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Résumé

Étant donnée une fonction de Morse sur une variété fermée orientée, nous
nous inspirons de travaux d’Abouzaid et de Mescher pour munir son com-
plexe de cochaînes de Morse d’une structure de ΩBAs-algèbre définie par un
comptage d’arbres de gradient de Morse perturbé. Nous définissons également
la notion de ΩBAs-morphisme entre deux ΩBAs-algèbres et construisons des
ΩBAs-morphismes géométriques entre complexes de cochaînes de Morse par
un comptage d’arbres de gradient perturbé 2-colorés. Nous utilisons des réali-
sations explicites des associaèdres et des multiplièdres en tant que polytopes et
en tant qu’espaces de modules d’arbres métriques pour montrer qu’un ΩBAs-
morphisme entre ΩBAs-algèbres induit naturellement un A∞-morphisme entre
A∞-algèbres. Nous définissons ensuite la notion de n-morphismes entre A∞-
algèbres et de n-morphismes entre ΩBAs-algèbres. L’ensemble des morphismes
supérieurs entre deux A∞-algèbres définit alors un ensemble simplicial qui a la
propriété d’être un complexe de Kan et dont nous calculons les groupes d’homo-
topie simpliciaux de manière explicite. Les n-morphismes sont de plus encodés
par de nouvelles familles de polytopes que nous appelons les n-multiplièdres et
qui généralisent les multiplièdres standard. Nous construisons dans un second
temps des n− ΩBAs-morphismes géométriques entre complexes de cochaînes
de Morse en comptant des arbres de gradient perturbé associés à des simplexes
de données de perturbation admissibles. Nous prouvons en particulier que l’en-
semble simplicial des morphismes supérieurs définis par un comptage d’arbres
de gradient perturbé est un complexe de Kan qui est contractile. Cela donne
une formulation rigoureuse en algèbre supérieure de l’unicité à homotopie près
des morphismes de continuation en théorie de Morse. Nous comparons ensuite
nos constructions aux structures supérieures définies en topologie symplectique
par des comptages de courbes cousues pseudo-holomorphes. Nous décrivons
finalement nos avancées sur deux projets de recherche : la définition d’une
structure de catégorie symétrique monoïdale à homotopie près sur la catégorie
des A∞-algèbres et des A∞-morphismes et la construction d’une structure de
V∞-algèbre sur les chaînes symplectiques d’une variété de Liouville.

Mots-clefs. Théorie de Morse, théorie des opérades, algèbre supérieure,
théorie de l’homotopie, infini-catégories, polytopes, topologie symplectique,
théorie de Floer





Abstract

Elaborating on work by Abouzaid and Mescher, we prove that the Morse
cochain complex of a Morse function can be endowed with an ΩBAs-algebra
structure by counting perturbed Morse gradient trees. We then introduce the
notion of an ΩBAs-morphism between two ΩBAs-algebras and construct geo-
metric ΩBAs-morphisms between Morse cochain complexes by counting two-
colored perturbed Morse gradient trees. We use explicit realizations of the
associahedra and the multiplihedra as polytopes and moduli spaces of metric
trees to show that an ΩBAs-morphism between ΩBAs-algebras naturally in-
duces an A∞-morphism between A∞-algebras. We then introduce the notion
of a n-morphism between A∞-algebras and of a n-morphism between ΩBAs-
algebras. The set of higher morphisms between two A∞-algebras defines in
fact a simplicial set which is a Kan complex and we explicitly compute its
simplicial homotopy groups. The n-morphisms are moreover encoded by new
families of polytopes that we call the n-multiplihedra and which generalize the
standard multiplihedra. We then construct geometric n − ΩBAs-morphisms
between Morse cochain complexes by counting perturbed Morse gradient trees
associated to admissible simplices of perturbation data. We show in particular
that the simplicial set consisting of higher morphisms defined by a count of
perturbed Morse gradient trees is a Kan complex which is contractible. This
gives a higher categorical meaning to the fact that continuation morphisms
in Morse theory are well-defined up to homotopy at chain level. We subse-
quently compare our constructions to the higher structures defined by counts
of pseudo-holomorphic quilts in symplectic topology. We finally describe two
research projects on which we are currently working : the definition of a homo-
topy symmetric monoidal category structure on the category of A∞-algebras
with A∞-morphisms between them and the construction of a V∞-algebra struc-
ture on the symplectic chains of a Liouville manifold.

Keywords. Morse theory, algebraic operads, higher algebra, homotopy
theory, infinity-categories, polytopes, symplectic topology, Floer theory
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Chapitre 1

Présentation du contexte

1. Théorie des opérades

Le paradigme de la théorie des opérades consiste à concevoir l’ensemble des opérations en-
codant une structure algébrique, ainsi que les relations qu’elles satisfont entre elles, comme une
entité algébrique à part entière que l’on peut étudier de manière systématique : cette entité algé-
brique est appelée opérade. Dit autrement, une opérade P encode une catégorie de P -algèbres. Les
algèbres associatives sont ainsi encodées par l’opérade As, engendrée par une unique opération

qui satisfait la relation d’associativité

= .

Le point de vue opéradique permet donc d’étudier différentes propriétés de la catégorie des P -
algèbres en manipulant directement l’opérade P . Initialement développée au cours des années 60
pour l’étude de différents problèmes de topologie algébrique, la théorie des opérades a connu des
développements impressionnants à partir des années 90 et irrigue depuis de nombreux domaines
des mathématiques modernes : déformation par quantification, topologie des cordes, géométrie
algébrique, théorie des nœuds, ainsi que la théorie de Morse et la topologie symplectique sur
lesquelles nous revenons en détails plus bas. Nous renvoyons à [MSS02] pour une introduction
historique détaillée du domaine.

La théorie de la dualité de Koszul des opérades et son application à l’étude de la théo-
rie de l’homotopie des P -algèbres sont deux exemples frappants de la puissance du paradigme
opéradique. Étant donnée une dg-opérade P (où dg est l’abréviation que nous utiliserons pour
différentielle graduée dans la suite de ce manuscrit) on souhaiterait en effet formuler une notion
de P -algèbre à homotopie près qui serait invariante sous la relation d’équivalence d’homotopie
des dg-modules sous-jacents. La théorie de l’homotopie des dg-opérades montre que, pour une
résolution cofibrante Q→ P , la structure de Q-algèbre fournit bien une telle notion de P -algèbre
à homotopie près. On dispose en particulier dans ce cas d’un théorème de transfert homotopique
qui s’exprime comme suit. Considérons un diagramme de rétracte par déformation

(A, ∂A) (H, ∂H) ,h
p

i

où idA − ip = [∂, h] et A est une P -algèbre. Alors, la structure de P -algèbre sur A se transfère
naturellement en une structure de Q-algèbre sur H. Ce théorème est appelé le théorème de
transfert homotopique. Nous renvoyons à [MSS02] pour une preuve générale de ce théorème
ainsi qu’à l’article [Mar06] qui démontre le théorème de transfert homotopique dans le cas
particulier de la résolution A∞ → As que nous rencontrerons plus bas.

Il s’avère que la théorie de la dualité de Koszul des opérades permet de construire de telles
résolutions. De manière sommaire, à tout opérade dite quadratique (c’est-à-dire correspondant à
la donnée d’une collection d’opérations génératrices satisfaisant des relations quadratiques entre
elles), on peut associer une nouvelle opérade P∞ := ΩP ¡. Ici P ¡ est une coopérade construite à
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14 1. PRÉSENTATION DU CONTEXTE

partir de la donnée quadratique de P et Ω désigne la construction cobar opéradique, transformant
une coopérade Q en une opérade quasi-libre ΩQ. Si l’opérade P a en plus la propriété d’être de
Koszul, alors P∞ → P est une résolution cofibrante de P . C’est par exemple le cas des opérades
As, Com et Lie encodant respectivement les dg-algèbres associatives, commutatives et de Lie.
Nous renvoyons à [Val20] pour plus de détails sur la théorie de l’homotopie des algèbres encodées
par une opérade de Koszul. Mentionnons également que tout opérade P admet une résolution
cofibrante universelle ΩBP → P , où B est la construction bar opéradique transformant une
opérade en coopérade quasi-libre. La notion de ΩBP -algèbre fournit alors en particulier une
autre notion de P -algèbre à homotopie près.

On peut spécialiser la discussion ci-dessus à l’étude de la théorie de l’homotopie des dg-
algèbres. Étant donnée une résolution cofibrante Q de l’opérade As encodant les dg-algèbres
(associatives), on appellera Q-algèbre une algèbre fortement associative à homotopie près. La
dualité de Koszul donne une première résolution cofibrante A∞ → As. Une structure de A∞-
algèbre sur un dg-module A correspond à la donnée d’une collection d’opérations mn : A⊗ → A
de degré 2− n pour n ⩾ 2, satisfaisant les équations

[∂A,mn] =
∑

i1+i2+i3=n
2⩽i2⩽n−1

(−1)i1+i2i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3).

En représentant mn comme une corolle d’arité n
12 n

, ces équations se représentent comme
suit

[∂A,
1 2 n

] =
∑

h+k=n+1
2⩽h⩽n−1
1⩽i⩽k

± 1 ki

1 h

.

Autrement dit, A∞ est l’opérade quasi-libre engendrée en arité n par une corolle mn d’arité n,
et dont la différentielle est donnée par la somme des arbres obtenus par l’éclatement de l’unique
sommet de mn. L’équation d’arité 2 implique que le produit m2 est compatible avec la diffé-
rentielle ∂A, tandis que l’équation d’arité 3 exhibe m3 comme l’homotopie encodant le défaut
d’associativité de m2 : l’opération m2 induit en particulier une structure d’algèbre graduée (asso-
ciative) sur la cohomologie H∗(A). Les opérations mn d’arité supérieure peuvent être interprétées
comme la famille cohérente d’homotopies supérieures encodant le défaut d’associativité de m2.

L’opérade A∞ est en fait encodée par une famille de polytopes, appelés associaèdres. Ces po-
lytopes définis pour la première fois dans l’article fondateur de Stasheff [Sta63] sur les H-espaces,
sont depuis apparus dans de nombreux champs de recherche des mathématiques modernes : en
topologie symplectique (cf. plus bas), en combinatoire ou dans l’étude des variétés toriques par
exemple. Mentionnons également ici que la résolution cofibrante universelle de As, l’opérade
ΩBAs, fournit un modèle alternatif d’algèbre associative à homotopie près. L’opérade ΩBAs
peut alors être décrite comme l’opérade quasi-libre engendrée par tous les types d’arbres enru-
bannés t,

ΩBAs := F( , , , , · · · , SRTn, · · · ) ,

où SRTn désigne l’ensemble des types d’arbres enrubannés t. Le bord d’une opération mt est
donné par la somme des arbres obtenus en contractant exactement une arête de l’arbre t ou en
brisant exactement une de ses arêtes.
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2. Topologie symplectique

Une variété symplectique correspond à la donnée d’une variété lisse M munie d’une 2-forme
fermée non-dégénérée ω. Un des objectifs de la topologie symplectique est l’étude des propriétés
géométriques des variétés symplectiques (M,ω), ainsi que de la manière dont elles sont pré-
servées par des transformations lisses préservant la structure symplectique. Le paradigme de
la topologie algébrique, qui associe des invariants algébriques aux espaces topologiques afin de
les distinguer et de comprendre certaines de leurs propriétés, peut être appliqué à l’étude des
variétés symplectiques. L’implémentation des outils de la topologie algébrique en topologie sym-
plectique a été propulsée par les articles fondateurs de Gromov sur les espaces de modules de
courbes pseudo-holomorphes [Gro85] et de Floer sur l’homologie de Floer lagrangienne [Flo88].
Le travail de Gromov implique que le comptage de points d’espaces de modules de courbes
pseudo-holomorphes de dimension 0 définis dans la variété symplectique (M,ω) permet de défi-
nir des invariants algébriques rendant compte de la géométrie de (M,ω). Floer associe quant à
lui à deux sous-variétés lagrangiennes L0, L1 ⊂ M s’intersectant transversalement un complexe
de chaînes définissant l’homologie de Floer lagrangienne FH∗(L0, L1). Ces groupes d’homologie
permettent de comprendre la théorie de l’intersection des lagrangiennes L0 et L1.

La construction de la catégorie de Fukaya Fuk(M,ω) d’une variété symplectique (M,ω) pour-
suit cette lignée d’idées. C’est une A∞-catégorie, c’est-à-dire une catégorie dont la composition
a été relaxée à homotopie près au moyen d’une suite d’homotopies encodées par l’opérade A∞,
contenant une grande quantité d’informations sur la théorie de l’intersection des sous-variétés
lagrangiennes de (M,ω), dont les groupes d’homologie FH∗(L0, L1). Ses objets sont les sous-
variétés lagrangiennes de M et ses compositions supérieures mn sont définies par des comptages
de disques à n+1 points marqués sur leur bord et satisfaisant une condition au bord lagrangienne
(voir le schéma 1). Nous renvoyons aux excellents articles de Auroux [Aur14] et Smith [Smi15]
pour une introduction plus détaillée sur les catégories de Fukaya, et mentionnons également les
ouvrages fondateurs de Seidel [Sei08] et Fukaya, Oh, Ota et Ono [FOOO09a] et [FOOO09b].

xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M

Figure 1 – Un exemple de disque pseudo-holomorphe à condition au bord sur les
lagrangiennes L0, . . . , Ln avec n+ 1 points marqués qui s’envoient sur les points
y, x1, . . . , xn dans M

Il y a en fait un lien étroit entre la théorie des opérades et les structures algébriques définies en
topologie symplectique. Prenons en pour exemple la structure de A∞-catégorie sur la catégorie de
Fukaya. Ses opérations d’arité n sont définies en réalisant en topologie symplectique l’espace de
modulesMn,1, qui est l’espace de modules de disques à n+1 points marqués sur leur bord, dont
n points sont vus comme entrants et 1 est vu comme sortant. Cet espace de modules peut alors
être compactifié et muni d’une topologie de sorte à ce que sa compactification soit isomorphe à
l’associaèdre, comme le démontre par exemple Seidel dans [Sei08]. Autrement dit, les espaces
de modules de disques compactifiés Mn,1 réalisent l’opérade A∞. Nous résumons cela dans le
diagramme ci-dessous. La grande diversité de structures algébriques pouvant être observées sur
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des complexes de Floer en topologie symplectique s’explique également par le lien étroit entre
la topologie symplectique et la topologie des cordes, qui a joué un rôle prépondérant dans le
développement de la théorie des opérades. Viterbo montre ainsi par exemple dans [Vit98] que la
cohomologie symplectique du cotangent d’une variété M à coefficients dans Z/2Z est isomorphe
à l’homologie de son espace de lacets libres, SH−∗(T ∗M) ≃ H∗(LM). Ses travaux ont ensuite été
complétés par ceux de Salamon et Weber [SW06], Abbondandolo et Schwarz [AS06], Abouzaid
[Abo15] et Kragh [Kra18]. Abouzaid construit dans [Abo15] une structure de BV-algèbre sur la
cohomologie symplectique SH−∗(T ∗M) telle que l’isomorphisme précédent soit un isomorphisme
de BV-algèbre en munissant H∗(LM) de sa structure de BV-algèbre construite dans [CS99].
Cieliebak, Hingston et Oancea ont également démontré des résultats de dualité de Poincaré pour
les espaces de lacets en utilisant l’homologie de Rabinowitz Floer dans [CHO20].

Opérations en topologie
symplectique (par exemple
sur la catégorie de Fukaya)

Espaces de modules de courbes
pseudo-holomorphes (par
exemple disques à condi-

tion au bord lagrangienne)

Espaces de modules de courbes
compactifiés (par exempleMn,1)

Entité opéradique (par
exemple l’opérade A∞)

Encode

Comptage des points d’espaces
de modules de dimension 0

Théorie de Floer

Foncteur C∗
cell

Citons enfin le travail de Bottman, qui réalise parfaitement la philosophie du diagramme ci-
haut. Il cherche actuellement à trouver un modèle algébrique pour la notion de (A∞, 2)-catégorie,
qui serait encodée par les espaces de modules de witch curves. Si l’on comprend une A∞-catégorie
comme une catégorie dont la composition a été relaxée à homotopie près, une (A∞, 2)-catégorie
représenterait alors une 2-catégorie dont les opérations auraient été relaxées à homotopie près.
Son objectif ultime est de montrer qu’il existe une (A∞, 2)-catégorie Symp dont les objets seraient
des variétés symplectiques fermées et dont la A∞-catégorie de morphismes entre deux variétés
symplectiques M et N serait la catégorie de Fukaya Symp(M,N) := Fuk(M− ×N). Nous ren-
voyons à deux de ses articles récents [Bot19b] et [BC21] ainsi qu’à la section 3 de la partie 3
de ce manuscrit pour plus de détails à ce sujet.

3. Théorie de Morse

La théorie de Morse correspond à l’étude des variétés munies d’une fonction de Morse, c’est-
à-dire une fonction dont les points critiques sont non-dégénérés. Considérons une variété M ,
munie d’une fonction de Morse f : M → R ainsi que d’une métrique riemannienne g. Pour une
métrique générique g on peut alors associer à (M,f) un dg-module, appelé complexe de Morse.
Celui-ci est librement engendré en degré k par l’ensemble des points critiques d’indice k de la
fonction f

Ck(f) :=
⊕

x∈Crit(f)
|x|=k

Z · x ,

où l’indice de x est défini comme |x| := dim
(
WS(x)

)
et WS(x) est la variété stable de x pour le

champ de vecteurs −∇gf . Notons

T (y;x) :=WS(y) ∩WU (x)/R
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l’espace de modules des trajectoires de gradient négatif de f reliant un point critique x à un
point critique y, avec x ̸= y. Sous l’hypothèse générique dite de Morse-Smale sur la métrique g,
cet espace de modules est une variété de dimension dim (T (y;x)) = |y| − |x| − 1.

La différentielle de Morse ∂Morse est alors définie par un comptage d’éléments d’espaces de
modules de trajectoires de gradient négatif de dimension 0

∂Morse(x) :=
∑

|y|=|x|+1

#T (y;x) · y .

En notant C∗(f) le complexe de cochaînes ainsi défini, on appelle cohomologie de Morse sa
cohomologie. Cette cohomologie est en fait exactement la cohomologie singulière de la variété
M sous-jacente H∗

sing(M) ≃ H∗(f), comme le montre par exemple Salamon dans [Sal90]. La
donnée d’une fonction de Morse sur la variété M contient en fait bien plus d’informations que
l’homologie singulière de la variété M . L’analyse des ensembles de niveaux de la fonction f
montre qu’elle permet de reconstruire M par une suite de recollements d’anse associés à chaque
point critique de f . Nous renvoyons au livre [Mil13] de Milnor pour plus de détails à ce sujet.

La topologie symplectique peut en fait être interprétée comme une quantification de la to-
pologie différentielle, comme l’expliquent Fukaya et Oh dans [FO97] : la théorie des courbes
pseudo-holomorphes correspond alors à la quantification de la théorie de Morse. L’homologie de
Floer lagrangienne peut en effet être interprétée comme une homologie de Morse en dimension
infinie où la variété M est remplacée par l’espace des chemins P(L0, L1) reliant L0 à L1 et la
fonction de Morse f :M → R par une fonctionnelle sur P(L0, L1) que nous ne détaillons pas. Ces
points critiques sont alors en bijection avec les points d’intersection de L0 et L1 et sa différentielle
est définie par un comptage de bandes pseudo-holomorphes reliant deux points d’intersection x
et y dans L0 ∩ L1 (voir [Flo88] pour plus de détails).

Dans cette veine, Fukaya et Oh utilisent la théorie de Morse pour associer à une variété M
une A∞-catégorie Morse(M) dans [Fuk97], [Fuk93] et [FO97]. Les objets de cette catégorie
sont des fonctions fi : M → R et les espaces de morphismes entre deux fonctions fi et fj
(telles que fi − fj soit de Morse) sont les cochaînes de Morse C∗(fi − fj). Les multiplications
supérieures de Morse(M) sont alors définies en comptant des arbres de gradient dont les arêtes
sont des trajectoires de gradient négatif des fonctions de Morse fi − fj . Nous représentons sur
le schéma 2 l’espace de modules définissant la composition m2. On parle en fait d’une A∞-
catégorie topologique, car les objets sont les points d’un espace topologique X (l’espace des
fonctions f :M → R) et les espaces de morphismes et leurs compositions supérieures sont définis
uniquement pour des n-uplets d’objets dans un sous-ensemble de Baire de X (ce qui signifie ici
qu’ils sont définis en prenant des conditions génériques sur les fonctions fi).

À toute variété M correspond maintenant une variété symplectique, son cotangent T ∗M ,
et à toute fonction f : M → R la lagrangienne Λf ⊂ T ∗M définie comme le graphe de la
différentielle de la fonction f , Λf := {(p, dfp), p ∈ M}. Posons de plus Λεf := {(p, εdfp), p ∈
M}. Fukaya et Oh montrent par un argument de limite adiabatique dans [FO97] que, pour ε
assez petit, les espaces de modules définissant les compositions supérieures de la catégorie de
Fukaya Fuk(M, ε) formée par les lagrangiennes de la forme Λεf coïncident avec les espaces de
modules définissant les compositions supérieures de la A∞-catégorie Morse(M). En particulier,
Morse(M) ≃ Fuk#(M, ε). Mentionnons également le travail plus récent de Ekholm [Ekh07]
qui démontre l’équivalence entre courbes pseudo-holomorphes et arbres de gradient pour une
legendrienne de la variété de contact des 1-jets T ∗M × R.

Notons de plus que l’opération d’arité 2 de Morse(M) représentée sur le schéma 2, réalise
exactement le produit cup sur la cohomologie singulière. Nous renvoyons également vers l’article
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de Betz et Cohen [Coh06], qui associe en général à tout graphe planaire Γ un élément

q(Γ,M) ∈
n1⊗

i=1

H∗(M)⊗
n2⊗

j=1

H∗(M)

défini en réalisant le graphe Γ en théorie de Morse. Ils recouvrent de la sorte plusieurs opérations
et invariants de topologie algébrique classique, dont la classe d’Euler ou la classe fondamentale
de M par exemple.

x1

−∇(f0 − f1)

x2

−∇(f1 − f2)

y

−∇(f0 − f2)

Figure 2 – L’arbre de gradient d’arité 2 dont le comptage réalise la composition
m2 : C

∗(f0 − f1)⊗ C∗(f1 − f2)→ C∗(f0 − f2).

