p, resp. Z(1, q)≡ q.

Concerning (i), (105) means that the density of µ on (0,1)2 is equal to the distribu-
tion ∂2

x1x2
Z; the non-trivial point consists in proving that that distribution is nonnega-

tive.

* From now on in this subsection elements of (0,1)2 will be automatically denoted
by (p, q). Moreover, we will denote p̄ ··= 1− p and ~p ··= p − 1/2, resp. q̄ ··= 1− q and~q ··= q−1/2.

The analytic formula defining Z(p, q) depends on the zone of (0,1)2 in which (p, q)
lies (see Figure 2):

• If pq̄/qp̄ É ε2, then Z(p, q)= p and we will say that we are in zone ¬;
• If ε2 É pq̄/qp̄ É ε−2, then Z(p, q) = pq+√

pp̄qq̄ and we will say that we are in
zone ­;

• If ε−2 É pq̄/qp̄, then Z(p, q)= q and we will say that we are in zone ®.

So the expression of ∂pZ depends on the zone where one lies: in ¬ it is “1”, in ­
it is “q−ε~p

√
qq̄/pp̄”, and in ® it is “0”. Anyway it is defined and finite evererywhere,

just having jumps at the borders between the zones, which borders we will denote
respectively U for the border between ¬ and ­, and D for the border between ­
and ® (see Figure 2). To prove that the distribution ∂2

pqZ is nonnegative, we have to
show that ∂pZ is increasing in q at p fixed. Let us check it:

• In ¬ and ®, ∂pZ is differentiable with ∂q(∂pZ)= 0Ê 0;
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• In ­, ∂pZ is differentiable with ∂q(∂pZ) = 1+ε~p~q/
√

pp̄qq̄. Denoting by ρ(p, q)
that expression, let us prove that ρ(p, q) is nonnegative (and even positive) in ­:
either ~p and ~q have the same sign and then ρ(p, q) is trivially Ê 1, or ~p and ~q
have opposite signs. In the latter case, say for instance that (~p Ê 0 and ~q É 0).
Then p Ê 1/2 and q É 1/2, so |~p| = p−1/2 < p and |~q| = 1/2− q < q̄, which implies
that

ε
|~p~q|√
pp̄qq̄

< ε
√

pq̄
qp̄

­É ε
√
ε−2 = 1, (107)

so that ρ(p, q)> 0.
• on D, ∂pZ makes a jump. Denote by qD

p the unique q such that (p, q) ∈D. When q
tends to qD

p by lower values, (p, q) is in ®, so ∂pZ(p, qD
p −)= 0, while when q tends

to qD
p by upper values, (p, q) is in ­, so ∂pZ(p, qD

p +) = qD
p −ε~p

√
qD

p q̄D
p /pp̄. But

on D, qp̄ = ε2 pq̄, so

qD
p −ε~p

√
qD

p q̄D
p

pp̄
= qD

p −ε~p

√
(qD

p )2

ε2 p2 = qD
p

(
1−

~p
p

)
=

qD
p

2p
> 0, (108)

so that the jump of ∂pZ(p,·) at qD
p occurs in the increasing sense.

• Similarly we find that on U, with obvious notation, ∂pZ(p, qU
p+)−∂pZ(p, qU

p−) =
q̄U

p/2p̄ > 0.

So we have proved that ∂pZ(p, q) is increasing in q, which is what we wanted.

2.2.8 Remark. The measure µ has a rather complicated structure: it is supported by
zone ­; it has density 1+ ε~p~q/

√
pp̄qq̄ w.r.t. the Lebesgue measure in the interior of

that zone, and on its boundaries it has a linear density giving a mass (q/2p)dp to the
infinitesimal part of D of abscissa p, resp. a mass (q̄/2p̄)dp to the infinitesimal part
of U of abscissa p. See Figure 2.

Now that its existence is ensured, we notice an immediate property of the Chogosov
process:

2.2.9 Proposition. The Chogosov process is stationary and reversible for the uniform
measure on (0,1).

Proof. The equilibrium measure of the process is the common value of the marginals
of µ, which is uniform by Claim 2.2.7-(ii). Reversibility follows from µ being invariant
under exchange of p and q, which itself is due to the symmetry of Z(p, q).

Now we can turn to the main result of this subsection:

2.2.10 Lemma. The operator norm of the generator L of the Chogosov process, re-
garded as an operator on L̄2(0,1), is bounded above by Λ.

Proof. Let η ∈ (0,1/2), devised to tend to 0, and define the distance dη on (0,1) by:

∀p1 < p2 dη(p1, p2) ··=
∫ p2

p1

(pp̄)−3/2+ηdp. (109)
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For continuous f : (0,1)→R, define

‖ f ‖Lip(η) ··= sup
p1 6=p2

| f (p2)− f (p1)|
dη(p1, p2)

, (110)

and denote by Lip(η) the set of functions f with ‖ f ‖Lip(η) < ∞. Lip(η) is obviously
complete for ‖·‖Lip(η), yet that semi-norm is not definite since it is zero for any constant
function. We thus define Lip(η) as Lip(η)/R, which is actually a Banach space. I claim
that

2.2.11 Claim. Lip(η) is continuously imbedded in L̄2(0,1), i.e. there exists some C <∞
(depending on η) such that for all f ∈Lip(η), Sd( f )É C‖ f ‖Lip(η).

Proof of Claim 2.2.11. Fix some arbitrary p0 ∈ (0,1). For f ∈ Lip(η), denoting y0 ··=
f (p0), one has, for all p ∈ (0,1),

| f (p)− y0| É ‖ f ‖Lip(η)|
∫ p

p0

(qq̄)−3/2+ηdq|, (111)

whence:

Sd( f )É
√∫ 1

0
| f (p)− y0|2dp É ‖ f ‖Lip(η)

√∫ 1

0
(
∫ p

p0

(qq̄)−3/2+ηdq)2dp. (112)

Since η> 0, the integral in the right-hand side of (112) is finite, which proves the claim.

Now, the cruxpoint is the following claim, whose proof is postponed:
2.2.12 Claim. (i) There exists a constant Λη < ∞ such that for all f ∈ Lip(η),

‖L f ‖Lip(η) ÉΛη‖ f ‖Lip(η).
(ii) It is possible to choose Λη so that limη↘0Λη ÉΛ.

Using Claims 2.2.11 and 2.2.12, one has for all f ∈Lip(η), for n ∈N,

Sd(L n f )É C‖L n f ‖Lip(η) É CΛn
η‖ f ‖Lip(η)

n→∞= O(Λn
η ). (113)

Now, L is self-adjoint on L̄2(0,1) since the Chogosov process is reversible, and Lip(η)
is a dense subset of L̄2(0,1), so by Lemma 0.3.1, (113) implies that �L�L̄2(0,1) É Λη.
Making η↘ 0, �L�L̄2(0,1) ÉΛ, QED.

Proof of Claim 2.2.12. The proof relies on a technique of Markov chains coupling,
which itself relies on the monotone rearrangement of measures (cf. [43, p. 75]).
For p ∈ (0,1), ω ∈ [0,1], define

Q(p,ω)= inf{q ∈ (0,1) : ∂pZ(p, q)Êω}, (114)

so that Q(p,ω) is nondecreasing in ω and that, for uniform ω ∈ (0,1), the law of Q(p,ω)
is the conditional law knowing p of the measure µ defined by (105)—see Figure 3.
Thanks to the function Q, we have got a new way of building the Chogosov process
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Figure 3: The function Q(p,ω). This drawing plots the functions Q(·,ω) for values of ω running
from 0 to 1 with step 0.02. Note that all these functions are defined on the whole (0,1): in fact
the graph of Q ‘merges’ with D beyond a certain point for ω< 1/2, resp. it merges with U below
a certain point for ω> 1/2. For ω< ε2/2, resp. ω> 1−ε2/2 (which corresponds here to ω< 0.125,
resp. ω> 0.875), the whole graph of Q(p,·) is actually equal to the curve D, resp. U.

on N: let p be uniform on (0,1) and let (ωi)i∈N be a sequence of i.i.d. uniform variables
on [0,1], independent of p, then

p, Q(p,ω0), Q(Q(p,ω0),ω1), Q(Q(Q(p,ω0),ω1),ω2), . . . (115)

is a Chogosov process.

Therefore, if ω is a random variable uniform on [0,1], one has

(L f )(p)=E[ f (Q(p,ω))][§], (116)

whence the following ‘coupling formula’:

(L f )(p2)− (L f )(p1)=E[ f (Q(p2,ω))− f (Q(p1,ω))]. (117)

From (117) we deduce that

|(L f )(p2)− (L f )(p1)|É ‖ f ‖Lip(η) E[dη(Q(p1,ω),Q(p2,ω))]. (118)

So, if we can prove that for all p1 < p2,

E[dη(Q(p1,ω),Q(p2,ω))]ÉΛηdη(p1, p2), (119)

then we are done.

Now I claim (it will be checked later) that Q is absolutely continuous w.r.t. p, i.e.
that there exists an integrable function Q′ : (0,1)× [0,1]→R such that for all ω, p1, p2
one has Q(p2,ω)=Q(p1,ω)+∫ p2

p1
Q′(p,ω)dp. Introducing that function, (119) becomes:

E[|
∫ p2

p1
(Q(p,ω)Q̄(p,ω))−3/2+ηQ′(p,ω)dp|]ÉΛηE[

∫ p2

p1

(pp̄)−3/2+ηdp], (120)

[§]Beware that here the expectation is not taken w.r.t. p but w.r.t. ω.
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so by Fubini’s theorem (which is legal here since, as we will see later, Q′ is bounded),
proving (120) for all p1 < p2 is tantamount to proving that, for all p ∈ (0,1),

E[(Q(p,ω)Q̄(p,ω))−3/2+η|Q′(p,ω)|]ÉΛη(pp̄)−3/2+η. (121)

So we have to compute Q′(p,ω). Using the structure of the law µ (cf. Remark 2.2.8),
we find the following (see Figure 3):

• First if ω< qD
p /2p, then Q(p,ω) = qD

p , whence Q′(p,ω) = dqD
p /dp. Differentiating

the equality qp̄ = ε2 pq̄ defining D, one finds that dqD
p /dp = (qD

p +ε2 q̄D
p )/(p̄+ε2 p),

which simplifies into qD
p q̄D

p /pp̄ using once again that qp̄ = ε2 pq̄.
• Similarly if ω> 1− q̄U

p/2p̄, one has Q′(p,ω)= qU
p q̄U

p/pp̄.
• If qD

p /2p <ω< 1− q̄U
p/2p̄, then ∂pZ(p, q)= q−ε~p

√
qq̄/pp̄, thus differentiating the

equality ∂pZ(p,Q(p,ω))=ω, we get:

Q′(p,ω)=
ε

√
Q(p,ω)Q̄(p,ω)

4
√

pp̄
3(

1+ε
~
p
~
Q(p,ω)√

pp̄Q(p,ω)Q̄(p,ω)

) . (122)

• Finally in the critical cases ω = qD
p /2p,1− q̄U

p/2p̄, there is no canonical value
for Q′(ω) since at these points Q(·,ω) is not C 1, but that does not matter.

2.2.13 Remark. Note that one always has Q′(p,ω)> 0, i.e. Q(·,ω) is increasing. In other
words, if one couples two Chogosov processes (pi)i∈N and (p′

i)i∈N by constructing them
thanks to the same ωi, then for almost-all realizations of the coupled processes, the
relative order of pi and p′

i is the same for all i.

We have computed Q′(p,ω), so now we can tackle (121): we have to bound∫ 1

0

( pp̄

Q(p,ω)Q̄(p,ω)

)3/2−η
Q′(p,ω)dω, (123)

uniformly in p. We begin with noticing that

2.2.14 Claim. For all p ∈ (0,1), all q ∈ [qD
p , qU

p], one has qq̄/pp̄ É ε−2.

Proof of Claim 2.2.14. The condition q ∈ [qD
p , qU

p] means that ε2 É pq̄/qp̄ É ε−2. Then
we distinguish two cases:

• If p É q, then qq̄/pp̄ = (q̄/p̄)2qp̄/pq̄ É qp̄/pq̄ = (pq̄/qp̄)−1 É ε−2;
• If p Ê q, then qq̄/pp̄ = (q/p)2 pq̄/qp̄ É pq̄/qp̄ É ε−2.

Thanks to Claim 2.2.14, we bound (123) by

ε−2η
∫ 1

0

( pp̄

Q(p,ω)Q̄(p,ω)

)3/2
Q′(p,ω)dω, (124)
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which we shorthand into ε−2ηλ(p). Splitting the integral in (124) according to the value
of ω (resp. for ω ∈ (0, qD

p /2p), (qD
p /2p,1− q̄U

p/2p̄) and (1− q̄U
p/2p̄,1)), one finds:

λ(p) =
qD

p

2p

( pp̄
qD

p q̄D
p

)3/2 qD
p q̄D

p

pp̄
(125)

+
∫ 1−q̄Up /2p̄

qDp /2p

( pp̄

Q(p,ω)Q̄(p,ω)

)3/2 ε

√
Q(p,ω)Q̄(p,ω)

4
√

pp̄
3(

1+ε
~
p
~
Q(p,ω)√

pp̄Q(p,ω)Q̄(p,ω)

)dω (126)

+
q̄U

p

2p̄

( pp̄
qU

p q̄U
p

)3/2 qU
p q̄U

p

pp̄
. (127)

(125) simplifies into 1
2

√
qD

p p̄/pq̄D
p = 1

2

p
ε2 = ε/2; similarly (127) = 1

2

√
pq̄U

p/qU
p p̄ = ε/2.

Concerning term (126), we make the change of variables q = Q(p,ω), for which
dω = (1+ ε~p~q/

√
pp̄qq̄)dq because of the expression of the density of µ in zone ­ (cf.

Remark 2.2.8). One gets:

(126)= ε

4

∫ qUp

qDp

1
qq̄

dq = ε

4

[
log

q
q̄

]qUp

qDp
= ε

4

(
log

p̄
ε2 p

− log
ε2 p̄

p

)
= ε

4
log

1
ε4 = ε| logε|. (128)

So in the end we have λ(p)= ε/2+ε/2+ε| logε| =Λ for all p, thus Λη É ε−2ηΛ (hence (i)),
which tends to Λ as η↘ 0 (hence (ii)).

2.2.15 Remark. The simplifications in the computation of λ(p) look rather miracu-
lous. . . A priori I only expected that λ(p) ÉΛ on (0,1) with λ(p)

p→0,1→ Λ). That I found
the exact quasi-eigenvector associated to the quasi-eigenvalue Λ (cf. Remark 2.2.16) is
purely fortuitous; I have no explanation for why things work so well.
2.2.16 Remark. L is self-adjoint, hence normal, so its operator norm is also its spec-
tral radius. Therefore there is some (eigenvalue,eigenvector) pair, or more precisely
(since here the spectral radius of L is due to its continuous spectrum) some ‘quasi-
eigenvalue’ and its ‘quasi-eigenvector’ (cf. [39, § 4]), which are responsible for the value
of the operator norm.

Tracking this quasi-eigenvector throughout the proof of Lemma 2.2.10, we find that
Λ is a quasi-eigenvalue of L and that the quasi-eigenvector associated is:

fΛ : p 7→
∫ p

1/2
(p′ p̄′)−3/2dp′. (129)

Obviously fλ is not in L2, so it is not a true eigenvector, however one can perturb
it slightly to get an element

~
fΛ ∈ L̄2(0,1)à {0} such that 〈L

~
fΛ,

~
fΛ〉̄L2(0,1)/‖

~
fΛ‖2

L̄2(0,1) is
arbitrarily close to Λ.
2.2.17 Remark. An interesting feature of fΛ is that its ‘L2 mass’ is concentrated about 0
and 1, so that one needs only look at what happens near 0 and 1 to understand how fΛ
contributes to the operator norm of L .

When one ‘zooms’ more and more to the point (0,0) —the same behaviour would
happen about (1,1) —, µ ‘looks more and more like’ the measure µ∗ on (0,∞)2 defined
by (see Figure 4):

∀p, q ∈ [0,∞)2 µ∗[{(x1, x2) ∈ (0,∞)2 : x1 É p and x2 É q}]= εppq∧ p∧ q, (130)
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Figure 4: The measure µ∗. On the left, the different zones for the measure; on the right, a
Poisson cloud of points with density µ∗. The scale and density of the cloud are consistent with
Figure 2.

i.e.

dµ∗(p, q)= 1{ε2 p < q < ε−2 p}
ε

4
ppq

dpdq+1{q = ε2 p}
ε2

2
dp+1{q = ε−2 p}

1
2

dp. (131)

So, near 0, L behaves like the operator L ∗ on L2(0,∞) defined by:

(L f )(p)=
∫ ε−2 p

ε2 p

ε

4
ppq

dq+ ε2

2
f (ε2 p)+ 1

2
f (ε−2 p). (132)

L ∗ has scale invariance properties which make it easy to study. One finds that L ∗

is self-adjoint, that its spectral radius is Λ, and that it has Λ as a quasi-eigenvalue,
associated with the quasi-eigenvector (p 7→ 1/

pp). So, you see that it suffices to study
the ‘local’ operator L ∗ to compute the spectral radius of the ‘global’ operator L ; in
other words, there is a phenomenon of ‘localization of the spectral radius’ for L .

2.2.c Optimality of the strong event sufficient condition

Now I will prove that Theorem 2.2.1 is optimal:

2.2.18 Theorem. The factor Λ(ε) in (98) cannot be improved. In other words, for
all Λ′ <Λ(ε) it is possible to find σ-fields F and G satisfying

∀A ∈F ,B ∈G P[A∩B]−P[A]P[B]É ε
√

P[A]P[Ac]P[B]P[Bc], (133)

but such that {F : G }ÊΛ′.

Actually I will rather prove the following statement, which is equivalent to the
theorem by continuity of the function Λ(·):
2.2.19 Claim. For all ε′ > ε it is possible to find σ-fields F and G satisfying {F : G } Ê
Λ(ε), but such that

∀A ∈F ,B ∈G P[A∩B]−P[A]P[B]É ε′
√

P[A]P[Ac]P[B]P[Bc]. (134)
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Figure 5: A schematic representation of the measure ν.

Proof. According to the proof of Lemma 2.2.10 in § 2.2.b, the ‘natural’ proof would be to
take for space (Ω,B,P) the set (0,1)2 equipped with its Borel σ-field and endowed with
the measure µ defined by (105), and to set F =σ(p) and G =σ(q). Though it seems to
be true that that system satisfies (97), the complicated structure of µ makes existence
of a short proof for this property unlikely. Therefore I will rather adapt the previous
idea to the nicer measure µ∗ defined by (130), or more precisely to a ‘truncation’ of it.

My system is the following: (Ω,B,P) is the set (0,1)2 equipped with its Borel σ-
field and endowed with a certain measure ν (specified just after), and I take F =σ(p),
resp. G = σ(q). The measure ν, which depends on some parameter x ∈ (0,1) morally
close to 0, is a measure on (0,1)2 having uniform marginals, which coincides with µ∗

on (0, x]2 and which is ‘as uniform as possible’ outside (0, x]2 (see Figure 5). Technically:

ν[A×B]=



µ∗(A×B) if A ⊂ (0, x] and B ⊂ (0, x];
0 if A ⊂ (0,ε2x] and B ⊂ (x,1);
0 if A ⊂ (x,1) and B ⊂ (0,ε2x];
[
∫

A (1− ε
2

√
x
p )dp]|B|/(1− x) if A ⊂ (ε2x, x] and B ⊂ (x,1);

|A|[∫
B (1− ε

2

√
x
q )dq]/(1− x) if A ⊂ (x,1) and B ⊂ (ε2x, x];

[1− (2−ε)x]|A||B|/(1− x)2 if A ⊂ (x,1) and B ⊂ (x,1).

(135)

First step: Proof that {F : G } Ê Λ. Let Λ′ < Λ. Since Λ is in the spectrum of the
self-adjoint operator L ∗ on L2(0,∞) (see (132) and the lines surrounding it), there
exists f ∈ L2(0,∞)à {0} such that 〈L ∗ f , f 〉/‖ f ‖L2(0,∞) > Λ′. By a standard truncation
argument, we can assume that f has bounded support, say that f is zero outside (0,Y ].
Dividing f by its norm we can also assume that ‖ f ‖L2 = 1.

Now, for y ∈ (0, x] define the function f y by:

f y(p)=
√

Y
y

f
(Y

y
p
)
. (136)

f y is zero outside (0, y]; it satisfies ‖ f y‖L2 = 1 and

〈L ∗ f y, f y〉 = 〈L ∗ f , f 〉 >Λ′ (137)
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by the scale invariance properties of L ∗.

Denote m ··=
∫

f (p)dp/
p

Y , which is finite since f is L2 with compact support; one
has

∫
f y(p)dp =pym, so the projection of f y on L̄2(0,1) is the function f̄ y = f y −pym.

One has ‖ f̄ y‖L̄2(0,1) É ‖ f y‖L2 = 1, and for y ∈ (0, x],

E[ f̄ y(p) f̄ y(q)]= 〈L ∗ f y, f y〉−m2 y>Λ′−m2 y, (138)

so that {F : G }>Λ′−m2 y. Making y→ 0 and then Λ′ →Λ, one finally gets {F : G }ÊΛ.

Second step: Proof of (134). Let ε′ > ε; we want to prove that, provided x is small
enough, (134) is satisfied.

Let A and B be resp. F - and G -measurable events. One can assume safely that
|A| É 1/2, since replacing simultaneously A by Ac and B by Bc leaves both sides of (134)
unchanged. One can also assume that |B| < 1/(1+ ε2), since for |B| Ê 1/(1+ ε2), (134)
comes ‘freely’ by writing

P[A∩B]−P[A]P[B]ÉP[A](1−P[B])É
√

P[A]P[Ac]×ε
√

P[B]P[Bc]. (139)

* In the sequel of this proof we indentify A and B with Borel subsets of (0,1), rewrit-
ing the p-measurable event A into the set A× (0,1), resp. the q-measurable event B into
the set (0,1)×B. Since both marginals of ν are uniform on (0,1), one then has P[A]= |A|,
resp. P[B]= |B|, so that our goal becomes proving:

ν[A×B]−|A||B| É ε′
√
|A||B||Ac||Bc|. (140)

Denote Ǎ ··= A ∩ (0, x], resp. B̌ ··= B ∩ (0, x]. Provided x É ε/2, the signed mea-
sure dν(p, q)−dpdq is nonpositive on (0, x]× (x,1)∪ (x,1)× (0, x], so that

ν[A×B]−|A||B| É ν[Ǎ× B̌]−|Ǎ||B̌|+ν[(Aà Ǎ)× (Bà B̌)]− |Aà Ǎ||Bà B̌|. (141)

Now let us bound above the right-hand side of (141):

• The second term is obviously nonpositive.
• The third term is [1− (2− ε)x]|A à Ǎ||Bà B̌|/(1− x)2, so the sum of the two last

terms is (εx− x2)|Aà Ǎ||Bà B̌|/(1− x)2 É (εx− x2)|A||B|/(1− x)2. Since |A| É 1/2
and |B| É 1/(1+ε2), that quantity is in turn bounded by εx−x2

ε(1−x)2 ×
√
|A||B||Ac||Bc|.

• For the first term, by Lemma 2.2.20 stated just below, one has ν[Ǎ × B̌] =
µ∗[Ǎ × B̌] É ε

√
|Ǎ||B̌| É ε

√
|Ǎ||Ǎc||B̌||B̌c|/(1− x), in which, provided x É ε2/(1+ ε2),

one has
√

|B̌||B̌c| É p
B|Bc| (because then |B̌| É |B| ∧ x and |B| É 1 − x), and

similarly
√

|Ǎ||Ǎc| É
√

A|Ac|, so that in the end the first term is bounded by
ε

1−x

√
|A||B||Ac||Bc|.

Summing things up, we get:

ν[A×B]−|A||B| É
( ε

1− x
+ εx− x2

ε(1− x)2

)√
|A||B||Ac||Bc|. (142)

Taking x sufficiently close to 0, the first factor of the right-hand side of (142) is É ε′,
whence the second step of the proof.
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2.2.20 Lemma. For all A,B ⊂ (0,∞)2 with Lebesgue measures |A|, |B|<∞, µ∗[A×B]É
ε
√

|A||B|.

Proof of Lemma 2.2.20. Recall that µ∗ is the Radon measure on (0,∞)2 having density
ε/4

ppq w.r.t. the Lebesgue measure inside the cone C = {(p, q) : ε2 p < q < ε−2 p}, being
zero outside C, and giving to the borders of C a lineic mass defined by µ∗{(p,ε2 p) :
p ∈ A} = ε2|A|/2, resp. µ∗{(p,ε−2 p) : p ∈ A} = |A|/2 (see Figure 4). µ∗ is invariant
by switching p and q, and its marginals are both the Lebesgue measure on (0,∞).
Let A,B ⊂ (0,∞) be Borel; our goal is to show that µ∗[A×B]É ε

√
|A||B|.

Step 1. If |A| É ε2|B| the result is trivially true, since then µ∗[A ×B] É µ∗[A ×
(0,∞)] = |A| É ε

√
|A||B|. Similarly the result is true if |B| É ε2|A|. Therefore in our

proof we will always assume that ε2|A| < |B| < ε−2|A|.
Step 2. As for the measure µ, decompose the support of µ∗ into three parts U, ­

and D, corresponding resp. to the line “p = ε2q”, the cone C and the line “p = ε−2q”
(see Figure 4). Write µ∗[A×B]= mU +m2 +mD , where mU =µ∗[(A×B)∩U], etc..

Denote by µ∗
q the ‘conditional law’ of µ knowing q, i.e. the measure such that

µ∗[X ]=
∫ ∞

0
µ∗

q[{p : (p, q) ∈ X }]dq, (143)

which can be computed explicitly to be:

dµ∗
q[p]= 1{p = ε2q}

ε2

2
+1{ε2q < p < ε−2q}

ε

4
ppq

dp+1{p = ε−2q}
1
2

. (144)

The three terms of the right-hand side of (144) are respectively due to U, ­ and D, so
that, integrating, one finds:

mU =
∫

B

ε2

2
1{A 3 ε2q}dq É ε2

2
|B|. (145)

Switching the roles of p and q, one has similarly mD É ε2|A|/2. Then it only remains
to bound m2.

Step 3. Let us study further the measures µ∗
q. If q ∈ ε2A, then A 3 ε−2q and thus

µ∗
q[A] Ê µ∗[{ε−2q}] = 1/2, and conversely if q ∉ ε2A, then A 63 ε−2q and thus µ∗

q[A] É
1−µ∗[{ε−2q}]= 1/2. So, µ∗

q[A] is never smaller if q ∈ ε2A than if q ∉ ε2A.

As a consequence, let us show that we can always assume that ε2A ⊂ B. Since |B| >
ε2|A|, |Bàε2A| > |ε2AàB|, so we can fix some B− ⊂ Bàε2A such that |B−| = |ε2AàB|.
One has:

µ∗[A×B−]=
∫

B−
µ∗

q(A)dq É |B−|
2

= |ε2AàB|
2

É
∫
ε2 AàB

µ∗
q(A)dq =µ∗[A× (ε2AàB)].

(146)
Shorthanding “(BàB−)∪ε2A” into “B′”, (146) implies that replacing B by B′ —which
does not modify the value of |B| —cannot make µ∗[A ×B] decrease. Consequently, if
we prove that µ∗[A×B′] É ε

√
|A||B′|, then we will also have proved that µ∗[A ×B] É

ε
√

|A||B|. As ε2A ⊂ B′, we have thus demonstrated the statement at the beginning of
this paragraph: one can always assume that ε2A ⊂ B.
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* Switching the roles of p and q, we will rather impose, instead of ε2A ⊂ B, that
ε2B ⊂ A.

Step 4. Call µ◦ the measure µ∗ restricted to C, i.e. dµ◦ = 1Cdµ∗, so that m2 =
µ◦[A ×B]. µ◦ is absolutely continuous w.r.t. the Lebesgue measure; denote by µ◦

q its
‘conditional measure’ for fixed q, i.e. the measure such that

µ◦[X ]=
∫ ∞

0
µ◦

q[{p : (p, q) ∈ X }]dq, (147)

which has the following explicit density w.r.t. the Lebesgue measure:

dµ◦
q[p]= 1{ε2q < p < ε−2q}

ε

4
ppq

dp. (148)

We perform a change of variables: for y ∈ (0, |B|), define

β(y)= inf{q ∈ (0,∞) : |B∩ (0, q)| Ê y}; (149)

so that the push-forward β # dq of the Lebesgue measure on (0, |B|) by the map β is
equal to 1Bdq, the Lebesgue measure restricted to B; then

m­ =
∫

B
µ◦

q[A]dq =
∫ |B|

0
µ◦
β(y)[A]dy. (150)

Our strategy will consist in bounding µ◦
β(y)[A] for all y.

First, we observe that some portion of A does not contribute to µ◦
β(y)[A]. Denote

indeed A y = {ε2q : q ∈ B∩ (0,β(y))}; by definition of β, |A y| = ε2 y, and one has A y ⊂
ε2B ⊂ A. But A y ⊂ (0,ε2β(y)), so µ◦

β(y)[A y]= 0, and thus µ◦
β(y)[A]= µ◦

β(y)[Aà A y], where
|Aà A y| = |A|− |A y| = |A|−ε2 y.

Now, for q ∈ (0,∞), the density of µ◦
q is zero for p É ε2q and it is nonincreasing for

p > ε2q, so an immediate coupling argument shows that the maximal value of µ◦
q[X ]

under the constraint “|X | = x” is attained for X = (ε2q,ε2q+ x). Applying that result to
the conclusion of the previous paragraph, we get that:

µ◦
β(y)[A]Éµ◦

β(y)[(ε
2β(y) , ε2β(y)+|A|−ε2 y)]. (151)

But for x Ê 0, the quantity µ◦
q[(ε2q , ε2q+ x)] can be computed explicitly to be

µ◦
q[(ε2q , ε2q+ x)]=

{
(1−ε2)/2 if q É x/(ε−2 −ε2);
(ε

√
ε2 + x/q−ε2)/2 if q > x/(ε−2 −ε2).

(152)

In particular, that quantity is a nonincreasing function of q. Since, by definition of β,
one always has β(y)Ê y, it follows that (151) can be improved into:

µ◦
β(y)[A]Éµ◦

y[(ε2 y , |A|)]=
{

(1−ε2)/2 if yÉ ε2|A|;
(ε

√|A|/y−ε2)/2 if y> ε2|A|. (153)

Integrating, one finds finally:

m2 É
∫ ε2|A|

0

1−ε2

2
dy+

∫ |B|

ε2|A|

(ε√|A|
2
py

− ε2

2

)
dy

= (1−ε2)ε2|A|
2

+
[
ε
√

|A|y− ε2 y
2

]|B|

ε2|A|
= ε

√
|A||B|− ε2

2
(|A|+ |B|). (154)
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Step 5. We put our bounds together to get the lemma:

µ∗[A×B]É mD +mU +m2 = ε2

2
(|A|+ |B|)+ε

√
|A||B|− ε2

2
(|A|+ |B|)= ε

√
|A||B|. (155)

2.2.21 Remark. A careful reading of the previous proof shows that the maximal value
of µ∗[A×B] is attained for A = (0, |A|),B = (0, |B|), in which case, provided ε2|A| É |B| É
ε−2|A|, one has equality in Lemma 2.2.20.
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Chapter 3

Tensorization

3.1 Subjective correlation

In this chapter we will need more advanced definitions for decorrelation.