4. Point de départ des travaux de thèse

Fukaya et Oh affirment dans [FO97] qu’il faut en fait penser à la A∞-catégorie Morse(M)
comme à une A∞-algèbre. Cette interprétation est réalisée plus tard par Abouzaid dans [Abo11].
Étant donnée une fonction de Morse f : M → R, il définit une structure de A∞-algèbre sur les
cochaînes de Morse C∗(f) en comptant des arbres de gradient perturbé. De manière sommaire,
étant donné que l’on travaille désormais avec une unique fonction de Morse, on ne peut plus
considérer des arbres de gradient dont toutes les arêtes correspondent au gradient négatif −∇f .
En effet, les seuls espaces de modules non vides seraient ceux dont les arêtes entrantes sont toutes
issues du même point critique, étant donné que deux trajectoires de gradient issues de deux points
critiques différents ne peuvent s’intersecter. Ces espaces de modules non vides ne satisferaient en
fait alors même pas d’hypothèses de transversalité. Abouzaid règle cette question en choisissant
de perturber l’équation satisfaite par la trajectoire de gradient au voisinage de chaque sommet
de l’arbre. Nous représentons cela sur le schéma 3. Son travail a ensuite été repris par Mescher

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

Perturbation du champ de
gradient négatif au voisinage
de chaque sommet de l’arbre

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

−∇f + X

−∇f + X

Figure 3

dans [Mes18]. Mentionnons également l’article très récent [AL21] de Abbaspour et Laudenbach
qui construisent la structure de A∞-algèbre sur C∗(f) par une méthode différente.

La construction d’Abouzaid peut en fait être expliquée à la lumière du théorème de transfert
homotopique rappelé au début de cette introduction. La cohomologie de Morse est non seulement
isomorphe à la cohomologie singulière de la variétéM , mais les cochaînes de Morse C∗(f) forment
en fait un rétracte par déformation des cochaînes singulières comme le montre Hutchings dans
[Hut08]



4. POINT DE DÉPART DES TRAVAUX DE THÈSE 19

(C∗
sing(M), ∂sing) (C∗(f), ∂Morse) .

h
p

i

Le cup produit munit de plus les cochaînes singulières d’une structure de dg-algèbre. On peut donc
la transférer en une structure de A∞-algèbre sur C∗(f) au moyen de ce diagramme de rétracte par
déformation. Cette structure de A∞-algèbre n’est toutefois alors obtenue que par un théorème
algébrique abstrait mais n’est pas d’essence géométrique, c’est-à-dire ne résulte pas comme la
différentielle de Morse d’un comptage des points d’espaces de modules de dimension 0. Le travail
d’Abouzaid peut donc être interprété comme une construction géométrique de la structure de
A∞-algèbre sur C∗(f), dont on a exhibé l’existence par des arguments purement algébriques.
Abouzaid définit en fait aussi un quasi-isomorphisme de A∞-algèbres C∗(f) → C∗

sing(M) de
manière géométrique, ce qui implique en particulier que la structure "géométrique" et la structure
"algébrique" de A∞-algèbre sur C∗(f) sont bien quasi-isomorphes.

Deux problématiques majeures découlent de cette interprétation du travail d’Abouzaid. La
première est de savoir si, étant données deux fonctions de Morse f et g, il est toujours possible
de construire un A∞-morphisme de C∗(f) vers C∗(g) par un comptage des points d’espaces
de modules géométriques de dimension 0. La deuxième est de formuler ensuite rigoureusement,
en algèbre supérieure, l’unicité à homotopie près de tels morphismes géométriques. Il s’agit en
particulier d’exhiber à chaque fois des espaces de modules encodant les structures algébriques
étudiées et pouvant se réaliser en théorie de Morse. Ces deux problématiques constituent le point
de départ des travaux de ce manuscrit de thèse.





Chapitre 2

Contenu du manuscrit

Ce manuscrit de thèse se découpe en trois grandes parties. Les parties 1 et 2 sont formées du
collage des deux articles Higher algebra of A∞ and ΩBAs-algebras in Morse theory I-II [Maz21a]
[Maz21b] qui ont pour objectif de répondre aux questions découlant de l’article d’Abouzaid
[Abo11] que nous avons exposées plus haut. Dans la partie 3 nous décrivons plusieurs pistes
de réflexion découlant des constructions de ces deux articles et exposons également des résultats
préliminaires obtenus dans le cadre de deux projets de recherche en cours. Le contenu de chacun
de ces chapitres est résumé en détails dans les sections qui suivent. La numérotation des énoncés
prend pour référence celle de l’article dont ils sont tirés.

1. Higher algebra of A∞ and ΩBAs-algebras in Morse theory I

Ce premier article est disponible sur arXiv (2102.06654, 93 pages) et soumis pour publication.
La numérotation des pages que nous utiliserons dans sa reproduction dans la partie 1 est celle de
l’article original. Il est constitué de trois grandes parties : Algèbre, Géométrie et Perspectives.

1.1. Algèbre.

1.1.1. Algèbre opéradique et A∞-algèbres. Nous rappelons dans la section 1 des éléments
de base du langage opéradique qui seront utiles tout au long de notre diptyque d’articles, les
définitions de A∞-algèbre et de A∞-morphisme du point de vue de la construction bar et du
point de vue opéradique, ainsi que deux résultats majeurs sur leur théorie de l’homotopie. Nous
définissons de plus le bimodule opéradique A∞ −Morph, qui est l’objet opéradique encodant la
notion de A∞-morphisme .

1.1.2. Associaèdres et multiplièdres. Nous débutons la section 2 en rappelant la définition
de la catégorie monoïdale Poly de [MTTV21], dont les objets sont des polytopes. Sa structure
monoïdale permet en particulier de définir des opérades et bimodules opéradiques en polytopes.
Nous décrivons alors deux collections de polytopes : les associaèdres Kn et les multiplièdres Jn.
La collection des associaèdres est munie dans [MTTV21] d’une structure d’opérade dans la
catégorie Poly réalisant l’opérade A∞ sous le foncteur monoïdal des chaînes cellulaires. De la
même manière, nous prouvons dans [LAM] que la collection des multiplièdres peut être munie
d’une structure de bimodule opéradique réalisant le bimodule opéradique A∞−Morph encodant
la notion de A∞-morphisme.

1.1.3. Les espaces de modules d’arbres métriques enrubannés et leurs décompositions cellu-
laires. Nous définissons dans la section 3 deux collections d’espaces de modules d’arbres mé-
triques. D’abord, les espaces de modules d’arbres métriques enrubannés d’arité n, que l’on note
Tn. Ces espaces de modules se compactifient en autorisant les longueurs des arêtes internes à
tendre vers l’infini. L’espace de modules compactifié T n est alors isomorphe à l’associaèdre Kn.
Ces espaces de modules peuvent en fait être munis de deux décompositions cellulaires. La pre-
mière, dite grossière, est celle donnant l’isomorphisme avec l’associaèdre Kn. La seconde, dite
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fine, est déduite de la décomposition de Tn comme union des espaces de modules d’arbres mé-
triques Tn(t) modelés sur un arbre enrubanné t. Voir le schéma 1 pour les deux décompositions
de K4. L’image de cette décomposition fine sous le foncteur des chaînes cellulaires réalise alors
l’opérade ΩBAs. C’est l’opérade quasi-libre engendrée en arité n par les arbres enrubannés t
d’arité n, là où A∞ est l’opérade quasi-libre engendrée en arité n par une unique corolle d’arité
n. Cette opérade, qui peut être également construite comme image de l’opérade As sous les
foncteurs opéradiques bar B et cobar Ω, donne un modèle alternatif pour la notion d’algèbre
fortement associative à homotopie près.

Figure 1 – L’associaèdre K4 muni de sa décomposition A∞ à gauche et de sa
décomposition ΩBAs à droite

1.1.4. Les espaces de modules d’arbres métriques jaugés et enrubannés et leurs décompositions
cellulaires. Nous définissons ensuite les espaces de modules d’arbres métriques enrubannés et
jaugés d’arité n, également appelé arbres métriques 2-colorés enrubannés, et que l’on note CT n.
Ces espaces de modules admettent également une compactification naturelle en autorisant les
longueurs des arêtes internes à tendre vers l’infini, en tenant cette fois compte des relations sur
les longueurs imposées par les couleurs de l’arbre 2-coloré sous-jacent. Sa compactification CT n
est alors isomorphe au multiplièdre Jn. Il peut à son tour être muni de deux décompositions
cellulaires. La première est à nouveau appelée grossière et est déduite de l’isomorphisme avec
le multiplièdre Jn. La deuxième, appelée fine, est celle découlant de la décomposition de CT n
comme union des espaces de modules d’arbres métriques CT n(tc) modelés sur un arbre 2-coloré
enrubanné tc. Nous renvoyons au schéma 2 pour une illustration des deux décompositions de J3.
L’image de cette décomposition fine sous le foncteur des chaînes cellulaires définit cette fois un
nouveau bimodule opéradique : le bimodule opéradique ΩBAs − Morph qui encode la notion
nouvelle d’un ΩBAs-morphisme entre ΩBAs-algèbres.

Définition 16. Un ΩBAs-morphisme correspond à la donnée d’une opération pour chaque
type d’arbre 2-coloré enrubanné, et dont la différentielle est modelée sur le bord de codimension
1 de l’espace de module CT n(tc) dans CT n. Nous notons ΩBAs−Morph le bimodule opéradique
encodant cette notion.

1.1.5. Signes et étude détaillée des espaces de modules et des polytopes. Dans les sections
4 et 5, nous nous attelons à une étude détaillée des signes apparaissant dans les équations
des A∞ et ΩBAs-algèbres et des A∞ et ΩBAs-morphismes. Nous donnons en particulier des
réalisations explicites des associaèdres Kn et des multiplièdres Jn, reprises de [MTTV21] et
[LAM], et montrons que les conventions de signes pour les A∞-algèbres et A∞-morphismes
que nous utilisons dans cet article sont dictées par la structure du bord de ces polytopes. Nous
rappelons également la définition de l’opérade ΩBAs utilisée dans [MS06], et recourons au
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Figure 2 – Le multiplièdre J3 muni de sa décomposition A∞ à gauche et de sa
décomposition ΩBAs à droite

langage de cet article pour définir rigoureusement le bimodule opéradique ΩBAs −Morph. La
majeure partie de la section 5 est consacrée à l’étude détaillée des signes apparaissant dans le
bord des espaces de modules compactifiés CT n. Nous utilisons enfin les réalisations explicites de
Kn et de Jn pour donner une preuve géométrique de la proposition suivante.

Propositions 2 et 3. Il existe un morphisme d’opérades A∞ → ΩBAs et un morphisme
de bimodules opéradiques A∞ − Morph → ΩBAs − Morph. En particulier, une structure de
ΩBAs-algèbre induit naturellement une structure de A∞-algèbre et un ΩBAs-morphisme entre
ΩBAs-algèbres induit naturellement un A∞-morphisme entre A∞-algèbres.

1.2. Géométrie. La partie 2 est consacrée à la réalisation en théorie de Morse des espaces
de modules d’arbres métriques Tn et CT n comme espaces de modules d’arbres de gradient per-
turbé. Nous travaillons dans cette partie avec une fonction de Morse f définie sur une variété
riemannienne fermée et orientée M et satisfaisant la condition de Morse-Smale.

1.2.1. La structure de ΩBAs-algèbre sur les cochaînes de Morse. Nous rappelons dans la
section 1 la notion d’arbre de gradient (perturbé) associé à une donnée de perturbation sur un
arbre métrique enrubanné telle que définie dans [Abo11]. La langage que nous utilisons pour
décrire ces données de perturbation est tiré de [Mes18]. Étant donné un type d’arbre enrubanné t
d’arité n, ainsi qu’une collection de points critiques x1, . . . , xn, y de la fonction f , nous définissons
l’espace de modules

T Xt
t (y;x1, . . . , xn)

des arbres de gradient modelés sur t, associés à un choix de données de perturbation Xt sur
l’espace Tn(t), et reliant les points critiques x1, . . . , xn au point critique y. Sous une hypothèse
satisfaite génériquement sur les données de perturbation Xt, ces espaces de modules sont des
variétés orientables dont la dimension dépend de l’indice des points critiques et de l’arbre t.
Sous de nouvelles hypothèses dites admissibles sur les données de perturbation X, les espaces de
modules d’arbres de gradient de dimension 1 admettent alors une compactification en une variété
à bord de dimension 1 et dont le bord est modelé sur le bord des espaces de modules Tn(t). Nous
prouvons alors les deux théorèmes suivants.

Théorème 7. Il existe un choix de données de perturbation admissible sur la collection des
espaces de modules Tn.
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Théorème 9. Soit X un choix de données de perturbation admissible sur les espaces de
modules Tn. On définit pour tout arbre enrubanné t d’arité n l’opération mt comme

mt : C
∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(f)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=∑n
i=1 |xi|−e(t)

#T X
t (y;x1, · · · , xn) · y .

Cette collection d’opérations définit alors une structure de ΩBAs-algèbre sur les cochaînes de
Morse C∗(f).

Cette structure de ΩBAs-algèbre sur C∗(f) est plus canonique que la structure de A∞-algèbre
de [Abo11], car elle résulte du choix de décomposition cellulaire des espaces de modules Tn qui
s’impose naturellement lorsqu’on souhaite les réaliser en théorie de Morse. Notons également que
l’on retrouve la structure de A∞-algèbre sur C∗(f) an appliquant la Proposition 2.

1.2.2. ΩBAs-morphismes entre cochaînes de Morse. Soient f et g deux fonctions de Morse
sur M . Choisissons deux données de perturbation admissibles Xf et Xg définissant une structure
de ΩBAs-algèbre respectivement sur C∗(f) et C∗(g). Nous construisons dans la section 2 un
ΩBAs-morphisme de C∗(f) vers C∗(g), en réalisant cette fois les espaces de modules CT n comme
espaces de modules d’arbres de gradient : pour un arbre 2-coloré tc, les arêtes situées au-dessus de
la jauge correspondent alors à des trajectoires de gradient perturbé de f , et celles en-dessous de
la jauge à des trajectoires de gradient perturbé de g. Pour un choix de données de perturbation
Ytc sur CT n(tc) on note ces espaces de modules

CT Y
tc(y;x1, · · · , xn)

où x1, . . . , xn ∈ Crit(f) et y ∈ Crit(g). On dispose alors des mêmes résultats que précédemment.
Sous de nouvelles hypothèses d’admissibilité sur les données de perturbation Y sur les espaces de
modules CT n, les espaces de modules d’arbres de gradient 2-colorés de dimension 1 admettent
alors une compactification en une variété à bord de dimension 1 et dont le bord est modelé sur
le bord des espaces de modules CT n(tc). On portera toutefois attention au fait que les choix de
données de perturbation sur CT n doivent en plus être compatibles avec Xf et Xg.

Théorème 10. Il existe un choix de donnée de perturbations admissible sur les espaces de
modules CT n qui est compatible avec les données de perturbation Xf et Xg.

Théorème 12. Soit Y un tel choix de données de perturbation admissible sur CT n. On définit
pour tout arbre enrubanné tc d’arité n l’opération µtc comme

µYtc : C
∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=∑n
i=1 |xi|+|tc|

#CT Y
tc(y;x1, · · · , xn) · y .

Ces opérations définissent alors un ΩBAs-morphisme µY : (C∗(f),mXf

t )→ (C∗(g),mXg

t ).

En munissant C∗(f) et C∗(g) de leurs structures de A∞-algèbre induites, le Théorème 12 couplé
à la Proposition 3 fournit en particulier un A∞-morphisme de C∗(f) vers C∗(g).

1.2.3. Transversalité, orientations et signes. Les sections 3 et 4 sont consacrées à la preuve
des propositions et théorèmes des sections 1 et 2. Dans la section 3, on montre l’existence de
données de perturbation admissibles en utilisant un argument de Taubes tiré de [MS12]. On
traite la question des signes apparaissant dans les équations ΩBAs des Théorèmes 9 et 12 dans
la section 4. Cela implique de comprendre les orientations définies sur les espaces de modules
d’arbres de gradient utilisés dans la définition des opérations ΩBAs. Nous utilisons à cet effet le
langage idoine des suites exactes courtes signées de fibrés vectoriels. Nous prouvons en particulier
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un lemme technique permettant de construire des applications de recollement pour ces espaces
de modules. Nous montrons de plus que les opérations définies dans les Théorèmes 9 et 12
satisfont bien les équations ΩBAs, au détail près qu’il est nécessaire de modifier par un signe la
différentielle apparaissant dans [∂Morse,mt] et [∂Morse, µtc ].

1.3. Perspectives. Nous montrons dans la section 1 de la partie 3 la proposition suivante :

Proposition 20. Le ΩBAs-morphisme µY : (C∗(f),mXf

t ) −→ (C∗(g),mXg

t ) construit dans
le Théorème 12 est un quasi-isomorphisme.

La section 2 est consacrée à une suite de remarques sur l’équivalence des points de vue A∞
et ΩBAs comme modèles pour les algèbres fortement associatives à homotopie près et leurs
morphismes préservant le produit à homotopie près. La section 3 explique de manière concise
comment les structures A∞ apparaissent plus généralement en topologie symplectique. Nous
donnons en fait de plus amples détails à ce sujet dans le chapitre 1 de la partie 3 de ce manuscrit.
On détaille finalement dans la section 4 deux problématiques majeures découlant naturellement
des constructions effectuées dans cet article.

2. Higher algebra of A∞ and ΩBAs-algebras in Morse theory II

Ce deuxième article est également disponible sur arXiv (2102.08996, 79 pages) et soumis
pour publication. La numérotation des pages que nous utiliserons dans sa reproduction dans la
partie 2 est celle de l’article original. La première problématique formulée à la fin de [Maz21b]
constitue son point de départ et se formule de la manière suivante. Soient f, g deux fonctions de
Morse, Xf et Xg deux choix de données de perturbation sur Tn et Y et Y′ deux choix de données
de perturbation sur CT n compatibles à Xf et Xg. Le morphisme µY est-il toujours homotope au
morphisme µY′ au sens des A∞-morphismes ou des ΩBAs-morphismes ? Autrement dit, est-il
toujours possible de remplir le diagramme suivant (au sens A∞ ou ΩBAs)

C∗(f) C∗(g)

µY

µY
′

?

Comment se formule alors rigoureusement, en algèbre supérieure, l’unicité à homotopie près de
tels morphismes géométriques ?

2.1. Morphismes supérieurs entre A∞ et ΩBAs-algèbres.

2.1.1. Définition des morphismes supérieurs entre A∞-algèbres. Nous débutons la partie 1
en définissant dans la section 1 une notion satisfaisante de A∞-homotopie entre A∞-morphismes,
et plus généralement de morphismes supérieurs (ou homotopies supérieures) entre A∞-algèbres.
Nous commençons à cet effet par rappeler la définition d’une A∞-homotopie donnée dans [LH02]
et ses différentes formulations équivalentes en terme de construction bar et d’opérations. L’argu-
ment crucial est que l’on peut voir la catégorie des A∞-algèbres avec les A∞-morphismes comme
une sous-catégorie pleine de la catégorie des dg-cogèbres A∞ − alg ⊂ dg − Cog. Nous définissons
ensuite la dg-cogèbre cosimpliciale ∆∆∆n, munie du coproduit de Alexander-Whitney. Nous rappe-
lons également le langage des partitions chevauchantes d’un simplexe de [MS03], qui apparaît
naturellement dans la combinatoire du coproduit de Alexander-Whitney.

https://arxiv.org/abs/2102.08996
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Définition 6. Soient A et B deux A∞-algèbres. Un n-morphisme de A vers B est défini
comme un morphisme de dg-cogèbres

F : ∆∆∆n ⊗ T (sA) −→ T (sB) .

En utilisant la propriété universelle de la construction bar, cette définition se reformule bien en
termes opéradiques :

Définition 7. Soient A et B deux A∞-algèbres. Un n-morphisme de A vers B correspond
de manière équivalente à la donnée d’une collection d’applications f (m)

I : A⊗m −→ B de degrés
respectifs 1−m+ |I| pour I ⊂ ∆n et m ⩾ 1, et qui satisfont les équations suivantes,

[∂, I ] =

dim(I)∑

j=0

(−1)j
∂sing
j I

+
∑

I1∪···∪Is=I
± IsI1

+
∑
±

I

,

où les opérations mB
n sont représentées par les corolles rouges , les opérations mA

n par les
corolles bleues et les opérations f (m)

I par les corolles 2-colorées I .

Les A∞-morphismes correspondent alors bien aux 0-morphismes et les A∞-homotopies corres-
pondent bien aux 1-morphismes. Nous formulons une troisième définition équivalente de la notion
de n-morphisme dans la Proposition 2 :

Proposition 2. Soient A et B deux A∞-algèbres. Un n-morphisme de A vers B se définit
de manière équivalente comme un A∞-morphisme A→∆∆∆n ⊗B.

Dans cette proposition, ∆∆∆n est la dg-algèbre duale de ∆∆∆n et ∆∆∆n ⊗B est muni de la structure de
A∞-algèbre déduite des structures de dg-algèbre sur ∆∆∆n et de A∞-algèbre sur B.

2.1.2. Les n-multiplièdres. L’objectif de la section 2 est de construire une famille de polytopes
n − Jm appelés n-multiplièdres et encodant la notion de n-morphisme entre A∞-algèbres, de la
même manière que les associaèdres encodent la structure de A∞-algèbre et les multiplièdres
encodent la notion de A∞-morphisme. Nous commençons à cet effet par rappeler le relèvement
du coproduit de Alexander-Whitney en une application polytopale AW : ∆n → ∆n ×∆n défini
dans [MTTV21]. Nous montrons alors dans la Proposition 6 que les applications AW◦s :=

(id×(s−1)×AW) ◦ · · · ◦ (id×AW) ◦AW induisent un raffinement de la décomposition polytopale
de ∆n, dont les faces de dimension maximale sont en correspondance bijective avec les partitions
chevauchantes de ∆n. Nous définissons enfin des applications polytopales AWaaa généralisant les
itérées AW◦s et induisant une décomposition polytopale de ∆n identique à celle décrite pour les
applications AW◦s. Nous pouvons alors définir les n-multiplièdres n− Jm comme suit :

Définition 12. Le n-multiplièdre n−Jm est défini comme le polytope ∆n×Jm muni d’une
décomposition polytopale plus fine construite à l’aide des subdivisions de ∆n induites par les
applications AWaaa. Il modèle la combinatoire des équations A∞ pour les n-morphismes.

Le 1-multiplièdre 1− J3 est représenté sur le schéma 3.

2.1.3. Morphismes supérieurs entre ΩBAs-algèbres. Dans la section 3, nous définissons de
manière similaire la notion d’un n-morphisme entre ΩBAs-algèbres.

Définition 13. Un n-morphisme entre ΩBAs-algèbres est encodé par le bimodule opéra-
dique quasi-libre engendré par les paires (face I ⊂ ∆n , arbre 2-coloré enrubanné),

n− ΩBAs−Morph := FΩBAs,ΩBAs( I , I ,
I
,
I
, · · · , (I, SCRTn), · · · ; I ⊂ ∆n) ,
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Figure 3 – Le 1-multiplièdre ∆1 × J3

où SCRTn désigne l’ensemble des types d’arbres 2-colorés enrubannés tc. Une opération tI,c :=
(I, tc) est de degré |tI,c| := |I|+ |tc|. Sa différentielle est donnée par la règle prescrite par le bord
de l’espace de modules compactifié CT m(tc) que l’on combine à la combinatoire des partitions
chevauchantes, et à laquelle on ajoute la différentielle simpliciale de I. Autrement dit,

∂tI,c = t∂singI,c +±(∂CT mtc)I .

Ces morphismes supérieurs entre ΩBAs-algèbres sont encodés par les n-multiplièdres n − Jm
munis d’une décomposition polytopale plus fine : le facteur Jm de ∆n × Jm est cette fois muni
de sa décomposition ΩBAs et non plus de sa décomposition A∞. Les n-multiplièdres encodent
la notion de n-morphismes entre A∞-algèbres lorsqu’ils sont munis de leur décomposition A∞,
et la notion de n-morphismes entre ΩBAs-algèbres lorsqu’ils sont munis de leur décomposition
ΩBAs. On en déduit donc la proposition suivante.

Proposition 9. Un n-morphisme entre ΩBAs-algèbres induit naturellement un n-morphisme
entre A∞-algèbres.

2.1.4. Signes pour les morphismes supérieurs. Nous détaillons dans la section 4 les conven-
tions de signe des équations A∞ pour les morphismes supérieurs. Ces conventions de signe sont en
particulier dictées par le bord de réalisations explicites des n-multiplièdres. Nous définissons fina-
lement la notion de n-morphismes entre ΩBAs-algèbres dans de plus grands détails, en prêtant
de nouveau une attention particulière aux calculs de signes.

2.2. Les ensembles simpliciaux HOMA∞−Alg(A,B)•. La collection des dg-cogèbres ∆∆∆n

formant une dg-cogèbre cosimpliciale, les morphismes supérieurs entre deux A∞-algèbres A et B
s’agencent naturellement en un ensemble simplicial

HOMA∞−Alg(A,B)• := Homdg−Cog(∆∆∆
• ⊗ T (sA), T (sB)) .

La partie 2 a pour but d’étudier les propriétés de cet ensemble simplicial.

2.2.1. ∞-catégories, complexes de Kan et résolutions cosimpliciales. Nous rappelons à cet
effet dans la section 1 quelques notions de base sur les ∞-catégories. Une ∞-catégorie est un
ensemble simplicial X admettant la propriété de relèvement à gauche pour toutes les inclusions
de cornets internes Λkn → ∆n, où n ⩾ 2 et 0 < k < n. La notion d’une ∞-catégorie fournit un
modèle alternatif à celui d’une A∞-catégorie pour la notion de "catégorie dont la composition est
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associative à homotopie près". Si X admet également la propriété de relèvement à gauche pour
toutes les inclusions de cornets externes Λkn → ∆n, où n ⩾ 2 et k = 0, n, on parle alors d’un com-
plexe de Kan. Nous rappelons également un lemme de [Hir03] sur les résolutions cosimpliciales
dans les catégories de modèles, qui sera crucial dans la preuve du Théorème 1.

2.2.2. Le complexe de Kan HOMA∞−Alg(A,B)•. Nous formulons l’un des théorèmes princi-
paux de cet article dans la section 2.

Théorème 1. Si A et B sont deux A∞-algèbres, alors l’ensemble simplicial HOMA∞(A,B)•
est un complexe de Kan.

Si l’on s’intéresse uniquement à la structure de ∞-catégorie de HOMA∞−Alg(A,B)•, on peut en
fait entièrement décrire les remplissages de cornets internes Λkn → ∆n.

Proposition 11. Soit Λkn ⊂ ∆n un cornet interne de ∆n. On dispose alors d’une correspon-
dance bijective entre les remplissages

Λkn HOMA∞(A,B)•

∆n

et les familles de morphismes f (m)
∆n : A⊗m → B de degré 1−m− n où m ⩾ 1. Dit autrement, le

complexe de Kan HOMA∞(A,B)• est en particulier une ∞-catégorie algébrique.

Tandis que la preuve du Théorème 1 utilise le lemme de [Hir03] sur les résolutions cosimpliciales
dans la catégorie de modèles dg − Cogc des dg-cogèbres cocomplètes, la Proposition 11 admet
une preuve purement combinatoire en utilisant la définition des n-morphismes du point de vue
opéradique. Nous calculons ensuite de manière explicite tous les groupes d’homotopie simpliciaux
du complexe de Kan HOMA∞−Alg(A,B)• ainsi que leur loi de composition dans le Théorème 2.

2.2.3. n-A∞-foncteurs et pré-transformations naturelles entre A∞-catégories. Dans la section
3, nous commençons par généraliser la notion d’un n-morphisme entre A∞-algèbres à celle d’un
n-foncteur entre A∞-catégories. Les 0-foncteurs correspondent alors toujours aux A∞-foncteurs
et les 1-foncteurs correspondent aux A∞-homotopies entre A∞-foncteurs. Nous définissons éga-
lement l’ensemble simplicial HOMA∞−Cat(A,B)• formé des foncteurs supérieurs entre les A∞-
catégories A et B. Nous nous attendons à ce que cet ensemble simplicial soit à nouveau un
complexe de Kan, en adaptant la preuve du Théorème 1 au cadre de la théorie de l’homotopie
des dg-cocatégories.

Nous comparons ensuite l’ensemble simplicial HOMA∞−Cat(A,B)• à la A∞-catégorie des A∞-
foncteurs FuncA,B définie par Fukaya dans [Fuk02]. En appliquant à cette A∞-catégorie le nerf
simplicial NA∞ défini par Faonte dans [Fao17], on obtient en effet un nouvel ensemble simplicial
NA∞(FuncA,B) qui a la propriété d’être une ∞-catégorie. Nous en explicitons en particulier les
n-simplexes. Nous expliquons ensuite pourquoi les ensembles simpliciaux HOMA∞−Cat(A,B)• et
NA∞(FuncA,B) diffèrent fondamentalement l’un de l’autre. Les simplexes de HOMA∞−Cat(A,B)•
correspondent à des homotopies supérieures, tandis que les simplexes de NA∞(FuncA,B) doivent
être interprétés comme des transformations naturelles supérieures entre les A∞-catégories A et
B. L’ensemble simplicial HOMA∞−Cat(A,B)• est donc un complexe de Kan car une homotopie
est toujours inversible à homotopie près, tandis que l’ensemble simplicial NA∞(FuncA,B) est une
∞-catégorie car un A∞-foncteur n’est pas nécessairement toujours inversible à homotopie près.



2. HIGHER ALGEBRA OF A∞ AND ΩBAs-ALGEBRAS IN MORSE THEORY II 29

2.2.4. La ∞-catégorie des A∞-algèbres ? Dans la section 4, nous nous intéressons au pro-
blème du relèvement de la composition des A∞-morphismes aux n−A∞-morphismes . L’objectif
est ici de montrer que les ensembles simpliciaux HOMA∞−Alg(A,B)• forment en fait un enri-
chissement simplicial de la catégorie A∞ − alg. Nous détaillons à cet effet deux approches. La
première utilise la formulation ∆∆∆n ⊗ T (sA) → T (sB) pour les n-morphismes. Nous montrons
que du fait que le coproduit de Alexander-Whitney vu comme morphisme de la dg-cogèbre ∆∆∆n

vers la dg-cogèbre ∆∆∆n⊗∆∆∆n n’est pas compatible aux coproduits, l’approche naturelle pour com-
poser les morphismes supérieurs en utilisant cette définition ne peut aboutir. On peut toutefois
montrer que le morphisme de Alexander-Whitney s’étend en fait en un A∞-morphisme de la dg-
cogèbre ∆∆∆n vers la dg-cogèbre ∆∆∆n⊗∆∆∆n. La deuxième approche consiste à utiliser la Proposition
2 et à définir un n-morphisme comme un A∞-morphisme A → ∆∆∆n ⊗ B. En utilisant la donnée
d’une diagonale sur le multiplièdre (voir par exemple [LAM]), il est alors possible de relever la
composition sur les A∞-morphismes à une composition sur les morphismes supérieurs. Savoir si
cette composition respecte bien les faces et dégénérescences simpliciales et si elle est associative
demeure toutefois une question ouverte que nous comptons étudier dans le futur. S’en suit fina-
lement une discussion sur les travaux de Faonte, Lyubashenko, Fukaya et Bottman traitant de
la preuve d’un résultat de nature similaire utilisant les A∞-catégories FuncA,B. Nous renvoyons
au chapitre 1 de la partie 3 de ce manuscrit pour plus de détails au sujet de leurs travaux.

2.3. Morphismes supérieurs en théorie de Morse.

2.3.1. Construction de morphismes supérieurs entre ΩBAs-algèbres en théorie de Morse.
Dans la section 1, nous réalisons en théorie de Morse cette algèbre supérieure des ΩBAs-
algèbres. Dit autrement, nous construisons des morphismes supérieurs géométriques entre les
ΩBAs-algèbres de deux fonctions de Morse (C∗(f),mXf

t ) et (C∗(g),mXg

t ). Nous définissons à
cet effet la notion de n-simplexe de données de perturbation Y∆n,tc sur les espaces de modules
CT (tc). Soient x1, . . . , xm des points critiques de la fonction de Morse f et y un point critique
de g. On peut alors définir l’espace de modules

CT Y∆n,tc
∆n,tc

(y;x1, . . . , xm) :=
⋃

δ∈∆̊n

CT Yδ,tc
tc (y;x1, . . . , xm) .

Sous certaines hypothèses génériques sur Y∆n,tc , cet espace de modules est une variété orientable
dont la dimension dépend de tc, n et des indices de x1, . . . , xm et y. Nous détaillons alors des
conditions de compatibilité pour le recollement sur les n-simplexes de données de perturbations :
elles sont choisie de sorte à ce qu’un espace de modules CT ∆n,tc(y;x1, . . . , xm) de dimension 1 se
compactifie en une variété orientable dont le bord est modelé sur les équations ΩBAs pour les
n-morphismes. La formulation de ces conditions de recollement utilise en particulier le relèvement
du coproduit de Alexander-Whitney au niveau des polytopes AW que nous avions utilisé pour
définir les n-multiplièdres. Un n-simplexe de données de perturbation vérifiant ces conditions est
dit admissible.

Théorème 4. Il existe un n-simplexe de données de perturbations admissible et compatible
avec les données de perturbation Xf et Xg.

Théorème 6. Soit (YI,m)m⩾1
I⊂∆n un n-simplexe de données de perturbation admissible. On

définit pour tout arbre 2-coloré tc et tout I ⊂ ∆n l’opération µI,tc comme

µI,tc : C
∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xm 7−→
∑

|y|=∑m
i=1 |xi|+|tI,c|

#CT YI,tc
I,tc

(y;x1, · · · , xm) · y .
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Ces opérations définissent alors un n-morphisme entre les ΩBAs-algèbres des cochaînes de Morse
(C∗(f),mXf

t ) et (C∗(g),mXg

t ).

Il apparaît de plus clair qu’étant donné deux variétés symplectiques M et N , cette construction
en théorie de Morse devrait pouvoir s’adapter en théorie de Floer pour définir des n-foncteurs
géométriques entre les catégories de Fukaya Fuk(M) et Fuk(N). Ces n-foncteurs seraient défi-
nis par des comptages de disques cousus pseudo-holomorphes dont la couture s’envoie sur une
correspondance lagrangienne de M0 vers M1. L’étude de tels espaces de modules fait l’objet de
l’article [MWW18] et nous renvoyons à la sous-section 2.1 de la partie 3 de ce manuscrit pour
plus de détails à ce sujet.

2.3.2. Propriétés de remplissage pour les morphismes supérieurs géométriques. Définissons
pour tout n ⩾ 0,

HOMgeom
ΩBAs(C

∗(f), C∗(g))n ⊂ HOMΩBAs(C
∗(f), C∗(g))n

le sous-ensemble des n-morphismes µ de C∗(f) vers C∗(g) pour lesquels il existe un n-simplexe de
données de perturbation Y∆n tel que µ = µY∆n . On dispose alors des propriétés de remplissage
suivantes.

Théorèmes 7 et 8. Pour tout choix de données de perturbations admissibles YS paramé-
tré par un sous-complexe simplicial S ⊂ ∆n, il existe un n-simplexe admissible de données de
perturbation Y∆n qui étend YS. Par conséquent, l’ensemble HOMgeom

ΩBAs(C
∗(f), C∗(g))n définit

bien un ensemble simplicial qui est un sous-ensemble simplicial de HOMΩBAs(C
∗(f), C∗(g))•.

L’ensemble simplicial HOMgeom
ΩBAs(C

∗(f), C∗(g))• est de plus alors un complexe de Kan qui est
contractile.

En corollaire direct de ce théorème se trouve la réponse à la problématique ayant initialement
motivé cet article.

Corollaire 1. Soient Y et Y′ deux choix de données de perturbation admissibles sur les
espaces de modules CT m. Alors les morphismes µY et µY′ sont toujours homotopes en tant que
ΩBAs-morphismes,

C∗(f) C∗(g)

µY

µY
′

.

Suit finalement la section 2 contenant les détails techniques sur les arguments de transver-
salité, les orientations des espaces de modules et les signes, et les preuves des Théorèmes 4 et 7.
Les arguments analytiques invoqués sont en particulier de même nature que ceux utilisés dans
notre premier article.

3. Développements et pistes de recherche futures

3.1. Algèbre supérieure des arbres multi-jaugés et des surfaces cousues. Commen-
çons par formuler la deuxième problématique découlant de notre premier article. Considérons
trois fonctions de Morse f0, f1, f2, des données de perturbation admissibles Xi et des données de
perturbation admissibles Yij définissant trois ΩBAs-morphismes

µY
01

: (C∗(f0),mX0

t ) −→ (C∗(f1),mX1

t ) ,

µY
12

: (C∗(f1),mX1

t ) −→ (C∗(f2),mX2

t ) ,

µY
02

: (C∗(f0),mX0

t ) −→ (C∗(f2),mX2

t ) .
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Est-il possible de construire une ΩBAs-homotopie telle que µY02 ≃ µY
12 ◦ µY01 ? Ce premier

chapitre est consacré à la résolution de cette question ainsi qu’à une série de développements et
d’idées autour de l’algèbre supérieure encodée par les espaces de modules d’arbres multi-jaugés
et les espaces de modules de surfaces cousues.

3.1.1. Espaces de modules d’arbres bijaugés métriques. Nous débutons la section 1 par la
définition d’une composition associative pour les ΩBAs-morphismes induisant la composition
standard de ΩBAs-morphismes sous le morphisme de bimodules opéradiques A∞ −Morph →
ΩBAs − Morph. Nous décrivons ensuite les espaces de modules d’arbres métriques bijaugés
2GT m ainsi que leur compactification. Nous montrons alors que l’intuition première de réaliser
une ΩBAs-homotopie entre les ΩBAs-morphismes µY02 et µY12 ◦µY01 en comptant des arbres de
gradient bijaugés ne peut se réaliser de manière immédiate. La description des strates de bord
des espaces de modules compactifiés 2GT m ne correspond en effet pas à la combinatoire attendue
d’une telle ΩBAs-homotopie, et certaines de ces strates sont de plus identifiées à des produits
fibrés, donc ne se comportent pas de manière satisfaisante sous le foncteur des chaînes cellulaires.
Si l’on souhaite produire une ΩBAs-homotopie µY02 ≃ µY12◦µY01 il est donc nécessaire de trouver
un argument supplémentaire s’appliquant directement au niveau de la théorie de Morse.

3.1.2. Espaces de modules de disques cousus. Mau, Wehrheim et Woodward rencontrent un
problème de nature similaire dans [MWW18], en étudiant la composition de A∞-foncteurs
géométriques entre catégories de Fukaya. Nous rappelons deux résultats majeurs de leurs travaux
dans la section 2.

Nous décrivons dans un premier temps la construction de [MWW18] d’un A∞-foncteur
ϕL01 : Fuk(M0) → Fuk(M1) associé à une correspondance lagrangienne L01 entre deux varié-
tés symplectiques (fermées monotones) M0 et M1. Ses opérations d’arité n sont définies par un
comptage de disques cousus pseudo-holomorphes, dont le bord contient n points marqués et s’en-
voie sur des lagrangiennes de M0, et dont la couture s’envoie sur la correspondance lagrangienne
L01. Nous expliquons alors comment Mau, Wehrheim et Woodward parviennent à construire une
A∞-homotopie ϕL01◦L12 ≃ ϕL12 ◦ ϕL01 où L01 ◦ L12 désigne la composition géométrique de deux
correspondances lagrangiennes L01 et L12, à travers un comptage de disques bicousus pseudo-
holomorphes à points marqués sur leur bord et dont la première couture s’envoie sur L01 et la
deuxième sur L12. Il est clair que leurs arguments devraient également s’appliquer dans le cas
des ΩBAs-morphismes entre cochaînes de Morse, résolvant la question initiale de la section 1.

Nous décrivons ensuite leur construction d’un A∞-foncteur de catégorification

Fuk(M−
0 ×M1) −→ Func (Fuk(M0),Fuk(M1))

défini par un comptage de disques cousus pseudo-holomorphes à points marqués sur leur bord
et leur couture, et où Func (Fuk(M0),Fuk(M1)) désigne la A∞-catégorie des A∞-foncteurs de
Fuk(M0) vers Fuk(M1). Il relève en fait au niveau dg le foncteur de 2-catégories Floer → Cat
construit dans [WW10a], où Floer désigne la 2-catégorie dont les objets sont des variétés sym-
plectiques et dont les catégories de morphismes sont les catégories de Donaldson Don(M−

0 ×M1).

3.1.3. Vers la définition de la (A∞,2)-catégorie Symp. La première question découlant na-
turellement du travail de [WW10a] est de savoir s’il est possible de relever leur construction
au niveau dg, c’est-à-dire de remplacer les catégories de Donaldson Don(M−

0 × M1) par des
catégories de Fukaya Fuk(M−

0 ×M1). Tandis qu’une 2-catégorie peut être définie comme une
catégorie enrichie en catégories, il n’existe toutefois pas pour le moment de notion satisfaisante
d’une catégorie qui serait enrichie en A∞-catégories. Nous décrivons dans la section 3 les avancées
de Bottman dans cette direction, qui se propose de définir une (A∞, 2)-catégorie dont les objets
seraient des variétés symplectiques fermées monotones M et les A∞-catégories de morphismes
les catégories de Fukaya Fuk(M−

0 ×M1). Il conjecture que les espaces de modules 2Mnnn de witch
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curves, qui sont des sphères multi-cousues dont les coutures se rencontrent en un unique point,
devraient encoder la notion recherchée d’une telle catégorie enrichie en A∞-catégories. Il montre
de plus dans [Bot19b] que la compactification des espaces de modules 2Mnnn admet une stratifi-
cation qui se décrit de manière ad hoc par des polytope abstraits, appelés les 2-associaèdres et
définis dans [Bot19a]. Ces compactifications font toutefois de nouveau apparaître des produits
fibrés dans leurs strates de bord, ce qui rend leur réalisation au niveau dg problématique.

Nous concluons cette section en formulant un ensemble de conjectures autour des liens entre
les 2-associaèdres de [Bot19b] et les n-multiplièdres définis [Maz21b]. De manière sommaire,
nous conjecturons que

(i) Le polytope [0, 1]× Jm peut être muni d’une décomposition polytopale raffinée, conte-
nant à la fois la décomposition polytopale du 2-associaèdre 2QDm,1 et celle du 1-
multiplièdre 1− Jm.

(ii) Les espaces de modules compactifiés de disques à n coutures et m + 1 points marqués
sur leur bord nQDm,1 devraient permettre de définir des diagrammes de (n− 1)−A∞
foncteurs entre catégories de Fukaya.

Ces deux conjectures sont illustrées dans le schéma 4. On représente à gauche la décomposition
polytopale sur [0, 1]× J3 raffinant celles du 2-associaèdre 2QD3,1 et du 1-multiplièdre 1− J3. Le
diagramme de droite correspond à un diagramme dont les sommets sont des A∞-foncteurs, les
1-flèches de A∞-homotopies et les 2-flèches des 2−A∞-foncteurs, qui serait déduit d’un comptage
de disques tricousus pseudo-holomorphes à points marqués sur leur bord et donc la i-ème couture
s’envoie sur la correspondance lagrangienne Li−1,i.