3.1.1 Definition. Let X , Y and Z be random variables. For ε Ê 0, one says that X
and Y are subjectively ε-decorrelated w.r.t. Z (or ε-decorrelated seen from Z) if X and Y
are ε-decorrelated under the law Law(X ,Y |Z = z) for Law(Z)-almost-all z[∗].

The smallest ε such that X and Y are ε-decorrelated seen from Z will be called
the subjective correlation level between X and Y w.r.t. Z (or correlation level between X
and Y seen from Z); we denote it {X : Y }Z .

In § 1.1, we had given the definitions in terms of σ-algebras rather than random
variables. Of course there is also a σ-algebra definition for subjective correlation,
though I find it harder to understand:

3.1.2 Definition. Let F , G and H be σ-algebras. For ε ∈ [0,1], the expression “{F :
G }H É ε” means that for all f ∈ L̄2(F ∨H ) and all g ∈ L̄2(G ∨H ) satisfying E[ f |H ]≡ 0,
resp. E[g|H ]≡ 0, one has:

|E[ f g]| É εSd( f )Sd(g). (156)

We let the reader check that with that definition, for X , Y and Z random variables,
{X : Y }Z = {σ(X ) :σ(Y )}σ(Z).

3.1.3 Remark. The ordinary correlation can be seen as a particular case of subjective
correlation, since {F : G }= {F : G }O for O = {;,Ω} the trivial σ-field.

3.1.4 Remark. Warning! Writing that {X : Y }Z É ε does not imply that for all subset C of
the range of Z, X and Y are ε-decorrelated under Law(X ,Y |Z ∈ C): see Examples 3.1.8
and 3.1.9 below.

3.1.5 Remark. Warning again! There is no general inequality between {X : Y }
and {X : Y }Z : see Examples 3.1.7 and 3.1.8 below.

[∗]The conditional laws Law(·|Z = z) are only defined up to Law(Z)-a.e. equality, whence the need to
specify “for Law(Z)-almost-all z”.
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3.1.6 Example. Let f : R→R+ be a nonnegative continuous function with
∫
R f (x)dx = 1

and let (X ,Y , Z) be a variable on R3 with density

dP[(X ,Y , Z)= (x, y, z)]= 1
2π

f (z)exp(sinh z · xy− 1
2 cosh z · (x2 + y2))dxdydz. (157)

Then, conditionally to “Z = z”, (X ,Y ) is a Gaussian vector with covariance matrix(
cosh z sinh z
sinh z cosh z

)
, so by Theorem 1.2.6, under the law P[·|Z = z] one has {X : Y } =

|tanh z|. Consequently {X : Y }Z = sup{|tanh z| : f (z)> 0}.

The three following examples show that subjective correlation may behave rather
wildly, especially when one changes the σ-field of reference:

3.1.7 Example. Let X and Y be independent variables with uniform law on R/Z and
let Z = X +Y ; then {X : Y }Z = 1: under P[·|Z = z] indeed Y is X -measurable (and not
constant), since Y ≡ z− X .

3.1.8 Example. Let α,β,γ be three independent random variables uniform on {0,1};
define X = (γ,α),Y = (γ,β) and Z = γ. Then, conditionally to “Z = 0”, X and Y are
independent with common law uniform on {(0,0), (0,1)}, and similarly X and Y are
independent conditionally to “Z = 1”, so {X : Y }Z = 0. Yet X and Y are not indepen-
dent since the events “X ∈ {(0,0), (0,1)}” and “Y ∈ {(0,0), (0,1)}”, which are non-trivial
under P, are equivalent, so that {X : Y }= 1.

3.1.9 Example. Let X = (X1, X2) and Y = (Y1,Y2) be independent with uniform laws
on {0,1}2 and define Z = (X1,Y1); then one easily checks that {X : Y }Z = 0. Now let Z′ =
1X1 =Y1 , which is Z-measurable; one has {X : Y }Z′ = 1 since, for instance, under “Z′ =
1” the events “X1 = 0” and “Y1 = 0” are non-trivial and equivalent.

Now we define a more restrictive concept of subjective correlation.

3.1.10 Definition. A σ-metalgebra M is a set {H : H ∈ M } of σ-algebras which is
stable under the “

∨
” operator, i.e. such that for any M ′ ⊂M ,

∨
H ∈M ′ H ∈M .

One can speak of the ‘σ-metalgebra spanned by some set of σ-algebras’, as states
the following immediate proposition:

3.1.11 Proposition. If (Hk)k∈K is a set of σ-algebras, then there is a smallest σ-
metalgebra containing all the Hk, which is

M = {
∨

k∈K ′
Hk ; K ′ ⊂ K}. (158)

When one deals with random variables rather than σ-algebras, one has the follow-
ing variant of Proposition 3.1.11:

3.1.12 Proposition. Let (Zk)k∈K be a set of random variables, then the σ-metalgebra
spanned by {σ(Zk) : k ∈ K} is {σ(

→
ZK ′) : K ′ ⊂ K}.

3.1.13 Definition. Let F and G be σ-algebras and M be a σ-metalgebra. We define
the correlation between F and G seen from M by:

{F : G }M = sup
H ∈M

{F : G }H . (159)
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3.1.14 Remark. Speaking in terms of random variables, if X , Y and (Zk)k∈K are vari-
ables, denoting by M the σ-metalgebra spanned by the Zk, then {X : Y }M is the supre-
mum[†] of the {X : Y } when taken under all the laws of kind P[·|→ZK ′ = →zK ′] for K ′ a
subset of K and zk,k ∈ K ′ elements of the respective ranges of the Zk.

Finally, the following proposition gathers some easy properties of relative correla-
tion w.r.t. a σ-metalgebra:

3.1.15 Proposition.
(i) Call M; the trivial σ-metalgebra, that is, M; = {O }; then for all σ-algebras F

and G , {F : G }= {F : G }M; .
(ii) If M ⊂M ′, then {F : G }M É {F : G }M ′ .

(iii) Let F and G be σ-algebras, let M be a σ-metalgebra, and call
~

M the σ-metalgebra
spanned by M , F and G ; then {F : G }M = {F : G } ~

M
.

3.1.16 Definition. In the sequel, the probabilistic systems which we shall consider
will often be made of some ‘elementary’ variables, say (X i)i∈I . In this case, the so-
called natural σ-metalgebra of the system will mean the σ-metalgebra spanned by
the X i.

3.2 Simple tensorization

Now we turn to tensorization. First let us deal with ‘simple’ tensorization, by which
I mean that tensorization is performed on only one variable. The main result of this
section will be the ‘N against 1’ theorem (Theorem 3.2.2).

The problem considered is the following: Let I be a set and (X i)i∈I ,Y be random
variables; call M the natural σ-metalgebra of this system, that is, the σ-metalgebra
spanned by the X i and Y (cf. Definition 3.1.16). Suppose we have bounds {X i : Y }M É εi
for all i; the question is, can we deduce from them a bound on {

→
X I : Y }? We shall prove

that the answer is “yes”, and moreover the bound (169) we will give is optimal in some
way (see § 3.5).

For pedagogical purpose, let us first state and prove a weaker but easier proposi-
tion:

3.2.1 Proposition. With the notation above,

{
→
X I : Y }É

√∑
i∈I
ε2

i . (160)

Proof. By Proposition 1.1.12 we may assume I = {1, . . . , N}. Let f and g be centered L2
→
X -measurable, resp. Y -measurable, functions; our goal is to bound |E[ f g]|.

For all i ∈ {0, . . . , N}, denote

Fi =σ(X1, . . . , X i), (161)

and for all i ∈ {1, . . . , N},
f i = f Fi −E[ f |Fi−1]. (162)

[†]More precisely it is a true supremum (over K ′) of essential suprema (over →zK ′ ).
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Then f = ∑
i f i, where each f i is Fi-measurable and centered w.r.t. Fi−1 (i.e.,

E[ f i|Fi−1] ≡ 0). Consequently, for all i0 < i1 one has E[ f i0 f i1] = 0 (since f i0 is Fi0-
measurable while f i1 is centered w.r.t. Fi1−1 ⊃ Fi0) and thus when one expands
Var( f )=E[(

∑
i f i)2] all the non-diagonal terms vanish, yielding:

Var( f )=
N∑

i=1
Var( f i). (163)

Now, the decomposition “ f =∑
i f i” yields

E[ f g]=
N∑

i=1
E[ f i g], (164)

so let us bound the |E[ f i g]|. The law of total expectation gives:

E[ f i g]=
∫

E[ f i g|X1 = x1, . . . , X i−1 = xi−1]dP[x1, . . . , xi−1]. (165)

But under dP[·|x1, . . . , xi−1], f i is X i-measurable and centered while g is Y -measura-
ble, moreover under this law {X i : Y }É {X i : Y }Fi−1 É {X i : Y }M É εi, so:

|E[ f i g|Y1 = y1, . . . ,Yi−1 = yi−1]|É εi Sd( f i|x1, . . . , xi−1)Sd(g|x1, . . . , xi−1). (166)

Using the bound Sd(h)É
√

E[h2], it follows that:

|E[ f i g]|É εi

∫ √
E[ f 2

i |x1, . . . , xi−1]
√

E[g2|x1, . . . , xi−1]dP[x1, . . . , xi−1]

É
CS
εi

√∫
E[ f 2

i |x1, . . . , xi−1]dP[x1, . . . , xi−1]
√

the same for g = εi Sd( f )Sd(g i). (167)

So, summing (167) for all i:

|E[ f g]| É
N∑

i=1
εi Sd( f i)Sd(g) É

CS

√∑
i
ε2

i

√∑
i

Var( f i)Sd(g)=
√∑

i
ε2

i Sd( f )Sd(g). (168)

Since (168) is true for all f , g, (160) is proved.

It is striking in Proposition 3.2.1 that the right-hand side of (160) may be greater
than 1, which is never the case for a correlation level. Actually there is some
‘loss of optimality’ in the proof of the proposition when we bound above Var( f i|Fi−1)
by E[ f 2

i |Fi−1], since E[ f 2
i |Fi−1]−Var( f i|Fi−1) = E[ f i|Fi−1]2 may be different to 0. We

will use a technique for ‘recycling’ that loss to get the following result, which § 3.5 shall
prove to be optimal:

3.2.2 Theorem (‘N against 1’ theorem). Take the same hypotheses as in Proposi-
tion 3.2.1: ∀i ∈ I {X i : Y }M É εi, where M is the natural σ-metalgebra of the system.
Then:

{
→
X I : Y }É

√
1−∏

i∈I
(1−ε2

i ). (169)

3.2.3 Remark. The right-hand side of (169) is the ε̄ ∈ [0,1] characterized by 1− ε̄2 =∏
i(1−εi)2.
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3.2.4 Remark. The right-hand side of (169) is bounded above by
√∑

i ε
2
i , so Theo-

rem 3.2.2 gives back Proposition 3.2.1 as a corollary.

Proof. As in the proof of Proposition 3.2.1, let f and g be centered L2 →
X -measurable,

resp. Y -measurable, functions. Assume I = {1, . . . , N}; denote Fi ··= σ(X1, . . . , X i) and
f i ··= f Fi −E[ f |Fi−1]. Also denote, for i ∈ {0, . . . , N},

gi ··= g−E[g|Fi]. (170)

As before, one has Var( f ) = ∑
i Var( f i) and E[ f g] = ∑N

i=1 E[ f i g]. But f i is centered
w.r.t. Fi−1 while (g− gi−1) is Fi−1-measurable, so E[ f i g]=E[ f i gi−1]. Since, condition-
ally to Fi−1, f i and gi−1 are both centered and resp. X i- and Y -measurable, the fact
that {X i : Y }M É εi implies, by the same argument as in the previous proof, that

|E[ f i gi−1]| É εi Sd( f i)Sd(gi−1). (171)

Now, for i ∈ {1, . . . , N}, denote

ḡi =E[gi−1|Fi]. (172)

Since gi−1 = ḡi+ gi, where ḡi is Fi-measurable while gi is centered w.r.t. Fi, one has:

Var(gi)=Var(gi−1)−Var( ḡi). (173)

Then, the points consist in making the following observation: for Var(gi) to be large
(that is, close to Var(gi−1)), Var( ḡi) has to be small. But in that case |E[ f i g]| will be
small: one has indeed, since f i is Fi-measurable,

|E[ f i g]| = |E[ f i gi−1]| = |E[ f i(gi−1)Fi]|= |E[ f i ḡi]| É
CS

Sd( f i)Sd( ḡi). (174)

Let us sum up the relations obtained. One has, for all i ∈ {1, . . . , N}:

|E[ f i g]| É εi Sd( f i)Sd(gi−1); (175)

Sd(gi) =
√

Sd(gi−1)2 −Sd( ḡi)2; (176)

|E[ f i g]| É Sd( f i)Sd( ḡi). (177)

Now define ε̂i = |E[ f i g]|/Sd( f i)Sd(gi−1), or ε̂i = 0 if the right-hand side is 0/0. Then
(175) ensures that ε̂i É εi, and (177) means that Sd( ḡi) Ê ε̂i Sd(gi−1), so that (176)
yields Sd(gi) É

√
1− ε̂2

i Sd(gi−1). Since g0 = g, one has therefore by induction Sd(gi) É∏i−1
i′=1

√
1− ε̂2

i′ Sd(g), so that the decomposition “E[ f g]=∑
i E[ f i g]” gives:

|E[ f g]| É
N∑

i=1
(ε̂i

i−1∏
i′=1

√
1− ε̂2

i′)Sd( f i)Sd(g). (178)

By the Cauchy–Schwarz inequality, it follows that:

|E[ f g]| É
√√√√ N∑

i=1
ε̂2

i

i−1∏
i′=1

(1− ε̂2
i′) Sd( f )Sd(g)=

√√√√1−
N∏

i=1
(1− ε̂2

i ) Sd( f )Sd(g). (179)

Obviously the maximal value for the right-hand side of (179) is when ε̂i = εi for all i,
then yielding (169).
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There is an alternative proof, which is less intuitive but whose reasoning shall be
used again in the proof of Theorem 3.3.1:

Alternative proof of Theorem 3.2.2. We use the same notation as in the previous proof.
As f is F -measurable, E[ f g]=E[ f gF ], so by the Cauchy–Schwarz inequality:

|E[ f g]| ÉSd( f )Sd(gF ). (180)

Now, by associativity of variance Sd(gF )=
√

Var(g)−Var(g− gF ), so by (180) it suffices
to prove that

Var(g− gF )Ê
N∏

i=1
(1−ε2

i )Var(g). (181)

With our notation, g− gF = gN and g = g0; we will prove that for all i ∈ {1, . . . , N},

Var(gi)Ê (1−ε2
i )Var(gi−1). (182)

Since gi−1 and gi are centered w.r.t. Fi−1, one has

Var(gi−1)=
∫

Var(gi−1|x1, . . . , xi−1)dP[x1, . . . , xi−1], (183)

with a similar decomposition for Var(gi), so that it suffices to prove (182) conditionally
to Fi−1.

Conditionally to Fi−1, gi−1 is centered and Y -measurable. Moreover, gi = gi−1 −
(gi−1)σ(X i), so by associativity of variance Var(gi) = Var(gi−1)−Var((gi−1)σ(X i)), and
therefore (182) is equivalent to

Var((gi−1)σ(X i))Ê ε2
i Var(gi−1), (184)

which follows directly from the assumption “{X i : Y }Fi−1 É εi”.

3.3 Double tensorization

Simple tensorization as itself is already interesting since it gives an L2-type bound for
the correlation between X and

→
Y , which is better than the L1-type bounds typically

obtained by total variation methods. Yet it does not exhaust the full potential of max-
imal correlations concerning tensorization, since obviously it does not contain results
like independent tensorization (cf. § 1.1.e).

The aim of this section is to get sharp tensorization results where we perform ten-
sorizing on both sides, without having to assume complete independence like in The-
orem 1.1.19. The price to pay is that the techniques involved, though similar in their
spirit, will be much more tricky, moreover the bounds obtained will not be completely
optimal (see § 3.5).
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3.3.a ‘N against M’ tensorization

The following theorem may be considered as the main result of this monograph. As will
be explained in § 3.5.b, it ‘contains’ qualitatively all the other tensorization theorems
(i.e. Theorems 1.1.19, 3.2.2 and 3.3.10).

3.3.1 Theorem (‘N against M’ theorem). Let I and J be sets, and let (X i)i∈I and (Y j) j∈J
be random variables, the σ-metalgebra they generate being denoted by M . Suppose for
any i, j, {X i : Y j}M É εi j for some εi j Ê 0, and define the operator

ε : L2(J) → L2(I)
(a j) j∈J 7→ (

∑
j∈J εi ja j)i∈I , (185)

then:
{
→
X I :

→
YJ}É�ε�∧1. (186)

3.3.2 Remark. On (R+)I×J , �ε� is a nondecreasing function of each εi j.

* As the proof of Theorem 3.3.1 is rather technical, I found it useful to write down
how it goes on a concrete example. This is performed in Appendix 3.7, which I suggest
the reader to look at in parallel with the proof as a complement.

To prove Theorem 3.3.1, we will need the following

3.3.3 Lemma. Let X1, X2, . . . , XN and Y be random variables, call M their natural
σ-metalgebra, and assume that for all i ∈ {1, . . . , N},

{X i : Y }M É εi. (187)

Let f be an L̄2(
→
X ) function. For all 0 É i É N, denote Fi ··= σ(X1, . . . , X i), resp. F∗

i ··=
σ(X1, . . . , X i,Y ), and for all 1É i É N, define

f i ··= f Fi −E[ f |Fi−1], (188)

resp. f ∗i ··= f F∗
i −E[ f |F∗

i−1], (189)

and denote by Vi and V∗
i their respective variances. Then, for all 1É i É N,

V∗
i Ê (1−ε2

i )Vi −2εi
√

Vi(
∑
i′>i

εi′
√

Vi′). (190)

Proof. For 0É i É N, define ~
f i ··= f −E[ f |Fi], (191)

resp.
~
f ∗i ··= f −E[ f |F∗

i ], (192)

and call
~
Vi and

~
V∗

i their respective variances. One has
~
f i =∑

i′>i f i′ , resp.
~
f ∗i =∑

i′>i f ∗i′ .
Moreover, by the same argument as in the proof of Proposition 3.2.1, all the f i are
orthogonal (that is, i0 6= i1 ⇒ E[ f i0 f i1]= 0), thus

~
Vi =

∑
i′>i

Vi′ ; (193)
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similarly, ~
V∗

i = ∑
i′>i

V∗
i′ . (194)

In a first step, we observe that for all i,
~
f i −

~
f ∗i = ( f − f Fi )− ( f − f F∗

i ) = f F∗
i − f Fi =

f F∗
i − ( f Fi )F

∗
i = ( f − f Fi )F

∗
i = (

~
f i)F

∗
i , which by associativity of variance yields the fol-

lowing

3.3.4 Claim. ~
Vi −

~
V∗

i =Var((
~
f i)F

∗
i ). (195)

Now, the following claim will be the main tool for proving the lemma:

3.3.5 Claim. For all 1É i É N,

~
Vi−1 −

~
V∗

i−1 É (εi
√

Vi +
√~

Vi −
~
V∗

i )2 [‡]. (196)

Admit temporarily Claim 3.3.5. Since
~
VN = ~

V∗
N = 0, (196) applied with i = N gives~

VN−1 −
~
V∗

N−1 É ε2
NVN , which in turn we can use in (196) with i = N −1, and so on, to

finally prove by finite (decreasing) induction that, for all i,
~
Vi −

~
V∗

i É (
∑
i′>i

εi′
√

Vi′)2. (197)

Now to get (190), we note that Vi =
~
Vi−1−

~
Vi, resp. V∗

i = ~
V∗

i−1−
~
V∗

i , so, using successively
the inequalities (196) and (197),

Vi −V∗
i = (

~
Vi−1 −

~
V∗

i−1)− (
~
Vi −

~
V∗

i )

É (εi
√

Vi +
√~

Vi −
~
V∗

i )2 − (
~
Vi −

~
V∗

i )= ε2
i Vi +2εi

√
Vi

√~
Vi −

~
V∗

i

É ε2
i Vi +2εi

√
Vi(

∑
i′>i

εi′
√

Vi′), (198)

which is equivalent to (190).

Proof of Claim 3.3.5. Thanks to Claim 3.3.4, what we have to prove is:

Var((
~
f i−1)F

∗
i−1)É (εi

√
Vi +

√~
Vi −

~
V∗

i )2 . (199)

By the definition of conditional expectation and the equality case in the Cauchy–
Schwarz inequality, (199) is equivalent to saying that for all L̄2(F∗

i−1) function g,

|E[
~
f i−1 g]|É (εi

√
Vi +

√~
Vi −

~
V∗

i )Sd(g). (200)

So let g be a centered L2 F∗
i−1-measurable real function. Since

~
f i−1 = f i+

~
f i, E[

~
f i−1 g]=

E[ f i g]+E[
~
f i g], which two terms we shall bound separately.

For the first term, under P[·|Fi−1], f i is centered and only depends on X i, and g
only depends on Y . Since {X i : Y }Fi−1 É {X i : Y }M É εi, it follows that

|E[ f i g|Fi−1]|É εi Sd( f i|Fi−1) Sd(g|Fi−1), (201)

[‡]Taking the square root of (
~
Vi −

~
V∗

i ) is allowed, since that quantity is nonnegative by Claim 3.3.4.
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which yields upon integrating:

|E[ f i g]| É εi

∫
Sd( f i|Fi−1)Sd(g|Fi−1)dP

É
CS
εi

√∫
Var( f i|Fi−1)dP

√∫
Var(g|Fi−1)dP

= εi
√

Vi

√
Var(g)−Var(gFi−1)É εi

√
Vi Sd(g). (202)

For the second term, under P[·|Fi], g only depends on Y , and E[
~
f i|Y ] ≡

~
f i −

~
f ∗i as

we noticed just before Claim 3.3.4, so E[
~
f i g|Fi] = E[(

~
f i −

~
f ∗i )g|Fi], which yields upon

integrating:

|E[
~
f i g]| = |E[(

~
f i −

~
f ∗i )g]| É

CS
Sd(

~
f i −

~
f ∗i )Sd(g)=

√~
Vi −

~
V∗

i Sd(g), (203)

the last equality coming from Claim 3.3.4. Then it just remains to combine (202)
and (203) to get (200).

Proof of Theorem 3.3.1. First, thanks to a by now classical approximation argument
we may assume that I = {1, . . . , N} and J = {1, . . . , M}. Denote F ··= σ(

→
X I), resp.

G ··= σ(
→
YJ); our goal is to prove that for all f ∈ L̄2(F ), all g ∈ L̄2(G ), one has

|E[ f g]| É (�ε�∧1)Sd( f )Sd(g). We will use the same trick as in our alternative proof of
Theorem 3.2.2: by the definition of conditional expectation and the Cauchy–Schwarz
inequality, proving the inequality above is equivalent to showing that for all f ∈ L̄2(F ),

Var( f G )É (�ε�2 ∧1)Var( f ), (204)

which, by associativity of variance, is in turn equivalent to:

Var( f − f G )Ê (1−�ε�2)+Var( f ). (205)

For 0É i É N, resp. 0É j É M, define Fi =σ(X1, . . . , X i), resp. G j =σ(Y1, . . . ,Y j). For
all 0É j É M, define

f j ··= f −E[ f |G j], (206)

and for all 1É i É N, define moreover

f j
i ··= f G j∨Fi −E[ f |G j ∨Fi−1]. (207)

Denote V j ··= Var( f j), resp. V j
i ··= Var( f j

i ). For fixed j, the f j
i are pairwise orthogonal

(again by the argument in the proof of Proposition 3.2.1) and their sum is equal to f j,
so:

V j =
N∑

i=1
V j

i . (208)

Thus, with this notation our goal (205) becomes:

N∑
i=1

V M
i Ê (1−�ε�2)+

N∑
i=1

V 0
i . (209)
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The main tool to prove (209) will be Lemma 3.3.3. Actually the rough formula (190)
is quite impratical, so we introduce a linearized version of it: for each 1 É i É N take
some αi > 0 (which for the time being is arbitrary), then by the Cauchy–Schwarz in-
equality, (190) implies that:

V∗
i Ê (1−ε2

i )Vi − εiVi

αi

∑
i′>i

εi′αi′ −εiαi
∑
i′>i

εi′Vi′

αi′
. (210)

3.3.6 Remark. (210) is devised so that its right-hand side is exactly the same as in (190)
if Vi ∝α2

i ∀i.

Let us reason conditionally to G j−1 for a few lines. Under this conditioning,
call

.
Fi ··=σ(X1, . . . , X i), resp.

.
F∗

i ··=σ(X1, . . . , X i,Y j), and
.
f ··= f j−1. Then

.
f is an L̄2(

→
X )

function, so we are in situation of applying Lemma 3.3.3 to the functions

.
f i ··=

.
f
.

Fi −E[
.
f | .

Fi−1] (211)

and
.
f ∗i ··=

.
f
.

F∗
i −E[

.
f | .

F∗
i−1]. (212)

But in fact we already know these functions: namely,
.
f i = f j−1

i and
.
f ∗i = f j

i . Then,
applying the linearized version (210) of Lemma 3.3.3

Var( f j
i |G j−1)Ê

(
1−ε2

i j −
εi j

αi

∑
i′>i

εi′ jαi′
)
Var( f j−1

i |G j−1)−εi jαi
∑
i′>i

εi′ j Var( f j−1
i′ |G j−1)

αi′
,

(213)
whence upon integrating:

V j
i Ê (1−ε2

i j)V
j−1

i −(
∑
i′>i

εi′ jαi′)
εi jV

j−1
i

αi
−εi jαi

∑
i′>i

εi′ jV
j−1

i′

αi′
. (214)

By Equation (214), we have transformed our initial problem into a purely abstract
operator problem, posed in an L1 setting. To handle it, we need a little notation.
Call L1(I) the set of real functions on I, endowed with the L1 norm

‖(vi)i∈I‖1 ··=
∑
i∈I

|vi|. (215)

The dual space of L1(I) is made of the linear forms l : (vi)i∈I 7→ ∑
l ivi, equipped with

the L∞ norm
‖l‖∞ ··= sup

i∈I
|l i|. (216)

We shall write “L1(I) 3 v Ê 0” to mean that all the entries of v are nonnegative, and
“(L1(I))′ 3 l Ê 0” to mean that (v Ê 0) ⇒ (lv Ê 0), which is equivalent to say that all
the l i are nonnegative. Now I claim the following lemma, whose proof is postponed:

3.3.7 Lemma. Suppose given some nonnegative numbers V j
i for (i, j) ∈ {1, . . . , N} ×

{0, . . . , M}, such that Equation (214) is satisfied for all i, j. Call L the nonnegative
linear form on L1(I) defined by

L v = ∑
j∈J

i,i′∈I

αi′

αi
εi jεi′ jvi, (217)
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and assume ‖L ‖∞ É 1, then:

N∑
i=1

V M
i Ê

N∑
i=1

V 0
i −L ((V 0

i )i∈I). (218)

Lemma 3.3.7 has the following immediate

3.3.8 Corollary. Suppose given some nonnegative numbers V j
i for (i, j) ∈ {1, . . . , N}×

{0, . . . , M}, such that Equation (214) is satisfied for all i, j, then:

N∑
i=1

V M
i Ê

(
1−sup

i∈I

∑
j∈J
i′∈I

αi′

αi
εi jεi′ j

)
+

N∑
i=1

V 0
i . (219)

Now we finish the proof of Theorem 3.3.1: thanks to Corollary 3.3.8 we have proved
that (219) stands true in our situation for any choice of positive (αi)i∈I . The last step
then consists in optimizing that choice. Denote “α > 0” to mean that all the αi are
positive. One has:

inf
α>0

sup
i∈I

∑
j∈J
i′∈I

αi′

αi
εi jεi′ j = inf{λÊ 0 : (∃α> 0)(∀i)(

∑
j∈J
i′∈I

εi jεi′ jαi′ Éλαi)}

= inf{λÊ 0 : (∃α> 0)(εε∗αÉλα)}. (220)

But εε∗ is a nonnegative operator on L2(I) (I mean, when seen as a matrix all its
entries are nonnegative), so by Lemma 3.8.1 in appendix:

inf{λÊ 0 : (∃α> 0)(εε∗αÉλα)}= ρ(εε∗)=�ε�2. (221)

This ends the proof of Theorem 3.3.1.

Proof of Lemma 3.3.7. We prove Lemma 3.3.7 by induction on M. The case M = 0 is
trivial. Suppose M Ê 1 and assume the result is true for (M−1). We generalize the
notation L by defining, for • ∈ { ,1,∗},

L •v = ∑
j∈J•
i,i′∈I

αi′

αi
εi jεi′ jvi, (222)

with J1 = {1}, resp. J∗ = {2, . . . , M}, so that L =L 1 +L ∗. Notice that ‖L ∗‖∞ É 1 since
‖L ‖∞ É 1. For all i ∈ I, define

V̌ 1
i = (1−ε2

i1)V 0
i − εi1V 0

i

αi

∑
i′>i

εi′1αi′ −εi1αi
∑
i′>i

εi′1V 0
i′

αi′
, (223)

which is the value that V 1
i would take if there were equality in (214) for j = 1. With

that notation, (214) writes
(V 1

i − V̌ 1
i )i∈I Ê 0, (224)

and by induction hypothesis we have:

N∑
i=1

V M
i Ê

N∑
i=1

V 1
i −L ∗((V 1

i )i∈I). (225)
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Introducing the V̌ 1
i , we have therefore the following chain of inequalities:

N∑
i=1

V M
i Ê

(225)

N∑
i=1

V 1
i −L ∗((V 1

i )i∈I)

=
(224)

N∑
i=1

V̌ 1
i +‖(V 1

i − V̌ 1
i )i∈I‖1 −L ∗((V̌ 1

i )i∈I)−L ∗((V 1
i − V̌ 1

i )i∈I)

Ê
‖L ∗‖∞É1

N∑
i=1

V̌ 1
i −L ∗((V̌ 1

i )i∈I)=
N∑

i=1
V 0

i −L 1((V 0
i )i∈I)−L ∗((V̌ 1

i )i∈I)

Ê
V̌ 1ÉV 0

L ∗Ê0

N∑
i=1

V 0
i −L 1((V 0

i )i∈I)−L ∗((V 0
i )i∈I)=

N∑
i=1

V 0
i −L ((V 0

i )i∈I), (226)

so (218) is true for M, whence the lemma by induction.