ϕL23 ◦ ϕL12 ◦ ϕL01 ϕL12◦L23 ◦ ϕL01

ϕL23 ◦ ϕL01◦L12 ϕL01◦L12◦L23

.

Figure 4

3.1.4. Le "2-foncteur" Symp→ A∞ − Cat. Nous décrivons finalement dans la section 4 plu-
sieurs constructions réalisées par Fukaya dans [Fuk17], dans l’optique de définir un "2-foncteur"
Symp→ A∞ − Cat entre les "2-catégories" Symp et A∞ − Cat.

3.2. Produits tensoriels de A∞-algèbres et de A∞-morphismes. Nous exposons dans
la section 1 les premiers résultats d’une collaboration en cours avec Guillaume Laplante-Anfossi
autour de la définition d’une structure de catégorie symétrique monoïdale à homotopie près sur
la catégorie A∞ − alg. Nous rappelons en premier lieu que la donnée d’un morphisme d’opérades
A∞ → A∞ ⊗ A∞ permet de définir de manière naturelle une structure de A∞-algèbre sur le
produit tensoriel A ⊗ B de deux A∞-algèbres A et B. Un telle diagonale pour l’opérade A∞
est définie dans [MS06], puis relevée au niveau des polytopes comme une famille d’applications
polytopales ∆Kn : Kn → Kn ×Kn dans [MTTV21].
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Guillaume Laplante-Anfossi et moi-même adaptons dans [LAM] les méthodes de [MTTV21]
afin de définir une diagonale ∆Jn : Jn → Jn × Jn sur les multiplièdres. En posant M∞ :=
A∞ −Morph, on en déduit alors un morphisme de bimodules opéradiques M∞ → M∞ ⊗M∞
compatible à la diagonale de [MS06] sur l’opérade A∞, dont nous calculons en particulier une
formule explicite. La donnée de cette diagonale sur M∞ nous permet finalement de définir le
produit tensoriel de deux A∞-morphismes F1 : A1 → B1 et F2 : A2 → B2, que nous notons
F1 ⊗∞ F2 : A1 ⊗∞ B1 → A2 ⊗∞ B2.

Un certain nombre de résultats prouvés dans [MSS02] et [MS06] suggèrent que la structure
induite sur la catégorie A∞ − alg par la donnée d’une diagonale sur A∞ et d’une diagonale sur
M∞, serait celle d’une structure de catégorie symétrique monoïdale à homotopie près. Dans l’op-
tique de parvenir à la définition d’une telle structure sur A∞ − alg, nous nous proposons comme
première étape de comprendre quelles homotopies supérieures découlent au niveau des polytopes
du défaut de coassociativité de la diagonale définie sur les associaèdres Kn dans [MTTV21].

Nous décrivons finalement deux applications possibles à la définition du produit tensoriel de
A∞-algèbres et de A∞-morphimes. La première est un résultat d’Amorim qui démontre dans
[Amo17] une formule de Künneth pour l’algèbre de Fukaya d’une lagrangienne : la A∞-algèbre
de Fukaya F(L1 × L2) d’une lagrangienne produit L1 × L2 est A∞-quasi-isomorphe au produit
tensoriel des algèbres de Fukaya des lagrangiennes F(L1 × L2) ≃ F(L1)⊗∞ F(L2). Ce résultat
est en fait adapté au niveau des catégories de Fukaya dans [Fuk17], et est en lien avec les
constructions décrites sur Symp dans le chapitre 1. La deuxième application est un travail en
cours de Lipshitz, Oszváth et Thurston en homologie de Heegaard Floer, dont l’article [LOT21]
constitue la première étape.

3.3. Nouvelles structures algébriques sur les chaînes symplectiques et sur les
chaînes de Rabinowitz-Floer. L’objectif de ce dernier chapitre est de décrire les grandes lignes
d’un travail en cours sur la construction de nouvelles opérations sur les chaînes symplectiques
SC∗(W ) et les chaînes de Rabinowitz-Floer SC∗(∂W ), qui sont deux dg-modules associés à une
variété de Liouville W et dont la différentielle est définie en théorie de Floer. Le point de départ
de ce projet est la série d’articles en cours [CHO20], [CO20] et [CHOb] de Cieliebak, Hingston
et Oancea sur un théorème de dualité de Poincaré pour l’homologie de Rabinowitz-Floer.

Nous décrivons dans la section 1 un programme en plusieurs étapes dont l’objectif final est
la réalisation d’une structure de V∞-algèbre au sens de [TZ07a] sur les chaînes symplectiques
SC∗(W ) d’une variété de Liouville W . De manière sommaire, une structure de V∞-algèbre sur un
dg-module A correspond à la donnée d’opérations à m entrées et k sorties définies sur A, telles
que m+k ⩾ 2 et k ⩾ 1 et qui peuvent être représentées par des disques avec m pointes positives
et k pointes négatives sur leur bord. La différentielle d’une telle opération est alors définie par
une certaine somme de disques nodaux avec des pointes sur leur bord, tels que le disque marqué
obtenu par recollement au niveau de leur unique noeud soit exactement le disque étiquetant
l’opération considérée. La structure de V∞-algèbre est en fait encodée par une diopérade, appelée
la diopérade V∞. Poirier et Tradler montre dans [PT19] que cette diopérade fournit exactement
une résolution cofibrante V∞ := ΩV ¡ → V dans le cadre de la dualité de Koszul des diopérades de
[Gan03], où V est la diopérade encodant la structure d’algèbre associative munie d’un coproduit
interne symétrique et invariant.

La structure de V∞-algèbre est encodée par une famille de polytopes, appelés assocoipaèdres et
que Poirier et Tradler construisent dans [PT18]. Ils montrent en fait que les assocoipaèdres sont
les polytopes ∆n×Km munis d’une décomposition polytopale plus fine. Tandis que leur construc-
tion des assocoipaèdres s’appuie sur la méthode secondary polytope de [GKZ94], nous prévoyons
de montrer que ces polytopes s’obtiennent en fait de manière similaire aux n-multiplièdres, en
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raffinant directement la subdivision de ∆n selon chaque face deKm. L’objectif suivant serait alors
de montrer qu’il est possible de réaliser ces polytopes de manière géométrique, comme espaces
de modules de disques à m+ 1 points marqués sur leur bord et munis d’une famille de 1-formes
paramétrée par ∆n. La règle de compactification pour ces espaces de modules découlerait de la
description des subdivisions de ∆n définies par l’opérade V∞. De tels espaces de modules se réali-
seraient finalement sur les chaînes symplectiques SC∗(W ) d’une variété de Liouville, en utilisant
les techniques de courbes pseudo-holomorphes de [CO20].

Il serait également intéressant de définir la notion d’un V∞-morphisme entre V∞-algèbres, de
manière à définir la catégorie V∞ − alg des V∞-algèbres avec V∞-morphismes. Une telle définition
de V∞-morphisme devrait en particulier s’inscrire dans un théorème de transfert homotopique
pour les V∞-algèbres. Une piste serait de comprendre le cadre de la dualité de Koszul de [Gan03]
afin d’associer un analogue de la construction bar classique à une V∞-algèbre, qui permettrait une
définition naturelle de la notion des V∞-morphisme et de leur composition. Nous mentionnons que
nous sommes tout de même déjà parvenus à définir la notion de V2-morphisme entre V2-algèbres,
en recourant au point de vue de [TZ07b].

Nous donnons enfin dans la section 2 plusieurs pistes de réflexion à explorer une fois cette pre-
mière étape réalisée. Nous souhaiterions en premier lieu comprendre quelle structure serait induite
sur les chaînes de Rabinowitz-Floer par la structure de V∞-algèbre sur les chaînes symplectiques.
D’après [Ven18] et [CO18], l’homologie de Rabinowitz-Floer peut en effet être construite comme
le cône d’une application de chaînes SC−∗(W )→ SC∗(W ) qui est canonique à homotopie près.
Dans cette direction, Cieliebak, Hingston et Oancea montrent également dans [CHO20] que la
cohomologie de Rabinowitz-Floer d’une variété de Liouville peut être munie d’une structure de
bigèbre de coFrobenius involutive et biunitaire. Un objectif à plus long terme serait également
de parvenir à construire de nouvelles opérations en topologie des cordes à partir des nouvelles
structures ainsi obtenues, en mettant en pratique la devise générale que toute structure sur les
chaînes symplectiques du cotangent T ∗M d’une variété M devrait avoir une contrepartie sur les
chaînes singulières de l’espace de lacets libres LM de M .
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HIGHER ALGEBRA OF A∞ AND ΩBAs-ALGEBRAS IN MORSE THEORY I

THIBAUT MAZUIR

Abstract. Elaborating on works by Abouzaid and Mescher, we prove that for a Morse function on
a smooth compact manifold, its Morse cochain complex can be endowed with an ΩBAs-algebra struc-
ture by counting moduli spaces of perturbed Morse gradient trees. This rich structure descends to its
already known A∞-algebra structure. We then introduce the notion of ΩBAs-morphism between two
ΩBAs-algebras and prove that given two Morse functions, one can construct an ΩBAs-morphism
between their associated ΩBAs-algebras by counting moduli spaces of two-colored perturbed Morse
gradient trees. This morphism induces a standard A∞-morphism between the induced A∞-algebras.
We work with integer coe�cients, and provide to this extent a detailed account on the sign con-
ventions for A∞ (resp. ΩBAs)-algebras and A∞ (resp. ΩBAs)-morphisms, using polytopes (resp.
moduli spaces) which explicitly realize the dg-operadic objects encoding them. Our proofs also in-
volve showing at the level of polytopes that an ΩBAs-morphism between ΩBAs-algebras naturally
induces an A∞-morphism between A∞-algebras. This paper is adressed to people acquainted with
either di�erential topology or algebraic operads, and written in a way to be hopefully understood
by both communities. It comes in particular with a short survey on operads, A∞-algebras and
A∞-morphisms, the associahedra and the multiplihedra. All the details on transversality, gluing
maps, signs and orientations for the moduli spaces de�ning the algebraic structures on the Morse
cochains are thorougly carried out. It moreover lays the basis for a second article in which we solve
the problem of �nding a satisfactory homotopic notion of higher morphisms between A∞-algebras
and between ΩBAs-algebras, and show how this higher algebra of A∞ and ΩBAs-algebras naturally
arises in the context of Morse theory.

The associahedron K4 and the multiplihedron J3 ...

1
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Introduction

Outline of the paper and main results. � Our �rst part begins with concise and self-contained
recollections on the theory of algebraic (non-symmetric) operads, that we subsequently specialize to
the case of A∞-algebras, A∞-morphisms between them and their homotopy theory. We introduce
in particular the convenient setting of operadic bimodules to de�ne the operadic bimodule A∞ −
Morph encoding A∞-morphisms between A∞-algebras. We then recall how the operad A∞ (resp.
the operadic bimodule A∞ − Morph) can be realized using families of polytopes, known as the
associahedra (resp. multiplihedra). The associahedra can themselves be realized as geometric moduli
spaces : the compacti�ed moduli spaces of metric stable ribbon trees T n. These moduli spaces come
with a re�ned cell decomposition encoding the operad ΩBAs. Likewise, the multiplihedra can be
realized as the compacti�ed moduli spaces of two-colored metric stable ribbon trees CT n. Endowing
these moduli spaces with a re�ned cell decomposition, we introduce a new operadic bimodule : the
operadic bimodule ΩBAs−Morph, encoding ΩBAs-morphisms between ΩBAs-algebras.

De�nition 16. The operadic bimodule ΩBAs −Morph is the quasi-free (ΩBAs,ΩBAs)-operadic
bimodule generated by the set of two-colored stable ribbon trees

ΩBAs−Morph := FΩBAs,ΩBAs( , , , , · · · ) ,
where a two-colored stable ribbon tree tg with e(t) internal edges and whose gauge crosses j vertices
has degree |tg| := j − e(t)− 1. The di�erential of a two-colored stable ribbon tree tg is given by the
signed sum of all two-colored stable ribbon trees obtained from tg under the rule prescribed by the

top dimensional strata in the boundary of CT n(tg).

The ΩBAs framework provides another template to study algebras which are homotopy-associative,
together with morphisms between them which preserve the product up to homotopy. This is followed
by a comprehensive study on the A∞ and ΩBAs sign conventions. In the A∞ case, we show how
the two usual sign conventions for A∞-algebras and A∞-morphisms are naturally induced by the
shifted bar construction viewpoint. Using the Loday realizations of the associahedra [MTTV19] and
the Forcey-Loday realizations of the multiplihedra [MMV], we give a complete proof of the following
two folklore propositions :

Propositions 4 and 5. The Loday realizations of the associahedra and the Forcey-Loday realiza-
tions of the multiplihedra determine the usual sign conventions for A∞-algebras and A∞-morphisms
between them.

On the ΩBAs side, we start by recalling the formulation of the operad ΩBAs by Markl and
Shnider [MS06]. We then proceed to study the moduli spaces of stable two-colored metric ribbon
trees CT n(tg) and compute the signs arising in the top dimensional strata of their boundary in Propo-
sitions 8 to 12. This allows us to complete our de�nition of the operadic bimodule ΩBAs−Morph
by making explicit the signs for the action-composition maps and the di�erential. We �nally give
an alternative and more geometric construction of the morphism of operads A∞ → ΩBAs de�ned
in [MS06], using the realizations of the associahedra as geometric moduli spaces. We then build an
explicit morphism of operadic bimodules A∞ −Morph→ ΩBAs−Morph applying the same ideas
to the moduli spaces realizing the multiplihedra.
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Propositions 2 and 3. There exist a geometric morphism of operads A∞ → ΩBAs and a geometric
morphism of operadic bimodules A∞ −Morph→ ΩBAs−Morph.

Morse theory corresponds to the study of manifolds endowed with aMorse function, i.e. a function
whose critical points are non-degenerate. Given a smooth compact manifoldM , Fukaya constructed
in [Fuk97] an A∞-category whose objects are functions fi onM , whose spaces of morphisms between
two functions fi and fj (such that fi−fj is Morse) are the Morse cochain complexes C∗(fi−fj), and
whose higher multiplications are de�ned by counting moduli spaces of Morse ribbon trees. Adapting
this construction to the case of a single Morse function f on M , Abouzaid de�nes in [Abo11] an
A∞-algebra structure on the Morse cochains C∗(f) by counting moduli spaces of perturbed Morse
gradient ribbon trees. His work was subsequently continued by Mescher in [Mes18].

In the second part of this paper, we adapt the constructions of Abouzaid [Abo11], using the termi-
nology of Mescher [Mes18], to perform two constructions on the Morse cochains C∗(f). Firstly, we
introduce the notion of smooth choices of perturbation data Xn on the moduli spaces Tn that we
use to de�ne the moduli spaces of perturbed Morse gradient trees T Xt

t (y;x1, . . . , xn) modeled on a
stable ribbon tree type t.

Theorems 7 and 8. Under some generic assumptions on the choice of perturbation data {Xn}n>2,

the moduli spaces T Xt
t (y;x1, . . . , xn) are orientable manifolds. If they have dimension 0, they are

compact. If they have dimension 1, they can be compacti�ed to compact manifolds with boundary,
whose boundary is modeled on the boundary of the moduli spaces Tn(t).

We then show that under a generic choice of perturbation data {Xn}n>2 the Morse cochains C∗(f)
can be endowed with an ΩBAs-algebra structure, by counting 0-dimensional moduli spaces of Morse
gradient ribbon trees.

Theorem 9. De�ning for every n and every stable ribbon tree type t of arity n the operation mt as

mt : C∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(f)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=∑n
i=1 |xi|−e(t)

#T X
t (y;x1, · · · , xn) · y ,

these operations endow the Morse cochains C∗(f) with an ΩBAs-algebra structure.

This ΩBAs-algebra structure is more canonical than the A∞-algebra structure of Abouzaid, as the
ΩBAs-cell decomposition of the associahedra is the natural cell decomposition arising when realizing
the moduli spaces of stable metric ribbon trees in Morse theory. This cell decomposition is also more
appropriate for a rigorous proof of Theorem 7, than the A∞-cell decomposition used in [Abo11]. We
recover the A∞-algebra structure of Abouzaid using the morphism A∞ → ΩBAs of Proposition 2.

Given now two Morse functions f and g, we can perform the same constructions in Morse theory
using this time the moduli spaces CT n as blueprints. The counterparts of Theorems 7 and 8 still
hold. Moreover, given two generic choices of perturbation data Xf and Xg, we construct an ΩBAs-
morphism between the ΩBAs-algebras C∗(f) and C∗(g) by counting 0-dimensional moduli spaces of
two-colored Morse gradient trees. This construction provides a �rst geometric and explicit instance
of the newly de�ned notion of ΩBAs-morphism.
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Theorem 12. Let (Yn)n>1 be a generic choice of perturbation data on the moduli spaces CT n.
De�ning for every n and every two-colored stable ribbon tree type tg of arity n the operations µtg as

µYtg : C∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=∑n
i=1 |xi|+|tg |

#CT Y
tg(y;x1, · · · , xn) · y .

these operations �t into an ΩBAs-morphism µY : (C∗(f),mXf
t )→ (C∗(g),mXg

t ).

This ΩBAs-morphism yields in particular an A∞-morphism between two A∞-algebras, using the
morphism of Proposition 3. These constructions are followed by a section dedicated to a compre-
hensive proof of Theorems 7 and 10, which clari�es and completes the constructions of [Abo11]. Our
last section on signs and orientations is dedicated to a thorough sign check for Theorems 9 and 12.
We show that we have in fact de�ned a twisted ΩBAs-algebra structure on the Morse cochains,
and a twisted ΩBAs-morphism between two Morse cochains complexes : when the manifold M is
odd-dimensional, the word "twisted" can be dropped.

De�nition 39. A twisted A∞-algebra is a dg-Z-module A endowed with two di�erent di�erentials
∂1 and ∂2, and a sequence of degree 2− n operations mn : A⊗n → A such that

[∂,mn] = −
∑

i1+i2+i3=n
26i26n−1

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,

where [∂, ·] denotes the bracket for the maps (A⊗n, ∂1) → (A, ∂2). A twisted ΩBAs-algebra and a
twisted ΩBAs-morphism are de�ned similarly.

Our computations are performed using the convenient viewpoint of signed short exact sequences
of vector bundles. This last section also gives us the opportunity to recall in detail the basic
method to compute the relations satis�ed by algebraic operations de�ned in the context of Morse
theory or symplectic topology : counting the points on the boundary of an oriented 1-dimensional
manifold. We moreover pay a particular attention to the construction of explicit gluing maps for
the 1-dimensional moduli spaces of perturbed Morse gradient trees.

Finally, the third and last part is composed of a series of developments on the algebraic and
geometric constructions performed in the �rst two parts. We show in particular that :

Proposition 20. The twisted ΩBAs-morphism µY : (C∗(f),mXf
t ) −→ (C∗(g),mXg

t ) constructed in
Theorem 12 is a quasi-isomorphism.

We also give a brief overview on the A∞-structures appearing in symplectic topology through Floer
theory, which is sometimes presented as an in�nite-dimensional analogue of Morse theory. In the
last section we formulate two problems naturally arising from our constructions. Problem 1 is solved
in our second article [Maz21] while Problem 2 is still a work in progress.

Towards article II . � This article completes the existing works on strongly homotopy associative
structures arising from Morse theory and clari�es the analytical and algebraic technicalities that they
involve. It moreover lays the ground for a second article [Maz21] dealing with two questions. First,
understand and de�ne a suitable homotopic notion of higher morphisms between A∞-algebras, which
would give a satisfactory description of the higher algebra of A∞-algebras. Secondly, elaborating on
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the work of Abouzaid and Mescher on perturbed Morse gradient trees, realize these higher morphisms
through moduli spaces in Morse theory.
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Part 1

Algebra

1. Operadic algebra

Our �rst section is devoted to some basic recollections on operadic algebra, and the particular
case of the operad A∞. The specialist already acquainted with these notions will only have to read
sections 1.3 and 1.5, which introduce the operadic bimodule viewpoint on A∞-morphisms through
the (A∞, A∞)-operadic bimodule A∞ − Morph. All the signs of this section are worked out in
section 4.2, and will temporarily be written ± here.

We let in the rest of this section C be one the following two monoidal categories : the category of
di�erential graded Z-modules with cohomological convention (dg− Z− mod,⊗) and the category of
polytopes (Poly,×), introduced in detail in subsection 2.1.2. We will write ⊗ for the tensor product
on C, and I for its identity element. Sections 1.1 and 1.2 are derived from [LV12]. Apart from
the operadic bimodule viewpoint, most of the material presented in sections 1.4 and 1.5 is inspired
from [LV12] and [Val14].

1.1. Operads.

1.1.1. De�nition.

De�nition 1. A (non-symmetric) C-operad P consists in the data of a collection of objects {Pn}n>1

of C together with a unit element e ∈ P1 and with compositions

Pk ⊗ Pi1 ⊗ · · · ⊗ Pik −→ci1,...,ik
Pi1+···+ik

which are unital and associative. The objects Pn are to be thought as spaces encoding arity n
operations while the compositions ci1,...,ik de�ne how to compose these operations together.

Operads can be de�ned in an equivalent fashion using partial compositions instead of total com-
positions. An operad is then the data of a collection of objects {Pn}n>1 together with a unit element
e ∈ P1 and with partial composition maps

◦i : Pk ⊗ Ph −→ Ph+k−1 , 1 6 i 6 k
which are unital and associative. Finally a morphism of operads P → Q is a sequence of maps
Pn → Qn compatible with the compositions and preserving the identity.

1.1.2. Schur functors. There is a third equivalent de�nition of operads using the notion of Schur
functors. Call any collection P = {Pn} of objects of C a N-module. To each N-module one can
associate its Schur functor, which is the endofunctor SP : C → C de�ned as

C 7−→
∞⊕

n=1

Pn ⊗ C⊗n .
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Given two N-modules P and Q, composing their Schur functors gives the following formula

SP ◦ SQ : C −→
∞⊕

n=1


 ⊕

i1+···+ik=n

Pk ⊗Qi1 ⊗ · · · ⊗Qik


⊗ C⊗n .