3.3.9 Remark. Our proof of Theorem 3.3.1 handled the X i and the Y j in a fully non-
symmetric way, since we began with putting orders on I and J, which orders played a
crucial role in the decomposition of f . Yet the bound (186) obtained is obviously sym-
metric by re-labelling the basic variables—and this is not due to having proceeded to
any ‘re-symmetrization’ step. . . To date I have no simple explanation for this ‘coinci-
dence’.

3.3.b ‘Z against Z’ tensorization

The proof of the ‘N against M’ theorem was quite more technical than that of the
‘N against 1’ theorem; because of that, in order to get tractable computations we had
to use suboptimal inequalities at two places:

• Claim 3.3.5 is suboptimal: it has indeed the same shortcoming as Proposi-
tion 3.2.1 exhibited compared to Theorem 3.2.2, namely, it does not ‘recycle the
losses’ occurring when one makes g covariate with both f i and

~
f i (cf. the discus-

sion on page 49, just after the proof of Proposition 3.2.1).
• Our linearization technique is suboptimal in general, even after optimizing

the αi. In fact, as we said before, Inequality (210) is optimal if and only if one
has Vi ∝ αi; thus, for (214) to be always optimal, one has to have V j

i ∝ αi for
all j, with the same values for the αi. This would imply that all the sequences
(V j

i )0Éi<n are proportional, which is not true in general.

So, Theorem 3.3.1 is certainly not optimal[§]—this is confirmed by the example
of § 3.7. Nonetheless, there is one particular case in which an alternative reasoning
yields an optimal bound[¶]. This case is when some symmetries in the decorrelation hy-
potheses allow us to transform the original two-parameter problem (indexed by I × J)
into a one-parameter problem (indexed by Z). Let us state and prove the corresponding
result:

3.3.10 Theorem (‘Z against Z’ theorem). Let I and J be sets isomorphic to Z, and
let (X i)i∈I and (Y j) j∈J be random variables such that, M denoting the σ-metalgebra

[§]Though, as we will see in § 3.5.b, it is ‘asymptotically optimal’.
[¶]The bound’s being optimal shall be proved by Theorem 3.5.3.
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they generate, one has for all i, j ∈Z

{X i : Y j}M É ε( j− i) (227)

for some function ε : Z→ [0,1].

Then
{
→
X I :

→
YJ}É ε̄, (228)

where ε̄ ∈ [0,1] is characterized by:

Arcsin ε̄= (
∑
z∈Z

Arcsinε(z))∧ π2 . (229)

3.3.11 Remark. If we apply Theorem 3.3.1 to the situation above, we find {
→
X I :

→
YJ}

É (
∑

z∈Z ε(z))∧1 [cf. § 3.6.b]. The latter expression is always Ê ε̄ because of the concav-
ity of the function sin(·∧ π

2 ) on R+, and even > ε̄ if ε̄ 6= 0,1; so, when it is applicable,
Theorem 3.3.10 is strictly stronger than Theorem 3.3.1.

Proof. Let f and g be resp.
→
X I- and

→
YJ-measurable L̄2 functions. Denote F ··= σ(

→
X ),

resp. G ··= σ(
→
Y ), and for i ∈ Z, resp. j ∈ Z, denote Fi ··= ∨

i′Éiσ(X i′), resp. G j ··=∨
j′É jσ(Y j′). For (i, j) ∈Z×Z, define

f j
i ··= f G j∨Fi −E[ f |G j ∨Fi−1] (230)

and[‖]

gi
j ··= gG j −E[gG j |G j−1 ∨Fi]. (231)

Denote V ··=Var( f ), W ··=Var(g), V j
i ··=Var( f j

i ), W i
j ··=Var(gi

j); also denote

Si j ··=E[ f j−1
i gi−1

j ]. (232)

Our auxiliary functions were devised so that

3.3.12 Claim. Provided the sum in the right-hand side is absolutely convergent,

E[ f g]=∑
i, j

Si j. (233)

Proof of Claim 3.3.12. First define f̄ ··= f G , so that f̄ is G -measurable and E[ f g] =
E[ f̄ g]. For j ∈ Z, define g j ··= gG j −E[g|G j−1], resp. f̄ j ··= f̄

G j −E[ f̄ |G j−1]: we have
g =∑

j g j and f̄ =∑
j f̄ j, which are the respective decompositions of g and f̄ on the same

basis of orthogonal subspaces of L̄2(G ), so E[ f g] = ∑
j E[ f̄ j g j]. The terms of the right-

hand side of that formula are unchanged upon replacing f̄ j by f j−1 ··= f −E[ f |G j−1],
since E[( f j−1 − f̄ j)g j] is zero—the function ( f j−1 − f̄ j) is indeed equal to ( f −E[ f |G j]),
which is centered conditionally to G j, while g j is G j-measurable. In the end we have:

E[ f g]=∑
j

E[ f j−1 g j]. (234)

[‖]Beware: the definition of gi
j is not analogous to the definition of f j

i !
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So in a first step we have decomposed E[ f g] into a sum indexed by j. Now we
decompose each term of that sum into a sum indexed by i. Let us reason conditionally
to G j−1. Then f j−1 is an L̄2(F ) function and g j is in L̄2(Y j). We compute E[ f j−1 g j]
as in the first step of this proof: first we replace g j by ḡ j ··= (g j)F ; then we decompose
f j−1 =∑

i f j−1
i and ḡ j =∑

i ḡ ji, with f j−1
i ··= ( f j−1)Fi −E[ f j−1|Fi−1][∗], resp. ḡ ji ··= ḡFi

j −
E[ ḡ j|Fi−1], and by orthogonal decomposition we get E[ f j−1 g j]=∑

i E[ f j−1
i ḡ ji]; then we

conclude by saying that E[ f j−1
i ḡ ji] is actually equal to E[ f j−1

i gi−1
j ], since (gi−1

j − ḡ ji) is

centered conditionally to Fi while f j−1
i is Fi-measurable. In the end we have obtained

E[ f j−1 g j]=
∑

i
E[ f j−1

i gi−1
j ], (235)

which combined with (234) yields (233).

So we have expressed E[ f g] as a function of the Si j. It is also possible to ‘read’ the
values of V and W from the V j

i , resp. from the W i
j , via the formulas:

V =
↗

lim
j→−∞(

∑
i

V j
i ); (236)

W = ∑
j
(

↗
lim

i→−∞
W i

j ). (237)

Now we are looking for relations between the V j
i , the W i

j and the Si j. The first

relation comes from the decorrelation hypothesis: conditionally to G j−1 ∨Fi−1, f j−1
i is

in L̄2(X i), resp. gi−1
j is in L̄2(Y j), and {X i : Y j}É ε( j− i), so:

|Si j| É ε( j− i)
√

V j−1
i W i−1

j . (238)

The second relation means that a large value of |Si j| forces W i
j to diminish. To state

it, we observe that, since f j−1
i is (G j−1 ∨Fi)-measurable, Si j = E[ f j−1

i (gi−1
j )G j−1∨Fi ],

so by the Cauchy–Schwarz inequality |Si j| É Sd( f j−1
i )Sd((gi−1

j )G j−1∨Fi). Moreover,
since gi−1

j −(gi−1
j )G j−1∨Fi = gi

j, one has by orthogonality Var((gi−1
j )G j−1∨Fi)=Var(gi−1

j )−
Var(gi

j), so our inequality becomes

|Si j| É
√

V j−1
i

√
W i−1

j −W i
j (239)

(where it is understood that W i
j ÉW i−1

j ), or more eloquently

W i
j ÉW i−1

j − (Si j)2/V j−1
i (240)

provided V j−1
i > 0.

[∗]Notation is consistent: this f j−1
i is indeed the same as the f j−1

i defined by (230), since we are
reasoning conditionally to G j−1.
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The third and last relation means, on the other hand, that a large value
of |∑i′>i Si′ j| forces

∑
i′>i V j

i to diminish. To state it, we denote

~
f j

i ··= f − f G j∨Fi = ∑
i′>i

f j
i′ , (241)

whose variance is Var(
~
f j

i )=∑
i′>i Var( f j

i′) since the f j
i′ are pairwise orthogonal. One has∑

i′>i
Si′ j =

∑
i′>i

E[ f j−1
i′ gi′−1

j ]= ∑
i′>i

E[ f j−1
i′ gi

j]=E[
~
f j−1

i gi
j]=E[(

~
f j−1

i )G j∨Fi gi
j], (242)

so by the Cauchy–Schwarz inequality,

|∑
i′>i

Si′ j|ÉSd((
~
f j−1

i )G j∨Fi)Sd(gi
j). (243)

Since
~
f j−1

i − (
~
f j−1

i )G j∨Fi =
~
f j

i , one has by orthogonality

Var((
~
f j−1

i )G j∨Fi)=Var(
~
f j−1

i )−Var(
~
f j

i ), (244)

so our inequality becomes

|∑
i′>i

Si′ j|É
√∑

i′>i
V j−1

i′ − ∑
i′>i

V j
i′

√
W i

j , (245)

or more eloquently: ∑
i′>i

V j
i′ É

∑
i′>i

V j−1
i′ −(

∑
i′>i

Si′ j)2/W i
j . (246)

So, we have transformed our initial probabilistic problem into the following ana-
lytic one: let A be an array indexed by Z×Z, each entry (i, j) of which contains three
numbers V j

i Ê 0, W i
j Ê 0 and Si j, satisfying (238), (239) and (245)—we will say such

an array is correct. We define V by (236) and W by (237), and we set S =∑
i, j Si j (pro-

vided it makes sense); our goal is to get a bound of the form “|S| É ε̄pVW”, with ε̄ only
depending on ε(·).

Note that A priori some problems of summability can arise from A’s being infinite,
for instance to check (246) or to define S. However, in the situations which are of
interest to us, we can restrict to cases in which A is of nice particular form. To do
this, we first approximate f in L̄2(

→
X ), resp. g in L̄2(

→
Y ), by a function depending only

on a finite number of X i, resp. of Y j —say, we assume f is
→
X .

I-measurable and g is
→
Y .

J-measurable for finite
.
I ⊂ I,

.
J ⊂ J. Then, we define a new model (

~
X i)i∈Z, (

~
Y j) j∈Z

by
~
X i = X i for i ∈ .

I, resp.
~
Y j = Y j for j ∈ .

J, and
~
X i,

~
Y j = ∂ for i ∉ .

I, j ∉ .
J, ∂ being

some cemetery point. This new model still gives a correct array, for which S/
p

VW is
arbitrarily close to the initial value of E[ f g]/Sd( f )Sd(g); and the new array is of the
following form, which we will call compact, for which all the quantities of interest are
well defined:

• V j
i is zero as soon as i ∉ .

I, and it does not depend on j for j < min
.
J, nor for

j Êmax
.
J;

• Similarly, W i
j is zero as soon as j ∉ .

J, and it does not depend on i for i < min
.
I,

nor for i Êmax
.
I;
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• Si j is zero as soon as (i, j) ∉ .
I × .

J. (This condition automatically follows from the
first two if the array is correct).

We define the following operations on arrays:

3.3.13 Definition.
• For z ∈Z, we define the translation operator τz on arrays such that, if the entries

of A at (i, j) are V j
i ,W i

j ,Si j, the entries of τzA at (i, j) are V j+z
i+z ,W i+z

j+z ,S(i+z)( j+z).

• For À and Á two arrays with entries V̀ j
i ,Ẁ i

j , S̀i j, resp. V́ j
i ,etc., for α,β two real

numbers, we define the linear combination αÀ+βÁ as the array with entries
αV̀ j

i +βV́ j
i ,αẀ i

j +βẂ i
j ,etc..

3.3.14 Lemma. Correct arrays are stable by translations and by nonnegative linear
combinations, i.e., if A and B are correct arrays, then for all z ∈ Z and α,β Ê 0, τzA
and αA+βB are correct too.

Proof of Lemma 3.3.14. Recall that being correct means satisfying (238), (239)
and (245). These conditions are trivially stable by multiplication by a nonnega-
tive constant and by translation[†]. It remains to see that they are stable by addition.
The technique being the same for all three inequalities, we just treat the case of (239).
Stability of this condition by addition is a consequence of the following inequality
(which is in fact a particuliar case of the Brunn–Minkowski inequality, see [17]):

3.3.15 Lemma. For all a1,b1,a2,b2 Ê 0,√
(a1 +a2)(b1 +b2)Ê

√
a1b1 +

√
a2b2. (247)

Proof of Lemma 3.3.15. Take squares on both sides of (247) and notice that (a1 +a2)
(b1 +b2)− (

√
a1b1 +

√
a2b2)2 = a1b2 +a2b1 −2

√
a1b1a2b2 = (

√
a1b2 −

√
a2b1)2 Ê 0.

For À and Á two correct arrays satisfying (239), applying (247) with a1 = V́ j−1
i ,a2 =

V̀ j−1
i ,b1 = Ẃ i−1

j −Ẃ i
j ,b2 = Ẁ i−1

j −Ẁ i
j , we get:

|S̀i j + Śi j|É |S̀i j|+ |Śi j| É
√

V̀ j−1
i

√
Ẁ i−1

j −Ẁ i
j +

√
V́ j−1

i

√
Ẃ i−1

j −Ẃ i
j

É
√

V̀ j−1
i + V́ j−1

i

√
(Ẁ i−1

j +Ẃ i−1
j )− (Ẁ i

j +Ẃ i
j ), (248)

so (239) is still valid for (À+ Á).

Now, thanks to Lemma 3.3.14 we will reduce our problem on (Z×Z)-arrays into a
problem on Z-arrays. Suppose A is a correct array with certain values of V , W and S.
Then, for k Ê 0, the array

Ak =
1

2k+1

k∑
z=−k

τzA (249)

is correct too, with the same values of V , W and S as A. Now when k →∞, Ak ‘looks
more and more like a Toeplitz array’, that is, an array whose entries at (i, j) only
depend on ( j− i). To state it rigorously, we need some definitions:

[†]Getting stability of Condition (238) by translation is actually the only place where the symmetries
of the problem are used.
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3.3.16 Definition.
• Here, a Toeplitz array will mean a Z×Z array whose entries at (i, j) only depend

on ( j− i). For such an array, for z ∈ Z we denote by V(z),W(z),S(z) the quantities
characterized by V j

i =V( j−i), etc..
• Actually we can always assume our Toeplitz array is Toeplitz compact, which

means that there exists some z− É z+ such that:
– V(z) does not depend on z for z < z−, nor for z Ê z+;
– W(z) does not depend on z for z É z−, nor for z > z+;
– S(z) is zero as soon as z < z− or z > z+.

• For a compact Toeplitz array, we define v,w, s as ‘renormalized versions’
of V ,W ,S:

v ··= V(z<z−); (250)
w ··= W(z>z+); (251)
s ··=

∑
z∈Z

S(z). (252)

• A Toeplitz array is said to be correct if it is correct when seen as an ordinary array.
For a Toeplitz array, Equations (238), (240) and (246) become respectively[‡]:

|S(z)| É ε(z)
√

V(z−1)W(z+1); (253)

W(z) É W(z+1) −S2
(z)/V(z−1); (254)

V(z−1) É v−(
∑
z′<z

S(z′))2/W(z). (255)

With that vocabulary, our informal statement can be made precise: let A be a com-
pact correct array with entries V j

i ,W i
j ,Si j, and associated quantities V ,W ,S, and de-

fine the arrays Ak by (249). Then when k →∞ one has (2k+1)Ak → Ā (in the sense
that each entry of (2k+1)Ak converges to the corresponding entry of Ā), where Ā is the
Toeplitz array with entries V̄ j

i ,W̄ i
j , S̄i j defined by:

V̄(z) = ∑
j−i=z

V j
i ; (256)

W̄(z) = ∑
j−i=z

W i
j ; (257)

S̄(z) = ∑
j−i=z

Si j. (258)

This array Ā is Toeplitz compact with z− =min
.
J−max

.
I, resp. z+ =max

.
J−min

.
I, and

the quantities (250)–(252) for Ā are:

v̄ = V ; (259)
w̄ = W ; (260)
s̄ = S. (261)

Moreover Ā is correct, because all the (2k+1)Ak are, and being correct is clearly con-
served by array convergence.

[‡]Note that the way (255) follows from (246) is rather tricky, because it appears a difference between
two infinite quantities, which has to be ‘renormalized’ in the convenient way.
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The consequence of this statement is the following claim, which achieves the re-
duction to a ‘Z-indexed’ problem I alluded to a few lines above:

3.3.17 Claim. The supremum of |S|/pVW for correct arrays is not greater than the
supremum of |s|/pvw for correct Toeplitz arrays.

So we have to study (compact) correct Toeplitz arrays. Consider such an array.
Denote θ(z) ··=Arcsinε(z); then (253) can be rewritten:

∃θ̂(z) ∈ [±θ(z)] S(z) = sin θ̂(z) ·
√

V(z−1)W(z+1). (262)

Now, notice that for fixed values of the V(z), the S(z) and w, if we have values W(z)
such that (253)–(255) are satisfied, we can modify those W(z) so that (254) becomes an
equality for all z, an operation which keeps (253) and (255) true since it can only make
the W(z) increase. So we can suppose that (254) actually is an equality, i.e. that for
all z ∈Z,

W(z) = w
∏
z′Êz

cos2 θ̂(z′). (263)

Then it remains to integrate (255). For z ∈Z, denote

Γ(z) ··=
∑
z′<z

(sin θ̂(z′) · ∏
z′<z′′<z

cos θ̂(z′′) ·
√

V(z′−1)), (264)

so that (255) becomes:
V(z−1) É v−Γ(z)2. (265)

Γ(·) satisfies the recursion equation

Γ(z+1)= sin θ̂(z)
√

V(z−1) +cos θ̂(z)Γ(z), (266)

so by (265):
|Γ(z+1)| É sin |θ̂(z)|

√
v−Γ(z)2 +cos θ̂(z)|Γ(z)|. (267)

From (267), we will now prove that for all z ∈Z:

|Γ(z)| É sin(π2 ∧
∑
z′<z

θ(z′))pv. (268)

Indeed, (268) is equivalent to saying that there exists some η(z) ∈ [0,
∑

z′<z θ(z′)] such
that |Γ(z)| = sinη(z)

p
v, which we prove by induction. First, since our Toeplitz array

was supposed compact, ∀z < z− θ̂(z)= 0, so the formula is true for z É z− with η(z)= 0.
Next, if the formula is true for z, then (267) yields

|Γ(z)| É (sin |θ̂(z)|cosη(z)+cos |θ̂(z)|sinη(z))
p

v = sin(η(z)+|θ̂(z)|)pv, (269)

where η(z)+ |θ̂(z)| É ∑
z′<z θ(z′)+θ(z) = ∑

z′<z+1θ(z′), so the formula is true for (z+1),
which ends the induction.

To conclude, we write that s = ∑
z S(z) = Γ(z > z+)

p
w. But by (268), |Γ(z > z+)| É

sin ε̄ ·pv, so in the end:
|s| É sin ε̄ ·pvw, (270)

quod erat demonstrandum.
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3.3.18 Corollary (‘Zn against Zn’ theorem). Let n Ê 1; let (Xx)x∈Zn and (Yy)y∈Zn be
random variables, and assume there exists a function ε : Zn → [0,1] such that for
all x, y ∈Zn,

{Xx : Yy}M É ε(y− x), (271)

M being the natural σ-metalgebra of the system. Then {
→
X :

→
Y }É ε̄, where ε̄ the number

in [0,1] such that
Arcsin(̄ε)= (

∑
v∈Zn

Arcsinε(v))∧ π2 . (272)

Proof. To alleviate notation, we define the ‘arcsin-sum’ as the binary operation
~+ :

[0,1]2 → [0,1] defined by:

a
~+b = sin((Arcsina+Arcsinb)∧

π

2 ). (273)

~+ is associative, commutative and nondecreasing, so it can be extended into an ∞-ary
operator

~∑
; with this notation, (272) merely writes ε̄= ~∑

v∈Znε(v).

Let (e1, . . . ,en) be a Z-basis of Zn. For 1É r É n, we identify Zr with Ze1⊕Ze2⊕·· ·⊕
Zer; we also denote Z⊥

r ··=Zer+1⊕·· ·⊕Zen. What we will prove is actually the following

3.3.19 Claim. For all r ∈ {1, . . . ,n}, all x, y ∈Z⊥
r ,

{
→
Xx+Zr :

→
Yy+Zr}M É

~∑
v∈Zrε(y− x+v). (274)

The statement of the lemma then corresponds to the claim for r = n.

We prove Claim 3.3.19 by induction on r. The case r = 1 is merely Theorem 3.3.10[§].
Now let us show how to go from the case r−1 to the case r for r > 1:

Take x, y ∈Z⊥
r . We notice that

→
Xx+Zr = (

→
Xx+ier+Zr−1)i∈Z, (275)

which we shorthand into
→
Xx+Zr = (Xi)i∈Z; similarly we write, with obvious notation,→

Yy+Zr = (Y j) j∈Z. By induction hypothesis one has for all i, j ∈Z:

{Xi : Y j}M É
~∑

v∈Zr−1ε(y− x+ ( j− i)er +v). (276)

Since the right-hand side of (276) only depends on ( j− i), we can apply Theorem 3.3.10
to the Xi and the Y j, which yields

{
→
Xx+Zr :

→
Yy+Zr}M É

~∑
z∈Z(

~∑
v∈Zr−1ε(y− x+ zer +v))=

~∑
v∈Zrε(y− x+v), (277)

i.e. (274).
[§]More precisely, it is the subjective version of that theorem, cf. § 3.4.b.
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3.4 Generalizations of the tensorization results

3.4.a Minimal Hypotheses

When reading the proofs of the tensorization theorems, you may have noticed that
taking the decorrelation hypotheses w.r.t. the whole σ-metalgebra of the system was
a needlessly strong assumption. Actually each decorrelation hypothesis can be stated
relatively to only one σ-algebra, in the following way:

• For Theorem 3.2.2, one needs only assume that for all i ∈ I, X i and Y are εi-
decorrelated when seen from σ((X i′)i′<i);

• For Theorems 3.3.1 and 3.3.10, one needs only assume that X i and Y j are εi j-
decorrelated (or ε( j− i)-decorrelated) when seen from σ((X i′)i′<i, (Y j′) j′< j).

In practice it is rare that one can bound above {X i : Y }→X{i′<i}
or {X i : Y j}(

→
X{i′<i},

→
Y{ j′< j})

more sharply than {X : Yi}M , resp. {X i : Y j}M ; yet it is worth remembering that the
‘genuine’ decorrelation hypotheses are weaker than those we wrote, especially when
one gets interested in optimality issues (cf. § 3.5).

3.4.1 Remark. In our tensorization proofs we took I and J finite; yet those proofs,
and therefore everything in this subsection, remain valid if we take for I or J any
(countable) well-ordered set, in particular if I or J is N.

3.4.b Subjective versions of the theorems

In the tensorization theorems I stated, the decorrelation hypotheses were given with
regard to the natural σ-metalgebra M of the system, while the results were given
in terms of ‘objective’ (I mean, not subjective) decorrelations. Yet actually it can be
shown that our results are still valid w.r.t. M —or even w.r.t. any sharper σ-metalgebra
N ⊃M , provided decorrelation hypotheses are stated w.r.t. N . As an example, let us
state and prove the subjective result corresponding to Theorem 3.2.2:

3.4.2 Corollary. Let X , (Yi)i∈I and (Zθ)θ∈Θ be random variables, and call N the σ-
metalgebra they span. Suppose we have bounds {X : Yi}N É εi for all i ∈ I; then:

{X :
→
YI}N É

√
1−∏

i∈I
(1−ε2

i ). (278)

Proof. Up to making up copies of I and Θ, we can assume that {0}, I and Θ are disjoint,
which allows us to denote Z0 ··= X and Zi ··=Yi for i ∈ I, so that N is the σ-metalgebra
spanned by the Zθ for θ ∈ Θ̄ ··= {0}] I ]Θ. Then (278) means that for all Ξ ⊂ Θ̄, for
(almost-)all →zΞ, one must have:

{X :
→
YI}É

√
1−∏

i∈I
(1−ε2

i ) under the law P[·|→ZΞ =→zΞ]. (279)

So, Corollary 3.4.2 will ensue from Theorem 3.2.2 provided we can prove that, denoting
by M the σ-metalgebra spanned by X and the Yi, one has for all i ∈ I:

{X : Yi}M É εi under the law P[·|→ZΞ =→zΞ]. (280)
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But under a law P, saying that {X : Yi}M É εi means that for all Υ ⊂ {0}] I, for
(almost-)all →z ′

Υ, one has {X : Yi} É εi under the law P[·|→ZΥ = →z ′
Υ]. So, for P = P[·|→ZΞ =

→zΞ], (280) means that, for all →z ′
Υ:

{X : Yi}É εi under the law P[·|→ZΞ =→zΞ and
→
ZΥ =→z ′

Υ]. (281)

In Formula (281) we can assume that zθ and z′
θ

coincide for all θ ∈Ξ∩Υ, since otherwise
the event “

→
ZΞ = →zΞ and

→
ZΥ = →z ′

Υ” would be empty and there would be nothing to say.
Then “

→
ZΞ = →zΞ and

→
ZΥ = →z ′

Υ” is of the form “
→
ZΞ∪Υ = →zΞ∪Υ”, where Ξ∪Υ ⊂ Θ̄, so that

(281) follows directly from the hypothesis {X : YI}N É εi.

3.5 Optimality

3.5.a Exact Optimality

With the minimal hypotheses stated in § 3.4.a, Theorems 3.2.2 and 3.3.10 are optimal:

3.5.1 Theorem. The bound (169) in Theorem 3.2.2 is optimal, in the following
sense: for any integer N, for all (εi)1ÉiÉN in [0,1]N , one can find random variables
X1, . . . , XN ,Y such that for all i ∈ {1, . . . , N},

{X i : Y }→X{i′<i}
= εi (282)

and
{
→
X : Y }=

√
1−∏

i
(1−ε2

i ). (283)

3.5.2 Theorem. The bound (229) in Theorem 3.3.10 is optimal, in the following sense:
for any integer N, for all (ε(z))−NÉzÉN ∈ [0,1]{−N,...,N}, one can find random vari-
ables (X i)i∈Z and (Y j) j∈Z such that for all i, j ∈Z,

{X i : Y j}(
→
X{i′<i},

→
Y{ j′< j}) =

{
ε( j− i) if | j− i| É N;
0 if | j− i| > N (284)

and {
→
X :

→
Y }= ε̄, with ε̄ defined by:

Arcsin ε̄=
N∑

z=−N
Arcsinε(z)∧ π

2
. (285)

Actually, as proving Theorem 3.5.2 for all the (ε(z))−NÉzÉN involves some heavy
technicalities [35], I will only prove the slightly weaker following

3.5.3 Theorem. For any integer N, the exists a neighbourhood U of
→
0 in [0,1]{−N,...,N}

such that, for all (ε(z))−NÉzÉN ∈U , one can find random variables (X i)i∈Z and (Y j) j∈Z
satisfying (284) and (285)[¶].

3.5.4 Remark. On the other hand, Theorem 3.3.1 is obviously not optimal since, as we
pointed out, its bound is strictly weaker than that of Theorem 3.3.10.

[¶]Notice that in the neighbourhood of
→
0, one can drop the “∧π

2 ” in the right-hand side of (285).
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The proof of Theorem 3.5.1 relies on the following important result:

3.5.5 Lemma. Let (X1, . . . , XN ,Y ) be an (N + 1)-dimensional Gaussian vector. For
all 1É i É N, define

e i ··= {X i : Y }→X{i′<i}
, (286)

then one has exactly:
{
→
X : Y }=

√
1−∏

i
(1− e2

i ). (287)

3.5.6 Remark. Maximal correlation, as I told in § 1, is fundamentally a Hilbertian
concept. When one deals with Gaussian vectors, the Hilbert spaces involved actually
have finite dimensions, so that Lemma 3.5.5 about decorrelations can also be seen as a
result about Euclidian spaces. In Appendix 3.9, I will present an unexpected corollary
of this lemma, stating a geometric property of the 3-dimensional Euclidian space.

Proof of Lemma 3.5.5. To alleviate notation, we denote Fi−1 ··=σ(
→
X{i′<i}). Since (

→
X ,Y )

is Gaussian, the law of (X i,Y ) under P[·|x1, . . . , xi−1] is Gaussian and only depends on
(x1, . . . , xi−1) through an additive constant; consequently, we can speak of ‘the maxi-
mal correlation between X i and Y conditionally to Fi−1’, which is e i, and also of ‘the
conditional variance of X i w.r.t. Fi−1’, resp. ‘the conditional variance of Y ’, resp. ‘the
conditional covariance of (X i,Y )’, which we denote resp. Var(X i|Fi−1), Var(Y |Fi−1),
Cov(X i,Y |Fi−1). By Theorem 1.2.6, one has:

Cov(X i,Y |Fi−1)=±e i Sd(X i|Fi−1)Sd(Y |Fi−1). (288)

Now take g(Y ) = Y and f (X ) = ∑N
i=1βi X i, for some βi ∈ R to be chosen later. Then

gi−1 is equal to Y −E[Y |Fi−1] and f i is proportional to X i −E[X i|Fi−1], thus, by (288)
and our model’s being Gaussian, all the inequalities until (177) in the proof of Theo-
rem 3.2.2 actually are equalities for εi = e i. If moreover Cov( f i, gi−1|Fi−1)Ê 0 for all i,
then we can drop the absolute values in their left-hand sides, and thus (178) will also
be an equality. Then, to get an equality in (179), it just remains to ensure that the final
Cauchy–Schwarz equality is an equality, i.e. to ensure that one has, for all i:

Var( f i)∝ e2
i

i−1∏
i′=1

(1− e2
i′). (289)

If all of that is satisfied, then one will have exactly E[ f g]=
√

1−∏
i(1− e2

i )Sd( f )Sd(g),

so that {
→
X : Y } Ê

√
1−∏

i(1− e2
i ). The converse inequality being obviously true by (the

minimal version of) Theorem 3.2.2, the result will follow.

So, we have to check that the choice of the βi can be performed so that (289) is sat-
isfied, with Cov( f i, gi−1|Fi−1) of the good sign. To do this, we will choose successively
relevant values for βN ,βN−1, . . . ,β1.

We observe that, if βN , . . . ,βi+1 have already been fixed, then βi 7→
Cov( f i, gi−1|Fi−1) is an affine function with slope

±e i Sd(Y |Fi−1)
Sd(X i|Fi−1)

Sd(X i)
. (290)
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Moreover, Var( f i) = Var( f i|Fi−1) as f i is centered w.r.t. Fi−1; so, since f i ∝ X i −
E[X i|Fi−1], (288) implies:

Var( f i)= Cov( f i, gi−1|Fi−1)2

e2
i Var(Y |Fi−1)

. (291)

So, provided e i, Sd(Y |Fi−1) and Sd(X i|Fi−1) are nonzero, there exists a (unique) βi
satisfying our assumptions.

Now if Sd(Y |Fi−1) is zero, this means that Y is Fi−1-measurable; then one of the e i′

has to be 1 and thus the result is trivial. Next if Sd(X i|Fi−1) is zero, this means that X i
is Fi−1-measurable; then e i = 0 and f i ≡ 0, so that our assumptions are automatically
satisfied. Finally if e i = 0 and Var(X i|Fi−1) > 0, then there exists a (unique) βi such
that f i ≡ 0, for which our assumptions are satisfied. So all those particular cases
actually work fine too.

Proof of Theorem 3.5.1. For technical reasons, we begin with noticing that the theorem
is immediate if some e i is equal to 1, so that we can assume that all the e i are < 1.
Thanks to Lemma 3.5.5, it suffices to prove that for any sequence of εi ∈ [0,1) it is
possible to build a Gaussian vector (X ,

→
Y ) for which e i = εi ∀i. To do this, let ξ,ζ1, . . . ,ζN

be i.i.d. N (1) variables, and take Y = ξ and X i =
p

1−αiζi+p
αiξ for some parameters

αi ∈ [0,1). We want to choose the αi such that →e(→α) =→
ε; this is always possible, by the

following method:

• First we compute α1: By Theorem 1.2.6, one can write down the equation link-
ing α1 and e1. It is clear without knowing the precise form of that equation
(actually, e1 =p

α1) that e1 is a continuous increasing function of α1 with e1 = 0
for α1 = 0 and e1 = 1 for α1 = 1. Therefore there is a unique α1 such that e1 = ε1.

• Then we compute α2: As we already know the value of α1, we can treat it as
a constant and look for the equation linking α2 and e2, which we compute by
Theorem 1.2.6 again. That equation, though more complicated than in the previ-
ous case (actually, e2 =p

α2
p

1−α1/
p

1−α1α2), exhibits the same behaviour: e2
is a continuous increasing function of α2 with e2(α2 = 0) = 0 and e2(α2 = 1) = 1.
Therefore there is a unique α2 such that e2 = ε2.

• We carry on this process until having determined all the αi.

Proof of Theorem 3.5.3. Again, the principle of the proof will consist in showing how
the optimal bound can be attained for relevant Gaussian vectors and linear functions
of them.

We consider independent N (1) variables (ξ j) j∈Z and (ωi j)(i, j)∈Z×Z. For all i we set:

X i =
N∑

z=−N
ωi(i+z), (292)

resp. for all j:

Y j = ξ j +
N∑

z=−N
αzω( j−z) j (293)
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for some real parameters (αz)−NÉzÉN to be fixed later. This model is obviously invari-
ant by translation of the indexes. For z ∈Z, define

.ez ··= Cov(X i,Yi+z|Fi−1 ∨Gi+z−1)
Sd(X i|Fi−1 ∨Gi+z−1) ·Sd(Yi+z|Fi−1 ∨Gi+z−1)

, (294)

where the choice of i does not matter. Since our model is Gaussian, by Theorem 1.2.6,

{X i : Yi+z}(
→
X{i′<i},

→
Y{ j′<i+z}) = | .ez|. (295)

By the properties of Gaussian vectors, it is possible to write down explicitly the
equations linking the .ez to the αz. Though these equations may be quite horrendous,
some of their properties can be easily established:

3.5.7 Claim.
(i) For |z| > N, .ez = 0 (for any choice of the αz);

(ii) The map (α−N , . . . ,αN) 7→ ( .e−N , . . . , .eN) is of class C 1 on the neighbourhood
of (0, . . . ,0), with: (

∂
.ez

∂αy

)
(
→
0)= 1y= zp

2N +1
. (296)

By the inverse function theorem, one can therefore find neighbourhoods V and U of
→
0

in R{−N,...,N} such that the map →
α 7→ →.e is a C 1-diffeomorphism from V onto U . In

particular, for →
ε in such an U we can always fix the αz of our model such that ∀z.ez = 1|z| É Nε(z), so that (284) is satisfied.

Now we have to choose f and g. Morally[‖] we have to take the functions f and g
having maximal Pearson correlation. Since the model is Gaussian, these functions will
be linear, and since the model is invariant by translation, they will likely be invariant
by translation too. So we would like to take, formally, f (

→
X ) = ∑

i∈Z X i and g(
→
Y ) =∑

j∈ZY j. As such functions are not properly defined, we will rather consider f [k](
→
X ) =∑k

i=−k X i, resp. g[k](
→
Y )=∑k

j=−k Y j, and then we will let k tend to infinity.

For these f [k] and g[k], define the V [k] j
i , the W[k]i

j and the S[k]i j as in the proof
of Theorem 3.3.10, which are gathered into the array A[k]. The following properties of
the A[k] follow easily from the structure of our model:

3.5.8 Claim.

(i) All the V [k] j
i ,W[k]i

j,S[k]i j are bounded uniformly in i, j,k.

(ii) • V [k] j
i is zero as soon as i ∉ {−k−2N, . . . ,k};

• W[k]i
j is zero as soon as j ∉ {−k, . . . ,k}.

(iii) S[k]i j is zero as soon as | j− i| > N.
(iv) • For −k É i É k−2N, V [k] j

i only depends on ( j− i), even when k varies. We
denote its value by V( j−i).

• For −k É j É k, W[k]i
j only depends on ( j− i), even when k varies. We denote

its value by W( j−i).
• For −k É i É k−2N and −k É j É k, S[k]i j only depends on ( j− i), even when

k varies. We denote its value by S( j−i).

[‖]I say “morally” because nothing ensures that the supremum (34) would actually be a maximum
here.
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(v) • V(z) has some constant value v for z <−N;
• W(z) has some constant value w for z > N.

By Claim 3.5.8, A[k] converges pointwise to some compact Toeplitz array A, whose
entries are the V(z),W(z),S(z) introduced at Item (iv) of the claim, whose values v and w
are those introduced at Item (v), and whose value s is

∑N
z=−N S(z). All the arrays A[k]

are obviously correct since they correspond to true functions, so by passing to the limit
A is correct too.

Since our model is Gaussian, all the inequalities (238), (239) and (245) are actually
equalities for the arrays A[k]; moreover, since the .

εz are nonnegative, the S[k]i j are
nonnegative. By letting k tend to infinity, it follows that all the inequalities (253)–
(255) are actually equalities for the array A, with the S(z) nonnegative. Consequently
in (262) one has θ̂(z) = θ(z), and all the further inequalities are actually equalities, so
that in the end (270) becomes:

sp
vw

= ε̄. (297)

Now, defining V [k], W[k] and S[k] by resp. (236), (237) and (233) for the arrays
A[k], Claim 3.5.8 shows that, when k →∞, V [k] ∼ 2kv, resp. W[k] ∼ 2kw, resp. S[k] ∼
2ks, so (297) implies that S[k]/

p
V [k]W[k]→ ε̄. But recall that V [k], W[k] and S[k] are

the respective variances and covariance of the functions f [k] ∈ L̄2(
→
X ) and g[k] ∈ L̄2(

→
Y ),

so by the very definition (34) of maximal correlations,

{
→
X :

→
Y }Ê S[k]p

V [k]W[k]
. (298)

Making k →∞, it follows that {
→
X :

→
Y }Ê ε̄; the converse inequality being obviously true

by (the minimal version of) Theorem 3.3.10, this proves Theorem 3.5.3.

3.5.9 Example. In this example we will carry out explicit computations for a Gaussian
model close to the model presented in the proof above. We take independent N (1)
variables . . . ,ζ−1,ζ0,ζ1, . . ., . . . ,ξ−1/2,ξ1/2,ξ3/2 . . ., . . . ,ω−1/4,ω1/4,ω3/4, . . ., and we set

X i = ζi +
p
α(ωi−1/4 +ωi+1/4), (299)

resp. Y j = ξ j +
p
α(ω j−1/4 +ω j+1/4) (300)

for all integer i, resp. all half-integer j, where α is some arbitrary nonnegative pa-
rameter. We are going to show that for this system (229) is actually an equality, in
accordance with the proof of Theorem 3.5.3.

For half-integer z denote

ez ··= {X i : Yi+z}(
→
X{i′<i},

→
Y{ j′<i+z}), (301)

where the choice of i does not matter by translation invariance. Clearly e−z = ez for
all z and ez = 0 for |z| > 1/2, so to know all the ez the only nontrivial computation is
computing e1/2. Let us perform it.

Since everything is Gaussian, by Theorem 1.2.6, e1/2 is the value, under the law
P[·|→X{i<0},

→
Y{ j<1/2} ≡ 0], of

|E[X0Y1/2]|/Sd(X0)Sd(Y1/2). (302)
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Under the law P[·|→X{i<0},
→
Y{ j<1/2} ≡ 0], it is clear that ζ0,ω1/4,ξ1/2,ω3/4, . . . have exactly

the same (joint) law as under P, and that ω−1/4 is still independent of these (joint)
variables, though its variance shall have diminished. So we need only compute

v ··=Var(ω−1/4|→X{i<0},
→
Y{ j<1/2} ≡ 0). (303)

Denote
→
Lr ··= (. . . , X−2,Y−3/2, X−1,Y−1/2), resp.

→
Ll ··= (. . . , X−2,Y−3/2, X−1). We write

that (formally)
dP[

→
Lr ≡ 0 and ω−1/4 = x]∝ e−x2/2vdx, (304)

and also dP[
→
Ll ≡ 0 and ω−3/4 = y]∝ e−y2/2vdy by translation invariance. But under P[·|→

Ll ≡ 0 and ω−3/4 = y], the law of (ξ−1/2,ω1/4) is the same as under P, so one has:

e−x2/2v ∝ dP[
→
Lr ≡ 0 and ω−1/4 = x]

=
∫

y
dydP[

→
Ll ≡ 0 and ω−3/4 = y]dP[Y−1/2 = 0 and ω−1/4 = x|→Ll ≡ 0 and ω−3/4 = y]

∝
∫

y
dP[Y−1/2 = 0 and ω−1/4 = x|→Ll ≡ 0 and ω−3/4 = y]e−y2/2v dy

=
∫

y
dP[ξ−1/2 =−pα(x+ y) and ω−1/4 = x|→Ll ≡ 0 and ω−3/4 = y]e−y2/2v dy

∝
∫

y
e−α(x+y)2/2e−x2/2e−y2/2v dy∝ exp{(1+α− α2

α+1/v) x2

2 }, (305)

so that v must satisfy:

1+α− α2

α+1/v
= 1

v
, (306)

whose only nonnegative solution is

v =
p

1+4α−1
2α

. (307)

So one has Sd(X0|
→
Ll ≡ 0) = p

1+αv+α = (
p

1+4α+1)/2, Sd(Y1/2|
→
Ll ≡ 0) = p

1+2α
and E[X0Y1/2|

→
Ll ≡ 0]=α, so that in the end (302) yields:

e1/2 =
p

1+4α−1

2
p

1+2α
. (308)

With this value, Theorem 3.3.10 states that one has necessarily

{
→
X :

→
Y }É sin(2Arcsin e1/2)[∗] = 2e1/2

√
1− e2

1/2 =
2α

1+2α
. (309)

We show that (309) is actually an equality: take indeed f [k](
→
X ) ··= ∑k

i=1 Xk, resp.
g[k](

→
Y ) ··= ∑k−1/2

j=1/2 Yk, then Var( f [k]) = Var(g[k]) = k(1+2α) and E[ f g] = (2k−1)α, so
that

{
→
X :

→
Y }Ê (2k−1)α

k(1+2α)
k→∞→ 2α

1+2α
. (310)

[∗]As here one always has e1/2 É 1/
p

2, we can drop the “∧π
2 ” of Formula (229).
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3.5.10 Remark. One can formally set α=+∞ in the previous example, which actually
means that one takes X i = ωi−1/4 +ωi+1/4, resp. Y j = ω j−1/4 +ω j+1/4. In this case, both
Formulas (308) and (310) ‘pass to the limit’, yielding e1/2 = 1/

p
2 and {

→
X :

→
Y } = 1. This

shows that it is possible indeed that the ez have ‘mild’ values and that yet
→
X and

→
Y

are fully correlated. In other words, the “∧π
2 ” in (229) is not an ‘artifact’ of the proof of

Theorem 3.3.10[†], but the expression of a real ‘phase transition’ phenomenon[‡]. Such a
phase transition did not occur for the simple tensorization formula (169), which shows
that double tensorization in intrinsically more complicated than simple tensorization.

3.5.b Asymptotic optimality

In the previous subsection we saw that (the minimal versions of) Theorems 3.2.2
and 3.3.10 were optimal, while Theorem 3.3.1 was not. However it turns out that that
result is nevertheless ‘asymptotically optimal’, in the sense that the bound it gives is
equivalent to the optimal bound when the correlations between the variables become
weak. Here is a precise statement:

3.5.11 Theorem. Let I = {1, . . . , N} and J = {1, . . . , M} be finite sets, and define the func-
tion Opt : [0,1]I×J → [0,1] by

Opt(→εI×J) ··= sup{{
→
X I :

→
YJ} ; (∀(i, j) ∈ I × J)({X i : Y j}(

→
X{i′<i},

→
Y{ j′< j}) É εi j)}; (311)

then, when →
εI×J →→

0, one has:
Opt(→ε)∼�ε�. (312)

3.5.12 Remark. In the same way, the simple bound (160) of Proposition 3.2.1 is asymp-
totically equivalent to the optimal bound (169) of Theorem 3.2.2.

Proof. Take (M + NM) i.i.d. N (1) variables ξ1, . . . ,ξM ,ω11, . . . ,ωNM . For ((αi j))i, j ∈
RN×M , set {

X i = ∑
jωi j;

Y j = ξ j +∑
iαi jωi j.

(313)

Denote
e i j ··= {X i : Y j}(

→
X{i′<i},

→
Y{ j′< j}), (314)

and define .e i j as the Pearson correlation coefficient of X i and Y j under the law P[·|→
X{i′<i},

→
Y{ j′< j} ≡ 0]. Then, as in the proof of Theorem 3.5.3, one has e i j = | .e i j|, and the

function →
α 7→→.e is C 1 around

→
0, with

→.e = 1p
M

→
α+O(‖→

α‖2) when →
α→→

0. (315)

By the inverse function theorem, →
α 7→→.e is therefore a diffeomorphism from some neigh-

bourhood V of
→
0 onto some neighbourhood U of

→
0, whose inverse function is such that

→
α=

p
M

→.e+O(‖→.e‖2) when
→.e →→

0. (316)
[†]On the other hand, it is possible that the “∧1” in (186) is such an artifact, since Theorem 3.3.1 is not

optimal.
[‡]There exist indeed situations going ‘beyond the phase transition’, i.e. for which

∑
z∈ZArcsin(ez)>π/2,

though this is not the case for Example 3.5.9.
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Now let →
ε ∈ (R+)N×M∩U . Take →

α ∈V such that
→.e(→α)=→

ε, so that the condition of (311)
is satisfied. For ϕ ∈RN ,ψ ∈RM with ‖ϕ‖,‖ψ‖ = 1, set{

f (
→
X ) ··= ∑

iϕi X i;
g(

→
Y ) ··= ∑

jψ jY j.
(317)

One has
Var( f )= M, (318)

Var(g)= 1+O(‖→
α‖2)= 1+O(‖→ε‖2) (319)

and
E[ f g]=∑

i, j
αi jϕiψ j = 〈ϕ,εψ〉+O(‖→ε‖2), (320)

where the constants implicit in the “O(‖→ε‖2)” are uniform in (ϕ,ψ). So one has

Opt(→ε)Ê {
→
X :

→
Y }Ê |E[ f g]|

Sd( f )Sd(g)
= |〈ϕ,εψ〉|+O(‖→ε‖2), (321)

whence after taking supremum over (ϕ,ψ):

Opt(→ε)Ê�ε�+O(‖→ε‖2)
→
ε→→

0∼ �ε�. (322)

Since on the other hand Opt(→ε)É�ε� by Theorem 3.3.1, the proposition follows.

3.5.13 Remark. If we state decorrelation hypotheses w.r.t. the whole σ-metalgebra of
the system (denoted by “∗”), no quantity analogous to .e i j shall exist any more; one can
only write, denoting e′i j ··= {X i : Y j}∗:

e′i j(
→
α)= |αi j|p

M
+O(‖→

α‖2). (323)

So, to see how the correlations depend on the parameters, we have to study the map
→
α 7→ →e ′, which is approximated by a homothety only on the cone RN×M+ —and which
moreover is no better than continuous here. So we shall replace the inverse function
theorem by an alternative technique, which will yield the slightly weaker theorem
stated just below.

3.5.14 Theorem. Define

Opt′((εi j)(i, j)∈I×J) ··= sup{{
→
X I :

→
YJ} ; (∀(i, j) ∈ I × J)({X i : Y j}∗ É εi j)}; (324)

then for any closed cone C of RN×M contained in (R∗+)N×M ∪ {0}, on C, one has:

Opt′(→ε)
→
ε→→

0∼ �ε�. (325)

3.6 Machinery for using the tensorization theorems

Up to now we stated the tensorization theorems in a rather ‘theoretical’ form. To apply
these results to ‘concrete’ situations, some additional techniques may be needed. This
section gives such techniques, which we will use later for the applications of Chapter 5.

* In this section, all the probability systems considered will be endowed with their
natural σ-metalgebras, cf. Definition 3.1.16. To alleviate notation, I will give no names
to these σ-metalgebras, but will plainly denote {X : Y }∗ to mean “the subjective decorre-
lation between X and Y seen from the natural σ-metalgebra of the underlying system”.
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3.6.a The ‘doubling-up’ technique

3.6.1 Definition. For I a set and R a binary relation on I, J1, J2 ⊂ I, we will say that
“J2 is R-disjoint to J1” if (i, j) ∈ J1 × J2 ⇒ iR/ j.

3.6.2 Lemma (‘Doubling-up’ lemma). Let I be a (countable) set and let (X i)i∈I be ran-
dom variables such that for all i, j ∈ I, {X i : X j}∗ É εi j for a certain family of εi j ∈ [0,1].

Let R be a binary relation on I; for i, j ∈ I, denote εR
i j ··= 1iR/ jεi j.

Define I = I1 ] I2 to be a disjoint union of two copies of I; denote by (i1)i∈I ,
resp. ( j2) j∈I , the elements of I1, resp. I2. Assume that the following holds for a cer-
tain ε ∈ [0,1]: “if (Yiκ)iκ∈I are random variables such that ∀i, j ∈ I {Yi1 : Y j2}∗ É εR

i j , then
{
→
YI1 :

→
YI2}É ε”.

Then for all J1, J2 ⊂ I such that J2 is R-disjoint to J1, {
→
XJ1 :

→
XJ2}∗ É ε.

3.6.3 Remark. The interest of Lemma 3.6.2 is that, by proving one tensorization result
on {

→
YI1 :

→
YI2}, one gets tensorization results on all the {

→
XJ1 :

→
XJ2} for J2 R-disjoint to J1.

3.6.4 Example.

1. If you take for R the equality relation, then Lemma 3.6.2 gives a decorrelation
result for all disjoint J1 and J2.

2. If I is equipped with a distance dist and if you take (iR j) ⇔ (dist(i, j)< d1), then
you get a decorrelation result for all J1 and J2 such that dist(J1, J2)Ê d1.

Proof. Assume that the hypotheses of the lemma hold and let J1, J2 ⊂ I with J2 R-
disjoint to J1. For iκ ∈ I, define

Yiκ =
{

X i if (κ= 1 and i ∈ J1) or (κ= 2 and i ∈ J2);
∂ otherwise, (326)

for ∂ some cemetery point in the range of none of the X i. Since a constant variable
is always independent of any variable, the hypothesis “{X i : X j}∗ É εi j” for all i, j ∈ I
implies that {Yi1 : Y j2}∗ É εR

i j , so, by the assumption of the lemma, {
→
YI1 :

→
YI2} É ε. But

→
XJ1 is

→
YI1-measurable, resp.

→
XJ2 is

→
YI2-measurable, hence {

→
XJ1 :

→
XJ2}É ε.

Getting the subjective result w.r.t. “∗” is just a variant of that reasoning, cf. § 3.4.b.

3.6.b A practical result on Zn

In Chapter 5, the situations we will handle shall always be of the following form:

3.6.5 Assumption. For some n ∈ N∗, the system is made of random variables X i,
i ∈Zn, which satisfy the condition

∀i, j ∈Zn {X i : X j}∗ É ε( j− i) (327)

for some symmetric function ε : Zn → [0,1].

For systems satisfying Assumption 3.6.5, one has the following practical synthetic
result:
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3.6.6 Lemma. Consider a norm |·| on Rn, the associated distance on the affine Rn being
denoted by dist. Then for a system satisfying Assumption 3.6.5, for all J1, J2 ⊂ I:

{
→
XJ1 :

→
XJ2}É (

∑
z∈Zn

|z|Êdist(J1,J2)

ε(z))∧1. (328)

Proof. To alleviate notation, denote d ··= dist(J1, J2). Applying Lemma 3.6.2, tak-
ing for “R” the relation “be at distance < d” [cf. Example 3.6.4-2], our goal becomes
the following: supposing (Yiκ)iκ∈Zn

1]Zn
2

are random variables such that {Yi1 : Y j2}∗ É
1| j− i| Ê dε( j− i), we want to bound above {

→
YZn

1
:
→
YZn

2
}.

To do this we apply Theorem 3.3.1, and we get that {
→
YZn

1
:
→
YZn

2
} is bounded by �ε�∧1,

where ε is the following operator:

ε : L2(Z) 	
(g( j)) j∈Z 7→ (

∑
j∈Z1| j− i| Ê dε( j− i)g( j))i∈Z. (329)

To compute �ε�, we split ε as
∑

z∈Z1|z| Ê dε(z)Mz, where Mz is the operator

Mz : L2(Z) 	
(g( j)) j∈Z 7→ (g(i+ z))i∈Z. (330)

Obviously �Mz� = 1, thus �ε� É ∑
|z|Êd ε(z) —actually there is even equality—, which

ends the proof of Lemma 3.6.6.

3.6.7 Remark. Instead of Theorem 3.3.1, here we could have used Theorem 3.3.18,
which would yield a better result; yet that would be very specific to Zn [cf. § 3.6.d], and
the result would actually be almost equivalent to (328) [cf. § 3.5.b].

3.6.c Avoiding the artificial phase transition

Let us look again at Formula (328): the “∧1” in it is not really relevant since a cor-
relation level is always bounded by 1. In fact the situation is dichotomic: denoting
d ··= dist(I, J), either

∑
|z|Êd ε(z) is < 1 and then (328) is a true decorrelation result,

or it is Ê 1 and then (328) tells us actually nothing. In other words, our result has a
‘phase transition’ depending on the relative values of

∑
|z|Êd ε(z) and 1, similar to the

phenomenon we discussed in Remark 3.5.10.

However, as I pointed out in Footnote [†] on page 72, it is not clear whether the
phase transition we are dealing with is a real phenomenon: maybe it is rather an
artifact due to Theorem 3.3.1’s bound’s being non-optimal, which could be avoided
by a cleverer reasoning. We are strengthened in that thought by observing that, if∑

z∈Zn ε(z) < ∞, then for d large enough one has
∑

|z|Êd ε(d) < 1, so that there is no
phase transition for long distances; why would a transition appear all of a sudden for
short distances?

This subsection will show that, indeed, phase transitions can be avoided in the
situations we deal with.
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3.6.8 Lemma. For a system satisfying Assumption 3.6.5 with ε(z) < 1 as soon as z 6= 0
and

∑
z 6=0 ε(z)<∞, there exists a constant k < 1 such that, for all disjoint J1, J2 ⊂ I, one

has {
→
XJ1 :

→
XJ2}É k.

Proof. As before, using Lemma 3.6.2 we have to bound above {
→
YZn

1
:
→
YZn

2
} in the relevant

doubled-up model. Our plan to avoid the phase transition will consist in reducing to
the ‘long distance’ case.

For some l ∈N∗, we split Zn
1 , resp. Zn

2 , into a partition of ln =·· N sublattices Z(1)
1 , . . . ,

Z(N)
1 , resp. Z(1)

2 , . . . , Z(N)
2 , each lattice Z(u)

κ being of the form lZn+zu for some zu ∈Zn/lZn.
I claim two fundamental properties of these sublattices:

3.6.9 Claim. For all u,v ∈ {1, . . . , N},

{
→
Y
Z

(u)
1

:
→
Y
Z

(v)
2

}∗ É
∑

z≡zv−zu

1z 6= 0 ε(z). (331)

Proof. It is analogous to the proof of Lemma 3.6.6.

3.6.10 Claim. Provided l is large enough, the right-hand side of (331) is (strictly) less
than 1 for all the possible values of u,v.

Proof. Denote ζ ··= supz 6=0 ε(z); notice that our assumptions imply that ζ < 1. Since∑
z∈Zn ε(z) converges, there exists some d1 < ∞ such that

∑
|z|>d1 ε(z) < 1− ζ. Now,

denoting d0 ··= min{|z| : z ∈ Zn à {0}}, for l > 2d1/d0, for all u,v there is at most one
z congruent to zv − zu [mod. l] such that |z| É d1, whence the following uniform bound
for the right-hand side of (331):∑

z≡zv−zu

1z 6= 0 ε(z)É ∑
|z|>d1

ε(z)︸ ︷︷ ︸
<1−ζ

+ ∑
|z|Éd1

z≡zv−zu
z 6=0

ε(z)

︸ ︷︷ ︸
Éζ because

the sum has at most
one term, being É ζ

< 1. (332)

Now, suppose l large enough so that Claim 3.6.10 works. We apply simple ten-
sorization (Theorem 3.2.2) to the

→
Y
Z

(v)
2

: writing that
→
YZn

2
= (

→
Y
Z

(1)
2

, . . . ,
→
Y
Z

(N)
2

), we get that,
for any u ∈ {1, . . . , N},

{
→
Y
Z

(u)
1

:
→
YZn

2
}∗ É

√√√√1−
N∏

v=1

(
1− {

→
Y
Z

(u)
1

:
→
Y
Z

(v)
2

}2
∗
)
< 1. (333)

Now we write
→
YZn

1
= (

→
Y
Z

(1)
1

, . . . ,
→
Y
Z

(N)
1

) and we apply simple tensorization again—this

time to the
→
Y
Z

(u)
1

—to get:

{
→
YZn

1
:
→
YZn

2
}É

√√√√1−
N∏

u=1

(
1− {

→
Y
Z

(u)
1

:
→
YZn

2
}2
∗
)
< 1. (334)

Bound (334) achieves our goal.
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3.6.11 Remark. With that proof, the way k depends on ε(·) is rather complicated; in
particular, you cannot express k as a function of only

∑
z 6=0 ε(z) and supz 6=0 ε(z).

3.6.12 Remark. In the case n = 1, at first sight Lemma 3.6.8 seems to contradict The-
orem 3.5.3, in which we told that Theorem 3.3.10, which does have a phase transition,
was optimal. The explanation for this paradox stands in the slight difference between
the assumptions of Lemma 3.6.8 and Theorem 3.3.10: while in Lemma 3.6.8 we really
imposed that {X i : X j}∗ É ε(d(i, j)), with “∗” denoting the full natural σ-metalgebra of
the system, in Theorem 3.3.10—more precisely, in the version of Theorem 3.3.10 The-
orem 3.5.3 proved to be optimal, which was the minimal version of this theorem [cf.
§ 3.4.a]—the conditions on subjective decorrelations were a bit looser. That difference
makes all the trick when one performs the steps of simple tensorization in the proof
of Lemma 3.6.8, because these steps require subjective decorrelations w.r.t. the

→
YI(u)

κ
,

which the sole assumptions of Theorem 3.5.3 do not provide.

3.6.d Non-flat geometries

It is natural to ask what we one can do when the basic variables X i are not indexed
by Zn, but by the vertices of a more general graph, for instance a tree or a finitely
generated group. This shall occur indeed if the physical space one works in exhibits
some curvature—though Chapter 5 will not handle such situations.

Actually for general graphs there are results analogous to those of §§ 3.6.b
and 3.6.c, whith similar (though more technical) proofs. Here I will only give the
statements of these results; the proofs can be found in an earlier version of this mono-
graph [37].

In this subsection the situation will be the following:

3.6.13 Assumption. The system is made of random variables (X i) indexed by a (count-
able) set I. There is a group G acting transitively on I, and I is endowed with a
symmetric map d : I × I →D, called the ‘abstract distance’, which is preserved by the
action of G. We assume that one has

∀i, j ∈ I {X i : X j}∗ É ε(d(i, j)) (335)

for some function ε : D→ [0,1].

3.6.14 Definition. For d ∈D, we define val(d) ··= #{i ∈ I : d(o, i)= d}, where the choice
of o ∈ I does not matter.

Then the analogous to Lemma 3.6.6 is the

3.6.15 Lemma. For D′ ⊂D, for all J1, J2 ⊂ I such that (i ∈ J1, j ∈ J2) ⇒ d(i, j) ∈D′,

{
→
XJ1 :

→
XJ2}É (

∑
d∈D′

val(d)ε(d))∧1. (336)

The analogous of Lemma 3.6.8 is the
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3.6.16 Lemma. Assume that Assumption 3.6.13 is satisfied; denoting by 0 the (com-
mon) value of the d(i, i), also assume that val(0) = 1 and that ε(d) < 1 as soon as d 6= 0.
Assume that

∑
d∈Dval(d)ε(d)<∞.

Moreover, assume that the action of G on I is profinite (cf. [25, Definition 1.1]), i.e.
that there is a subset N ⊂ N∗ such that for each N ∈ N , there is a subgroup GN É G
such that:

(i) The action of GN splits I into exactly N orbits I(1), . . . , I(N);
(ii) GN is normal, so that the partition of I into the I(u) is stable by the action of G;

(iii) Any two distinct points of I are ultimately separated by the partitions induced by
the GN , i.e.:

lim
N∈N
N→∞

(GN · o)= {o}. (337)

Then there exists a constant k < 1 such that, for all disjoint J1, J2 ⊂ I, one has
{
→
XJ1 :

→
XJ2}É k.

3.6.17 Example. For I = Zn on which G = Zn acts by translation, equipped with the
abstract distance d(x, y)= {±(y− x)}, the assumptions of Lemmas 3.6.15 and 3.6.16 are
checked, and these lemmas re-give resp. Lemmas 3.6.6 and 3.6.8.
3.6.18 Example. For I the modular group PSL2(Z) acting by left multiplication on it-
self, equipped with its natural abstract distance (i.e., d(i, j)= {i−1 j, j−1i}), the assump-
tions of Lemmas 3.6.15 and 3.6.16 are also checked—to see that the action of G on I
is profinite, take for the GN(l) the principal congruence subgroups Γ(l) of the modular
group [38]. Notice that PSL2(Z) is an example of graph having negative curvature [18].