In other words, there is a N-module associated to the composition of the Schur functors of two
N-modules, and it is given by

P ◦Q = {
⊕

i1+···+ik=n

Pk ⊗Qi1 ⊗ · · · ⊗Qik}n>1 .

The category (End(C), ◦, IdC), endowed with composition of endofunctors, is a monoidal category.
In particular, there is a well-de�ned notion of monoid in End(C). A monoid structure on an endo-
functor F : C → C is the data of natural transformations µF : F ◦ F → F and e : IdC → F , which
satisfy the usual commutative diagrams for monoids. This viewpoint yields the following equivalent
de�nition of an operad. Albeit tedious, it will prove useful in the following section when considering
operadic modules.

De�nition 2. A C-operad is the data of a N-module P = {Pn} of C together with a monoid structure
on its Schur functor SP .

1.2. P -algebras. Let A be a dg-Z-module and n > 1. De�ne the graded Z-module Hom(A⊗n, A)i

of i-graded maps A⊗n → A, and endow it with the di�erential [∂, f ] = ∂f − (−1)|f |f∂. The N-
module EndA(n) := Hom(A⊗n, A) in dg-Z-modules can then naturally be endowed with an operad
structure, where composition maps are de�ned as one expects. Let P be a (dg− Z− mod)-operad.
A structure of P -algebra on A is de�ned to be the datum of a morphism of operads

P −→ EndA ,

in other words the datum of a way to interpret each operation of Pn in Hom(A⊗n, A), such that
abstract composition in P coincides with actual composition in EndA.

A morphism of P -algebras between A and B is then simply a dg-map f : A→ B, which commutes
with every operation of Pn interpreted in A and B. In other words, for every mn ∈ Pn,

mB
n ◦ f⊗n = f ◦mA

n .

1.3. Operadic bimodules.

1.3.1. De�nition with Schur functors. Let now (D,⊗D, I) be any monoidal category, and (A,µA)
and (B,µB) be two monoids in D. Reproducing the diagrams of usual algebra, one can de�ne the
notion of an (A,B)-bimodule in D. It is simply the data of an object R of D, together with action
maps λ : A⊗ R → R and µ : R ⊗ B → R which are compatible with the product on A and B, act
trivially under their identity elements and satisfy the obvious associativity conditions.

Take for instance D to be the category dg− Z− mod. A monoid in D is then a unital associative
di�erential graded algebra, and the notion of bimodules in the previous paragraph then coincides
with the usual notion of bimodules over dg-algebras.

De�nition 3. Given P and Q two operads seen as their Schur functors SP and SQ, let R = {Rn}
be a N-module of C seen as its Schur functor SR. A (P,Q)-operadic bimodule structure on R is a
(SP , SQ)-bimodule structure λ : SP ◦ SR → SR and µ : SR ◦ SQ → SR on SR in (End(C), ◦, IdC).
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1.3.2. Operadic bimodules with operations. This de�nition is of course of no use for actual compu-
tations. Unraveling the de�nitions, we get an equivalent de�nition for (P,Q)-operadic bimodules.

De�nition 4. A (P,Q)-operadic bimodule structure on R is the data of action-composition maps

Rk ⊗Qi1 ⊗ · · · ⊗Qik −→µi1,...,ik
Ri1+···+ik ,

Ph ⊗Rj1 ⊗ · · · ⊗Rjh −→
λj1,...,jh

Rj1+···+jh ,

which are compatible with one another, with identities, and with compositions in P and Q.

Note that the action of Q on R can be reduced to partial action-composition maps

◦i : Rk ⊗Qh −→ Rh+k−1 1 6 i 6 k ,

as Q has an identity. This cannot be done for the action of P on R, as R does not necessarily have
an identity.

1.3.3. The (EndB,EndA)-operadic bimodule Hom(A,B). Let A and B be two dg-Z-modules. We
have seen that they each determine an operad, EndA and EndB respectively. Then the N-module
Hom(A,B) := {Hom(A⊗n, B)}n>1 in dg-Z-modules is a (EndB,EndA)-operadic bimodule where the
action-composition maps are de�ned as one could expect.

1.4. The operad A∞.

1.4.1. Suspension of a dg-Z-module. Let A be a graded Z-module. We de�ne sA to be the graded Z-
module (sA)i := Ai−1. In other words, |sa| = |a|− 1. It is merely a notation that gives a convenient
way to handle certain degrees. Note for instance that a degree 2 − n map A⊗n → A is simply a
degree +1 map (sA)⊗n → sA. This will be used thoroughly in the rest of this part.

1.4.2. A∞-algebras. Let A be a dg-Z-module with di�erential m1. Recall that we are working in the
cohomological framework hence m1 has degree +1. A structure of A∞-algebra on A is the data of
a collection of degree 2− n maps

mn : A⊗n −→ A , n > 1,

extending m1 and which satisfy the following equations, called the A∞-equations

[m1,mn] =
∑

i1+i2+i3=n
26i26n−1

±mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3).

We refer to section 4.2 for the signs. Representing mn as
12 n

, this equation reads as

[m1,
1 2 n

] =
∑

h+k=n+1
26h6n−1

16i6k

± 1 ki

1 h

.
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We have in particular that

[m1,m2] = 0 ,

[m1,m3] = m2(id⊗m2 −m2 ⊗ id) .

De�ning H∗(A) to be the cohomology of A relative to m1, the last two equations show that m2

descends to an associative product on H∗(A). An A∞-algebra is simply a correct notion of a dg-
algebra whose product is associative up to homotopy. Indeed to de�ne such a notion, we have to
keep track of all the higher homotopies coming with the fact that the product is associative up to
homotopy : these higher homotopies are exactly the mn.

1.4.3. The operad A∞. The A∞-algebra structure de�ned previously is actually governed by the
following operad :

De�nition 5. The operad A∞ is the quasi-free dg− Z− mod-operad generated in arity n > 2 by
one operation mn of degree 2− n and whose di�erential is de�ned by

∂(mn) =
∑

i1+i2+i3=n
26i26n−1

±mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) .

This is often written as A∞ = F( , , , · · · ) where

∂(
1 2 n

) =
∑

h+k=n+1
26h6n−1

16i6k

± 1 ki

1 h

.

Recall that quasi-free means that the operad is freely generated by the operations
12 n

as a graded

object, with the additional datum of a di�erential on its generating operations that is non-canonical.
We then check that an A∞-algebra structure on a dg-Z-module A amounts simply to a morphism
of operads A∞ → EndA.

1.4.4. The bar construction. A∞-algebras can also be de�ned using the bar construction. De�ne the
reduced tensor coalgebra of a graded Z-module V to be

TV := V ⊕ V ⊗2 ⊕ · · ·
endowed with the coassociative comultiplication

∆TV (v1 . . . vn) :=

n−1∑

i=1

v1 . . . vi ⊗ vi+1 . . . vn .

Then, we have a correspondence
{

collections of morphisms of degree 2− n
mn : A⊗n → A , n > 1

}
←→

{
collections of morphisms of degree +1

bn : (sA)⊗n → sA , n > 1

}

l{
coderivations D of degree +1 of T (sA)

}
.
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Indeed, to each family of maps bn : (sA)⊗n → sA of degree +1 one can associate a map D : T (sA)→
T (sA) of degree +1 whose restriction to the (sA)⊗n summand is given by

∑

i1+i2+i3=n

±id⊗i1 ⊗ bi2 ⊗ id⊗i3 .

Then the map D is a coderivation of T (sA).

There is a second correspondence



collections of morphisms of degree 2− n
mn : A⊗n → A , n > 1,

satisfying the A∞-equations



←→

{
coderivations D of degree +1 of T (sA)

such that D2 = 0

}
.

Hence, the following proposition

Proposition 1. There is a one-to-one correspondence between A∞-algebra structures on A and
coderivations D : T (sA)→ T (sA) of degree +1 which square to 0.

1.5. A∞-morphisms.

1.5.1. dg-morphisms between A∞-algebras. Using the de�nition of section 1.2, a morphism between
two A∞-algebras A and B is simply a dg-morphism f : A → B which is compatible with all the
mn. This notion of morphism is however not satisfactory from an homotopy-theoretic point of view.
Indeed, an A∞-algebra being an algebra whose product is associative up to homotopy, the correct
homotopy notion of a morphism between two A∞-algebras would be that of a map which preserves
the product m2 up to homotopy, i.e. of a dg-morphism f1 : A → B together with higher coherent
homotopies, the �rst one satisfying

[∂, f2] = f1m
A
2 −mB

2 (f1 ⊗ f1) .

1.5.2. A∞-morphisms.

De�nition 6. An A∞-morphism between two A∞-algebras A and B is a dg-coalgebra morphism
F : (T (sA), DA)→ (T (sB), DB) between their bar constructions.

As previously, we have a one-to-one correspondence{
collections of morphisms of degree 1− n

fn : A⊗n → B , n > 1,

}
←→

{
morphisms of graded coalgebras

F : T (sA)→ T (sB)

}
.

The component of F mapping (sA)⊗n to (sB)⊗s is given by
∑

i1+···+is=n
±fi1 ⊗ · · · ⊗ fis .

A coalgebra morphism preserves the di�erentials if and only if for all n > 1,
∑

i1+i2+i3=n

±fi1+1+i3(id⊗i1 ⊗mA
i2 ⊗ id⊗i3) =

∑

i1+···+is=n
±mB

s (fi1 ⊗ · · · ⊗ fis) .(?)

These equations can be rewritten as

[m1, fn] =
∑

i1+i2+i3=n
i2>2

±fi1+1+i3(id⊗i1 ⊗mA
i2 ⊗ id⊗i3) +

∑

i1+···+is=n
s>2

±mB
s (fi1 ⊗ · · · ⊗ fis) .(?)
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This yields the following equivalent de�nition :

De�nition 7. An A∞-morphism between two A∞-algebras A and B is a family of maps fn : A⊗n →
B of degree 1− n satisfying equations ?.

See section 4.2 for signs. We check that we recover in particular [∂, f2] = f1m
A
2 −mB

2 (f1 ⊗ f1) .
As a result, an A∞-morphism of A∞-algebras induces a morphism of associative algebras on the
level of cohomology. An A∞-quasi-isomorphism is then de�ned to be an A∞-morphism inducing an
isomorphism in cohomology.

1.5.3. Composing A∞-morphisms. Given two coalgebra morphisms F : TV → TW and G : TW →
TZ, the family of morphisms associated to G ◦ F is given by

(G ◦ F )n :=
∑

i1+···+is=n
±gs(fi1 ⊗ · · · ⊗ fis) .

Hence, the composition of two A∞-morphisms f : A→ B and g : B → C is de�ned to be

(g ◦ f)n :=
∑

i1+···+is=n
±gs(fi1 ⊗ · · · ⊗ fis) .

In particular one can de�ne A∞ − alg, the category of A∞-algebras with A∞-morphisms between
them, whose composition is de�ned by the previous formula.

1.5.4. The (A∞,A∞)-operadic bimodule encoding A∞-morphisms. In fact there is an (A∞,A∞)-
operadic bimodule encoding the notion of A∞-morphisms of A∞-algebras.

De�nition 8. The operadic bimodule A∞ −Morph is the quasi-free (A∞, A∞)-operadic bimodule
generated in arity n > 1 by one operation fn of degree 1− n and whose di�erential is de�ned by

∂(fn) =
∑

i1+i2+i3=n
i2>2

±fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) +
∑

i1+···+is=n
s>2

±ms(fi1 ⊗ · · · ⊗ fis) .

Representing the generating operations of the operad A∞ acting on the right in blue
12 n

and

the ones of the operad A∞ acting on the left in red
12 n

, we represent fn by
12 n

. This operadic

bimodule can then be written as

A∞ −Morph = FA∞,A∞( , , , , · · · ) ,
with di�erential de�ned as

∂(
1 2 n

) =
∑

h+k=n+1
16i6k
h>2

± 1 ki

1 h

+
∑

i1+···+is=n
s>2

±
1 isi11

.

Consider A and B two A∞-algebras, which we can see as two morphisms of operads A∞ →
EndA and A∞ → EndB. Recall from subsection 1.3.3 that Hom(A,B) is a (EndB,EndA)-operadic
bimodule. The previous two morphisms of operads make Hom(A,B) into an (A∞,A∞)-operadic
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bimodule. An A∞-morphism between A and B is then simply a morphism of (A∞,A∞)-operadic
bimodules

A∞ −Morph −→ Hom(A,B) .

It is in that sense that A∞ − Morph is the (A∞,A∞)-operadic bimodule encoding the notion of
A∞-morphisms of A∞-algebras.

1.5.5. The framework of two-colored operads. In fact, our choice of notation
12 n

reveals that the

natural framework to work with the operad A∞ and the operadic bimodule A∞−Morph is provided
by the quasi-free two-colored operad

A2
∞ := F( , , , · · · , , , , · · · , , , , , · · · ) ,

where the di�erential on the generating operations is given by the previous formulae. A two-colored
operad can be roughly de�ned as an operad whose operations have entries and output labeled either
in red or in blue, and whose operations can only be composed along the same color. See [Yau16] for
a complete de�nition.

1.6. Homotopy theory of A∞-algebras. A∞-algebras with A∞-morphisms between them provide
a suitable framework to study homotopy theory of dg-associative algebras. This is because the two-
colored operad A2

∞ is a resolution

A2
∞−̃→As2 ,

of the two-colored operad encoding associative algebras with morphisms of algebras, and a �brant-
co�brant object in the model category of two-colored operads in dg-Z-modules. See [Mar02]. We
illustrate these statements with two fundamental theorems. We refer moreover to [Mar06] for a more
general version of Theorem 1.

Theorem 1 (Homotopy transfer theorem [Kad80]). Let (A, ∂A) and (H, ∂H) be two cochain com-
plexes. Suppose that H is a deformation retract of A, that is that they �t into a diagram

(A, ∂A) (H, ∂H) ,h
p

i

where idA − ip = [∂, h]. Then if (A, ∂A) is endowed with an associative algebra structure, H can be
made into an A∞-algebra such that i and p extend to A∞-morphisms.

Theorem 2 (Fundamental theorem ofA∞-quasi-isomorphisms [LH02]). For every A∞-quasi-isomor-
phism f : A → B there exists an A∞-quasi-isomorphism B → A which inverts f on the level of
cohomology.

2. Operads in polytopes

We recall in the �rst section the monoidal category Poly de�ned in [MTTV19], which yields
a good framework to handle operadic calculus in a category whose objects are polytopes. We
then introduce in sections 2.2 and 2.3 the two main combinatorial objects of this article : the
associahedra and the multiplihedra, which are polytopes that respectively encode A∞-algebras and
A∞-morphisms between them. Explicit realizations of the associahedra and the multiplihedra will
be given in sections 4.3 and 4.4.
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2.1. Three monoidal categories and their operadic algebra.

2.1.1. Di�erential graded Z-modules and CW-complexes. Consider dg− Z− mod to be the category
with objects di�erential graded Z-modules with cohomological convention, and morphisms the mor-
phisms of dg-Z-modules. It is a monoidal category with the classical tensor product of dg-Z-modules
and unit the underlying �eld seen as a dg-Z-module concentrated in degree 0.

Likewise, de�ne CW to be the category whose objects are �nite CW-complexes and whose mor-
phisms are CW-maps between CW-complexes. This category is again a monoidal category with
product the usual cartesian product and unit the point ∗. The cellular chain functor Ccell∗ : CW →
dg− Z− mod is then strong monoidal, i.e. it satis�es

Ccell∗ (P ×Q) = Ccell∗ (P )⊗ Ccell∗ (Q) .

To be consistent with the cohomological degree convention on A∞-algebras, we will actually work
with the strong monoidal functor

Ccell−∗ : CW −→ dg− Z− mod ,

where Ccell−∗ (P ) is simply the Z-module Ccell∗ (P ) taken with its opposite grading.

2.1.2. The category of polytopes ([MTTV19]). De�ne a polytope to be the convex hull of a �nite
number of points in a Euclidean space Rn. A polytopal complex is then a �nite collection P of
polytopes satisfying three conditions :

(i) ∅ ∈ P ,
(ii) if P ∈ P then all the faces of P are also in P ,
(iii) if P and Q are two polytopes of P then the intersection P ∩Q belongs to P.

The realisation of a polytopal complex is simply

|P| :=
⋃

P∈P
P .

Given P a polytope, we say in particular that a polytopal complex Q is a polytopal subdivision of
P if |Q| = P . Every polytope P comes with a polytopal complex L(P ) consisting of all its faces,
which realizes a polytopal subdivision of P .

Following [MTTV19], we then de�ne the category Poly as :

Objects. Polytopes.
Morphisms. A continuous map f : P → Q which is a homeomorphism P → |D| where D
is a polytopal subcomplex of L(Q) and f−1(D) is a polytopal subdivision of P . Such a map
will be called a polytopal map.

This is a monoidal category with product the usual cartesian product and unit the polytope reduced
to a point ∗. It is in fact a monoidal subcategory of CW.

2.1.3. From operadic algebra in Poly to operadic algebra in dg− Z− mod. Let {Xn} be a Poly-
operad, that is a collection of polytopes Xn together with polytopal maps

◦i : Xk ×Xh −→ Xh+k−1 ,
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satisfying the compatibility conditions of partial compositions. Then, the functor Ccell−∗ yields a new

dg− Z− mod-operad {Pn} de�ned by Pn := Ccell−∗ (Xn) and whose partial compositions are

◦i : Ccell−∗ (Xk)⊗ Ccell−∗ (Xh)−̃→Ccell−∗ (Xk ×Xh) −→
Ccell−∗ (◦i)

Ccell−∗ (Xh+k−1) .

In the same way, let {Xn} and {Yn} be two Poly-operads, and {Zn} be a ({Xn}, {Yn})-operadic
bimodule, that is a collection of polytopes {Zn} together with polytopal action-composition maps

Xs × Zi1 × · · · × Zis
µ−→ Zi1+···+is ,

Zk × Yh −→◦i Zh+k−1 ,

which are compatible with the composition maps of {Xn} and {Yn}. Then, the functor Ccell−∗ yields

a new operadic-bimodule in dg− Z− mod as follows. Denote Pn = Ccell−∗ (Xn) and Qn = Ccell−∗ (Yn).

These are both operads in dg− Z− mod. De�ning Rn := Ccell−∗ (Zn), this is a (P,Q)-operadic bimod-
ule with action-composition maps de�ned by

Ccell−∗ (Xs)⊗ Ccell−∗ (Zi1)⊗ · · · ⊗ Ccell−∗ (Zis)−̃→Ccell−∗ (Xs × Zi1 × · · · × Zis)
Ccell−∗ (µ)
−→ Ccell−∗ (Zi1+···+is) ,

Ccell−∗ (Zk)⊗ Ccell−∗ (Yh)−̃→Ccell−∗ (Zk × Yh) −→
Ccell−∗ (◦i)

Ccell−∗ (Zh+k−1) .

2.2. The associahedra. The dg− Z− mod-operad A∞ actually stems from a Poly-operad :

Theorem 3 ([MTTV19]). There exists a collection of polytopes, called the associahedra and denoted
{Kn}, endowed with a structure of operad in the category Poly and whose image under the functor
Ccell−∗ yields the operad A∞.

We refer to section 4.3 in the appendix for a detailed construction and a proof that A∞(n) =
Ccell−∗ (Kn), and only list noteworthy properties of these polytopes in the following paragraphs.

As A∞(n) = Ccell−∗ (Kn), we know that Kn has to have a unique cell [Kn] of dimension n−2 whose
image under ∂cell is the A∞-equation, that is such that

∂cell[Kn] =
∑
± ◦i ([Kk]⊗ [Kh]) .

In fact, these polytopes are constructed such that the boundary of Kn is exactly

∂Kn =
⋃

h+k=n+1
26h6n−1

⋃

16i6k
Kk ×i Kh ,

where ×i is in fact the standard × cartesian product, and such that partial compositions are then
simply polytopal inclusions of Kk ×Kh in the boundary of Kh+k−1.

The �rst three associahedra K2, K3 and K4 are represented in �gure 3, labeling their cells by the
operations they de�ne in A∞ when seen in Ccell−∗ (Kn).
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Figure 3. The associahedra K2, K3 and K4

2.3. The multiplihedra. Just like the operad A∞, the dg− Z− mod-operadic bimodule A∞ −
Morph is the image under the functor Ccell−∗ of a Poly-operadic bimodule :

Theorem 4 ([MMV]). There exists a collection of polytopes, called the multiplihedra and denoted
{Jn}, endowed with a structure of ({Kn}, {Kn})-operadic bimodule, i.e. with polytopal action-
composition maps

Ks × Ji1 × · · · × Jis
µ−→ Ji1+···+is ,

Jk ×Kh −→◦i Jh+k−1 ,

whose image under the functor Ccell−∗ yields the (A∞, A∞)-operadic bimodule A∞ −Morph.

We refer this time to section 4.4 for details and conclude again by listing the main noteworthy
properties of the Jn. Knowing that A∞ −Morph(n) = Ccell−∗ (Jn), we know that Jn has to have a
unique n − 1-dimensional cell [Jn] whose image under ∂cell is the A∞-equation for A∞-morphisms,
that is such that

∂cell[Jn] =
∑
± ◦i ([Jk]⊗ [Kh]) +

∑
±µ([Ks]⊗ [Ji1 ]⊗ · · · ⊗ [Jis ]) .

In fact, the polytopes Jn have the following properties

(i) the boundary of Jn is exactly

∂Jn =
⋃

h+k=n+1
h>2

⋃

16i6k
Jk ×i Kh ∪

⋃

i1+···+is=n
s>2

Ks × Ji1 × · · · × Jis ,

where ×k is the standard cartesian product ×,
(ii) action-compositions are polytopal inclusions of faces in the boundary of Jn.

The �rst three polytopes J1, J2 and J3 are represented in �gure 4, labeling their cells by the
operations they de�ne in A∞ −Morph.