3.7 Appendix: Illustration of the proof of Theo-
rem 3.3.1

* This subsection is devised for the readers who would like to understand better the
proof of Theorem 3.3.1 by seeing how it works on a concrete example. It only contains
pedagogical material, and thus can be skipped safely.

3.7.a A Gaussian system of variables

In this illustration we take N = 2, M = 1 —since M = 1, Y1 will merely be denoted by Y
—, and we take (X1, X2,Y ) Gaussian (and centered), whose law is described through a
3×3 matrix via writing that, for some standard Gaussian vector (ξ1,ξ2,ξ3) ∈R3,X1

X2
Y

=
α1 α2 α3
β1 β2 β3
ω1 ω2 ω3

ξ1
ξ2
ξ3

 . (338)

We denote the matrix appearing in (338) by M. The rows of M will be denoted
by α,β,γ ∈R3, and (ξ1,ξ2,ξ3) will be denoted by ξ ∈R3. On R3 we will use the Euclidian
scalar product “·” and the associated norm “‖·‖”.

The advantage of this model is that, by of the general properties of Gaussian vectors
(in particular Theorem 1.2.6), all the quantities of interest are computable exactly.
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0

α

β

ω

β1

ω1

β∗ ω∗
(Rα)⊥

0

α

β

ω

ᾱ

~
α

β̄

~
β

β̂

β†

(Rω)⊥

Figure 1: Visual definitions of the vectors derived from α, β and ω: the left drawing shows
how to build β1,ω1,β∗,ω∗; the right drawing (with different values for α,β,ω) explains the
construction of ᾱ, β̄, ~α,

~
β, β̂,β†.

First we compute the correlation levels: by Theorem 1.2.6,

{X1 : Y }= |α ·ω|
‖α‖‖ω‖ , (339)

similarly {X2 : Y }= |β ·ω|/‖β‖‖ω‖; and

{
→
X : Y }=

√
1− |ω · (α→×β)|2

‖ω‖2 ‖α→×β‖2 , (340)

where “→×” denotes the cross product on R3. Concerning the conditional quantities, de-
note by β1, resp. ω1, the (orthogonal) projections of β, resp. ω, on Rα, and β∗, resp. ω∗,
the projections of the same vectors on (Rα⊥), i.e. (assuming that α 6= 0):

β1 ··= (β ·α/‖α‖2)α, ω1 ··= (ω ·α/‖α‖2)α; (341)

β∗ ··=β−β1, ω∗ ··=ω−ω1 (342)

[see Figure 1]. Then one has E[X2|X1]=β1
1ξ1+β1

2ξ2+β1
3ξ3 =β1 ·ξ, resp. E[Y |X1]=ω1 ·ξ,

thus X2 −E[X2|X1] = β∗ ·ξ, resp. Y −E[Y |X1] =ω∗ ·ξ. As (X1, X2,Y ) is Gaussian, the
law of (X2 −E[X2|X1],Y −E[Y |X1]) under P[·|X1 = x] does not depend on the value
of x; therefore we know all the conditional laws of (X2,Y ) under the P[·|X1 = x], and
for all these laws {X2 : Y } is equal by Theorem 1.2.6 to |β∗ ·ω∗|/‖β∗‖‖ω∗‖, so in the end:

{X2 : Y }X1 =
|β∗ ·ω∗|

‖β∗‖‖ω∗‖ . (343)

{X1 : Y }X2 can be computed by a similar formula.

Now let us ‘dissect’ the proof of Theorem 3.3.1 on our example. We take f linear,
namely

f (X1, X2) ··= X1 + X2, (344)

so that all the computations shall again be tractable exactly.

Let us start with computing the quantities linked to f 0: one has

f 0 = f = (α+β) ·ξ; (345)
f 0
1 = f σ(X1) = X1 + (X2)σ(X1) = (α+β1) ·ξ; (346)

f 0
2 = f − f σ(X1) = β∗ ·ξ, (347)
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whence respectively

V =V 0 = ‖α+β‖2 = ‖α‖2 +‖β‖2 +2α ·β; (348)

V 0
1 = ‖α+β1‖2 = ‖α‖2 +2α ·β+ (α ·β)2

‖α‖2 ; (349)

V 0
2 = ‖β∗‖2 = ‖β‖2 − (α ·β)2

‖α‖2 . (350)

By the way we check that, as claimed by Formula (208), V 0 =V 0
1 +V 0

2 .

Now we turn to the quantities linked to f 1. First we have to compute the con-
ditional laws of (X1, X2) under the events “Y = y”. The technique is the same as for
computing {X2 : Y }X1 a few lines above: denoting by ᾱ, resp. by β̄, the projections of α,
resp. β, on Rω, and ~

α, resp.
~
β, the projections of the same vectors on (Rω⊥), i.e. [see

Figure 1]
ᾱ ··= (α ·ω/‖ω‖2)ω, β̄ ··= (β ·ω/‖ω‖2)ω; (351)

~
α ··=α− ᾱ,

~
β ··=β− β̄, (352)

one has E[X1|Y ] = ᾱ · ξ, resp. E[X2|Y ] = β̄ · ξ, thus X1 −E[X1|Y ] = ~
α · ξ, resp. X2 −

E[X2|Y ]= ~
β·ξ; and (X1−E[X1|Y ], X2−E[X2|Y ]) has the same law under all the P[·|Y =

y]. So we can compute the quantities linked to f 1 in the same way as we computed
those linked to f 0: denoting

β̂ ··=
~
β · ~α
‖~
α‖2

~
α; (353)

β† ··=
~
β− β̂ (354)

[see Figure 1], one finds

f 1 = (~α+ ~
β) ·ξ; (355)

f 1
1 = (~α+ β̂) ·ξ; (356)

f 1
2 = β† ·ξ, (357)

whence respectively:

V 1 = ‖~
α+ ~

β‖2; (358)
V 1

1 = ‖~
α+ β̂‖2; (359)

V 1
2 = ‖β†‖2. (360)

As for f 0, we check that V 1 =V 1
1 +V 1

2 , since ~
α+~

β is the orthogonal sum of ~
α+β̂ and β†.

Moreover one always has V 1 É V 0, resp. V 1
2 É V 0

2 : the first inequality follows indeed
from (~α+ ~

β)’s being the projection of (α+β) on (Rω)⊥, and the second one from β†’s
being the projection of β∗ on (Rω+Rα)⊥. These inequalities are consistent with the
following corollary of Claim 3.3.4, obtained by applying the claim conditionally to G j−1
with the role of “ f ” played by f j−1 and the role of “Y ” played by Y j:

3.7.1 Proposition. For all 1É j É M, all 0É i É N,∑
i′>i

V j
i′ É

∑
i′>i

V j−1
i′ . (361)
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3.7.b Numerical computations

Now let us see a numerical example. Our parameters will be chosen so that the func-
tion f defined by (344) is optimal in the supremum (34) defining the maximal correla-
tion coefficient {

→
X : Y }; other than that, the behaviour of our example will be generic:

M=
4 1 1

1 4 1
1 1 4

 . (362)

For that M the calculations of the previous subsection give:

χ α β γ α
→×β β1 ω1 β∗ ω∗ ᾱ β̄

~
α

~
β β̂ β†

χ1 4 1 1 −3 2 2 −1 −1 1/2 1/2 7/2 1/2 7/6 −2/3
χ2 1 4 1 −3 1/2 1/2 7/2 1/2 1/2 1/2 1/2 7/2 1/6 10/3
χ3 1 1 4 15 1/2 1/2 1/2 7/2 2 2 −1 −1 −1/3 −2/3

whence {X1 : Y } = 1/2 and {X1 : Y }X2 = 1/3, thus {X1 : Y }M = 1/2; and similarly {X2 :
Y }M = 1/2.

Then Theorem 3.2.2 yields:

{
→
X : Y }É 1/

p
2= 0.707 . . . , (363)

and even, according to the refinements of § 3.4.a:

{
→
X : Y }É

p
13/6= 0.600 . . . ; (364)

on the other hand, the true result is:

{
→
X : Y }= 1/

p
3= 0.577 . . . . (365)

So here the bound (186) is (fortunately!) correct, and even rather sharp.

Now, as the proof of Theorem 3.3.1 consists in studying the relations between
the V j

i , let us see what these quantities look like here. One computes:(
V 0

1 V 0
2

V 1
1 V 1

2

)
=

(
401

2 131
2

24 12

)
. (366)

As a first consequence, we can check the conclusions of Proposition 3.7.1: V 1
2 = 12 É

V 0
2 = 131

2 , resp. V 1
1 +V 1

2 = 36ÉV 0
1 +V 0

2 = 54. Going further, we check the conclusions of
Claim 3.3.5, which forbids the differences V 0

2 −V 1
2 and (V 0

1 +V 0
2 )− (V 1

1 +V 1
2 ) to be too

large: for the first difference, one has V 0
2 −V 1

2 = 11
2 É ε2

2V 0
2 = 33

8
[§], and for the second

one, (V 0
1 +V 0

2 )− (V 1
1 +V 1

2 )= 18É (ε1V 0
1 +

√
V 0

2 −V 1
2 )2 = 19.419 . . . .

[§]According to § 3.4.a, one can replace ε2 = 1/2 by {X2 : Y }X1 = 1/3 in this inequality. Then the in-
equality even becomes an equality: this is linked to the optimality of certain tensorization results for
Gaussian variables, cf. § 3.5.
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3.7.c Some traps to avoid

To finish with this appendix, I would like to comment on what is true or not about
the V j

i in general situations. Proposition 3.7.1 pointed out that for all ı̂ ∈ {0, . . . , N},∑
i>̂ı V j

i is a nonincreasing function of j; in particular, when one looks at the table of
the V j

i , the last term (̂ı = N − 1), resp. the total (̂ı = 0) of line j can only decrease.
Moreover, if in some line j all the V j

i are zero from some position ı̂ + 1, then this
property remains true in all the lower lines j′ > j. This can be explained very simply,
since saying that all the V j

i are zero from position ı̂+1 means indeed that f is (G j∨F̂ı)-
measurable, hence a fortiori (G j′ ∨ F̂ı)-measurable. The following example, in which f
turns out to be 2X1, illustrates this phenomenon:

M=
1 0 0

1 0 0
1 0 1

 ⇒
(
V 0

1 V 0
2

V 1
1 V 1

2

)
=

(
4 0
2 0

)
. (367)

However, keep careful: almost anything else you would like to say about the table
of the V j

i would be false! In particular, for i < N, V j
i is not a nonincreasing function

of j in general; it is not even true that V j
i = 0 ⇒ V j′> j

i = 0, as shown by the following
example:

M=
 1 0 0
−1 1 0
1 1 1

 ⇒
(
V 0

1 V 0
2

V 1
1 V 1

2

)
=

(
0 1

1/6 1/2

)
. (368)

It is not true either that, if V j remains unchanged from one line to another (that is,
the total of the V j

i remains unchanged), then all the V j
i are unchanged. In fact, that

V j+1 is equal to V j means that, conditionally to G j, f j is centered w.r.t. Y j+1, and then
f j+1 = f j. However, the way f j+1 decomposes into a sum of f j+1

i may be different to
the way f j decomposed into a sum of f j

i , because conditioning w.r.t. Y j+1 may make
the law of the X i change! That is what happens in the following example:

M=
1 0 1

0 1 −1
0 0 1

 ⇒
(
V 0

1 V 0
2

V 1
1 V 1

2

)
=

(
1/2 3/2
1 1

)
. (369)

3.8 Appendix: A corollary of the Perron–Frobenius
theorem

In this appendix I handle a lemma used in the proof of Theorem 3.3.1. We are working
on the vector space RN for some N > 0; a vector or a matrix is said to be > 0 if all
its entries are positive, resp. Ê 0 if all its entries are nonnegative. Then the Perron–
Frobenius theorem [23, Theorem 8.3.1] states that if a square matrix A is Ê 0, then A
has some Ê 0 eigenvector for the eigenvalue ρ(A). Our goal here is prove the following
corollary:

3.8.1 Lemma. Let A Ê 0 be a square matrix, then:

inf{λÊ 0 : (∃u > 0)(Au Éλu)}= ρ(A). (370)
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Proof. We prove separately each sense of the equality. Let us begin with sense “É”.
Let v Ê 0 be some eigenvector of A for the eigenvalue ρ(A). If v > 0, then the value
λ= ρ(A) checks the condition in the infimum and we are done. Otherwise if v ≯ 0, up
to a permutation of indices it has the form (0, . . . ,0,v′n+1, . . . ,v′N) with 0< n < N and all
the v′i positive. Reasoning by induction, assume that we have proved the sense “É” of
the lemma for all n < N. The form of the eigenvector v forces A to write blockwise

A =
( ~

A 0
∗ ∗

)
(371)

with Rn×n 3
~
A Ê 0. I claim that ρ(

~
A) É ρ(A), since if ~v is an eigenvector of

~
A for the

eigenvalue ρ(
~
A), then for t Ê 0

At(~v,0, . . . ,0)= (ρ(
~
A)t ~v,∗, . . . ,∗), (372)

so
lim
t→∞ρ(

~
A)−t|At(~v,0, . . . ,0)|> 0[¶] (373)

and consequently ρ(A) Ê ρ(
~
A). Now let ε > 0. By induction hypothesis there exists

some Rn 3 w > 0 such that
~
Aw É (ρ(

~
A)+ε)w. Thus for η> 0, RN 3 (ηw,v′)> 0 and

A(ηw,v′)= (η
~
Aw,ρ(A)v′+O(η))É (η(ρ(

~
A)+ε)w,ρ(A)v′+O(η))

η↘0É (ρ(A)+ε)(ηw,v′).
(374)

So (ρ(A)+ ε) checks the condition in the right-hand side of the infimum, which ends
the proof of the sense “É” of (370).

For the sense “Ê”, consider any RN 3 u > 0 and let again v Ê 0 be some eigenvector
of A for the eigenvalue ρ(A). Then there exists a (unique) β Ê 0 such that u−βv Ê 0
but u−βv≯ 0. For this β, one of the entries of βv and u is the same, say βvi0 = ui0 . So
if λ< ρ(A),

λui0 < ρ(A)ui0 = ρ(A)βvi0 = (A(βv))i0 É (A(βv))i0 + (A(u−βv))i0 = (Au)i0 , (375)

thus Au Ðλu. That relation being true for any u > 0, λ does not check the condition in
the infimum, which proves the sense “Ê” of (370).

3.9 Appendix: A geometric consequence of results
on correlations

As I pointed out in Remark 3.5.6, for Gaussian vectors maximal correlations can be
interpreted in terms of Euclidian spaces. In this appendix I will present a funny corol-
lary of Lemma 3.5.5 following from this interpretation. That result itself is actually
more or less a pretext: the real goal of this appendix is in fact to show in an eloquent
way the geometric meaning of maximal correlations and the Hilbertian frame that
underlies them.

First we need some vocabulary about Euclidian spaces:

[¶]Equation (373) is meaningless if ρ(
~
A)= 0, but in that case there is nothing to prove.
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3.9.1 Definition.
1. For L1,L2 two vector lines in the Euclidian space R2, or more generally in any

Hilbert space, we call geometric angle between L1 and L2, denoted by �L1L2, their
“angle” in the elementary sense: for arbitrary →a ∈ L1 à {0},

→
b ∈ L2 à {0},

�L1L2 =Arccos
|→a ·→b|

‖→a‖‖→b‖
∈ [0,π/2]. (376)

2. For L1,L2 and L3 6= L1,L2 three vector lines in the Euclidian space R3 (or any
Hilbert space), we call apparent angle between L1 and L2 seen from L3 the ge-
ometric angle that an observer located somewhere on L3 à {0} would have the
impression, due to perspective, that L1 and L2 make [see Figure 2]: technically,
it is the geometric angle �L′

1L′
2, where L′

1 and L′
2 are the respective orthogonal

projections of L1 and L2 onto the plane (L3)⊥.

Then one has the following corollary of Lemma 3.5.5:

3.9.2 Theorem. Let L1,L2,L3 be three distinct vector lines of R3. Denote Â ··=�L2L3, B̂ ··= �L3L1,Ω̂ ··= �L1L2, and denote by Â′ the apparent angle between L2 and L3
seen from L1, resp. B̂′ the apparent angle between L3 and L1 seen from L2, etc.. Then
the relative order of Â and Â′ is the same as the relative order of B̂ and B̂′ and as the
relative order of Ω̂ and Ω̂′, i.e., “Â′ < Â” (resp. “Â′ = Â”, resp. “Â′ > Â”) is equivalent to
“B̂′ < B̂” (resp. “B̂′ = B̂”, resp. “B̂′ > B̂”), etc..

3.9.3 Remark. I found Theorem 3.9.2 by chance, one day that I was looking for a sit-
uation where one would have B̂′ > B̂ but Â′ < Â, in order to build a ‘nice’ example for
§ 3.7.b. I thought that such a situation would be generic, but after having looked for
it without success, I realized that it was actually impossible, and that the explanation
had a simple interpretation in terms of correlations.

Proof. Fix three arbitrary nonzero vectors α,β,ω of resp. L1,L2,L3; and consider the
Gaussian system (338) of § 3.7 for these vectors. Then the correlation coefficients
between X1, X2 and Y can be interpreted as angles between L1, L2 and L3; more
precisely, one has the following correspondance:

3.9.4 Proposition.
(i) {X1 : X2} is the cosine of the geometric angle between L1 and L2;

(ii) {X1 : X2}Y is the cosine of the apparent angle between L1 and L2 seen from L3.

Proof. (i) is nothing but the Euclidian interpretation of Theorem 1.2.6. (ii) follows from
the fact that, in the vector space spanned by jointly Gaussian real random variables,
conditional expectation corresponds to orthogonal projection and independence corre-
sponds to orthogonality.

By Proprosition 3.9.4, in our situation Lemma 3.5.5 gives:

{(X1, X2) : Y }=
√

1−sin2 B̂ sin2 Â′. (377)
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Figure 2: This figure shows four different views of the same 3-dimensional object. What inter-
ests us actually is only the three concurrent lines L1,L2,L3, but we added a die centered at
their point of concurrency to see depth better on the pictures [Recall that on a die, the total number
of points on two opposite faces is always 7.]. On the top picture, the die is shown in generic position.
We represent the angles Â, B̂ and Ω̂; these angles are 3-dimensional angles, which we under-
line by drawing them with double strokes. On each of the bottom pictures, the die is viewed
from the direction of one of the lines (from the left to the right, L3, L1 and L2), so that this
line appears completely foreshortened. We represent the angles Ω̂′, Â′ and B̂′ made by the two
other lines as they appear on the drawing; we underline that these angles are 2-dimensional
by drawing them with simple strokes [Note that in the case of B̂′, the angular sector representing B̂′

is not the projection of the angular sector representing B̂, but its supplementary—otherwise B̂′ would
be greater than π/2, which would contradict our ‘geometric’ definition of angles.]. On this example
one has Â ' 58◦, B̂ ' 71◦,Ω̂' 15◦ and Â′ ' 30◦, B̂′ ' 34◦,Ω̂′ ' 9◦; so, perspective makes angles
appear smaller than they are really for all three pairs of lines, which is in accordance with
Theorem 3.9.2.
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Obviously the roles of X1 and X2 can be interchanged in the above argument, yielding:

{(X2, X1) : Y }=
√

1−sin2 Â sin2 B̂′. (378)

But (X1, X2) and (X2, X1) generate the same σ-algebra, so {(X1, X2) : Y }= {(X2, X1) : Y },
and thus, comparing (377) and (378):

sin Â′

sin Â
= sin B̂′

sin B̂
. (379)

This implies in particular that sin Â,sin Â′ and sin B̂,sin B̂′ have the same relative
order, so also do Â, Â′ and B̂, B̂′. A cyclic permutation of L1, L2 and L3 shows that the
result is still valid for Ω̂,Ω̂′.

3.9.5 Example. See Figure 2 on page 85.
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Chapter 4

Other applications of tensorization
techniques

In the previous chapter we have been seeing how maximal decorrelation hypotheses
between pairs of variables could yield ‘global’ results on an arbitrary number of vari-
ables, by splitting functions of several variables into relevant telescopic sums. I used
the word “tensorization” to qualify these results, as the conclusions were of the same
nature as the hypotheses.

But the techniques of § 3 can also be applied to get other types of results. In
this chapter I am going to show how, from maximal decorrelation hypotheses, one
can get results on some classical features of particle systems which are not linked with
maximal correlations a priori.

I will deal with two such features. First, I will look at the implications of ρ-mixing
on the existence of a central limit theorem—more precisely, of a spatial central limit
theorem, since I am more interested in random fields than in sequences (variables
indexed by Zn rather than by Z). Very sharp results concerning this issue are already
known; however, I find interesting to show how it goes with my ‘tensorization-like’
approach: this approach takes indeed a quite different way to do the job, which may
be neater by certain sides. Moreover, the results are stated with a slighlty different
vocabulary—namely, subjective correlations.

Next, I will look at the question of spectral gap for Glauber dynamics. Though this
point has already been thouroughly studied in a β-mixing paradigm, this work, to the
best of my knowledge, is the first to show how ρ-mixing can be used to tackle this issue.

My main goal here is just to show how the techniques of this monograph may be
applied to the problems of spatial central limit theorem and convergence of the Glauber
dynamics. Accordingly, I favoured the simplicity on proofs against the refinement of
the results.
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4.1 Spatial central limit theorem

4.1.a Introduction

A fundamental result in probability theory is the central limit theorem (CLT), which,
in its standard statement, requires an assumption of complete independence. It is
natural to wonder whether that assumption can be relaxed into an hypothesis of ‘near
independence’. Maximal decorrelations are a natural frame for such a generalization,
since the CLT already takes place in an L2 setting.

Our point of view is motivated by statistical physics. Let Zn be a lattice, on each
vertex i of which there is a random ‘spin’ X i ranged in some space X not depending
on i. We assume that the law of the system is translation invariant, i.e. that for all z ∈
Zn, (X i+z)i∈Zn has the same law as

→
XZn . Then, for all z ∈Zn, we denote

εz = {X i : X i+z}∗. (380)

We are interested in situations where the εz are sufficiently ‘rapidly decreasing’ as
|z|→∞ so that

∑
z∈Zn εz <∞.

Let f : X →R be a function such that f (X0) is square-integrable and centered. The
question is, does one get a CLT when summing f (X i) for i in a large subset of Zn, i.e.,
does the sum grow as the square root of the number of its terms and have asymptoti-
cally normal distribution? For instance, we would like the law of the variable

1p
ln

∑
i∈Zn

0Éi1,...,in<l

f (X i) (381)

to weakly converge, when l →∞, to some Gaussian distribution.

4.1.1 Remark. Note that the limit distribution, if it exists, will have to be centered, but
its variance will not be equal to Var( f (X0)) in general.

In the case n = 1, extremely sharp results for this topic have been known from long;
let us cite, among many others, [40, 24, 33, 6]. For n Ê 2, similar results also exist; see
e.g. [6, Theorem 5] for such a result, and [8, § 29] for a survey of the topic. All these
proofs relie on some ‘coupling’ between (bunches of) the spins and other convenient
variables which are close to them, but which are actually independent, so as to deduce
the CLT for the former from the CLT for the latter. On the other hand, my proof will
mimick Lévy’s proof of the CLT, hence needing no coupling argument.

A priori the results presented here do not improve the state of the art; however,
when turning to quantitative versions of these results, it is likely that the difference
between the usual method and mine would yield a difference in the corresponding
non-asymptotic bounds obtained.

4.1.b Product of weakly coupled variables

My results relie on the following
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4.1.2 Lemma. Let N Ê 1 and let
.

F1, . . . ,
.

FN be σ-algebras with {
.

Fi :
.

F j} É εi j, and
denote

ε̄= sup
i

∑
j 6=i
εi j. (382)

Let Φ1, . . . ,ΦN be complex-valued random variables with |Φi| É 1 a.s., such that Φi is.
Fi-measurable for all i, with all the Φi having the same distribution. Then, denoting
by ϕ the common value of the E[Φi],

|E[
∏

i
Φi]−ϕN|É Nε̄(1+ ε̄)(1−|ϕ|2). (383)

Proof. Denote δ ··= Sd(Φ). Since E[|Φ2|] É 1, the definition of (complex) variance en-
sures that δÉ

√
1−|ϕ|2.

For all i ∈ {0, . . . , N}, denote Fi ··=∨
i′Éi

.
Fi ; denote Ψ(i) ··=∏

i′ÉiΦi′ ; define

Ψ(i)
j ··= (Ψ(i))F j −E[Ψ(i)|F j−1] (384)

and denote ∆(i)
j ··=Sd(Ψ(i)

j ). Also denote

Φi, j ··= (Φi)F j −E[Φi|F j−1]. (385)

Usual manipulation on conditioning shows that, for i Ê 1,

Ψ(i)
j =Ψ(i−1)

j (Φi)F j +Ψ(i−1)
j−1 Φi, j. (386)

Since ‖Φi‖L∞ É 1, one has also ‖(Φi)F j‖L∞ É 1, hence

Sd(Ψ(i−1)
j (Φi)F j)ÉSd(Ψ(i−1)

j )=∆(i−1)
j . (387)

Similarly, it is obvious that ‖Ψ(i−1)‖L∞ É 1, whence

Sd(Ψ(i−1)
j−1 Φi, j)ÉSd(Φi, j). (388)

Now, I claim that

4.1.3 Claim.
Sd(Φi, j)É εi jδ. (389)

Indeed, Φi, j is the part relative to
.

F j of the
.

Fi-measurable function Φi, whose stan-
dard deviation is δ.

In the end, we got that
∆i

j É∆(i−1)
j +εi jδ. (390)

Since ∆0
j = 0, one has therefore:

∀i, j ∆i
j É (1+ ε̄)δ. (391)

Now, denoting ψ(i) ··=E[Ψ(i)], one has

|ψ(i) −ϕψ(i−1)| = |∑
j<i

E[Ψ(i−1)
j Φi, j]|É ∑

j<i
∆(i−1)

j Sd(Φi, j)É ε̄(1+ ε̄)δ2, (392)

and finally

|ψ(N) −ϕN | =
N∑

i=1
|ϕ|N−i|ψ(i) −ϕψ(i−1)|É

N∑
i=1

|ψ(i) −ϕψ(i−1)|É Nε̄(1+ ε̄)δ2, (393)

which is (383) if you recall that δ2 É 1−|ϕ|2.
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4.1.c A spatial CLT

First I state and prove a CLT on cubes:

4.1.4 Theorem. Consider a translation-invariant spin model on a lattice Zn and de-
fine εz by (380). Assume that

∑
z∈Zn εz < ∞. Then for any centered square-summable

function f : X →R, there exists a constant σ<∞ such that

1p
ln

∑
i∈Zn

0Éi1,...,in<l

f (X i)
l→∞
* N (σ2), (394)

where “*” denotes convergence in law.

Proof. Denote by F(l) —or merely F —the left-hand side of (394).

What will be the value of σ? Clearly we must have

σ2 = lim
l→∞

Var(F(l)), (395)

which yields
σ=

√∑
z∈Z

E[ f (X0) f (X z)], (396)

where the expression under the root sign, which is necessarily nonnegative, is finite
because |E[ f (X0) f (X z)]| É εz Sd( f (X0))Sd( f (X z)) = εz Var( f ). By the way, we will de-
note

σ2
∗ ··= (

∑
z
εz)‖ f ‖2

L2 . (397)

Fix some arbitrary η> 0. The assumption that
∑
εz <∞ implies the existence of an

l0 <∞ such that ∑
|z|∞>l0

εz É η, (398)

where |z|∞ denotes max(|z1|, . . . , |zn|). By (395), we can also fix an l1 <∞ such that

|Var(F(l))−σ2|É η. (399)

Now we will ‘tile’ the cube of size l into a ‘patchwork’ made of cubes of size l1 which
I call “tiles”, each tile being at distance at least l0 from the others, plus some “scrap”.
I denote by

~
F the part of F due to the tiles and by F∗ the part of F due to the scrap.

Index the tiles by {1, . . . , N}, with N ··= b(l + l0)/(l1 + l0)cn. We write, with obvious
notation,

~
F =·· F1 +·· ·+FN . For λ ∈R, denote

Ψ(λ, l) ··= exp(iλ
~
F), ψ(λ, l) ··=E[Ψ(λ, l)]; (400)

Φ j(λ, l) ··= exp(iλF j), ϕ(λ, l) ··=E[Φ j(λ, l)]. (401)

Then we are exactly in situation of applying Lemma 4.1.2, which yields:

|ψ(λ, l)−ϕ(λ, l)N|É Nη(1+η)(1−|ϕ(λ, l)|2). (402)
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Let us look at the asymptotics of Formula (402) when l → ∞. We observe that,
denoting

Ft ··= 1√
ln
1

∑
i∈ fixed tile

f (X i), (403)

one has

F j
law=

√
ln
1p

ln
Ft. (404)

Since Ft is centered, its Fourier transform satisfies F̂t(0) = 1, F̂ ′
t(0) = 0 and F̂ ′′

t =
Var(Ft), so that

lim
l→∞

ln(1−ϕ(λ, l))= λ2

2
ln
1 Var(Ft), (405)

where, denoting σ2
l1
··= Var(Ft), we recall that l1 has been taken sufficiently large so

that |σ2
l1
−σ2| É η. Then, since N l→∞∼ ln/(l1 + l0)n, one has the following asymptotics

for (402):

ϕ(λ, l)N l→∞→ exp
[
−σ2

l1

( l1

l1 + l0

)nλ2

2

]
; (406)

N(1−|ϕ(λ, l)|2) l→∞→ σ2
l1

( l1

l1 + l0

)n
λ2. (407)

It remains to control the contribution of F∗.

4.1.5 Claim. There are at most[
1−

( l1

l1 + l0

)n]
ln +nl1ln−1 (408)

scrap spins.

By Claim 4.1.5,

‖F∗‖L1 ÉVar(F∗)É
[
1−

( l1

l1 + l0

)n
+n

l1

l

]
σ2
∗; (409)

then the contribution of F∗ is controlled using the following immediate

4.1.6 Lemma. Let X and H be real random variables with ‖H‖L1 <∞. Then, for λ ∈R,

|E[eiλ(X+H)]−E[eiλX ]|É |λ|‖H‖L1 . (410)

In the end, putting everything together we get:

lim
l→∞ |ψ(λ, l)− e−σ

2λ2/2|É

|e−(σ2 −η)[l1/(l1 + l0)]nλ2/2− e−σ
2λ2/2|+η(1+η)

( l1

l1 + l0

)n
(σ2 +η)λ2 +

√
1−

( l1

l1 + l0

)n
σ∗.

(411)
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Since there were no upper restriction on the value of l1, we can assume that we have
taken it such that [l1/(l1 + l0)]n Ê 1−η. Then (411) becomes:

lim
l→∞ |ψ(λ, l)− e−σ

2λ2/2|É |e−(σ2 −η)(1−η)λ2/2− e−σ
2λ2/2|+η(1+η)(1−η)(σ2+η)λ2+p

ησ∗.

(412)
The right-hand side of (412) can be made arbitrarily close to 0 by taking η small
enough, so we have proved that

∀λ ∈R E[eiλF(l)] l→∞→ e−σ
2λ2/2. (413)

By Lévy’s theorem on characteristic functions, this is tantamount to saying that F(l)
converges in law to N (σ2).

The CLT should remain valid for other shapes than a cube, since morally the ran-
dom field f (X i) should look like a Gaussian white noise at large scales. Indeed, the
same proof as above yields a CLT for general shapes, where moreover convergence is
uniform in the shape considered in some way. Let us give a precise statement:

4.1.7 Definition. An open subset U ⊂Rn (not necessarily connected) is said to be C 2 if
its boundary M is a C 2 submanifold of Rn (of codimension 1). We define the smoothness
of U , denoted by κ(U), as

κ(U) ··= sup
x∈M

�II(x)�, (414)

where II(·) denotes the shape tensor of M [22, Chapter 10], which measures the lo-
cal deviation of M from being flat. Also, the Lebesgue measure of U will be denoted
by vol(U).

4.1.8 Theorem. Consider a translation-invariant spin model on a lattice Zn and define
εz by (380). Assume that

∑
z∈Zn εz <∞. Then for any centered square-summable func-

tion f : X →R, if (Uk)k∈N is a sequence of C 2 bounded subsets of Rn with supkκ(Uk)<∞
and (lk)k∈N is a sequence of positive numbers tending to infinity,

1√
ln
k vol(Uk)

∑
i∈lkUk∩Zn

f (X i)
k→∞
* N (σ2), (415)

where σ2 is the same as in Theorem 4.1.4.

Proof. Just copy the proof of Theorem 4.1.4. The only difference lies in proving the
analoguous of Claim 4.1.5, which is where one needs the κ(Uk) to be bounded. Observe
that we use the non-asymptotic form of our intermediate bounds to get a result inde-
pendent of the precise shape of the Uk.

4.1.9 Remark. Another generalization of the CLT, still based on the idea that the field
f (X i) looks like a Gaussian white noise at large scales, is the statement that for ϕ a
continuous function with compact support,

1p
ln

∑
i∈Zn

ϕ(X i/l) f (X i)
l→∞
* N (σ2∫

Rn ϕ(x)2 dx). (416)

This can be proved with the same methods as before.
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4.2 Spectral gap for the Glauber dynamics

4.2.a Introduction

In this section we are looking at a probabilistic system made of a large number of
‘elementary’ random variables (X i)i∈I — I may be seen as lattice and X i as the state
of the particle being at site i. As is customary by now, theorems will only be stated in
the case where I is finite, the infinite case being got by passing to the limit.

4.2.1 Definition. Denoting by Ω the states space of
→
X I , let P be a probability measure

on Ω. The Glauber dynamics [20, 16] associated to P is the Markov process on Ω

having the following law: on each i ∈ I there is an alarm clock, all the clocks being
independent and ringing with law Poisson(1). When a clock rings, the state of spin X i
—and only it—is flipped so that the state of X i immediately after the flip follows the
law P(X i|

→
X Ià{i}).

In formal terms, the Glauber dynamics is the Markov process whose generator L

on L∞(Ω) is defined by:

(L f )(→xI)= ∑
i∈I

E[ f (
→
X I)− f (→xI)|→X Ià{i} =→xIà{i}]. (417)

Let us recall some basic facts on the Glauber dynamics (see [28, Chapter IV] for
more details). By construction P is a reversible equilibrium measure for the dynamics,
so L is self-adjoint on L2(P). Since obviously L 1≡ 0, one can also define L on L̄2(P),
on which it is self-adjoint too. This leads to the following definition:

4.2.2 Definition. The energy of f ∈ L̄2(P) is

E ( f , f )= 〈Lf , f 〉 (418)

The following immediate identity shows that E is always a nonnegative bilinear
form:

4.2.3 Proposition.

E ( f , f )=
∫
Ω

dP[→xI]
∑

i
Var( f |→X Ià{i} =→xIà{i}). (419)

4.2.4 Definition. For λ> 0, the Glauber dynamics is said to have spectral gap Ê λ if,
for all f ∈ L̄2(P),

E ( f , f )ÊλVar( f ). (420)

What makes spectral gap interesting is that its positiveness is equivalent to expo-
nential convergence to 0 of the semigroup (e−tL )tÊ0 on L̄2(P), the rate of convergence
being equal to the width of the spectral gap. As the Glauber dynamics is one of the eas-
iest ways to simulate the law P for complicated models, the stake of having exponential
convergence for it is evident.

Many works have been done on the spectral gap of the Glauber dynamics, see for
instance Martinelli’s St-Flour course [29]. Several results state that, the less spins
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are correlated, the larger the spectral gap is. Yet the researchers who work on this
topic generally express the decorrelation between the spins in terms of β-mixing (cf.
Definition 0.1.4), while it seems be more natural to look at them in terms of maximal
decorrelations, since the formula (420) stating the spectral gap problem takes place in
a Hilbertian frame itself. Thus my goal here will be to find a control on the spectral
gap expressed in terms of ρ-mixing conditions. Since maximal correlations look to be
the minimal frame to study the spectral gap for the Glauber dynamics, hopefully the
bounds yielded by this method will be sharp.

Another noticeable feature of my approach is that it remains at a quite abstract
level: no symmetry property of I or P need be assumed, all the work essentially con-
sisting in manipulating relevant quadratic forms.

4.2.b A lower bound for the spectral gap

The central theorem of this section is the following:

4.2.5 Theorem. Take I = {1, . . . , N}. Suppose that for all distinct i, j ∈ I one has
{X i : X j}∗ É εi j < 1 —we will make the costless assumption that ε ji = εi j. For i ∈ I,
denote

~
1i ··= 1∏

i< jÉN(1−ε2
i j)

=
~
εiN

εiN
, (421)

and for i < j, denote
~
εi j ··=

εi j∏
i< j′É j(1−ε2

i j′)
. (422)

Then the Glauber dynamics has spectral gap at least �M�−2, where M is the (N ×N)
matrix defined by

M =


1 −~

ε12 · · · −~
ε1N

0 . . . . . . ...
... . . . . . . −~

ε(N−1)N
0 · · · 0 1


−1 

~
11 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0

~
1N

 . (423)

4.2.6 Remark. The form of the first matrix in the right-hand side of (423) ensures that
it is invertible. Since moreover all the εi j were supposed < 1, all the ~

εi j and the
~
1i are

finite; thus, the lower bound �M�−2 is strictly positive.

Proof. Let f be a centered square-integrable function on (Ω,P). For I ′ ⊂ I, denote
FI ′ ··=σ(

→
X I ′). For i ∈ I, I ′ ⊂ I à {i}, denote

f I ′
i ··= f FI′]{i} −E[ f |FI ′]; (424)

define moreover

f 6=i ··= f Ià{i}
i ; (425)

f <i ··= f {1,...,i−1}
i . (426)

94



Then by Proposition 4.2.3, one has

E ( f , f )=∑
i

Var( f 6=i ), (427)

while the usual telescopic argument shows that

Var( f )=∑
i

Var( f <i ). (428)

So to prove the theorem, we have to establish links between the different values
Var( f I ′

i ). It will be convenient to introduce the shorthands ∆I ′
i = Sd( f I ′

i ). One has the
following

4.2.7 Claim. For I ′ ⊂ I and i, j ∈ I à I ′ with j 6= i,

∆I ′
i É∆I ′]{ j}

i +εi j∆
I ′
j . (429)

Proof. Assume in a first time that I ′ = ;, and denote f i ··= f ;i , f j ··= f ;j , f j
i ··= f { j}

i and

Fi ··= F{i}. Projecting the decomposition “ f i = f j
i + ( f i − f j

i )” on L2(Fi), one has f i =
( f j

i )Fi + ( f j)Fi , whence by the Cauchy–Shwarz inequality:

Sd( f i)ÉSd(( f j
i )Fi)+Sd(( f j)Fi). (430)

One has trivially Sd(( f j
i )Fi) É Sd( f j

i ); on the other hand, f j is X j-measurable, so
Sd(( f j)Fi)É εi j Sd( f j). In the end, (430) becomes

Sd( f i)ÉSd( f j
i )+εi j Sd( f j), (431)

which is (429) for I ′ =;.

In the case I ′ 6= ;, the same reasoning can be performed, except that one have to
work conditionally to FI ′ . Then, taking f i = f I ′

i , f j = f I ′
j , f j

i = f I ′]{ j}
i , Fi = FI ′]{i}, one

gets
Sd( f i|FI ′)ÉSd( f j

i |FI ′)+εi j Sd( f j|FI ′). (432)

Now

Sd( f i)=
√∫

Sd( f i|
→
X I ′ =→xI ′)2dP[→xI ′], (433)

with similar formulas for f j and f j
i , since all these functions are centered w.r.t. FI ′ .

Therefore, integrating (432) and applying Minkowski’s inequality yields:

Sd( f i)ÉSd( f j
i )+εi j Sd( f j), (434)

i.e. (429).

For i É j, let us denote
∆

[ j]
i =∆{1,..., j}à{i}

i . (435)

Claim 4.2.7 will be used through the following corollary:
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4.2.8 Claim. For all i < j,

∆
[ j−1]
i É 1

1−ε2
i j

(∆[ j]
i +εi j∆

<
j ). (436)

Proof. We have to bound ∆[ j−1]
i , which here we rather denote ∆[b−1]

a to avoid confusion
with the notation of Claim 4.2.7. Applying Claim 4.2.7 with I ′ = {1, . . . ,b−1}à {a}, i = a
and j = b, one has

∆[b−1]
a =∆{1,...,b−1}à{a}

a É∆{1,...,b}à{a}
a +εab∆

{1,...,b−1}à{a}
b =∆[b]

a +εab∆
{1,...,b−1}à{a}
b . (437)

But applying again Claim 4.2.7, this time with I ′ = {1, . . . ,b−1}à {a}, i = b and j = a,
one has

∆
{1,...,b−1}à{a}
b É∆{1,...,b−1}

b +εab∆
{1,...,b−1}à{a}
a =∆<

b +εab∆
[b−1]
a . (438)

Combining (437) and (438) then yields (436).

Now let us show how Claim 4.2.8 implies the theorem. To avoid heavy formalism,
I will detail the computations for I = {1,2,3,4} (rather denoted by I = {a,b, c,d} here
to avoid confusions with “1” and “2” taken as numbers), hoping that generalizing is
obvious then.

First, note that
∆<

d =∆6=
d . (439)

Now, by a direct use of Claim 4.2.8,

∆<
c =∆[c]

c É 1
1−ε2

cd
(∆[d]

c +εcd∆
<
d)=

~
1c∆

6=
c +

~
εcd∆

6=
d . (440)

To bound ∆<
b , we have to iterate Claim 4.2.8 twice:

∆<
b =∆[b]

b É 1
1−ε2

bc

∆[c]
b +~

εbc∆
<
c

É 1
(1−ε2

bc)(1−ε2
bd)

(∆[d]
b +εcd∆

<
d)+~

εbc∆
<
c =~

1b∆
6=
b +~

εbd∆
6=
d +~

εbc∆
<
c

É
(440)

~
1b∆

6=
b +~

1c
~
εbc∆

6=
c + (~εbd +~

εbc
~
εcd)∆6=

d . (441)

Last, bounding ∆<
a requires iterating Claim 4.2.8 three times:

∆<
a =∆[a]

a É 1
1−ε2

ab

∆[b]
a +~

εab∆
<
b

É 1
(1−ε2

ab)(1−ε2
ac)
∆[c]

a +~
εac∆

<
c +

~
εab∆

<
b É~

1a∆
6=a +~

εad∆
<
d +~

εac∆
<
c +

~
εab∆

<
b

É
(440,441)

~
1a∆

6=a +~
1b

~
εab∆

6=
b +~

1c(
~
εac +~

εab
~
εbc)∆6=

c + (~εad +~
εac

~
εcd +~

εab
~
εbd +~

εab
~
εbc

~
εcd)∆6=

d .

(442)
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One can sum up Equations (439)–(442) into the matricial expression
∆<

a
∆<

b
∆<

c
∆<

d

É


1 ~

εab
~
εac +~

εab
~
εbc

~
εad +~

εac
~
εcd +~

εab
~
εbd +~

εab
~
εbc

~
εcd

0 1 ~
εbc

~
εbd +~

εbc
~
εcd

0 0 1 ~
εcd

0 0 0 1



~
1a∆

6=
a~

1b∆
6=
b~

1c∆
6=
c

∆6=
d

 . (443)

If we look back at how the square matrix in (443) has been constructed, we find that
square
matrix

in
(443)

=
∞∑

k=0


0 ~

εab
~
εac

~
εad

0 0 ~
εbc

~
εbd

0 0 0 ~
εcd

0 0 0 0


k

=


1 −~

εab −~
εac −~

εad
0 1 −~

εbc −~
εbd

0 0 1 −~
εcd

0 0 0 1


−1

, (444)

so in the end we obtain that 
∆<

a
∆<

b
∆<

c
∆<

d

É M


∆6=

a
∆6=

b
∆6=

c
∆6=

d

 , (445)

where M is given by (423). Then it is immediate that Var( f ) = ∑
i (∆<

i )2 É
�M�2 ∑

i (∆6=
i )2 =�M�2 E ( f , f ), QED.

The bound we have obtained for the spectral gap is not symmetric by permutation
of the indexes in I. It can however can be bounded by a simpler expression, which is
nearly as good as the original one in concrete situations:

4.2.9 Corollary. In Theorem 4.2.5, M can be replaced by the matrix

M′ =


1 −ε12 · · · −ε1N

−ε12
. . . . . . ...

... . . . . . . −ε(N−1)N
−ε1N · · · −ε(N−1)N 1


−1

, (446)

provided ρ(IN −M′)< 1.

Proof. Each entry of M is actually bounded by the corresponding entry of M′. To see
it, we ‘expand’ the entries of M, resp. M′. First, notice that 1/(1−ε2

i j) can be expanded
into 1+εi jε ji +εi jε jiεi jε ji +·· · , so that one has the expansions

~
1i =

∑
i< j1É···É jk

k∏
l=1

εi jlε jl i (447)

and
~
εi j =

∑
i< j1É···É jkÉ j

(
k∏

l=1
εi jlε jl i)εi j. (448)

Then, using the inversion formula (I−A)−1 =∑∞
k=0 Ak for triangular arrays, one obtains

that

Mi j =
∑

(i0,i1,...,ik)
first condition

k−1∏
l=0

εi l i l+1 , (449)

where the meaning of “first condition” is given by the following
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4.2.10 Definition. A sequence (i0, . . . , ik) is said to satisfy the first condition if:

(i) i0 = i and ik = j;
(ii) i l 6= i l+1 for all l;

(iii) i l+1 < i l only if l Ê 1 and i l+1 = i l−1;
(iv) If i l+1 < i l and l É k−2, then i l+2 Ê i l .

One has a similar formula for M′:

M′
i j =

∑
(i0,i1,...,ik)

second condition

k−1∏
l=0

εi l i l+1 , (450)

where

4.2.11 Definition. A sequence (i0, . . . , ik) is said to satisfy the second condition if it
satisfies Conditions (i) and (ii) of Definition 4.2.10.

Since the second condition is obviously weaker than the first condition, one has
Mi j É M′

i j.

There is a still weaker but even simpler formula:

4.2.12 Corollary. Defining

ε : L2(I) → L2(I)
(ai)i∈I 7→ (

∑
j 6=i εi ja j)i∈I , (451)

the spectral gap of the Glauber dynamics is at least

(1−�ε�)2
+. (452)

Proof. One has M′ = (I−ε)−1, so, provided �A�< 1,

�M′�=�(I− A)−1�=� ∞∑
k=0

Ak�É
∞∑

k=0
�A�k = (1−�A�)−1. (453)

In the case �A�Ê 1, (452) is trivial.

4.2.c Avoiding the articial phase transition

A common situation in which we would like to apply the previous results is when
I =Zn and εi j is of the form ε( j− i) for some symmetric function ε : Zn → [0,1]. Then
Corollary 4.2.12 tells that the Glauber dynamics has a (strictly) positive spectral gap
as soon as

∑
z 6=0 ε(z) < 1. But like in § 3.6.c, we are going to prove that that bound is

somehow ‘artificial’ and that it can be relaxed into the neater condition “
∑

z 6=0 ε(z)<∞”:

4.2.13 Theorem. Suppose that I = Zn and that for all i, j ∈ Zn one has {X i : X j}∗ É
ε( j− i) for some symmetric function ε : Zn → [0,1] such that ε(z) < 1 as soon as z 6= 0.
Then if

∑
z∈Zn ε(z)<∞, the spectral gap of the Glauber dynamics is positive.
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Proof. The assumption on
∑

z ε(z) allows us to take l <∞ large enough so that∑
z∈lZnà{0}

ε(z)< 1. (454)

We split Zn into a partition of ln =·· N sublattices Z1, . . . , ZN , each lattice Zu being of
the form lZn + zu for some zu ∈Zn/lZn. Then we define an auxiliary dynamics:

4.2.14 Definition. The sublattice Glauber dynamics is the Glauber dynamics for
→
XZn

considered as the finite-dimensional vector (
→
XZ1 , . . . ,

→
XZN ). In other words, on each u ∈

{1, . . . , N} there is an independent Poisson(1) alarm clock, and when clock u rings, the
state of the whole

→
XZu is flipped in one shot according to P(XZu |

→
XZnàZu).

Now let f ∈ L̄2(Ω). In addition to the notation of the proof of Theorem 4.2.5, we
introduce the following definition:

4.2.15 Definition. For u ∈ {1, . . . , N}, we define

f 6=(u) ··= f −E[ f |→XZnàZu]. (455)

4.2.16 Remark. The f 6=(u) are the equivalent of the f 6=i for the sublattice Glauber dynam-
ics.

Fixing some ‘boundary condition’ →xZnàZu on Zn àZu, we can apply Corollary 4.2.12
to the Glauber dynamics for

→
XZu under the law P[·|→XZnàZu =→xZnàZu]. After integrat-

ing, one gets that
Var( f 6=(u))É (1−�ζ�)−2 ∑

i∈Zu

Var( f 6=i ), (456)

where ζ is the operator on L2(lZn) defined by

(ζg)(i)=
∑

z∈lZnà{0}
ε(z)g(i+ z), (457)

whose norm is obviously bounded by
∑

z∈lZnà{0} =·· ζ< 1. Then, summing (456) for all u:

N∑
u=1

Var( f 6=(u))É (1−ζ)−2
E ( f , f ). (458)

Now, let us apply Theorem 4.2.5 to the sublattice Glauber dynamics [Defini-
tion 4.2.14]. It yields that

Var( f )É�M�2
N∑

u=1
Var( f 6=(u)), (459)

where M is some (N×N) matrix depending on the {
→
XZu :

→
XZv}∗. But by Theorem 3.6.8,

{
→
XZu :

→
XZv}∗ < 1 for all u 6= v, thus �M� < ∞ by Remark 4.2.6. Combining (458)

and (459), we finally get that the spectral gap of the Glauber dynamics for
→
XZn is

bounded below by �M�−2 × (1−ζ)2 > 0.

4.2.17 Remark. Like Theorem 3.6.8, Theorem 4.2.13 could actually be stated in the
general case of ‘abstract’ metric spaces on which some group acts profinitely.
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Chapter 5

Concrete examples

It is now time to see what the results of Chapters 3 and 4 yield for concrete models
of statistical physics. I will try to give rather different types of examples, so as to
illustrate the advantages of working with maximal correlations: this frame is indeed
quite general, as it requires little structure on the models considered.

In § 5.1 we will look back at Ising’s model, seeing how tensorization of maximal
decorrelations improves the results of § 0.1, and what other results are given by the
theorems of § 4. We will also consider two kinds of generalizations, namely when the
range of interactions becomes infinite and when the strength of the interactions is
random [spin glasses]. In the two next sections we will look at models with continu-
ous states spaces: first a quite general class of linear models [§ 5.2], then a family of
nonlinear models [§ 5.3]. Finally in § 5.4 we will see how one can consider time as a
supplementary dimension of the system to get contractivity results for non-reversible
Markov chains [hypocoercivity] on an infinite system of particles.

* In this chapter, all the probability systems considered will be endowed with their
natural σ-metalgebras, cf. Definition 3.1.16. To alleviate notation, I will give no names
to these σ-metalgebras, but will plainly write “{X : Y }∗” to mean “the subjective decorre-
lation between X and Y seen from the natural σ-metalgebra of the underlying system”.

5.1 Back to Ising’s model

5.1.a Standard Ising’s model

In all this section, we work on the lattice Zn equipped with its natural distance dist;
accordingly |·| will denote the l1 norm on Rn. Recall the definition of Ising’s model and
the related notation that we introduced in § 0.1, and Theorem 0.1.7 on the existence of
a completely analytical regime.

The following theroem states that Ising’s model in completely analytical regime is
ρ-mixing, i.e. that two distant bunches of spins are little correlated in the sense of
maximal correlation:

5.1.1 Theorem. For Ising’s model on Zn in the completely analytical regime,
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(i) There exists some ψ′ > 0 (the same as in Theorem 0.1.7) such that for all disjoint
I, J ⊂Zn, one has when dist(I, J)→∞ that

{→ωI : →
ωJ}É exp[− (ψ′+ o(1))dist(I, J)], (460)

where the “o(1)” can be easily computed as an explicit function of dist(I, J), n, T,
ψ′ and the C′ appearing in Theorem 0.1.7.

(ii) There exists some k < 1 such that for all disjoint I, J ⊂Zn,

{→ωI : →
ωJ}É k. (461)

(iii) Points (i) and (ii) remain valid uniformly under any law of the form P[·|→ωK = →
ω̂K ],

for K ⊂Zn and
→
ω̂K ∈ {±1}K a ‘boundary condition’ on K .

5.1.2 Remark. Let us compare Theorem 5.1.1 with Theorem 0.1.7. Both theorems state
decorrelation between distant bunches of spins above temperature T ′

c; the difference
relies in using maximal correlations rather than β-mixing to quantify dependence be-
tween the bunches in Theorem 5.1.1.

Both results give an exponential decay of correlations, with the same exponential
constant ψ′, but Theorem 5.1.1 is more powerful in the sense that the bound (460)
is uniform in the size of I and J while (5) was not. Moreover, thanks to Point (ii)
we get a non-trivial result for any choice of disjoint I and J, which was not the case
beforehand. Recall that the drawbacks of Theorem 0.1.7 were inherent to β-mixing, as
Theorem 0.1.8 shew.

Both result remain valid under conditioning. However, if one takes a random
boundary condition—that is, if one works under the law P[·|→ωK ∈ C] for some non-
singleton C ⊂ {±1}K —, then Point (iii) of Theorem 5.1.1 fails (cf. Remark 3.1.4), while
(5) is still valid by convexity of the total variation norm.

5.1.3 Remark. Let us compare Theorem 5.1.1 with Theorem 0.1.9. The result of Theo-
rem 0.1.9 can be rewritten:

{→ω{0}×Zn−1 : →
ω{x}×Zn−1}É e−ψx. (462)

Theorem 5.1.1 can be seen as a generalization of that result to the case where I and J
have arbitrary shapes.[∗] Moreover, Point (iii) also gives the existence of a conditional
version, which we did not have before.

There is however a price to pay for this greater generality, since we had to require
complete analyticity rather than just weak mixing, which can be really more restrictive
in some cases (cf. Footnote [∗] on page 12).

5.1.4 Remark. Continuing the previous remark, a natural open question is whether
one can tensorize maximal decorrelation under assumptions of weak mixing type. In
the case of Ising’s model at least, I expect ρ-mixing to remain true—even for arbitrary
shapes—as soon as T > Tc, because on the one hand Theorem 0.1.9 proves ρ-mixing

[∗]Note that in the case I and J are hyperplanes, we shew on page 26 that (460) could be improved
into

{→
ω{0}×Zn−1 : →

ω{x}×Zn−1}É e−ψ
′x. (463)
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between parallel hyperplanes, while on the other hand ρ-mixing seems to hold also in
the ‘opposite extreme case’ when I and J make a check pattern.

By the way, it is likely that the natural condition should not be weak mixing itself
but rather something like strong mixing for cubes (often called merely strong mixing[†],
which means that when a boundary condition is fixed outside a cube of arbitrary edge,
changing one spin on the boundary has an effect in total variation which decreases
exponentially with the distance to the spin changed. In fact it has been proved [31]
that in dimension 2, weak mixing is equivalent to strong mixing.

Proof of Theorem 5.1.1. Theorem 5.1.1 will be a direct consequence of the work of
Chapter 3 as soon as we show that, denoting by ∗ the natural σ-metalgebra of the
system (i.e. the σ-metalgebra generated by the ωi), for all distinct i, j ∈Zn, one has

{ωi :ω j}∗ É c0C′e−ψ
′dist(i, j) ∧k0 (464)

for some explicit c0 <∞ and k0 < 1 only depending on n and T. Then indeed, Proposi-
tion 3.6.6 yields

{→ωI : →
ωJ}É ∑

δ∈Zn

|δ|Êdist(I,J)

c0C′e−ψ
′|δ| = c0C′ ∞∑

d=dist(I,J)
#{δ ∈Zn : |δ| = d}e−ψ

′d

dist(I,J)→∞∼ c0C′ ∞∑
d=dist(I,J)

2ndn−1

(n−1)!
e−ψ

′d ∼ c0C′2n

(n−1)!
dist(I, J)n−1e−ψ

′dist(I,J)

= e−(ψ′+o(1))dist(I,J), (465)

whence Point (i). Moreover, since∑
δ∈Znà{0}

|δ|Édist(I,J)

c0C′e−ψ
′dist(i, j) <∞, (466)

Point (ii) follows from Lemma 3.6.8, and finally (iii) is a consequence of § 3.4.b about
subjective results.

So, we have to prove (464). Let
→
ω̂K ∈ {±1}K , K ⊂ Zn, be some arbitrary boundary

condition, and denote by Pcon the associated law, that is, Pcon =P[·|→ωK = →
ω̂K ]; our goal

is to show that under Pcon, for all distinct i, j ∈Zn, one has {ωi :ω j} É c0C′e−ψ
′dist(i, j) ∧

k0.

The result is immediate if i ∈ K , resp. j ∈ K (since then ωi, resp. ω j, is constant and
thus independent of everything), so we assume i, j ∉ K . We begin with observing that
if K is the set N(i) of all the neighbours of i, equilibrium at i implies that, whatever
the boundary condition may be:

Pcon[ωi =−1],Pcon[ωi =+1]Ê (e4n/T +1)−1 (467)

—the extremal cases being when
→
ω̂N(i) ≡+1, resp.

→
ω̂N(i) ≡−1. Now in the general case

K ⊂Zn à {i}, Lawcon[ωi] is an average of laws of the form Law(ωi|→ωN(i) =
→
ω̂N(i)), so that

(467) remains valid. Similarly, equilibrium on {i, j} gives that for all a,b ∈ {±1},

Pcon[ωi = a and ω j = b]Ê (e8n/T +2e(4n+2)/T +1)−1. (468)

[†]Strong mixing stricto sensu is actually the same as complete analyticity, so that mathematicians
have got used to undermeaning “for cubes”—but strong mixing for cubes is strictly weaker than complete
analyticity! [30, § 2].

102



Now, recall that the correlation level between two two-ranged variables can be
computed by Formula (57), where |pb

a − pa pb| is also β(X ,Y )/2. Thus the bound
“{ωi :ω j}É C0e−ψ

′dist(i, j)” is a direct consequence of Theorem 0.1.7, with

c0 = 1/2
(e4n/T +1)−1(1− (e4n/T +1)−1)

= tanh(4n/T)+1. (469)

It remains to prove the bound “{ωi : ω j} É k0”. We will use the following corollary
of (57):

5.1.5 Lemma. With the notation of Remark 1.2.2, there exists a,b in the respective
ranges of X ,Y such that

{X : Y }É 1−4pb
a. (470)

Proof of Lemma 5.1.5. The difference pb
a − pa pb gets its sign changed whenever a,

resp. b, changes, so there are some a and b for which this value is nonpositive; more-
over, denoting by {a,a′} and {b,b′} the respective ranges of X and Y , pb′

a′− pa′ pb′
is also

nonpositive. Now one has

pa pb√
pa pa′ pb pb′ ×

pa′ pb′√
pa pa′ pb pb′ = 1, (471)

so that either pa pb or pa′ pb′
is É

√
pa pa′ pb pb′ . Up to changing notation we can as-

sume that it is pa pb, and then

{X : Y }= |pb
a − pa pb|√

pa pa′ pb pb′ =
pa pb − pb

a√
pa pa′ pb pb′ É 1− pb

a√
pa pa′ pb pb′ É 1−4pb

a. (472)

Combining Lemma 5.1.5 with (468), we then get the desired bound, with

k0 = 1−4(e8n/T +2e(4n+2)/T +1)−1 < 1. (473)

Formula (464) is also what we need to apply the results of Chapter 4. Indeed,
denoting ε(z) ··= {X i : X i+z}∗, it gives that

∑
z∈Zn ε(z) <∞ with ε(z) < 1 as soon as z 6= 0,

so that Theorems 4.1.8 and 4.2.13 yield respectively:

5.1.6 Theorem. In completely analytical regime, the spins Ising’s model satisfies the
central limit theorem, in the sense that the conclusions of Theorem 4.1.8 hold for them.

5.1.7 Theorem. In completely analytical regime, the Glauber dynamics for Ising’s
model has a (strictly) positive spectral gap, and this remains valid uniformly if one
fixes a ‘boundary condition’ on the spins of some K ⊂Zn.

5.1.8 Remark. As I told in Chapter 4, results of these kinds have already been stud-
ied by other methods (see e.g. [6, 14] for the CLT and [29] for the spectral gap). For
the standard Ising model in completely analytical regime, which is “very nice”, these
previous works apply well, so the two theorems above are not new. They are inter-
esting however because of the new method used to prove them, which is quite direct
and likely to apply to a broader class of models. Such models will be presented in the
sequel of this chapter.
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5.1.b Generalizations of Ising’s model

The previous results can be adapted to several kinds of generalizations of Ising’s model.
Let us expose some of them.

Long-range Ising models

A physically important case is the long-range Ising models on Zn. In these models, the
states space is unchanged, but the Hamiltonian H becomes

H(→ω)=−1
2

∑
i 6= j

J( j− i)ωiω j, (474)

where J : Znà{0}→R is some symmetric function with non-compact support such that
J(z) |z|→∞= O(|z|−(n+α)) for some α> 0.

Let us state a decorrelation result for this class of models. The frame of the proof
of the following proposition will work as well for the other generalizations of Ising’s
model.