3. Moduli spaces of metric trees

The associahedra and the multiplihedra are the polytopes governing the structures of A∞-algebras
and A∞-morphisms between them. We show in this section that these polytopes can in fact be
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Figure 4. The multiplihedra J1, J2 and J3

realized as geometric moduli spaces : the associahedra are the compacti�ed moduli spaces of stable
metric ribbon trees T n, while the multiplihedra are the compacti�ed moduli spaces of stable two-
colored metric ribbon trees CT n.

These moduli spaces will come with two cell decompositions : their A∞-cell decomposition,
corresponding to the cell decomposition of the associahedra (resp. multiplihedra), and a re�ned
decomposition, called the ΩBAs-cell decomposition. This second cell decomposition recovers the
operad ΩBAs in the case of T n, and an (ΩBAs,ΩBAs)-operadic bimodule denoted ΩBAs−Morph
in the case of CT n. They are respectively related to the operad A∞ and the operadic bimodule
A∞ − Morph by a morphism of operads A∞ → ΩBAs and a morphism of operadic bimodules
A∞ −Morph→ ΩBAs−Morph (Propositions 2 and 3).

3.1. The associahedra and metric ribbon trees. We refer to section 2 of [MW10] and section 7
of [Abo11] for the moduli space viewpoint on the associahedra.

3.1.1. De�nitions. We begin by giving the de�nitions of the trees we will need in the rest of the
section. The best way to understand them is with the examples depicted in �gure 5.

De�nition 9. (i) A (rooted) ribbon tree, is the data of a tree together with a cyclic ordering
on the edges at each vertex of the tree and a distinguished vertex adjacent to an external
edge called the root. This external edge is then called the outgoing edge, while all the other
external edges are called the incoming edges. For a ribbon tree t, we will write E(t) for the
set of its internal edges, E(t) for the set of all its edges, and e(t) for its number of internal
edges.

(ii) A metric ribbon tree is the data of a ribbon tree, together with a length le ∈]0,+∞[ for each
of its internal edges e. The external edges are thought as having length equal to +∞.

(iii) A ribbon tree is called stable if all its inner vertices are at least trivalent. It is called binary
if all its inner vertices are trivalent. We denote SRTn the set of all stable ribbon trees, and
BRTn the set of all binary ribbon trees. Note in particular that for a binary tree t ∈ BRTn
we have that e(t) = n− 2.

3.1.2. Moduli spaces of stable metric ribbon trees.
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A ribbon tree

l1 l2

A metric ribbon tree

l1 l2

A stable metric
ribbon tree

l1 l2

A binary metric
ribbon tree

Figure 5

De�nition 10. De�ne Tn to be moduli space of stable metric ribbon trees with n incoming edges.
For each stable ribbon tree type t, we de�ne moreover Tn(t) ⊂ Tn to be the moduli space

Tn(t) := {stable metric ribbon trees of type t} .

We then have that
Tn =

⋃

t∈SRTn
Tn(t) .

Writing e(t) the number of internal edges for a ribbon tree of type t, each Tn(t) is naturally topolo-

gized as ]0,+∞[e(t), and they form a strati�cation of Tn. This is illustrated in �gures 6 and 7.

Interpreting a length in ]0,+∞[e(t) which goes towards 0 as the contraction of the corresponding
edge of t, the strata Tn(t) can in fact be consistently glued together. With this observation, one
can prove that the space Tn is in fact itself homeomorphic to Rn−2. Allowing lengths of internal
edges to go to +∞, this moduli space can be compacti�ed into a (n− 2)-dimensional CW-complex
T n, where Tn is seen as its unique (n− 2)-dimensional stratum. The codimension 1 stratum of this
CW-complex is given by ⋃

h+k=n+1
26h6n−1

⋃

16i6k
Tk ×i Th ,

where ×i is the standard cartesian product ×, and the i means that the outgoing edge of a tree
in Th connects to the i-th incoming edge of a tree in Tk. It corresponds to metric trees with one
internal edge of in�nite length. More generally, the codimension m stratum is given by metric trees
with m internal edges of in�nite lengths. This cell decomposition of T n will be called its A∞-cell
decomposition.

Theorem 5. The moduli space T n endowed with its A∞-cell decomposition is isomorphic as a
CW-complex to the associahedron Kn.

This was �rst noticed in section 1.4. of Boardman-Vogt [BV73]. See two examples on �gure 7.

3.1.3. The second cell decomposition of T n. In fact the previous compacti�cation can be obtained
by �rst compactifying each cell Tn(t) individually and then gluing consistently all compacti�cations

together. For t ∈ RTn, the stratum Tn(t) is homeomorphic to ]0,+∞[e(t) and its compacti�cation in

T n is homeomorphic to [0,+∞]e(t). A length equal to 0 simply corresponds to collapsing one edge
of t and a length equal to +∞ is interpreted as breaking this edge. This is illustrated in the instance
of a cell of T4(t) in �gure 6.

De�nition 11. A broken ribbon tree is a ribbon tree some of whose internal edges may be broken.
Equivalently, it is the datum of a �nite collection of (unbroken) ribbon trees together with a way
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l1

l2

l1

l2

l1

l2 l1 l2

Figure 6. Compacti�cation of a stratum of T4

of arranging this collection into a new tree (with broken edges). A broken ribbon tree is said to be
stable if every unbroken ribbon tree forming it is stable.

The viewpoint introduced in the previous paragraph yields a new cell decomposition of T n, an
example of which is given in �gure 7. Its cells are indexed by broken stable ribbon trees, a broken
stable ribbon tree with i �nite internal edges labeling an i-dimensional cell.

l l

l1
l2

l1 l2

l1
l2

l1

l2

l1

l2

Figure 7. The compacti�ed moduli spaces T 3 and T 4 with their cell decomposition
by broken stable ribbon tree type

3.1.4. The operad ΩBAs. Endowing the T n with this new cell decomposition, the maps

T k × T h −→◦i T h+k−1

are then cellular maps, and hence form a new operad in CW. Taking its image under the functor
Ccell−∗ yields an operad in dg− Z− mod : the operad ΩBAs. We refer to section 5.1 for a complete
description of this operad and its sign conventions.
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De�nition 12. The operad ΩBAs is the quasi-free operad generated by the set of stable ribbon
trees, where a stable ribbon tree t has degree |t| := −e(t). Its di�erential on a stable ribbon tree t is
given by the signed sum of all stable ribbon trees obtained from t by breaking or collapsing exactly
one of its internal edges.

In other words, it is the quasi-free operad

ΩBAs := F( , , , , · · · , SRTn, · · · )
where for instance

| | = −2 ,

∂( ) = ± ± ± ± .

As the choice of notation ΩBAs suggests, this dg− Z− mod-operad is in fact the bar-cobar con-
struction of the operad As, usually denoted ΩBAs. To put it shortly, the classical cobar-bar ad-
junction for standard algebras and coalgebras

Ω : conilpotent dg− coalgebras� augmented dg− algebras : B ,

admits a counterpart in the realm of operads and cooperads

Ω : coaugmented dg− cooperads� augmented dg− operads : B ,

and the previously obtained operad is exactly equal to ΩBAs. We refer the curious reader to section
6.5 in Loday-Vallette [LV12], for more details on that matter.

3.1.5. From the operad A∞ to the operad ΩBAs. The dg− Z− mod-operads A∞ and ΩBAs are in
fact related by the following proposition :

Proposition 2. There exists a morphism of operads A∞ → ΩBAs given on the generating operations
of A∞ by

mn 7−→
∑

t∈BRTn
±mt .

This morphism stems from the image under the functor Ccell−∗ of the identity map id : (T n)A∞ →
(T n)ΩBAs re�ning the cell decomposition on T n. The formula on mn then simply corresponds to
associating to the n − 2-dimensional cell of T n with the A∞-cell decomposition, the signed sum of
all n− 2-dimensional cells of T n with the ΩBAs-cell decomposition.

This geometric construction of the morphism A∞ → ΩBAs is an adaptation of the algebraic
construction by Markl and Shnider in [MS06] and is detailed in subsection 5.1.4. Proposition 2
dates in fact back to [GJ94], and is built in the theory of Koszul duality, as explained in sections 7
and 9 of [LV12]. We moreover point out that the morphism A∞ → ΩBAs will be crucial in the rest
of this paper. It implies indeed that in order to construct a structure of A∞-algebra on a cochain
complex, it is enough to endow it with a structure of ΩBAs-algebra.

3.2. The multiplihedra and two-colored metric ribbon trees. We have seen in the previous
section that the polytopes Kn can be realized as the compacti�ed moduli spaces of stable metric
ribbon trees. So can the polytopes Jn : they are the compacti�ed moduli spaces of stable two-colored
metric ribbon trees.
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3.2.1. Two-colored metric ribbon trees.

De�nition 13. A stable two-colored metric ribbon tree or stable gauged metric ribbon tree is de�ned
to be a stable metric ribbon tree together with a length λ ∈ R. This length is to be thought of
as a gauge drawn over the metric tree, at distance λ from its root, where the positive direction is
pointing down.

The gauge divides the tree into two parts, each of which we think of as being colored in a di�erent
color. See an instance on �gure 8. This de�nition, despite being visual, will prove di�cult to
manipulate when trying to compactify moduli spaces of stable two-colored metric ribbon trees. We
thus proceed to give an equivalent de�nition, which will provide a natural way of compactifying these
moduli spaces. The equivalence between the two de�nitions is depicted on an example in �gure 8.

De�nition 14. (i) A two-colored ribbon tree is de�ned to be a ribbon tree together with a
distinguished subset of vertices Ecol(T ) called the colored vertices. This set is such that,
either there is exactly one colored vertex in every non-self crossing path from an incoming
edge to the root and none in the path from the outgoing edge to the root, or there is no
colored vertex in any non-self crossing path from an incoming edge to the root and exactly
one in the path from the outgoing edge to the root. These colored vertices are to be thought
as the intersection points of the gauge with the ribbon tree.

(ii) A two-colored ribbon tree is called stable if all its non-colored vertices are at least trivalent.
We denote SCRTn the set of all stable two-colored ribbon trees, and CBRTn the set of all
two-colored binary ribbon trees whose gauge does not cross any vertex of the underlying
binary ribbon tree.

(iii) A two-colored metric ribbon tree is the data of a length for all internal edges le ∈]0,+∞[,
such that the lengths of all non self-crossing paths from a colored vertex to the root are all
equal.

λl

l2

l1 l3

Figure 8. An example of a stable two-colored metric ribbon tree with the two
de�nitions : here l1 = l3 = −λ and l = l1 + l2

These two de�nitions of two-colored metric ribbon trees are easily seen to be equivalent, by
viewing the colored vertices as the intersection points between the gauge and the edges. In the
rest of the paper, the notations tc and tg will both stand for a two-colored stable ribbon tree, seen
respectively from the colored vertices and from the gauged viewpoint. The symbol t will then denote
the underlying stable ribbon tree.

3.2.2. Moduli spaces of stable two-colored metric ribbon trees. The results presented in this subsection
can be found in section 7 of Mau-Woodward [MW10], where they are formulated in the two-colored
viewpoint.
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De�nition 15. For n > 2, we de�ne CT n to be the moduli space of stable two-colored metric ribbon
trees. It has a cell decomposition by stable two-colored ribbon tree type,

CT n =
⋃

tc∈SCRTn
CT n(tc) .

We also denote CT 1 := { } the space whose only element is the unique two-colored ribbon tree of
arity 1.

The space CT n is homeomorphic to Rn−1 : Tn is homeomorphic to Rn−2 and, using the gauge
description, the datum of a gauge adds a factor R. Allowing again internal edges of metric trees
to go to +∞ by using the second de�nition for two-colored metric ribbon trees, this moduli space
CT n can be compacti�ed into a (n−1)-dimensional CW-complex CT n. It has one n−1 dimensional
stratum given by CT n. Its codimension 1 stratum is given by

⋃

i1+···+is=n
Ts × CT i1 × · · · × CT is ∪

⋃

i1+i2+i3=n

CT i1+1+i3 × Ti2 .

This cell decomposition of CT n will be called its A∞-cell decomposition. Two sequences of stable
two-colored metric ribbon trees converging in the compacti�cation CT 3 are represented in �gure 9.

l2

l1 l3 l2 −→ +∞ l1 l3

l2

l1 l3 l1 = l3 −→ +∞

l2

Figure 9. Two sequences of stable two-colored metric ribbon trees converging in
the compacti�cation CT 3

Theorem 6 ([MW10]). The moduli space CT n endowed with its A∞-cell decomposition is isomorphic
as a CW-complex to the multiplihedron Jn.

This theorem is illustrated in �gure 11.

3.2.3. The second cell decomposition of CT n. As for T n, the compacti�ed moduli space CT n can
be endowed with a re�ned cell decomposition. This subsection sums up some of the main results of
section 5.2, where we provide an extensive study of the strata of this re�ned cell decomposition.

Let tg be a gauged stable ribbon tree. Writing again e(t) for the number of internal edges of the

underlying stable ribbon tree, the stratum CT n(tg) is a polyhedral cone in Re(t)+1. For instance,

CT 4( ) = {(λ, l1, l2) such that l1 > 0 ; l2 > 0 ; 0 < −λ < l1, l2} .
Denote j the number of vertices v of t crossed by the gauge as depicted below

v
.
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l

λ

λ = −l
l

λ

l

λ

λ
l

Figure 10. Compacti�cation of a stratum of CT 3

There is for instance one vertex intersected by the gauge in . The stratum CT n(tg) then has

dimension e(t) + 1 − j, but is not naturally isomorphic to ]0,+∞[e(t)+1−j , in the sense that its
compacti�cation will not coincide with a (e(t) + 1− j)-dimensional cube.

Switching now to the colored vertices viewpoint, the polyhedral cones CT n(tc) can be compact-
i�ed, by allowing lengths of internal edges to go towards 0 or +∞. The compacti�cation CT n is
simply obtained by gluing the previous compacti�cations. See an instance of the compacti�cation

of CT 3( ) = {(λ, l) such that l > 0 ; −λ > l} in �gure 10.

This yields a new cell decomposition of CT n, where each cell is labeled by a broken two-colored
stable ribbon tree. A two-colored stable ribbon tree tg with e(t) internal edges and whose gauge
crosses j vertices labels a e(t) + 1− j-dimensional cell. The dimension of a cell labeled by a broken
two-colored tree can then simply be obtained by adding the dimensions associated to each of the
pieces of the broken tree. The cell decompositions for CT 2 and CT 3 are represented in �gure 11.

λ

λ

λ
l

λl

λ
l

λ
l

λl

λ
l

Figure 11. The compacti�ed moduli spaces CT 2 and CT 3 with their cell decompo-
sition by stable two-colored ribbon tree type
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Endowing the moduli spaces T n with their ΩBAs-cell decomposition and the moduli spaces CT n
with this new cell decomposition, the maps

T s × CT i1 × · · · × CT is −→ CT i1+···+is ,

CT k × T h −→◦i CT h+k−1 ,

are cellular : the N-module {CT n} is a ({T n}, {T n})-operadic bimodule for this new cell decompo-
sition.

3.2.4. The operadic bimodule ΩBAs−Morph. The functor Ccell−∗ sends the previous operadic bimod-
ule in CW to an (ΩBAs,ΩBAs)-operadic bimodule in dg− Z− mod, that we will denote ΩBAs −
Morph. We refer to section 5.3 for a complete description of ΩBAs − Morph and explicit sign
computations.

De�nition 16. The operadic bimodule ΩBAs −Morph is the quasi-free (ΩBAs,ΩBAs)-operadic
bimodule generated by the set of two-colored stable ribbon trees. A two-colored stable ribbon tree
tg with e(t) internal edges and whose gauge crosses j vertices has degree |tg| := j − e(t) − 1. The
di�erential of a two-colored stable ribbon tree tc is given by the signed sum of all two-colored stable
ribbon trees obtained from tc under the rule prescribed by the top dimensional strata in the boundary
of CT n(tc).

Before giving tedious written details for the di�erential rule, we refer the reader to �gure 10 and

to the upcoming example. Consider the following two-colored stable ribbon tree . Which

codimension 1 phenomena can happen ?

(i) The gauge can be moved to cross exactly one vertex of : these situations are given

by , and .

(ii) An internal edge can break above the gauge : and .

(iii) Both internal edges can break below the gauge : .

Note that unlike for CT 3( ), no internal edge can collapse in this example : that would be a

codimension 2 phenomenon. These two examples list all four possible codimension 1 phenomena
that can happen : the gauge moves to cross exactly one additional vertex of the underlying stable
ribbon tree (gauge-vertex) ; an internal edge located above the gauge or intersecting it breaks or,
when the gauge is below the root, the outgoing edge breaks between the gauge and the root (above-
break) ; edges (internal or incoming) that are possibly intersecting the gauge, break below it, such
that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the
root (below-break) ; an internal edge that does not intersect the gauge collapses (int-collapse).

In other words, we constructed the quasi-free (ΩBAs,ΩBAs)-operadic bimodule

ΩBAs−Morph := FΩBAs,ΩBAs( , , , , · · · , SCRTn, · · · ) ,
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where for instance

| | = −3 ,

∂( ) = ± ± ± ± ± ± .

Note that the symbol used here is the same as the one used for the only arity 2 generating
operation of A∞−Morph. It will however be clear from the context what stands for in the rest
of this paper.

Consider A and B two ΩBAs-algebras, which we can see as two morphisms of operads ΩBAs→
EndA and ΩBAs → EndB. We then de�ne an ΩBAs-morphism A → B to be a morphism of
(ΩBAs,ΩBAs)-operadic bimodules ΩBAs −Morph → Hom(A,B). It is equivalent to a collection
of operations µtg : A⊗n → B, tg ∈ SCRTn, satisfying the equations prescribed by the di�erential
on ΩBAs −Morph. Note that in order to de�ne the category ΩBAs− alg of ΩBAs-algebras with
ΩBAs-morphisms between them, it remains to de�ne the composition of two ΩBAs-morphisms.
This question will be explored in an upcoming article.

3.2.5. From A∞ −Morph to ΩBAs −Morph. The morphism of operads A∞ → ΩBAs makes the
(ΩBAs,ΩBAs)-operadic bimodule ΩBAs−Morph into an (A∞, A∞)-operadic bimodule.

Proposition 3. There exists a morphism of (A∞, A∞)-operadic bimodules A∞−Morph→ ΩBAs−
Morph given on the generating operations of A∞ −Morph by

fn 7−→
∑

tg∈CBRTn
±ftg .

As a result, to construct an A∞-morphism between two A∞-algebras whose A∞-algebra structure
comes from an ΩBAs-algebra structure, it is enough to construct an ΩBAs-morphism between them.
As in subsection 3.1.5, this morphism stems again from the image under the functor Ccell−∗ of the

identity morphism on CT n re�ning its cell decomposition. The formula for fn is obtained by sending
the n− 1-dimensional cell of CT n appearing in the A∞-cell decomposition, to the signed sum of all
n−1-dimensional cells CT n appearing in the ΩBAs-cell decomposition. We refer to subsection 5.3.5
for a complete proof and the details on signs.

3.3. Résumé. The moduli space of stable metric ribbon trees Tn can be compacti�ed by allowing
lengths of internal edges to go towards +∞. This compacti�cation comes with two cell decompo-
sitions. The �rst one, by considering the moduli spaces Tn as (n − 2)-dimensional strata, yields a
CW-complex isomorphic to the associahedron Kn. Its realization under the functor Ccell−∗ then yields
the operad A∞. The second one is obtained by considering the strati�cation of Tn by strata labeled
by stable ribbon tree types. It is sent under the functor Ccell−∗ to the operad ΩBAs. These two
operads in dg− Z− mod are then related by a morphism of operads A∞ → ΩBAs.

The moduli space of stable two-colored metric ribbon trees CT n can be compacti�ed by allowing
lengths to go towards +∞. There are again two cell decompositions for this compacti�cation. Con-
sidering the moduli spaces CT n as (n−1)-dimensional strata yields a �rst CW-complex isomorphic to
the multiplihedron Jn. Its image under Ccell−∗ is the (A∞, A∞)-operadic bimodule A∞−Morph. Like-
wise, considering the strati�cation of CT n by strata labeled by two-colored stable ribbon tree types,
we obtain a second cell decomposition. The functor Ccell−∗ sends it to the (ΩBAs,ΩBAs)-operadic
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bimodule ΩBAs −Morph. The morphism of operads A∞ → ΩBAs makes ΩBAs −Morph into a
(A∞, A∞)-operadic bimodule. It is related to A∞ −Morph by a morphism of operadic bimodules
A∞ −Morph→ ΩBAs−Morph.

4. Signs and polytopes for A∞-algebras and A∞-morphisms

The goal of this section is twofold : work out all the signs written as ± in the A∞-equations in
section 1 and provide explicit realizations for the associahedra and multiplihedra as polytopes. We
begin by introducing the basic Koszul sign rules to work in a graded algebraic framework, and explain
how to compute signs by comparing orientations on the boundary of a manifold with boundary. We
then recall two equivalent sign conventions for A∞-algebras and A∞-morphisms and show how they
naturally ensue from the bar construction viewpoint. We subsequently detail explicit polytopal
realizations of the associahedra and the multiplihedra, introduced in [MTTV19] and [MMV], and
conclude by showing that these polytopes determine indeed the A∞-sign conventions previously
de�ned.

4.1. Basic conventions for signs and orientations.

4.1.1. Koszul sign rule. All formulae in this section will be written using the Koszul sign rule that
we brie�y recall. We will work exclusively with cohomological conventions.

Given A and B two dg Z-modules, the di�erential on A⊗B is de�ned as

∂A⊗B(a⊗ b) = ∂Aa⊗ b+ (−1)|a|a⊗ ∂Bb .
Given A and B two dg Z-modules, we consider the graded Z-module Hom(A,B) whose degree r
component is given by all maps A→ B of degree r. We endow it with the di�erential

∂Hom(A,B)(f) := ∂B ◦ f − (−1)|f |f ◦ ∂A =: [∂, f ] .

Given f : A→ A′ and g : B → B′ two graded maps between dg-Z-modules, we set

(f ⊗ g)(a⊗ b) = (−1)|g||a|f(a)⊗ g(b) .