5.1.9 Proposition. There exists an temperature T1 <∞ such that, provided T Ê T1:

(i) Equilibrium for the long-range Ising model is unique;
(ii) Uniformly in i, j, {ωi :ω j}∗

| j−i|→∞= O(| j− i|−(n−α));
(iii) There exists some k0 < 1 such that for all i 6= j, {ωi :ω j}∗ É k0.

Proof. The principle of the proof consists in coupling two Glauber dynamics with dif-
ferent initial conditions. Recall that the Glauber dynamics is defined as follows: each
spin has an independent clock ringing with rate 1, and when the clock of a spin rings,
this spin is flipped so that its final state is drawn according to its equilibrium measure
conditionnally to the state of all other spins. Namely, if the clock of spin i rings at
time t, denoting as usual β= T−1,

P[ωi(t+)=+1]= exp(β
∑

j 6=i J( j− i)ω j(t))
2cosh(β

∑
j 6=i J( j− i)ω j(t))

(475)

and P[ωi(t+)=−1]= 1−P[ωi(t+)=+1].

To couple the Glauber dynamics, we will assume that, rather than just “ringing”
at time t, the clock of i is a Poisson process on R+× (0,1), points of which are denoted
by (t, y). Then, if at time t the clock of spin i has a point (t, y), spin i flips to +1 if
y<P[ωi(t+)=+1], resp. to −1 if yÊP[ωi(t+)=+1].

Now, consider two Glauber dynamics →
ω− and →

ω+ having the same Poisson process,
but starting with different initial conditions. It will be convenient[‡] to assume that
→
ω−(t = 0) É →

ω+(t = 0) almost-surely: then, as we will see, for the coupled dynamics one
has (a.s.) →

ω−(t)É →
ω+(t) ∀t. At time t, denote by Θ(t) the set of points where →

ω− and →
ω+

differ:
Θ(t)= {i ∈Zn : (ω−

i (t),ω+
i (t))= (−1,+1)}. (476)

[‡]In the cases where interactions can be antiferromagnetic (J < 0), monotonicity does not stand any
more; the proof however remains valid with a heavier formalism, replacing “>” by “6=” and putting
absolute values at the right places.
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When the clock at spin i rings at time t, three cases have to be distinguished:

1. If y < exp(β
∑

j 6=i J( j− i)ω−
j (t))/2cosh(β

∑
j 6=i J( j− i)ω−

j (t)), then both ω+
i and ω−

i
flip into state +1;

2. If y > exp(β
∑

j 6=i J( j− i)ω+
j (t))/2cosh(β

∑
j 6=i J( j− i)ω+

j (t)), then both ω+
i and ω−

i
flip into state −1;

3. If
exp(β∑

j 6=i J( j−i)ω−
j (t))

2cosh(β∑
j 6=i J( j−i)ω−

j (t)) < y < exp(β∑
j 6=i J( j−i)ω+

j (t))
2cosh(β∑

j 6=i J( j−i)ω+
j (t)) , then ω+

i flips into state +1

while ω−
i flips into state −1.

Denoting
J ··=

∑
z∈Znà{0}

J(z), (477)

which is always finite by the assumption on J, the probability of each of the two first
cases is bounded below by e−βJ /2cosh(βJ ). The probability of the third case is

sinh(2β
∑

j∈Θ(t)à{i} J( j− i))
2cosh(β

∑
j 6=i J( j− i)ω−

j (t))cosh(β
∑

j 6=i J( j− i)ω+
j (t))

, (478)

which is bounded above by β
∑

j∈Θ(t)à{i} J( j− i) thanks to the following computational

5.1.10 Lemma. For a É b two real numbers,

sinh(b−a)É (b−a)coshacoshb. (479)

Proof. Making the change of variables x = (a+ b)/2, t = (b−a)/2, we have to prove that
for x ∈R, t Ê 0, one has:

sinh(2t)É 2tcosh(x− t)cosh(x+ t). (480)

If we consider the right-hand side of (480) as a function of x, it is symmetric (since cosh
is symmetric) and its logarithm is convex (since log◦cosh is convex, its derivative being
the increasing function tanh), so its minimum is attained for x = 0; thus it suffices
to prove (480) in that case, i.e. to prove that sinh(2t) É 2tcosh2 t for all t Ê 0. But
sinh(2t)= 2sinh tcosh t, so we can simplify both sides by 2cosh t, and then it suffices to
prove that sinh t É tcosh t, which is true since tanh t É t for all t Ê 0.

Thanks to these estimates, we can define a process Markovian Θ∗(t) on P(Zn) such
that almost-surely, Θ∗(t)⊃Θ(t) ∀t. This process has the following law:

5.1.11 Definition. The law of Θ∗ is defined thanks to independent Poissonian clocks
indexed by (Zn)2. For i 6= j the clock (i, j) has rate βJ( j− i), while the clock (i, i) has
rate e−βJ /cosh(βJ ). At t = 0 one has Θ∗(0) = Θ(0). If at time t the clock (i, j) rings,
with j 6= i, then:

• Either i ∈Θ∗(t−) and then Θ∗ changes so that Θ∗(t+)=Θ∗(t−)∪ { j}[§];
• Or i ∉Θ∗(t−) and then Θ∗ does not change.

On the other hand, if at time t the clock (i, i) rings, then Θ∗ changes so that Θ∗(t+) =
Θ∗(t−)à {i}.

[§]Of course, if j ∈Θ∗(t−) then Θ∗ does actually not change.
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Let λ ··=βJ −(e−βJ /cosh(βJ )). If we take E[#Θ(t = 0)]<∞[¶], it is immediate that
#Θ∗(t)/eλt is a supermartingale. So, provided T is large enough so that λ< 0, i.e.

βJ < e−βJ

cosh(βJ )
, (481)

the two processes →
ω−(t) and →

ω+(t) tend to be equal when t →∞; in particular they have
the same equilibrium. That proves Point (i) of the Lemma, since any initial condition
stands between the ‘extreme’ conditions →

ω−(t = 0)≡−1 and →
ω+(t = 0)≡+1.

Observe that the previous reasoning remains entirely valid if one reasons condi-
tionally to some boundary condition of the form “→ωK = →

ω̂K ”, with the same condition
on T.

Now we are turning to the correlation between two distant spins. Let i ∈ Zn and
let

→
ω̂K be some boundary condition on some K ⊂ Zn à {i}. Suppose T satisfies (481);

I want to compare the Glauber dynamics corresponding to the boundary condition
“→ωK]{i} = (

→
ω̂K , (+1){i})”—where (

→
ω̂K , (+1){i}) stands for the function on K ] {i} which is

equal to ω̂ on K and to +1 at i —with the Glauber dynamics corresponding to the
boundary condition “→ωK]{i} = (

→
ω̂K , (−1){i})”. In this frame, one defines the process Θ∗

as previously, except that one imposes that Θ∗(t)∩K = 0 and i ∈ Θ∗(t) for all t. This
time, it is the equilibrium behaviour of Θ∗ which interests us. Denote by Peq the
equilibrium law of Θ∗; for j′ ∈ Zn àK , denote θ( j) ··= Peq[ j ∈Θ∗]. Then θ satisfies the
following discrete subelliptic equation with Dirichlet boundary conditions: ∀ j ∉ K ] {i} e−βJ

cosh(βJ )θ( j)Éβ∑
i′∈ZnàK

i′ 6= j
J(i′− j)θ(i′);

∀k ∈ K θ(k)= 0; θ(i)= 1.
(482)

Define the convolution kernel a on Zn by{
a(0)= 1;
∀z 6= 0 a(z)=− cosh(βJ )

e−βJ βJ(z),
(483)

so that (482) writes in the bulk:
a∗θ É 0. (484)

Writing a =·· δ0 − ~a, Condition (481) ensures that ‖~a‖l1 < 1. Since l1(Zn) is a Banach
algebra for the convolution operator ∗, with neutral element δ0, it follows that a is
invertible with inverse

a−∗ = δ0 + ~a+ ~a∗ ~a+ ~a∗ ~a∗ ~a+·· · . (485)

Since ~a Ê 0, a−∗ is nonnegative everywhere with a−∗(0)> 0. Therefore the function F ··=
(a−∗(0))−1

δi ∗a−∗ satisfies:{ ∀ j ∉ K ] {i} (a∗F)( j)= 0;
∀k ∈ K F(k)Ê 0; F(i)= 1. (486)

[¶]The general case where Θ∗ can be infinite can be got from the finite case by passing to the limit,
despite some technicalities of little interest.
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Comparing (482) with (486), since (482) is subelliptic, we can apply a maximum
principle to it[‖], which yields that θ É F everywhere. But J(z) = O(|z|−(n+α)), so by
Lemma 5.5.7 in appendix, F( j)=O(| j− i|−(n+α)), and therefore

P[ω j =+1|→ωK = →
ω̂K ,ωi = 1]−P[ω j =−1|→ωK = →

ω̂K ,ωi =−1]=O(| j− i|−(n+α)), (487)

uniformly in i, j,K ,
→
ω̂K .

The end of the proof, namely deducing Point (ii) from (487) and proving Point (iii),
is then performed in the same way as to establish (464) in the proof of Theorem 5.1.1.

Thanks to Proposition 5.1.9, we can apply the results of Chapters 3 and 4. One gets
the following

5.1.12 Theorem. For the long-range Ising model on Zn at T Ê T1,

(i) For all disjoint I, J ⊂Zn, uniformly in I, J, one has an estimate

{→ωI : →
ωJ}ÉO(dist(I, J)−α), (488)

where the O(·) can be turned into an explicit constant only depending on J and T.
Moreover, there exists some k < 1 (still explicit and only depending on J and T)
such that for all disjoint I, J ⊂Zn,

{→ωI : →
ωJ}É k. (489)

(ii) The spins satisfies the central limit theorem, in the sense that the conclusions of
Theorem 4.1.8 hold for them.

(iii) The Glauber dynamics has a positive spectral gap.
(iv) Points (i) and (iii) remain valid uniformly under any law of the form P[·|→ωK = →

ω̂K ],
for K ⊂Zn and

→
ω̂K ∈ {±1}K a ‘boundary condition’ on K .

Proof. The proof is the same as the work done in the previous subsection. The only
difference is to prove (488), which follows from the following computation: denoting
D ··= dist(I, J), one has that, when D →∞,∑

z∈Zn

|z|ÊD

1
|z|n+α É

∞∑
d=D

#{z ∈Zn : |z| = d}
dn+α =

∞∑
d=D

O(dn−1)
|dn+α| =O(

∞∑
d=D

1
d1+α )=O(D−α). (490)

Spin glasses

Spin glasses are another generalization of Ising’s model. In these models, the inter-
action constants are not invariant by translation any longer. The Hamiltonian writes

H(→ω)=−1
2

∑
i 6= j

J(i, j)ωiω j (491)

(with J( j, i)= J(i, j)), where the J(i, j) themselves are random. We make the following
assumptions on the interaction constants:

[‖]The maximum principle is generally stated in a PDE context, see for instance [19, § 3.1], but it
works exactly the same for discrete equations.

107



5.1.13 Assumption. For distinct unordered pairs {i, j}, all the J(i, j) are independent.
Moreover, J(i, j) is distributed according to some law P ( j−i)

J only depending on ( j− i)[∗].
We will assume that all the P (z)

J have bounded support, and we denote by J∞(z) the
smallest number such that P (z)

J [|J| É J∞(z)]= 1.

5.1.14 Remark. Here the J(i, j) can be negative, which corresponds to antiferromag-
netic interactions.

* In spin glass models, there are two levels of randomness: first to fix the J(i, j),
next to take →

ω according to the Gibbs measure associated to H. When both levels of
randomness are taken into consideration, one speaks of annealed law. Here I am only
interested in the quenched laws, which deal with the second level of randomness for
fixed J(i, j). I will write sentences beginning with “for almost-all quenched systems”,
which mean that what follows is valid for almost-all Gibbs measures when the J(i, j)
are taken randomly according to Assumption 5.1.13.

The machinery exposed above still works for spin glass models. We obtain the

5.1.15 Theorem. Suppose that when |z| → ∞, J∞(z) decreases at least as fast as
O(|z|−(n+α)) for some α > 0. Then there is a T1 <∞ such that, for the spin glass model
on Zn at T Ê T1, for almost-all quenched systems,

(i) If J∞(z)=O(|z|−(n+α)), then for all disjoint I, J ⊂Zn, uniformly in I, J, one has an
estimate

{→ωI : →
ωJ}ÉO(dist(I, J)−α). (492)

If moreover J∞(z) has exponential decay (see Definition 5.5.4 in the appendix),
then the right-hand side of (492) can even be replaced by “θ(dist(I, J))” for some
function θ(·) with exponential decay.
In both cases, there exists some k < 1 such that for all disjoint I, J ⊂Zn,

{→ωI : →
ωJ}É k. (493)

(ii) Points (ii)–(iv) of Theorem 5.1.12 hold.

Synthetic vocabulary

For all the models considered in this section, the techniques used and the results stated
walked along the same lines. First, one establishes a bound {X i : X j}∗ É ε( j− i)∧k0 for
all i 6= j, for some sufficiently rapidly decreasing function ε : Zn → [0,1] and some k0 <
1. Then, one applies the results of Chapters 3 and 4, which yield maximal decorrelation
for distant bunches of spins (which is sometimes called (interlaced) ρ∗-mixing) with
uniformly non-full correlation between any two disjoint bunches of spins (which is
sometimes denoted “ρ∗(1)< 1”), central limit theorem, and spectral gap for the Glauber
dynamics.

Since this method will be used again in the following sections, it will be convenient
to introduce some synthetic vocabulary:

[∗]Observe that one has necessarily P(−z)
J = P(z)

J for all z; in particular the function J∞ : Zn à {0} → R+
shall always be symmetric.
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5.1.16 Definition. If a spin model (spins can have arbitrary range)
→
X on Zn satisfies

some bound “{X i : X j}∗ É ε( j − i)∧ k0” for all distinct i, j ∈ Zn, with
∑

z∈Znà{0}ε(z) < ∞
and k0 < 1, we say that this model is well-ρ-mixing. According to our results, for such
a model one has ρ∗-mixing with ρ∗(1)< 1, CLT and spectral gap.

Moreover,

(i) If ε(z) = O(|z|−(n+α)) when |z| →∞, then we say that the model is α-polynomially
ρ-mixing. According to our results, in this case ρ∗-mixing is polynomial with rate
α, i.e. Formula (488) holds.

(ii) If ε(z) has exponential decay (cf. Definition 5.5.4), then we say that the model is
exponentially ρ-mixing. According to our results, in this case ρ∗-mixing has an
exponential speed of decay (but not with the same rate as ε(·), cf. Remark 5.5.6),
i.e. a formula similar to (460) holds.

5.2 Quadratic models

* In this subsubsection, an arbitrary norm |·| on Zn is fixed.

5.2.1 Definition. In our quadratic model, the states space is Ω=RZn
for some n ∈N∗.

For →
ωZn ∈ Ω, i ∈ Zn, the real number ωi will be called the polarization of particle i.

Each particle i is submitted to two types of forces:

• A pinning force, preventing the particle from having a too large polarization,
which derives from the quadratic potential ω2

i /2;
• Interaction forces: each particle j 6= i exerts a force on i which tends to make

the polarizations of particles i and j equal; this force derives from a quadratic
potential γ j−i(ω j −ωi)2/2.

In other words, the Hamiltonian of the system is formally defined by

H(→ω)= 1
2

∑
i∈Zn

ω2
i +

1
4

∑
i 6= j

γ j−i(ω j −ωi)2, (494)

where the γz, for z ∈Zn à {0}, are nonnegative numbers which we impose to satisfy the
symmetry condition γz = γ−z for all z. Moreover we impose the that the sum of the γz
is convergent, and we denote

Γ ··=
∑

z∈Znà{0}
γz <∞. (495)

The Hamiltonian H is a quadratic function of →
ω, so at fixed parameter β the

(infinite-dimensional) random vector →
ω will be Gaussian (and centered). Let us com-

pute its covariance: the probability density of →
ω w.r.t. the ‘Lebesgue measure’ on Ω is

formally defined by
dPβ[→ω]∏
i∈Zn dωi

∝ exp(1
2ω

T(βQ)ω), (496)

where Q is the (infinite-dimensional) symmetric matrix defined by{
Q i j ··= −γ j−i for i 6= j;
Q ii ··= 1+Γ on the diagonal, (497)
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thus the covariance matrix of →
ω is (βQ)−1. So we have to compute Q−1, the inverse

matrix of Q. Since Q is a Toeplitz matrix (with n-dimensional indexes)[†], Q−1 —if
it exists—will be of the same form. Now, knowing that it is a Toeplitz matrix, Q is
described by the function aQ : Zn → R such that for all i, j, Q i j = aQ( j− i). With this
notation, (497) rewrites:

∀z ∈Zn aQ(z)= 1z = 0(1+Γ)−1z 6= 0γz. (498)

When coded by functions like aQ , the multiplication of Toeplitz matrices becomes the
convolution product:

∀M, N Toeplitz aMN = aM ∗aN . (499)

So, Q−1 will be the Toeplitz matrix whose aQ−1 is the inverse of aQ for the convolution
product. Thanks to Condition (495), such an inverse always exists: indeed we can write
aQ = (1+Γ)(δ0−~aQ), where ~aQ is a nonnegative function with ‖~aQ‖l1 =Γ/(1+Γ)< 1, so
that aQ is invertible with

a−∗
Q = (1+Γ)−1(δ0 + ~aQ + ~aQ ∗ ~aQ + ~aQ ∗ ~aQ ∗ ~aQ +·· ·). (500)

In the end, at parameter β> 0 the covariance matrix of →
ω has entries:

Cov(ωi,ω j)=
aQ−1( j− i)

β
. (501)

5.2.2 Remark. All the entries of Cov(→ω) are nonnegative, which reflects the fact that
all the interaction forces are attractive.

5.2.3 Remark. Since Cov(→ω) depends on β only through a constant factor, the behaviour
of the system is exactly the same, up to a multiplicative constant, for all β> 0. Hence
the study of correlations will not depend on β.

* In the sequel, we fix arbitrarily β= 1 and we denote P for Pβ=1.

Since the model is Gaussian, by (501) and Theorem 1.2.6 one has for all i 6= j:

{ωi :ω j}=
aQ−1( j− i)

aQ−1(0)
. (502)

Now we have the following claim, with an immediate key corollary:

5.2.4 Claim. For all i 6= j, for all K ⊂Zà {i, j},

{ωi :ω j}→ωK É {ωi :ω j}. (503)

5.2.5 Corollary. Denoting by ∗ the natural σ-metalgebra of the system, for all i 6= j,

{ωi :ω j}∗ = {ωi :ω j}=
aQ−1( j− i)

aQ−1(0)
. (504)

Proof. The proof of Claim 5.2.4 relies on the following claims:

[†]Recall that saying that matrix Q is Toeplitz means that its entries Q i j only depend on ( j− i).

110



5.2.6 Claim. Up to an additive constant, Law(→ωZn |→ωK = →
ω̂K ) is the same for all

→
ω̂K ∈RK ,

i.e. there exists a vector-valued function
→
ω̂K 7→ offset(

→
ω̂K ) ∈ RZn

such that the law of →
ωZn

under P[·|→ωK = →
ω̂K ] is the same as the law of →

ωZn +offset(
→
ω̂K ) under P[·|→ωK ≡ 0].

5.2.7 Lemma. For (X ,Y ) a two-dimensional centered Gaussian vector with X and Y
non-degenerate,

{X : Y }=
√

E[X2]
E[Y 2]

|E[Y |X = 1]|. (505)

5.2.8 Claim. For K ⊂ Zn, the function offset defined in Claim 5.2.6 is nondecreasing,
in the sense that each of the entries of offset(

→
ω̂K ) is a nondecreasing function of each ω̂k

for k ∈ K .

5.2.9 Claim. For i ∈Zn, K ⊂Zn à {i}:

offset(1{i},0K)É offset(1{i}), (506)

where (1{i},0K ) stands for the function on K ] {i} which is equal to 1 at i and to 0 on K ,
resp. 1{i} stands for the function on {i} mapping i to 1.

Admit temporarily the claims. Let i, j be distinct points of Zn, let K ⊂ Zn à {i, j}
and let

→
ω̂K ∈ RK ; our goal is to compute {ωi : ω j} under P[·|→ωK = →

ω̂K ]. First, by
Claim 5.2.6 we can suppose that

→
ω̂K ≡ 0. Now under P[·|→ωK ≡ 0], (ωi,ω j) is still Gaus-

sian by the properties of Gaussian vectors, and it is centered by symmetry, therefore
by Lemma 5.2.7, {ωi :ω j} is equal to√√√√E[ω2

i |
→
ωK ≡ 0]

E[ω2
j |

→
ωK ≡ 0]

|E[ω j|→ωK ≡ 0 and ωi = 1]|=
√√√√E[ω2

i |
→
ωK ≡ 0]

E[ω2
j |

→
ωK ≡ 0]

(offset(1{i},0K ) · j) (507)

—one has indeed offset(1{i},0K ) · j Ê 0, since by Claim 5.2.8, offset(1{i},0K ) Ê
offset(0{i}]K )≡ 0.

Now, taking K =; in (507), we find that under the law P:

{ωi :ω j}=
√√√√E[ω2

i ]

E[ω2
j ]

(offset(1{i}) · j), (508)

which is Ê
√

E[ω2
i ]/E[ω2

j ](offset(1{i},0K ) · j) by Claim 5.2.9. But up to switching the

roles of i and j, we can assume that E[ω2
i ]/E[ω2

j ] Ê E[ω2
i |

→
ωK ≡ 0]/E[ω2

j |
→
ωK ≡ 0], thus

getting the desired result:

{ωi :ω j}Ê
√√√√E[ω2

i |
→
ωK ≡ 0]

E[ω2
j |

→
ωK ≡ 0]

(offset(1{i},0K ) · j)= {ωi :ω j}→ωK . (509)

Proof of the claims.
Claim 5.2.6 – It is a well-known property of Gaussian vectors, which here is stated

in an infinite-dimensional setting.

111



Claim 5.2.7 – Since (X ,Y ) is centered Gaussian, Yσ(X ) is the orthogonal projection
of the L2 variable Y on RX , so E[Y |X = x]∝ x. Thus one has:

E[XY ]=
∫

x E[Y |X = x]dP[X = x]=
∫

x2 E[Y |X = 1]dP[X = x]=E[Y |X = 1] E[X2].

(510)
But for such a Gaussian vector, Theorem 1.2.6 gives that

{X : Y }= |Cov(X ,Y )|
Sd(x)Sd(y)

= |E[XY ]|√
E[X2]E[Y 2]

, (511)

which combined with (510) gives (505).

Claim 5.2.8 – First, notice that E[→ωZn |→ωK ≡ 0]=→
0, so that

offset(
→
ω̂K )=E[→ω|→ωK = →

ω̂K]. (512)

Now, allowing temporarily β to vary again, by the properties of Gaussian vectors, the
vector-valued variable Eβ[→ωZn |→ωK = →

ω̂K ] is Gaussian with constant expectation and
covariance matrix proportional to β. Therefore, the common expectation of all these
laws is equal to the constant value of →

ωZn for β= 0, which is the →
ω minimising H under

the constraint “→ωK = →
ω̂K ”:

offset(
→
ω̂K )= argmin

→
ωK=

→
ω̂K

H(→ω). (513)

Since it minimizes energy, the state offset(→ωK ) is at equilibrium outside K . In other
words, it is the solution of the following subelliptic system:{ ∀i ∈Zn àK −ωi +∑

j 6=i γ j−i(ω j −ωi)= 0;
∀i ∈ K ωi = ω̂i.

(514)

(That system is clearly subelliptic because the pinning and interaction forces all are
attractive). By the maximum principle [19, § 3.1], the solution of (514) is an increasing
function of the boundary condition, which was our claim.

Claim 5.2.9 – Denote →
ω1
Zn = offset(1{i}). Since offset(0{i}) = 0Z

n
, by Claim 5.2.8 one

has →
ω1
Zn Ê 0Z

n
. Since obvisouly →

ω1
i = 1, one has even →

ω1
Zn Ê (1{i},0Z

nà{i}). In particular,
→
ω1

{i}]K Ê (1{i},0K ); therefore, using again Claim 5.2.8,

offset(→ω1
{i}]K)Ê offset(1{i},0K). (515)

Now, we defined →
ω1
Zn as offset(1{i}), so by Formula (514) it satisfies

−ω1
i′ +

∑
j 6=i′

γ j−i′(ω j −ω′
i)= 0 (516)

for all i′ ∈Znà{i}, hence a fortiori for all i′ ∈Znà({i}]K). Since moreover →
ω1 obviously

coincides with →
ω1

{i}]K on {i}]K , this implies, by Formula (514) again, that

offset(→ω1
{i}]K)= →

ω1
Zn = offset(1{i}). (517)

So, (515) becomes “offset(1{i})Ê offset(1{i},0K )”, what we wanted.
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Thanks to Corollary 5.2.5 our tensorization theorems give decorrelation results for
the quadratic model:

5.2.10 Theorem. Provided Condition (495) holds:

(i) The quadratic model is well-ρ-mixing, cf. Definition 5.1.16. If Γ < 1, one can be
more specific about the property “ρ∗(1)< 1”: for all disjoint I, J ⊂Zn, {→ωI : →

ωJ}ÉΓ.
(ii) Moreover, if there is polynomial decay of interactions γz = O(1/|z|n+α), then the

model is α-polynomially ρ-mixing, and if γz has exponential decay, then the model
is exponentially ρ-mixing (but not with the same rate as γz in general).

Proof. To prove Point (i), we have to show that∑
z∈Znà{0}

aQ−1(z)

aQ−1(0)
ÉΓ (518)

—recall that we assumed Γ<∞. We write:∑
z∈Znà{0}

aQ−1(z)

aQ−1(0)
=

∑
z∈Zn aQ−1(z)

aQ−1(0)
−1. (519)

There,
∑

z∈Zn aQ−1(z) is equal to 1: indeed, aQ−1 is the convolution inverse of aQ , so by
Fubini’s theorem: ∑

z∈Zn
aQ−1(z)= (

∑
z∈Zn

aQ(z))−1, (520)

where ∑
z∈Zn

aQ(z)= ∑
z∈Znà{0}

(−γ(z))+ (1+Γ)=−Γ+1+Γ= 1. (521)

Now, by (500), aQ−1(0) is obviously bounded below by (1+Γ)−1, so in the end:

∑
z∈Znà{0}

aQ−1(z)

aQ−1(0)
É 1

(1+Γ)−1 −1=Γ. (522)

To prove Point (ii), we have to show that polynomial decay of γz implies polyno-
mial decay of aQ−1 with the same exponent, resp. that exponential decay of γz implies
exponential decay of aQ−1 . This is achieved resp. by Lemmas 5.5.5 and 5.5.7 in the
appendix.

5.3 Nonlinear lattice of particles

In this section we will consider a model with continuous spins, but where interactions
are nonlinear, so that we cannot use the properties of Gaussian variables. One has a
lattice of particles indexed by Zn (equipped with its l1 graph structure), each particle
i being described by its “polarization” ωi ∈ R. Each particle is submitted to a pinning
force deriving from a potential V , and to interaction forces with its neighbours, the
interactions deriving from a potential W . In other words, the Hamiltonian is formally

H(→ω)= ∑
i∈Z

V (ωi)+ 1
2

∑
i∼ j

W(ω j −ωi). (523)

We make the following assumptions:
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5.3.1 Assumption. Both V and W are convex; moreover V is uniformly strictly convex
and the Hessian of W is bounded, i.e. there exist constants v∗ > 0 and w∗ <∞ such that
for all x ∈R, v∗ ÉV ′′(x) and W ′′(x)É w∗.

We are interested in the equilibrium state of the system at some inverse tempera-
ture 0<β<∞. (In the sequel we suppose that β is fixed).

Let i 6= j ∈ Z, K ⊂ Zà {i, j} and
→
ω̂K ∈ RK ; we want to study the law of (ωi,ω j) under

the law P[·|→ωK = →
ω̂K ]. Then, the probability distribution of the system is formally

described by

dP(ωi,ω j,
→
ωKcà{i, j})∝ exp(−βH(ωi,ω j,

→
ωKcà{i, j},

→
ω̂K)). (524)

Our assumptions ensure that the function H(·,·,·, →ω̂K ) is uniformly convex, so that the
equilibrium exists and is unique.

For the sequel, we need to recall the definition of the W∞ Wasserstein distance:

5.3.2 Definition (see also [11]). For µ1,µ2 two measures on some metric space (X ,d),
“W∞(µ1,µ2) É ε” means that there exists a probability measure γ on E2 such that the
two respective marginals of γ are µ1 and µ2 and such that d(x1, x2) É ε γ-a.s.. This
defines a (possibly infinite) distance on the probability measures on E.

The fundamental lemma of this subsection is the following

5.3.3 Claim. For ω̂ j ∈ R, denote by µ(ω̂ j) the law of ωi under P[·|→ωK]{ j} = (
→
ω̂K ,ω̂ j)].

There exists a function ε : Z→ [0,1] with ε(d)< 1 as soon as d > 0 and ε(d)
d→∞É Ce−ψd

for some ψ> 0 and C <∞, such that

∀ω̂1
j ,ω̂

2
j ∈R W∞(µ(ω̂1

j ),µ(ω̂2
j ))É ε(| j− i|)|ω̂2

j − ω̂1
j |. (525)

Proof. The proof relies on the ‘explicit’ construction of a coupling measure γ be-
tween µ(ω̂1

j ) and µ(ω̂2
j ). To do that, we will construct P[·|→ωK]{ j} = (

→
ω̂K ,ω̂ j)] thanks

to the Glauber dynamics of the system, and then couple the Glauber dynamics for ω̂1
j

and ω̂2
j .

We define the Glauber dynamics thanks to independent white noises (dBi′
t )t∈R

for i′ ∈Zn à (K ] { j}). The motion of point i′ is defined by:

dωi′ =−β(V ′(ωi′)+
∑

i′′∼i′
W ′(ωi′ −ωi′′))+

p
2dBi′

t , (526)

with the boundary condition →
ωK]{ j} =

→
ω̂K]{ j} for all times. Coupling then consists in

taking the same noise for the two processes. The initial condition is not very important
since it is asymptotically forgotten, so we will suppose that the two systems have been
coupled for an infinite time, so that at any time both systems follow their equilibrium
law. We denote by →

ω1(t) the system correponding to the boundary condition “→ωK]{ j} =
(
→
ω̂K ,ω̂1

j )”, resp. by →
ω2(t) the system correponding to the other boundary condition. We

denote ∆i′(t) ··=ω2
i′(t)−ω1

i′(t). Then when the dynamics are coupled,
→
∆ evolves according

to the following equation:

d(∆i′)=−β[(V ′(ω2
i′)−V ′(ω1

i′))+
∑

i′′∼i′
(W ′(ω2

i′ −ω2
i′′)−W ′(ω1

i′ −ω1
i′′))]. (527)
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Obviously the right-hand side is not a deterministic function of
→
∆(t), but it can nonethe-

less be written as

−β[v(i′, t)∆i′(t)+w(i′, i′′, t)(∆i′(t)−∆i′′(t))], (528)

for some v(i′, t) and w(i′, i", t) satisfying

v(i′, t) Ê v∗ and (529)
0É w(i′, i", t) É w∗ (530)

by Assumption 5.3.1. Moreover, one has the boundary conditions:

∀t
{ →
∆K ≡ 0;
∆ j = ω̂2

j − ω̂1
j .

(531)

So,
→
∆ is the solution of some discrete ‘damped heat equation’, whose coefficients can

vary along time though having to satisfy bounds (529) and (530). Such an equation has
no stationary solution stricto sensu; however there exists some

→
∆+ such that

→
∆(t)É →

∆+ ⇒ ∀t′ Ê t
→
∆(t′)É →

∆+; (532)

namely, this
→
∆+ is defined as the solution of the following system of equations:

→
∆+

K ≡ 0,
∆ j = ω̂2

j − ω̂1
j , and for all i′ ∉ K ] { j},

0=−v∗∆+
i′ +

∑
i′′∼i′

1∆+
i′′ Ê∆+

i′
w∗(∆+

i′′ −∆+
i′). (533)

One has similarly that
→
∆(t)Ê→

0 ⇒ ∀t′ Ê t
→
∆(t′)Ê→

0. (534)

Consequently, I claim that for all t one has
→
0É →

∆(t)É →
∆+ : (535)

indeed if the initial condition of the system satisfies (535), then that property remains
valid for all subsequent times; now, as I told, initial conditions are asymptomatically
forgotten, so in fact (535) is always satisfied.

One has the following control on
→
∆+:

5.3.4 Claim. There exists a function ε : Z→ [0,1] with ε(d) < 1 as soon as d > 0 and

ε(d)
d→∞É Ce−ψd for some ψ> 0 and C <∞, such that

∀i ∈Zn ∆+
i É ε(| j− i|). (536)

Moreover, the function ε does not depend on K nor on j.

Combining (535) with Claim 5.3.4 ends the proof of Claim 5.3.3.
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Proof of Claim 5.3.4. First, notice that Equation (533) satisfies a maximum principle,
so we know in advance that ∆+ is uniquely defined with 0É∆+ É 1 everywhere.

For i′ ∼ i′′, denote wi′(i′′) ··= 1∆+
i′′ Ê∆+

i′
w∗. Then (533) can be rewritten into:

∆i′ =
∑

i′′∼i′

wi′(i′′)
v∗+∑

i′′∼i′ wi′(i′′)
×∆i′′ +

v∗
v∗+∑

i′′∼i′ wi′(i′′)
×0. (537)

Now I define the following Markov chain on Zn ] {∂}, ∂ denoting a cemetery point:

5.3.5 Definition.
• If at some time the particle is on some point i′ of Zn à (K ] { j}), at next time it

jumps onto the neighbour i′′ of i′ with probability wi′(i′′)/(v∗+
∑

i′′∼i′ wi′(i′′)), and
it jumps onto ∂ with probability v∗/(v∗+∑

i′′∼i′ wi′(i′′));
• If the particle is somewhere in K ] {∂, j} at some time, then it does not move any

more.

Call (X t)t∈N such a Markov chain and denote by L its generator. It is clear that
with probability one, X t eventually remains at some point of K ] {∂, i}. Extend ∆+

to Zn ] {∂} by setting ∆+
∂
= 0; then, (537) merely means that ∆+ is L -harmonic, and it

follows that
∆+

i =E[ f (X∞)|X0 = i]. (538)

Thus, to bound above ∆+
i I write that

E[ f (X∞)|X0 = i]=
∑

i=i0∼···∼i t= j
i1,...,i t−1∉K]{ j}

t−1∏
u=0

wiu (iu+1)
v∗+∑

i′′∼iu wi′(i′′)

É ∑
i=i0∼···∼i t= j
i1,...,i t−1 6= j

t−1∏
u=0

wiu (iu+1)∑
i′′∼iu wi′(i′′)

( 2dw∗

2dw∗+v∗

)t

É
( 2dw∗

2dw∗+v∗

)| j−i| ∑
i=i0∼···∼i t= j
i1,...,i t−1 6= j

t−1∏
u=0

wiu (iu+1)∑
i′′∼iu wi′(i′′)︸ ︷︷ ︸

É1

É
( 2dw∗

2dw∗+v∗

)| j−i|
. (539)

From Claim 5.3.3, we take the following

5.3.6 Corollary. For a Lipschitzian function f : R→ R, denote by ‖ f ‖Lip the optimal
Lipschitz constant for f . On L̄2(ωi), define the (possibly infinite) norm ‖·‖Lip such that
‖ f (ωi)‖Lip = ‖ f ‖Lip

[‡]; denote by Lip(ωi) the corresponding Banach space.

Then under the law P[·|→ωK = →
ω̂K ], the map πω jωi defined by (37) is ε(| j − i|)-

contracting when seen as an application from Lip(ωi) into Lip(ω j).

[‡]This definition can be unambiguous if the support of ωi is not the whole R; in that case, just add an
infimum in the definition.
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Consequently, the map πωiω jωi : Lip(ωi)→Lip(ωi) is ε(| j− i|)2-contracting. But the
canonical embedding Lip(ωi) 7→ L̄2(ωi) is continuous as our hypotheses ensure that
Law(ωi) is uniformly log-concave, therefore for all f ∈Lip(ωi) one has

lim
k→∞

|〈πk
ωiω jωi

f , f 〉̄L2(ωi)|1/k É ε(| j− i|)2. (540)

Since πωiω jωi is self-adjoint in L̄2(ωi) and Lip(ωi) is a dense subset of L̄2(ωi), it fol-
lows by Lemma 0.3.1 that πωiω jωi is ε(| j − i|)2-contracting also in L̄2(ωi). This, by
Remark 1.1.10, is equivalent to saying that

{ωi :ω j}→ωK É ε(| j− i|). (541)

(541) is what we need to apply Lemma 3.6.8; in the end, we get the

5.3.7 Theorem. The model (523) is exponentially ρ-mixing.

5.4 A hypocoercive system of interacting particles

For the time being we have only been dealing with spatial decorrelations. Yet I have
had the idea that the ability of Hilbertian decorrelations to get tensorized for infinite
sets could be well adapted to the study of temporal relaxation of an infinite stochastic
system: one can consider indeed time as an extra dimension for the particle system,
which leads to a situation analogous to the parallel hyperplanes of § 0.1.c. In the
reversible case, we saw that spectral techniques make it possible to get L2 results
from L1 results, cf. Theorem 0.1.9. Here I will show how Hilbertian decorrelations can
be used for a non-reversible particle stochastic system.

The system which we will study here as an example is governed by the Vlasov-
Fokker-Planck equation. This equation, which arises naturally in physics, corresponds
to a Hamiltonian evolution perturbed by some noise acting on speeds. The study of
such systems is made complicated by the fact that diffusion is only performed along
certain directions of the states space, so that the non-reversibility of the evolution is es-
sential to ensure convergence to equilibrium. In [44], Villani proves L2 convergence for
such systems in situations where the state of the system lives in a finite-dimensional
manifold. Here we will use tensorization of Hilbertian decorrelations in a fundamen-
tal way to get a result valid in an infinite-dimensional setting. Moreover, we will get
non-trivial bounds for arbitrary small times, which is a new feature compared to [44].

5.4.1 Definition. For real parameters m,ω, c,T,λ> 0[§], we consider a system of par-
ticles i indexed by Z, each particle being described by its momentum pi ∈ R and its
position qi ∈R. We consider the Hamiltonian

H(→p, →q)= m−1 ∑
i∈Z

p2
i

2
+mω2 ∑

i∈Z

q2
i

2
+mc2 ∑

i∈Z

(qi+1 − qi)2

2
. (542)

[§]m is the mass of each particle, ω is the frequency corresponding to the pinning potential, c is more
or less the speed of sound, expressed in inter-atomic distances by unit of time, T is the temperature and
λ is the relaxation constant of the friction. Physical homogeneity of these constants are resp. [M], [T−1],
[T−1], [ML2T−2], [T−1].
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Then the system (→p(u), →q(u)) evolves according to the Hamiltonian H, plus a white
noise independent on each pi, plus a friction force Fi =−λpi on each i which dissipates
the energy brought by the white noise, friction being adjusted to the noise so that their
association constitutes a (volumic) thermal bath at temperature T. One computes that
this means that the quadratic variation on pi is given by d[pi]= 2Tλm du.

In other words, if (Wi(u))i∈Z denotes a family of independent brownian motions,
the evolution of the system is given by{

dpi = (−mω2qi +mc2(qi−1 + qi+1 −2qi)−λpi)du+p
2Tλm dWi

dqi = m−1 pi du.
(543)

5.4.2 Remark. The system of Definition 5.4.1 is to be thought as a toy model for a large
class of similar systems obtained by generalizing it in several ways. A first example,
which would change almost nothing but complicating the formalism, is to replace the
states space R×R of each particle by Rn×Rn, or to replace the lattice Z by Zn. A trickier
generalization is to consider the case of non-harmonic interactions: then I expect the
results stated below to remain qualitatively true, but proving them might be far more
difficult since one cannot use the properties of Gaussian vectors any more. Also, if one
allows for infinite-ranged interactions, which speed of decay is required to get temporal
decorrelations?

All these questions look quite worthwhile to me, though answering them is out of
the scope of this monograph. Here I will only show how maximal correlations make
everything work fine for the toy model, hoping that it shall be useful for the general
situation.

Let us consider the equilibrium dynamics of our system. We fix an arbitrary time
0 < t <∞. Denote by (pi, qi) the state of particle i at time u = 0, resp. by (p′

i, q′
i) the

state of particle i at time u = t. We have to prove the

5.4.3 Claim. Provided t is small enough, for all i, j ∈ Z (possibly identical), one has
{pi : p′

j}∗, {pi, q′
j}∗, {qi : p′

j}∗, {qi, q′
j}∗ < 1, uniformly in i, j. Moreover, still uniformly

in i, j, these quantities are bounded by O(e−γ| j−i|) for some γ> 0.

Proof. We denote by η (resp. η′) ∈ RZ×{p,q} the global state (pi, qi)i∈Z (resp. (p′
i, q′

i)i∈Z)
at time 0 (resp. t). We also denote by (ϕu)uÊ0 the semigroup of operators on RZ×{p,q}

corresponding to the evolution of the system in absence of noise, but with the friction
remaining. Since the system is linear, the ϕu are linear operators.

By the work of § 5.2, we know that η is distributed according to the centered Gaus-
sian law with covariance matrix T−1Č, where Č is defined as Q̌−1, the matrix Q̌ being
in turn defined by:

Q̌pi pi ··= m−1; (544)

Q̌qi qi ··= m(ω2 +2c2); (545)

Q̌qi qi±1 ··= −mc2, (546)

the other entries of Q̌ being zero. Observe that, as the matrix of a quadratic form, Q̌ is
bounded (this is obvious from (544)–(546)); moreover, Q̌−1 (actually exists and) is also
bounded: that follows from Q̌’s being bounded below by the matrix having the same
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expression with c replaced by 0, which we denote by Q̌◦, which is a strictly positive
‘scalar’ matrix (modulo some homogeneity constant).

Because of the linear nature of the system, we have moreover that, conditionally
to η, the law of η′ is some Gaussian vector of the form ϕtη+θ, where θ is a centered
Gaussian vector whose law does not depend on η. Let us denote by Ĉ the covariance
matrix of θ, and Q̂ = Ĉ−1 —though for the time being it is not clear that Q̂ exists.

Then, we can formally write the covariance matrix C̄ of (η,η′) as C̄ = Q̄−1, with:

Q̄(η,η′)= Q̌(η)+ Q̂(η′−ϕtη). (547)

(Note that Q̄ is a quadratic form on RZ×{p,q,p′,q′}, while Q̌ and Q̂ were defined
on RZ×{p,q}).

5.4.4 Notation. In the sequel, we shorthand “Z × {p, q}” into “Z]2”, resp. “Z ×
{p, q, p′, q′}” into “Z]4”.

Now I claim that there exists constants 0 < r É R <∞ such that rI É Q̄ É RI. Well,
this is meaningless stricto sensu, because all the entries of Q̄ do not have the same
physical homogeneity, so we have to ‘convert’ momenta into positions by dividing them
by some homogeneity parameter χ, say χ= mω —but other choices may be more rele-
vant.

First, I claim that Q̄ Ê 1
2 (χ2m−1 ∧mω2)I. Let indeed (η,η′) = (→pZ, →qZ,

→
p′
Z,

→
q′
Z) ∈ RZ]4

with finite support. We observe that

‖(η,η′)‖2 = ∑
i∈Z

(χ−2 p2
i + q2

i +χ−2 p′2
i + q′2

i )= ‖η‖2 +‖η′‖2, (548)

so that either ‖η‖2 Ê 1
2‖(η,η′)‖2 or ‖η′‖2 Ê 1

2‖(η,η′)‖2. Now, recalling the definition of Q̌◦

a few lines above, Q̌(η) Ê Q̌◦(η) Ê (χ2m−1 ∧ mω2)‖η‖2, so by (547), Q̄(η,η′) Ê (χ2m−1 ∧
mω2)‖η‖2. Since reversing the sense of time yields the same system with the sense
of speed reversed, which does not change the norms of η and η′, one has similarly
Q̄(η,η′)Ê (χ2m−1 ∧mω2)‖η′‖2. The claim follows.

The second point consists in proving that Q̄ is bounded above. On the one hand,
by (544)–(546),

Q̌(η)É (m−1χ2 ∨m(ω2 +4c2))‖η‖2 É (m−1χ2 ∨m(ω2 +4c2))‖(η,η′)‖2. (549)

Next, the difficult point is to prove that Q̂(η′ −ϕtη) (exists and) can be bounded
above by a multiple of ‖(η,η′)‖2. We begin with transforming the original problem of
bounding a quadratic form on RZ

]4
into a problem on RZ

]2
. Indeed, ‖ϕtη‖ is bounded

by a multiple of ‖η‖, since the operator ϕt dissipates the energy H(η), energy which
the previous work on Q̌ proved to be controlled below and above by ‖η‖2; therefore, it
suffices to prove that the quadratic form Q̂(η) on RZ

]2
is bounded by a multiple of ‖η‖2

to achieve our goal.

The natural quantity to be computed for θ (recall that θ denotes the total effect of
noise between times 0 and t) is its covariance matrix Ĉ. Its expression is the following
(the notation is explained just below):

Ĉ = 2Tλm
∫ t

0
ϕt−uIp(ϕt−u)T du, (550)
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where Ip is the diagonal matrix being 1 on diagonal entries indexed by some pi and 0
on diagonal entries indexed by some qi, and (ϕt−u)T is the transpose of the linear
operator ϕt−u seen as a square matrix indexed by Z]2. This decomposition means
that we are summing the contributions of all the elementary noises occuring at times
u ∈ [0, t], using that these elementary noises are independent.

Now we need an approximate expression for ϕu, u ∈ [0, t]. Here for the sake of
legibility I will remain at a formal level, giving only limited expansions; it is essential
nevertheless to keep in mind that all the “O(∗)” can be made explicit by using Gron-
wall’s lemma, and that these explicit values ensure that the O(∗) behave well provided
t is small enough. One finds that

ϕuδpi · p j = c2| j−i| u2| j−i|

(2| j− i|)! +O(u2| j−i|+2); (551)

ϕuδpi · q j = m−1c2| j−i| u2| j−i|+1

(2| j− i|+1)!
+O(u2| j−i|+3); (552)

ϕuδqi · pi = mω2u+O(u3); (553)

ϕuδqi · p j 6=i = mc2| j−i| u2| j−i|−1

(2| j− i|−1)!
+O(u2| j−i|+1); (554)

ϕuδqi · q j = c2| j−i| u2| j−i|

(2| j− i|)! +O(u2| j−i|+2). (555)

Injecting Equations (551)–(555) into (550), one finds that:[¶]

Ĉpi pi = 2Tλmt+O(t3); (556)

Ĉpi qi = Tλt2 +O(t4); (557)

Ĉqi qi = 2
3 Tλm−1t3 +O(t5); (558)

Ĉpi p j 6=i = O(t2| j−i|+1); (559)

Ĉpi q j 6=i = O(t2| j−i|+2); (560)

Ĉqi q j 6=i = O(t2| j−i|+3). (561)

Consequently, the covariance matrix Ĉ can be seen as a perturbation of the ma-
trix Ĉ◦ which is defined by Equations (556)–(561), but with the “O(∗)” terms replaced
by 0. Since Ĉ◦ is invertible, with an explicitly computable inverse, one finds that Ĉ is
invertible too with:

Q̂pi pi = 2T−1λ−1m−1t−1 +O(t); (562)

Q̂pi qi = −3T−1λ−1t−2 +O(1); (563)

Q̂qi qi = 6T−1λ−1mt−3 +O(t−1); (564)

Q̂pi p j 6=i = O(t2| j−i|−1); (565)

Q̂pi q j 6=i = O(t2| j−i|−2); (566)

Q̂qi q j 6=i = O(t2| j−i|−3). (567)

In the end, provided that t is small enough, we have proved that Q̂(η)/‖η‖2 É
6T−1λmt−3 +O(t−1)<∞.

[¶]Recall that Ĉ, as a covariance matrix, is symmetric.
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Actually we have proved more than that: not only we have a bound on the operator
norm of Q̄, but we have bounded it entry-wise. More precisely, expanding the O(∗), we
find that provided t is small enough, there exists constants A <∞ and γ> 0 such that
for all i, j ∈Z,

Q̂pi p j ,Q̂pi q j , . . . ,Q̂q′
i q

′
j︸ ︷︷ ︸

all 16 possibilities

É Ae−γ| j−i|. (568)

5.4.5 Notation. From now on we denote the basic variables pi, qi, p′
i, q′

i of our system
by X i, i ∈Z]4.

Now the question is: for i 6= j ∈Z]4, K ⊂Z]4à{i, j}, what is the value of {X i : X j}→XK
?

By the properties of Gaussian variables [Theorem 1.2.6], the answer is the following.
Let Q̄|

Z]4àK
be the restriction of Q̄ to indexes in (Z]4 àK). Since rIÉ Q̄ É RI, the same

holds for Q̄|
Z]4àK

, so this matrix is invertible; denote by C̄|Z]4àK
its inverse. This matrix

is the covariance matrix of (the centered version of)
→
XZ]4àK under some fixed value

for
→
XK ; thus:

{X i : X j}→XK
=

|C̄|Z]4àK

i j |√
C̄|Z]4àK

ii C̄|Z]4àK

j j

. (569)

It remains to control the entries of C̄|Z]4àK
, uniformly in K . We need two types

of control: first an exponential control when i is far away from j, then a non-trivial
control for the values of i and j corresponding to close (or even identical) atoms.

Let us start with the first one. C̄|Z]4àK

ii and C̄|Z]4àK

j j are bounded below by R−1, so we

just have to bound above C̄|Z]4àK

i j . This is achieved by a direct use of Lemma 5.5.1 in
appendix.

Concerning the uniform non-trivial control, since rIÉ Q̄ É RI one has rIÉ Q̄|
Z]4àK

É
RI, hence R−1IÉ C̄|Z]4àK É r−1I, hence R−1IÉ (C̄|Z]4àK )|{i, j}2

É r−1I; from this and (569),

∀i 6= j ∈ I {X i : X j}∗ É R− r
R+ r

< 1. (570)

From Claim 5.4.3, we get the main result of this subsection:

5.4.6 Theorem. For the model of Definition 5.4.1, for all t > 0, {η,η′}< 1.

Proof. First, if t is small enough so that Claim 5.4.3 holds, direct application of
Lemma 3.6.8 proves the result, as the {X i, X j}∗ are summable (since they decrease
exponentially) and they all are < 1.

Now for larger t, fix some 0< t1 < t so that Claim 5.4.3 holds for t1. Then we notice
that η→ η(t1) → η′ is a Markov chain (with “η(t1)” standing for “(→p(t1), →q(t1))”), so by
Proposition 1.1.13, {η,η′}É {η,η(t1)}< 1.
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5.5 Appendix: Inverses of ‘nearly diagonal’ matrices

The goal of this appendix is to state and prove a few lemmas sharing the same spirit:
“if a matrix is ‘nearly diagonal’, then it shall be invertible and its inverse shall also be
‘nearly diagonal’ with the same type of decay”.

5.5.a Matrices with exponential decay

The goal of this subsection is to prove the following

5.5.1 Lemma. Let I ⊂ Z and let ((Mi j))(i, j)∈I2 be a matrix. Assume that, when seen as
a quadratic form on L2(I), one has rI É M É RI for 0 < r É R <∞ —in particular, M is
invertible. Assume moreover that there exists constants A <∞ and γ > 0 such that for
all i, j ∈ I, |Mi j| É Ae−γ| j−i|.

Then there exist constants A′ <∞ and γ′ > 0 which are explicit functions of r,R,γ, A
(so they do not depend on I), such that one has the following control on the entries
of M−1:

∀i, j ∈ I (M−1)i j É A′e−γ
′| j−i|. (571)

Proof. Up to multiplying by a scalar, one can assume that R = 1. Then M writes
M = I−H, where 0 É H É (1− r)I; since H is symmetric, that inequality means that
�H� É 1− r < 1. Therefore, for all k ∈ N one has �Hk� É (1− r)k, which allows us to
write M−1 as a series expansion:

M−1 =
∞∑

k=0
Hk. (572)

Up to replacing A by A +1, we have the same entry-wise control on H as on M.
Then one sees by induction that for all k ∈N,

∀i, j ∈ I |(Hk)i j|É Ak
1 e−γ1| j−i|, (573)

where γ1 is an arbitrary parameter in (0,γ) and

A1 ··=
∑
z∈Z

Ae−γ|z|+γ1z = (1− e−2γ)A
(1− e−(γ−γ1))(1− e−(γ+γ1))

(574)

—observe that I does not appear in the expression of A1. Since A1 is greater than
1, (573) is not enough to get an entry-wise control on M−1. But now observe that the
bound �Hk� É (1− r)k implies that all the (Hk)i j are bounded by (1− r)k in absolute
value; thus:

|(M−1)i j|É
∞∑

k=0
(e−γ1| j−i|Ak

1 ∧ (1− r)k)É
( A1

A1 −1
+ 1

r

)
exp

(
− | log(1− r)|γ1

| log(1− r)|+ log A1
| j− i|

)
,

(575)
from which you read suitable values for A′ and γ′.

122



5.5.b Convolution inverses of rapidly decreasing functions

* In all this subsection, we work on Zn for some n ∈ N∗; Rn is endowed with some
fixed norm |·|.
5.5.2 Remark. Here I will deal with fonctions on Zn, but the results of this subsection
could also be tranposed for functions on Rn.

5.5.3 Definition. If a :Zn →R is some integrable function with ‖a‖l1 < 1, we define

B[a]= a+a∗a+a∗a∗a+·· · , (576)

which is the sum of a convergent series in l1(Zn). B[a] is the function b ∈ l1(Zn) char-
acterized by:

(δ0 −a)∗ (δ0 +b)= δ0. (577)

5.5.4 Definition. A function a :Zn →R is said to have exponential decay if there exists
some β > 0 such that, for all β′ < β, a(z) = O(e−β

′|z|) when |z| → ∞. The minimal β
satisfying that property is called the (exponential) rate of decay of a.

5.5.5 Lemma. Let a ∈ l1(Zn) with ‖a‖l1 < 1. If a has exponential decay, then so does
B[a].

Proof. Denoting by |a| the function defined by |a|(z)= |a(z)|, it is clear by (576) that

∀z ∈Zn |B[a](z)|É B[|a|](z), (578)

therefore it suffices to prove the case where a is nonnegative. In that case, B[a] will
also be nonnegative.

Let (Rn)∗ denote the dual space of Rn, endowed with the dual norm

∀λ ∈ (Rn)∗ |λ|∗ = sup
z∈Rn

|z|=1

|〈λ, z〉|. (579)

For a nonnegative function a, we define its Laplace transform L {a}: (Rn)∗ →R+∪{+∞}
by

L {a}(λ)= ∑
z∈Zn

e〈λ,z〉a(z). (580)

Then, saying that a has exponential decay with rate γ is equivalent to saying that, for
all λ ∈ (Rn)∗ with |λ|∗ < γ, L {a}(λ) is finite.

Since Laplace transform is linear and turns convolution into ordinary product,
(576) yields, for all λ ∈ (Rn)∗:

L {B[a]}(λ)=L {a}(λ)+L {a}(λ)2 +L {a}(λ)3 +·· · , (581)

which converges if and only if L {a}(λ)< 1.

Now, since a is nonnegative, by (580) the function L {a} is convex, so it is continuous
on the interior of the domain where it is finite. By the exponential decay hypothesis,
that domain contains a neighbourhood of 0, so L {a} is continuous at 0. And since
L {a}(0) = ∑

z∈Zn a(z) = ‖a‖l1 < 1, there is a neighbourhood of 0 on which L {a} < 1 and
thus L {B[a]}<∞. This implies that B[a] has exponential decay.
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5.5.6 Remark. This proof also shows that (for nonnegative a) the rate of decay of B[a]
will never be greater than the rate of decay of a. In general, it is even strictly smaller,
since all the values of λ for which 1 É L {a}(λ) < ∞ yield a finite Laplace tranform
for a but an infinite one for B[a]. For example, take n = 1 and a = e−1δ1, which has
exponential decay with infinite rate since it is compactly supported; then the k-th
convolution power of a is a∗k = e−kδk, so that B[a] is the function

B[a](z)= 1z > 0e−z, (582)

which also has exponential decay, but with rate 1 only.

5.5.7 Lemma. If ‖a‖l1(Zn) < 1 and a(z) = O(1/|z|α) when |z| →∞ for some α > n, then
B[a](z)=O(1/|z|α) when |z|→∞.

Proof. Let a satisfy the assumptions of the lemma for some α. Like in the proof of
Lemma 5.5.7, we can assume that a is nonnegative. For d > 0, we define the func-
tion ϕd : Zn →R by:

ϕd(z) ··= 1/(|z|∧d)α, (583)

which is in l1(Zn) since α> n. Then the key claim is the following sub-lemma, whose
proof is postponed:

5.5.8 Lemma. Under the assumptions of Lemma 5.5.7, there exists some ρ < 1 and
some d ∈ (0,∞) such that, pointwise,

ϕd ∗a É ρϕd. (584)

Admitting Lemma 5.5.8, take ρ and d such that (584) is satisfied. The assumption
on a implies that there exists some C <∞ such that a É Cϕd; therefore by (584) one
also has a∗a É Cϕd ∗a É ρCϕd, whence by (584) again a∗a∗a É ρCϕd ∗a É ρ2Cϕd,
etc.. In the end,

B[a]É Cϕd +ρCϕd +ρ2Cϕd +·· · É C
1−ρϕd, (585)

which implies that B[a](z)=O(1/|z|α).

Proof of Lemma 5.5.8. Denote S ··= ‖a‖l1 , which by hypothesis is < 1, and fix ε ∈ (0,1/2)
such that (1− ε)α > S. Let d ∈ (0,∞), devised to be quite large; our goal is to bound
above (ϕd ∗a)(z) for all z ∈ Zn. Since ϕd is bounded above by d−α, one has obviously
for all z ∈Zn:

(ϕd ∗a)(z)É d−α ∑
z∈Zn

a(z)= Sd−α, (586)

whence (ϕd ∗ a)(z) É Sϕd(z) for all z with |z| É d. Since S < 1, the claim is therefore
okay for |z| É d.

Now, let z ∈Zn with |z| > d. We have to bound above

(ϕd ∗a)(z)= ∑
x,y∈Zn

x+y=z

ϕd(x)a(y). (587)

We decompose that sum into three pieces:

(ϕd ∗a)(z)= ∑
|y|Éε|z|

ϕd(z− y)ad(y)+ ∑
|x|>ε|z|

|z−x|>ε|z|

ϕd(x)ad(z− x)+ ∑
|x|Éε|z|

ϕd(x)ad(z− x), (588)
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which we shorthand into “¬+­+®”.

We bound these three terms separately. For ¬, we observe that for |y| É ε|z|, |z−y| Ê
(1−ε)|z| by the triangle inequality, thus ϕd(z−y)É ((1−ε)|z|)−α = (1−ε)−αϕd(z), whence
by summing:

¬É (1−ε)−αϕd(z)
∑

|y|Éε|z|
a(y)É (1−ε)−αSϕd(z). (589)

Similarly, for |x| É ε|z|, C denoting a constant such that a É Cϕd, one has a(z− x)
É C((1−ε)|z|)−α, thus:

®É (1−ε)−αC‖ϕd‖l1ϕd(z). (590)

Of course, ‖ϕd‖l1 depends on d; the important point is that, by dominated convergence,
‖ϕd‖l1 → 0 when d →∞.

Finally, provided d is large enough, Term ­ will be well approximated by an inte-
gral:

­É ∑
x∈Zn

|x|,|z−x|>ε|z|

1
|x|α × C

|z− x|α '
∫

x∈Rn

|x|,|z−x|>ε|z|

C
|x|α |z− x|α dx, (591)

where “'” means that the ratio between the quantites at each side of that symbol can
be made arbitrarily close to 1 when d →∞, uniformly in z. Indeed, the difference be-
tween the sum and the integral is due to two causes: first, approximating the integral
on a unit square of Rn by the value of the integrand at the center of this square, sec-
ond, summing (or not summing) terms of the discrete sum corresponding to squares
that are not entirely in the domain of the integral. For the first cause, on the domain
of the integral, C/(|x|α|z− x|α) varies of at most O(1/|z|) in relative value on all the
unit squares. For the second cause, the border of the domain of the integral is made
of two (n−1)-dimensional spheres of radius ε|z|, so it crosses O(|z|n−1) unit squares.
Since C/(|x||z− x|)α is bounded by C(ε(1−ε))−α|z|−2α on the domain of the integral, the
(absolute) error due to boundary squares is at most O(|z|n−1−2α). As the integral itself
is proportional to |z|n−2α [cf. the change of variables below], the relative error due to
boundary squares is at most O(1/|z|) too, and O(1/|z|)= o(1) since |z| > εd.

Making the change of variables x = |z|x′, (591) becomes:

­.C|z|n−2α
∫
|x′|,|1−x′|>ε

1
|x′|α|1− x′|α dx′, (592)

which I shorthand into “­.I C|z|n−2α”. Since |z| > d and α> n, that bound implies:

­.
I C
dα−n ϕd(z). (593)

Combining (589), (590) and (593), one finally gets that when d →∞, for all |z| Ê d,

(ϕd ∗a)(z)É ρ(d)ϕd(z), (594)

with
ρ(d)= (1−ε)−α(S+C‖a‖l1)+ (1+ o(1))I C/dα−n. (595)

ρ(d) tends to (1−ε)−αS < 1 when d →∞, so it is < 1 provided d is large enough, what
we wanted.
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