Finally, given f : A→ A′, f ′ : A′ → A′′, g : B → B′ and g′ : B′ → B′′, we de�ne

(f ′ ⊗ g′) ◦ (f ⊗ g) = (−1)|g
′||f |(f ′ ◦ f)⊗ (g′ ◦ g) .

We check in particular that with this sign rule, the di�erential on a tensor product A1 ⊗ · · · ⊗An is
given by

∂A1⊗···⊗An =

n∑

i=1

idA1 ⊗ · · · ⊗ ∂Ai ⊗ · · · ⊗ idAn .

4.1.2. Orientation of the boundary of a manifold with boundary. Let (M,∂M) be an oriented n-
manifold with boundary. We choose to orient its boundary ∂M as follows : given x ∈ ∂M , a basis
e1, . . . , en−1 of Tx(∂M), and an outward pointing vector ν ∈ TxM , the basis e1, . . . , en−1 is positively
oriented if and only if the basis ν, e1, . . . , en−1 is a positively oriented basis of TxM . Note that in
the particular case when the manifold with boundary is a half-space inside the Euclidean space Rn,
de�ned by an inequality

n∑

i=1

aixi 6 C ,
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the vector (a1, . . . , an) is outward-pointing.

We recover under this convention the classical singular and cubical di�erentials. Take X a topo-
logical space. Given a singular simplex σ : ∆n → X, its di�erential is classically de�ned as

∂sing(σ) :=
n∑

i=0

(−1)iσi ,

where σi stands for the restriction [0 < · · · < î < · · · < n] ↪→ ∆n → X. Realizing ∆n as a polytope
in Rn and orienting it with the canonical orientation of Rn, we check that its boundary reads exactly
as

∂∆n =
n⋃

i=0

(−1)i∆n−1
i ,

where ∆n−1
i is the (n − 1)-simplex corresponding to the face [0 < · · · < î < · · · < n]. The sign

(−1)i means that the orientation of ∆n−1
i induced by its canonical identi�cation with ∆n−1 and its

orientation as the boundary of ∆n, di�er by a (−1)i sign.

Similarly, given a singular cube σ : In → X, its di�erential is

∂cubσ :=
n∑

i=1

(−1)i(σi,0 − σi,1) ,

where σi,0 denotes the singular cube In−1 → X obtained from σ by setting its i-th entry to 0, and
σi,1 is de�ned similarly. We check again that considering In ⊂ Rn as a polytope of Rn, its boundary
reads as

∂In =

n⋃

i=1

(−1)i(In−1
i,0 ∪ −In−1

i,1 ) ,

where In−1
i,0 is the face of In obtained by setting the i-th coordinate equal to 0, and In−1

i,1 is de�ned
likewise.

4.1.3. Coorientations. Our convention for orienting the boundary of an oriented manifold with
boundary (M,∂M) can in fact be rephrased as follows : the boundary ∂M is cooriented by the
outward pointing vector �eld ν.

More generally consider an oriented manifold N and a submanifold S ⊂ N . A coorientation of S
is de�ned to be an orientation of the normal bundle to S. Given any complement bundle νS to TS
in TN |S ,

TN |S = νS ⊕ TS ,

this orientation induces in turn an orientation on νS , the normal bundle being canonically isomorphic
to νS . The manifold S is then orientable if and only if it is coorientable. This can be proven using
the �rst Stiefel-Whitney class for instance. Given a coorientation for S, the induced orientation on S
is set to be the one whose concatenation with that of νS , in the order (νS , TS), gives the orientation
on TN |S .
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4.2. Signs for A∞-algebras and A∞-morphisms using the bar construction. There exist
various conventions on signs for A∞-algebras and A∞-morphisms between them, which can seem
inexplicable when met out of context. The goal of this section is twofold : to give a comprehensive
account of the two sign conventions coming from the bar construction, and to state our choice of
signs for the rest of the paper. The eager reader can straightaway jump to subsection 4.2.4, where
our choice of signs is given.

4.2.1. A∞-algebras. We will �rst be interested in the following two sign conventions for A∞-algebras
:

[m1,mn] = −
∑

i1+i2+i3=n
26i26n−1

(−1)i1i2+i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,(A)

[m1,mn] = −
∑

i1+i2+i3=n
26i26n−1

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,(B)

which can we rewritten as
∑

i1+i2+i3=n

(−1)i1i2+i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) = 0 ,(A)

∑

i1+i2+i3=n

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) = 0 .(B)

First, note that these two sign conventions are equivalent in the following sense : given a sequence

of operationsmn : A⊗n → A satisfying equations (A), we check that the operationsm′n := (−1)(
n
2)mn

satisfy equations (B). This sign change does not come out of the blue, and appears in the following
proof that these equations come indeed from the bar construction.

Introduce the suspension and desuspension maps

s : A −→ sA w : sA→ A

a 7−→ sa sa 7−→ a ,

which are respectively of degree −1 and +1. We check that with the Koszul sign rule,

w⊗n ◦ s⊗n = (−1)(
n
2)idA⊗n .

Then, note that a degree 2 − n map mn : A⊗n → A yields a degree +1 map bn := smnw
⊗n :

(sA)⊗n → sA. Consider now a collection of degree 2 − n maps mn : A⊗n → A, and the associated
degree +1 maps bn : (sA)⊗n → sA. Denoting D the unique coderivation on T (sA) associated to the
bn, the equation D

2 = 0 is then equivalent to the equations

∑

i1+i2+i3=n

bi1+1+i3(id⊗i1 ⊗ bi2 ⊗ id⊗i3) = 0 .

There are now two ways to unravel the signs from these equations.
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The �rst way consists in simply replacing the bi by their de�nition. It leads to the (A) sign
conventions :

∑

i1+i2+i3=n

bi1+1+i3(id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+i2+i3=n

smi1+1+i3(w⊗i1 ⊗ w ⊗ w⊗i3)(id⊗i1 ⊗ smi2w
⊗i2 ⊗ id⊗i3)

=
∑

i1+i2+i3=n

(−1)i3smi1+1+i3(w⊗i1 ⊗mi2w
⊗i2 ⊗ w⊗i3)

=
∑

i1+i2+i3=n

(−1)i3+i1i2smi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)(w⊗i1 ⊗ w⊗i2 ⊗ w⊗i3)

=s

( ∑

i1+i2+i3=n

(−1)i1i2+i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)

)
w⊗n .

The second way consists in �rst composing and post-composing by w and s⊗n and then replacing

the bi by their de�nition. It leads to the (B) sign conventions and makes the (−1)(
n
2) sign change

appear:

∑

i1+i2+i3=n

wbi1+1+i3(id⊗i1 ⊗ bi2 ⊗ id⊗i3)s⊗n

=
∑

i1+i2+i3=n

wbi1+1+i3(id⊗i1 ⊗ bi2 ⊗ id⊗i3)(s⊗i1 ⊗ s⊗i2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1wbi1+1+i3(s⊗i1 ⊗ bi2s⊗i2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1wsmi1+1+i3w
⊗i1+1+i3(s⊗i1 ⊗ smi2w

⊗i2s⊗i2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1mi1+1+i3w
⊗i1+1+i3(s⊗i1 ⊗ (−1)(

i2
2 )smi2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1+i2i3mi1+1+i3w
⊗i1+1+i3s⊗i1+1+i3(id⊗i1 ⊗ (−1)(

i2
2 )mi2 ⊗ id⊗i3)

=
∑

i1+i2+i3=n

(−1)i1+i2i3(−1)(
i1+1+i3

2 )mi1+1+i3(id⊗i1 ⊗ (−1)(
i2
2 )mi2 ⊗ id⊗i3) .
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4.2.2. A∞-morphisms. We now dwell into the two sign conventions for A∞-morphisms that are
coming with the bar construction viewpoint. They are as follows :

[m1, fn] =
∑

i1+i2+i3=n
i2>2

(−1)i1i2+i3fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)(A)

−
∑

i1+···+is=n
s>2

(−1)εAms(fi1 ⊗ · · · ⊗ fis) ,

[m1, fn] =
∑

i1+i2+i3=n
i2>2

(−1)i1+i2i3fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)(B)

−
∑

i1+···+is=n
s>2

(−1)εBms(fi1 ⊗ · · · ⊗ fis) ,

which can we rewritten as

∑

i1+i2+i3=n

(−1)i1i2+i3fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) =
∑

i1+···+is=n
(−1)εAms(fi1 ⊗ · · · ⊗ fis) ,(A)

∑

i1+i2+i3=n

(−1)i1+i2i3fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) =
∑

i1+···+is=n
(−1)εBms(fi1 ⊗ · · · ⊗ fis) ,(B)

where

εA =

s∑

u=1

iu

( ∑

u<t6s
(1− it)

)
, εB =

s∑

u=1

(s− u)(1− iu) .

These two sign conventions are again equivalent : given a sequence of operations mn and fn
satisfying equations (A), we check that the operations m′n := (−1)(

n
2)mn and f ′n := (−1)(

n
2)fn

satisfy equations (B). The (−1)(
n
2) twist will again appear in the following proof, from the formula

w⊗n ◦ s⊗n = (−1)(
n
2)idA⊗n .

Consider now two dg-modules A and B, together with a collection of degree 2 − n maps mn :
A⊗n → A and mn : B⊗n → B (we use the same notation for sake of readability), and a collection of
degree 1 − n maps fn : A⊗n → B. We associate again to the mn the degree +1 maps bn, and also
associate to the fn the degree 0 maps Fn := sfnw

⊗n : (sA)⊗n → sB. We denote DA and DB the
unique coderivations acting respectively on T (sA) and T (sB), and F : T (sA)→ T (sB) the unique
coalgebra morphism associated to the Fn. The equation FDA = DBF is then equivalent to the
equations

∑

i1+i2+i3=n

Fi1+1+i3(id⊗i1 ⊗ bi2 ⊗ id⊗i3) =
∑

i1+···+is=n
bs(Fi1 ⊗ · · · ⊗ Fis) .

There are again two ways to unravel the signs from these equations, which will lead to conventions
(A) and (B). The proofs proceed exactly as in subsection 4.2.1.
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4.2.3. Composition of A∞-morphisms. Let fn : A⊗n → B and gn : B⊗n → C be two A∞-morphisms
under conventions (A). The arity n component of their composition g ◦ f is de�ned as

∑

i1+···+is=n
(−1)εAgs(fi1 ⊗ · · · ⊗ fis) ,(A)

where εA is as previously.

Let fn : A⊗n → B and gn : B⊗n → C be two A∞-morphisms under conventions (B). The arity n
component of their composition g ◦ f is this time de�ned as

∑

i1+···+is=n
(−1)εBgs(fi1 ⊗ · · · ⊗ fis) ,(B)

where εB is as previously.

We check that in each case, this newly de�ned morphism satis�es the A∞-equations, respectively
under the sign conventions (A) and (B). This can again be proven using the bar construction and
applying the previous transformations.

4.2.4. Choice of convention in this paper. We will work in the rest of this paper under the set of
conventions (B). The operations mn of an A∞-algebra will satisfy equations

[m1,mn] = −
∑

i1+i2+i3=n
26i26n−1

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,

an A∞-morphism between two A∞-algebras will satisfy equations

[m1, fn] =
∑

i1+i2+i3=n
i2>2

(−1)i1+i2i3fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)−
∑

i1+···+is=n
s>2

(−1)εBms(fi1 ⊗ · · · ⊗ fis) ,

and two A∞-morphisms will be composed as
∑

i1+···+is=n
(−1)εBgs(fi1 ⊗ · · · ⊗ fis) ,

where εB =
∑s

u=1(s− u)(1− iu).

This choice of conventions will be accounted for in the next two sections : the signs are the ones
which arise naturally from the realizations of the associahedra and the multiplihedra à la Loday. We
also point out that a choice of convention for the signs on A∞-algebras completely determines the
conventions on A∞-morphisms and their composition.

4.3. Loday associahedra and signs. A∞-structures were introduced for the �rst time in two
seminal papers by Stashe� on homotopy associative H-spaces [Sta63]. In the �rst paper of the
series, he de�ned cell complexes Kn ⊂ In−2 which govern An-structures on topological spaces, and
hence realize the associahedra as cell complexes. The associahedra were later realized as polytopes
by Haiman in [Hai84], Lee in [Lee89] or Loday in [Lod04]. They were recently endowed with an
operad structure in the category Poly by Masuda, Thomas, Tonks and Vallette in [MTTV19], using
the notion of weighted Loday realizations.

Following [MTTV19], we explain the construction of these realizations. We then show that the
sign convention (B) for A∞-algebras is determined by these realizations : this gives a more geometric
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explanation of these signs, which does not come from a (−1)(
n
2) twist after reading the signs on the

bar construction. This also provides an explicit proof with signs of the statement in [MTTV19], that
these polytopes are sent to the operad A∞ by the functor Ccell−∗ (Proposition 4). These realizations
moreover achieve the �rst step towards constructing the morphism of operads of Markl-Shnider
A∞ → ΩBAs.

4.3.1. Realizations of the associahedra à la Loday.

De�nition 17 ([MTTV19]). Given n > 1, de�ne a weight ω to be a list of n positive integers
(ω1, . . . , ωn). The Loday realization of weight ω of Kn is de�ned as the common intersection in Rn−1

of the hyperplane of equation

Hω :
n−1∑

i=1

xi =
∑

16k<l6n
ωkωl

and of the half-spaces of equation

Di1,i2,i3 : xi1+1 + · · ·+ xi1+i2−1 >
∑

i1+16k<l6i1+i2

ωkωl ,

for all i1 + i2 + i3 = n and 2 6 i2 6 n− 1. This polytope is denoted Kω.

Figure 12. The Loday realizations K(1,1) and K(1,1,1) : the lighter grey depicts Hω,
while the darker grey stands for Kω.

The Loday realizations K(1,1) and K(1,1,1) are represented in �gure 12. The polytope Kω being
de�ned as an intersection of half-spaces inside the (n − 2)-dimensional space Hω, it has dimension
n − 2. In fact, denoting 1n the weight of length n whose entries are all equal to 1, it is one of the
main results of [MTTV19] that the collection of polytopes (K1n)n>1 can be made into an operad in
the category Poly. The goal of this section is to show the following proposition :

Proposition 4. The Loday associahedra determine the sign conventions (B) for A∞-algebras.

That is, after orienting each polytope Kn := K1n the boundary of Kn reads as

∂Kn = −
⋃

i1+i2+i3=n
26i26n−1

(−1)i1+i2i3Ki1+1+i3 ×Ki2 ,

where Ki1+1+i3 × Ki2 is sent to mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) under the functor Ccell−∗ . The signs
mean that after comparing the product orientation on Ki1+1+i3 ×Ki2 induced by the orientations
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of Ki1+1+i3 and Ki2 , to the orientation of the boundary of Kn, they di�er by the sign −(−1)i1+i2i3 .
We explain now how to obtain the set-theoretic decomposition of the boundary

∂Kn =
⋃

i1+i2+i3=n
26i26n−1

Ki1+1+i3 ×Ki2 ,

and inspect the signs in the next section.

The top dimensional strata in the boundary of some Kω are obtained by allowing exactly one of
the inequalities

xi1+1 + · · ·+ xi1+i2−1 >
∑

i1+16k<l6i1+i2

ωkωl ,

to become an equality. We write Hi1,i2,i3 for these hyperplanes. De�ning two new weights

ω := (ω1, . . . , ωi1 , ωi1+1 + · · ·+ ωi1+i2 , ωi1+i2+1, . . . , ωn) ,

ω̃ := (ωi1+1, . . . , ωi1+i2) ,

the map

θ : Ri1+i3 × Ri2−1 −→ Rn−1

(x1, . . . , xi1+i3)× (y1, . . . , yi2−1) 7−→ (x1, . . . , xi1 , y1, . . . , yi2−1, xi1+1, . . . , xi1+i3)

induces a bijection between Kω × Kω̃ and the codimension 1 face of Kω corresponding to the
intersection with Hi1,i2,i3 .

4.3.2. Recovering signs from these realizations. The directing hyperplaneHω of the a�ne hyperplane
Hω has basis

eωj = (1, 0, · · · , 0,−1j+1, 0, · · · , 0) ,

where −1 is in the j+ 1-th spot, and we add a superscript ω for later use. We choose this basis as a
positively oriented basis for Hω : this de�nes our orientation of Kω. Choosing any (a1, . . . , an−1) ∈
Hω, the basis e

ω
j parametrizes Hω under the map

(y1, . . . , yn−2) 7−→ (

n−2∑

j=1

yj + a1,−y1 + a2, . . . ,−yn−2 + an−1) .

Hence in the coordinates of the basis eωj , the half-space Hω ∩Di1,i2,i3 reads as

when i1 = 0 : − yi2−1 − · · · − yn−2 6 C ,

when i1 > 1 : yi1 + · · ·+ yi1+i2−2 6 C ,

where C denotes some constant that we are not interested in. Hence, in the basis eωj , an outward
pointing vector for the boundary Hω ∩Hi1,i2,i3 is

when i1 = 0 : ν := (0, . . . , 0,−1i2−1, . . . ,−1n−2) ,

when i1 > 1 : ν := (0, . . . , 0, 1i1 , . . . , 1i1+i2−2, 0, . . . , 0) .

We have chosen orienting bases for the directing hyperplanes Hω, and computed all outward
pointing vectors for the boundaries in these bases. It only remains to study the image of these
bases under the maps θ. We write eωj for the orienting basis of Kω and eω̃j for the one of Kω̃. We
distinguish two cases.
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When i1 = 0, the map θ reads as

θ(x1, . . . , xi3 , y1, . . . , yi2−1) = (y1, . . . , yi2−1, x1, . . . , xi3) ,

and we compute that :

θ(eωj ) = −eωi2−1 + eωj+i2−1 θ(eω̃j ) = eωj .

The determinant then has value

deteωj

(
ν, θ(eωj ), θ(eω̃j )

)
= −i3(−1)i2i3 .

Thus, we recover the −(−1)i1+i2i3Ki1+1+i3 ×Ki2 oriented component of the boundary.

When i1 > 1, the map θ now reads as

θ(x1, . . . , xi3 , y1, . . . , yi2−1) = (x1, . . . , xi1 , y1, . . . , yi2−1, xi1+1, . . . , xi1+i3) ,

and we compute that :

j 6 i1 − 1 , θ(eωj ) = eωj j > i1 , θ(eωj ) = eωj+i2−1 θ(eω̃j ) = eωj+i1 − eωi1 .
This time,

deteωj

(
ν, θ(eωj ), θ(eω̃j )

)
= −(i2 − 1)(−1)i1+i2i3 .

We �nd again the −(−1)i1+i2i3Ki1+1+i3×Ki2 oriented component of the boundary, which concludes
the proof of Proposition 4.

4.4. Forcey-Loday multiplihedra and signs. Iwase and Mimura realized the multiplihedra as
cell complexes in [IM89] following the hints of Stashe� in [Sta63]. The multiplihedra were later
realized as polytopes in [For08]. This will be adapted in an upcoming paper by Masuda, Vallette
and the author [MMV], which uses again the notion of weighted Loday realizations.

The goal of this section is to show that the sign convention (B) for A∞-morphisms is naturally
determined by the weighted Loday realizations of [MMV]. In this regard, we lay out the explicit
construction of [MMV], and follow the same lines of proof as in the previous section. This also
provides a proof with signs that these polytopes are sent to the operadic bimodule A∞ −Morph by
the functor Ccell−∗ (Proposition 5).

4.4.1. Forcey-Loday realizations of the multiplihedra.

De�nition 18 ([MMV]). Given n > 1, choose a weight ω = (ω1, . . . , ωn). The Forcey-Loday
realization of weight ω of Jn is de�ned as the intersection in Rn−1 of the half-spaces of equation

Di1,i2,i3 : xi1+1 + · · ·+ xi1+i2−1 >
∑

i1+16k<l6i1+i2

ωkωl ,

for all i1 + i2 + i3 = n and i2 > 2, with the half-spaces of equation

Di1,...,is : xi1 + xi1+i2 + · · ·+ xi1+···+is−1 6 2
∑

16t<u6s
ΩtΩu

for all i1 + · · · + is = n, with each it > 1 and s > 2, and where Ωt :=
∑it

a=1 ωi1+···+it−1+a. This
polytope is denoted Jω.
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Figure 13. The Forcey-Loday realizations J(1,1,1) and J(1,1,1,1)

The Forcey-Loday realizations J(1,1,1) and J(1,1,1,1) are depicted in �gure 13. The polytope Jω
being an intersection of half-spaces in Rn−1, it has dimension n− 1. Setting Jn := J1n , it is proven
in [MMV] that the collection of polytopes {Jn}n>1 can be made into a ({Kn}, {Kn})-operadic
bimodule in the category Poly.

Proposition 5. The Forcey-Loday realizations determine the sign conventions (B) for A∞-morphisms.

More precisely our goal is to prove that, after orienting the Kn as before and choosing an orien-
tation for the Jn, the boundary of Jn reads as

∂Jn =
⋃

i1+i2+i3=n
i2>2

(−1)i1+i2i3Ji1+1+i3 ×Ki2 ∪ −
⋃

i1+···+is=n
s>2

(−1)εBKs × Ji1 × · · · × Jis ,

where εB is as in subsection 4.2.4 ; Ki1+1+i3 × Ki2 is sent to fi1+1+i3(id⊗i1 ⊗ mi2 ⊗ id⊗i3) while
Ks × Ji1 × · · · × Jis is sent to ms(fi1 ⊗ · · · ⊗ fis) by the functor Ccell−∗ .

We conclude this section with a proof of the set-theoretic equality for the boundary

∂Jn =
⋃

i1+i2+i3=n
i2>2

Ji1+1+i3 ×Ki2 ∪
⋃

i1+···+is=n
s>2

Ks × Ji1 × · · · × Jis ,

and postpone the processing of signs to the next subsection. The top dimensional strata in the
boundary of a Jω are obtained by allowing exactly one of the inequalities

xi1+1 + · · ·+ xi1+i2−1 >
∑

i1+16k<l6i1+i2

ωkωl ,

xi1 + xi1+i2 + · · ·+ xi1+···+is−1 6 2
∑

16t<u6s
ΩtΩu ,

to become an equality. We write Hi1,i2,i3 and H i1,...,is for these hyperplanes.

Begin with the Hi1,i2,i3 component. De�ning two new weights

ω := (ω1, . . . , ωi1 , ωi1+1 + · · ·+ ωi1+i2 , ωi1+i2+1, . . . , ωn) ,

ω̃ := (ωi1+1, . . . , ωi1+i2) ,



36 THIBAUT MAZUIR

the map

θ : Ri1+i3 × Ri2−1 −→ Rn−1

(x1, . . . , xi1+i3)× (y1, . . . , yi2−1) 7−→ (x1, . . . , xi1 , y1, . . . , yi2−1, xi1+1, . . . , xi1+i3)

induces a bijection between Jω ×Kω̃ and the codimension 1 face of Jω corresponding to the inter-
section with Hi1,i2,i3 .

In the case of the H i1,...,is component, we de�ne the weights

ω := (
√

2Ω1, . . . ,
√

2Ωs) ,

ω̃t := (ωi1+···+it−1+1, . . . , ωi1+···+it−1+it) , 1 6 t 6 s .
This time, the map

θ : Rs−1 × Ri1−1 × · · · × Ris−1 −→ Rn−1

sends an element (x1, . . . , xs−1)× (y1
1, . . . , y

1
i1−1)× · · · × (ys1, . . . , y

s
is−1) to

(y1
1, . . . , y

1
i1−1, x1, y

2
1, . . . , y

2
i2−1, x2, y

3
1, . . . , xs−1, y

s
1, . . . , y

s
is−1) .

It induces a bijection between Kω × Jω̃1
× · · · × Jω̃s and the codimension 1 face of Jω corresponding

to the intersection with H i1,...,is .

4.4.2. Processing the signs for these realizations. We set the orientation on Rn−1, and hence on Jω,
to be such that the vectors

fωj := (0, 0, · · · , 0,−1j , 0, · · · , 0) ,

de�ne a positively oriented basis of Rn−1. In the coordinates of the basis fωj , the half-space Di1,i2,i3

reads as
zi1+1 + · · ·+ zi1+i2−1 6 −

∑

i1+16k<l6i1+i2

ωkωl ,

and the half-space Di1,...,is as

−zi1 − zi1+i2 − · · · − zi1+···+is−1 6 2
∑

16t<u6s
ΩtΩu

In this basis, an outward pointing vector for the boundary Hi1,i2,i3 is then

ν := (0, . . . , 0, 1i1+1, . . . , 1i1+i2−1, 0, . . . , 0) ,

while an outward pointing vector for the boundary H i1,··· ,is is

ν := (0, . . . , 0,−1i1 , 0, . . . , 0,−1i1+i2 , 0, . . . . . . , 0,−1i1+i2+···+is−1 , 0, . . . , 0) .

Now that we have chosen positively oriented bases for the Jω, and chosen outward pointing vectors
for each component of their boundaries, we conclude again by computing the image of these bases
under the maps θ.

In the case of a boundary component Hi1,i2,i3 ,

j 6 i1 , θ(fωj ) = fωj j > i1 + 1 , θ(fωj ) = fωj+i2−1 θ(eω̃j ) = −fωi1+1 + fωi1+j+1 .

The determinant against the basis fωj then has value

detfωj

(
ν, θ(fωj ), θ(eω̃j )

)
= (i2 − 1)(−1)i1+i2i3 .

Thus, we recover the (−1)i1+i2i3Ji1+1+i3 ×Ki2 oriented component of the boundary.
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Finally, in the case of a boundary component H i1,...,is , we compute that

θ(eωj ) = −fωi1 + fωi1+···+ij+1
θ(f ω̃tj ) = fωj+i1+···+it−1

.

This time,

detfωj

(
ν, θ(eωj ), θ(f ω̃1

j ), . . . , θ(f ω̃sj )
)

= −(s− 1)(−1)εB .

We �nd again the −(−1)εBKs×Ji1×· · ·×Jis oriented component of the boundary, which concludes
the proof of Proposition 5.

5. Signs and moduli spaces for ΩBAs-algebras and ΩBAs-morphisms

This section completes section 3 by explicitly describing the two families of moduli spaces of metric
trees Tn(t) and CT n(tg), working out the induced signs for ΩBAs-algebras and ΩBAs-morphisms
and eventually constructing the morphisms of Propositions 2 and 3.

More precisely, we begin by recalling the de�nition of the operad ΩBAs from Markl-Shnider,
using the formalism of orientations on broken stable ribbon trees. This establishes a direct link to
the moduli spaces Tn(t). Using the fact that the dual decomposition on the associahedron coincides
with its ΩBAs decomposition, we give a new proof of the morphism of operads A∞ → ΩBAs, that
relies uniquely on polytopes and not on sign computations. We then attend to the de�nition of the
operadic bimodule ΩBAs−Morph. This goes through a long and comprehensive study of the signs
ensuing from orientations of the codimension 1 strata of the compacti�ed moduli spaces CT n(tg).
We �nally de�ne the morphism of operadic bimodules A∞−Morph→ ΩBAs−Morph, using again
solely the realizations of the multiplihedra from [MMV]. This is an opportunity to state a MacLane's
coherence theorem encoded by the multiplihedra, while the classical MacLane's coherence theorem
on monoidal categories is encoded by the associahedra (see subsection 5.3.4).

5.1. The operad ΩBAs.

5.1.1. De�nition of the operad ΩBAs. The de�nition of the operad ΩBAs that we now lay out
is the one given by Markl and Shnider in [MS06]. We only expose the material necessary to our
construction, and refer to their paper for further details and proofs. In the rest of the section, the
notation t stands for a stable ribbon tree, and the notation tbr denotes a broken stable ribbon tree.
Observe that a stable ribbon tree is a broken stable ribbon tree with 0 broken edge. As a result,
all constructions performed for broken stable ribbon trees in the upcoming subsections will hold in
particular for stable ribbon trees.

De�nition 19 ([MS06]). Given a broken stable ribbon tree tbr, an ordering of tbr is de�ned to be
an ordering of its i �nite internal edges e1, . . . , ei. Two orderings are said to be equivalent if one
passes from one ordering to the other by an even permutation. An orientation of tbr is then de�ned
to be an equivalence class of orderings, and written ω := e1 ∧ · · · ∧ ei. Each tree tbr has exactly two
orientations. Given an orientation ω of tbr we will write −ω for the second orientation on tbr, called
its opposite orientation.

De�nition 20 ([MS06]). Consider the Z-module freely generated by the pairs (tbr, ω) where tbr is
a broken stable ribbon tree and ω an orientation of tbr. We de�ne the arity n space of operations
ΩBAs(n)∗ to be the quotient of this Z-module under the relation

(tbr,−ω) = −(tbr, ω) .
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A pair (tbr, ω) where tbr has i �nite internal edges, is de�ned to have degree −i. The partial
compositions are then

(tbr, ω) ◦k (t′br, ω
′) = (tbr ◦k t′br, ω ∧ ω′) ,

where the tree tbr ◦k t′br is the broken ribbon tree obtained by grafting t′br to the k-th incoming edge
of tbr, and the edge resulting from the grafting is broken. The di�erential ∂ΩBAs on ΩBAs(n)∗ is
�nally set to send an element (tbr, e1 ∧ · · · ∧ ei) to

i∑

j=1

(−1)j ((tbr/ej , e1 ∧ · · · ∧ êj ∧ · · · ∧ ei)− ((tbr)j , e1 ∧ · · · ∧ êj ∧ · · · ∧ ei)) ,

where tbr/ej is the tree obtained from t by collapsing the edge ej and (tbr)j is the tree obtained
from tbr by breaking the edge ej . It can be checked that the collection of dg-Z-modules ΩBAs(n)∗
de�nes indeed an operad in dg− Z− mod.

Choosing a distinguished orientation for every stable ribbon tree t ∈ SRT , this de�nition of the
operad ΩBAs yields the de�nition as the quasi-free operad

F( , , , , · · · , SRTn, · · · ) ,

given in subsection 3.1.4. Our de�nition with the pairs (t, ω), albeit more tedious at �rst sight,
allows however for easier computations of signs.

5.1.2. Canonical orientations for the binary ribbon trees ([MS06]). For a �xed n > 2, the set of
binary ribbon trees BRTn can be endowed with a partial order that Tamari introduced in his
thesis [Tam54].

De�nition 21. The Tamari order on BRTn is the partial order generated by the covering relations

t2t1 t3

t4

>

t2t1 t3

t4

where t1, t2, t3 and t4 are binary ribbon trees.

The left-hand side in the above covering relation will be called a right-leaning con�guration, and
the right-hand side a left-leaning con�guration. Hence given two trees t and t′ in BRTn, the inequality
t > t′ holds if and only one can pass from t to t′ by successive transformations of a right-leaning
con�guration into a left-leaning con�guration. For example in the case of BRT4, we obtain the
Hasse diagram in �gure 14.

The Tamari poset has a unique maximal element and a unique minimal element, respectively given
by the right-leaning and left-leaning combs, denoted tmax and tmin. Given moreover a binary ribbon
tree t, its immediate neighbours are by de�nition the trees obtained from t by either transforming
exactly one right-leaning con�guration of t into a left-leaning con�guration, or transforming exactly
one left-leaning con�guration of t into a right-leaning con�guration.
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e1
e2 e1 ∧ e2

e1 e2
− e1 ∧ e2

e2
e1 e1 ∧ e2 = e1

e2 − e1 ∧ e2

e1

e2
e1 ∧ e2

e1

e2 − e1 ∧ e2

Figure 14. On the left, the Hasse diagram of the Tamari poset, where the maximal
element is written at the top. On the right, all the canonical orientations for BRT4

computed going down the Tamari poset.

The canonical orientation on the maximal binary tree is de�ned as

e1

en−2

ωcan := e1 ∧ · · · ∧ en−2 .

Using the Tamari order, we can now build inductively canonical orientations on all binary trees. We
start at the maximal binary ribbon tree, and use the following rule on the covering relations

t2t1 t3

t4

e ω = · · · ∧ e ∧ · · · −→

t2t1 t3

t4

e − ω = · · · ∧ (−e) ∧ · · · ,

to de�ne the orientations of its immediate neighbours. We then repeat this rule while going down
the Tamari poset until the minimal binary tree is reached. This process is consistent (see subsec-
tion 5.3.4), i.e. it does not depend on the path taken in the Tamari poset from the maximal binary
tree to the binary tree whose orientation is being de�ned. A full example for BRT4 is illustrated in
�gure 14.

De�nition 22 ([MS06]). The orientations obtained under this process are called the canonical
orientations and written ωcan.

5.1.3. The moduli spaces T n realize the operad ΩBAs. We explained in subsection 3.1.3 that the
compacti�ed moduli space T n comes with a �ne cell decomposition, which is labeled by all broken
stable ribbon trees with n incoming edges. Consider then a cell T n(tbr) ⊂ T n, where tbr is a broken
stable ribbon tree. An ordering of its �nite internal edges e1, . . . , ei induces an isomorphism

T n(tbr) −̃→ [0,+∞]i ,

where the length lej is seen as the j-th coordinate in [0,+∞]i. This ordering induces in particular

an orientation on Tn(tbr), by taking the image of the canonical orientation of ]0,+∞[i under the
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isomorphism. We check that two orderings of tbr de�ne the same orientation on Tn(tbr) if and only
if they are equivalent : in other words, an orientation of tbr amounts to an orientation of Tn(tbr).

Consider now the Z-module freely generated by the pairs

(T n(tbr), choice of orientation ω on the cell T n(tbr)) ,

where tbr is a broken stable ribbon tree. The complex Ccell−∗ (T n) can simply be de�ned to be the
quotient of this Z-module under the relation

−(T n(tbr), ω) = (T n(tbr),−ω) .

The di�erential of an element (T n(tbr), ω) is moreover given by the classical cubical di�erential on
[0,+∞]i. De�ning the cell chain complex in this way, it becomes tautological that :

Proposition 6. The functor Ccell−∗ sends the operad T n to the operad ΩBAs.

What's more, it can be easily seen that given a binary ribbon tree t, the cells labeled by the
immediate neighbours to the tree t in the Tamari order are exactly the cells having a codimension
1 stratum in common with the cell T n(t).

5.1.4. The morphism of operads A∞ → ΩBAs. The moduli space T n endowed with its A∞-cell
decomposition is isomorphic to the Loday realization Kn of the associahedron. In fact, tedious
computations show that under this isomorphism, the ΩBAs-decomposition is sent to the dual sub-
division of Kn. See appendix C of [LV12] and an illustration in �gure 7 for instance. The goal of
this section is to prove the following proposition :

Proposition 7. The map id : (T n)A∞ → (T n)ΩBAs is sent under the functor C
cell
−∗ to the morphism

of operads A∞ → ΩBAs acting as

mn 7−→
∑

t∈BRTn
(t, ωcan) .

For this purpose, we will work with the Loday realizations of the associahedra. We will show that
taking the restriction of the orientation of Kn chosen in section 4.3 to the top dimensional cells of
its dual subdivision yields the canonical orientations on these cells in the T n viewpoint.

We begin by proving this statement for the cell labeled by the right-leaning comb tmax. Con-
sider the orientation on the cell T n(tmax) induced by the canonical ordering e1, . . . , en−2 under the
isomorphism

T n(tmax) −̃→ [0,+∞]n−2 .

The face of T n(tmax) associated to the breaking of the i-th edge corresponds to the face Hi,n−i,0
when seen in the Loday polytope. An outward-pointing vector for the face Hi,n−i,0 is moreover

νi := (0, . . . , 0, 1i, . . . , 1n−2) ,

where coordinates are taken in the basis eωj . The orientation de�ned by the canonical basis of

[0,+∞]n−2 being exactly the one de�ned by the ordered list of the outwarding-point vectors to the
+∞ boundary, it is sent to the orientation of the basis (ν1, . . . , νn−2) in the Loday polytope. We
then check that

deteωj (νj) = 1 .
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le1

le1
le2

lf1

lf2

le2 lf2

lf1le1 le2 = lf2 = 0

ve2

ve1

ve2 = −vf2

ve1 = vf1

Figure 15. Gluing the cells T n(tmax) and T n(t) along their common boundary :
on this diagram, a vector of the form ve is the vector orienting the axis associated to
the length le

Hence the orientation of Kn and the one induced by the canonical orientation are the same for the
cell T n(tmax).

As explained in the previous subsection, the cells labeled by the immediate neighbours of the
right-leaning comb tmax in the Tamari order are exactly the cells having a codimension 1 stratum
in common with this cell. Choose an immediate neighbour t, and write e for the edge that has been
collapsed to obtain the common codimension 1 stratum. We detail the process to obtain the induced
orientation on T n(t) following �gure 15. Gluing the cells T n(tmax) and T n(t) along their common
boundary, we obtain a new copy of [0,+∞]n−2 which can be divided into two halves tmax and t.
We then orient the total space [0,+∞]n−2 as the tmax half. Reading the induced orientation on the
t half, it is the one obtained from the tmax half by reversing the axis associated to the edge e. By
construction, this orientation is exactly the one obtained by restricting the global orientation on Kn

to an orientation on Tn(t).

Finally, going down the Tamari order, we can read the induced orientation on the top dimensional
cells one immediate neighbour after another. And the rule to do this step-by-step process is exactly
the one given in 5.1.2 on the covering relations. Hence, by construction, the global orientation on Kn

restricts to the canonical orientations on binary trees, which concludes the proof of Proposition 2.

5.2. The moduli spaces CT n(tbr,g). We give a detailed de�nition of the moduli spaces of gauged
stable metric ribbon trees CT n(tg), introduced in part 3.2. Building on these explicit realizations,
we then thoroughly compute the signs appearing in the codimension 1 strata of the compacti�ed
moduli spaces CT n(tg). This yields in particular the signs which will appear in subsection 5.3.1, in
the de�nition of the di�erential on the operadic bimodule ΩBAs−Morph.

5.2.1. De�nition. In the rest of the section, we will write tbr,g for a broken gauged stable ribbon
tree, and tg for an unbroken gauged stable ribbon tree.

De�nition 23. We set to be the unique stable gauged tree of arity 1, and will call it the trivial
gauged tree. We de�ne the underlying broken stable ribbon tree tbr of a tbr,g to be the ribbon tree
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obtained by �rst deleting all the in tbr,g, and then forgetting all the remaining gauges of tbr,g.
We refer moreover to a gauge in tbr,g which is associated to a non-trivial gauged tree, as a non-trivial
gauge of tbr,g.

Figure 16. An instance of association tbr,g 7→ tbr

We now de�ne the moduli spaces CT n(tbr,g) in three steps. Consider a gauged stable ribbon tree
tg whose gauge does not intersect any of its vertices. Locally at any vertex directly adjacent to the
gauge, the intersection between the gauge and the edges of t corresponds to one of the following two
cases

v v′ .

Write r for the root, the unique vertex adjacent to the outgoing edge. For a vertex v, we denote
d(r, v) the distance separating it from the root : the sum of the lengths of the edges appearing in
the unique non self-crossing path going from r to v. Associating lengths le > 0 to all edges of t, we
then associate the following inequalities to the two above cases

−λ > d(r, v) −λ < d(r, v′) .

Note that this set of inequalities amounts to seeing the gauge as going towards −∞ when going up,
and towards +∞ as going down. The moduli space CT n(tg) is then de�ned as

CT n(tg) :=
{

(λ, {le}e∈E(t)) , λ ∈ R, le > 0, −λ > d(r, v), −λ < d(r, v′)
}
,

where the set of inequalities on λ is prescribed by the gauged tree tg.

Consider now a gauged stable ribbon tree tg whose gauge may intersect some of its vertices. To
the two previous local pictures, one has to add the case

v′′

to which we associate the equality
−λ = d(r, v′′) .

The moduli space CT n(tg) is this time de�ned as

CT n(tg) :=
{

(λ, {le}e∈E(t)) , λ ∈ R, le > 0, −λ > d(r, v), −λ < d(r, v′), −λ = d(r, v′′)
}
,

where the set of equalities and inequalities on λ is prescribed by the gauged tree tg.

Finally, consider a gauged broken stable ribbon tree tbr,g, whose gauges may intersect some of its
vertices. We order the non-trivial unbroken gauged ribbon trees appearing in tbr,g from left to right,
as

t1,1br t1,i1br

t1g

ts,1br ts,isbr

tsg
︸ ︷︷ ︸

tbr
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where t1,1br , . . . , t
1,i1
br , . . . , ts,1br , . . . , t

s,is
br and tbr are broken stable ribbon trees, and the non-trivial un-

broken gauged ribbon trees are represented in the picture as gauged corollae t1g, . . . , t
s
g for the sake of

readability. We write moreover r1, . . . , rs and λ1, . . . , λs for their respective roots and gauges. The
moduli space CT n(tbr,g) is this time de�ned as

CT n(tbr,g) :=

{
(λ1, . . . , λs, {le}e∈E(tbr)) , λi ∈ R, le > 0,

−λi > d(ri, v), −λi < d(ri, v
′), −λi = d(ri, v

′′)

}
,

where the set of equalities and inequalities on λi is prescribed by the unbroken gauged tree tig.

5.2.2. Orienting the moduli spaces CT n(tbr,g).

De�nition 24. De�ne an orientation on a broken gauged stable ribbon tree tbr,g, to be an orientation
e1 ∧ · · · ∧ ei on tbr.

We now explain how to orient the moduli spaces CT n(tbr,g), following the previous three steps
approach. Begin with a gauged stable ribbon tree tg whose gauge does not intersect any of its
vertices. An orientation ω on tg identi�es CT n(tg) with a polyhedral cone

CT n(tg) ⊂]−∞,+∞[×]0,+∞[e(t) ,

de�ned by the inequalities −λ > d(r, v) and −λ < d(r, v′). This polyhedral cone has dimension

e(t) + 1, and we choose to orient it as an open subset of ] −∞,+∞[×]0,+∞[e(t) endowed with its
canonical orientation.

Consider now a gauged stable ribbon tree tg whose gauge may intersect some of its vertices. This
time, an orientation ω on tg identi�es CT n(tg) with a polyhedral cone

CT n(tg) ⊂]−∞,+∞[×]0,+∞[e(t) ,

de�ned by the inequalities −λ > d(r, v) and −λ < d(r, v′), to which we add the equalities −λ =
d(r, v′′). If there are exactly j gauge-vertex intersections in the gauged tree tg, this polyhedral cone
has dimension e(t) + 1− j. Order now the j intersections from left to right

v1 vj
,

and consider the tree t′g obtained by replacing these intersections by

v1 vj
.

One can see tg as lying in the boundary of t′g, by allowing the inequalities −λ > d(r, vk) to become
equalities −λ = d(r, vk) for k = 1, . . . , j. This determines in particular j vectors νk corresponding to
the outwarding-pointing vectors to the boundary of the half-space −λ > d(r, vk). We �nally choose

to coorient (and hence orient) CT n(tg) inside ]−∞,+∞[×]0,+∞[e(t) with the vectors (ν1, . . . , νj).

Lastly, consider a gauged broken stable ribbon tree tbr,g, whose gauges may intersect some of its
vertices. Suppose there are exactly s non-trivial unbroken gauged trees t1g, . . . , t

s
g appearing in tbr,g,

which are ordered from left to right as previously. Suppose also that in each tree tig, there are ji
gauge-vertex intersections. An orientation ω on tbr,g identi�es CT n(tbr,g) with a polyhedral cone

CT n(tbr,g) ⊂]−∞,+∞[s×]0,+∞[e(tbr) ,
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de�ned by the set of equalities and inequalities on the λi, and where the factor ] −∞,+∞[s cor-
responds to (λ1, . . . , λs). This polyhedral cone has dimension e(tbr) + s −∑s

i=1 ji. Now, as in the
previous paragraph, order all gauge-vertex intersections from left to right in every tree tig, and con-
struct a new tree t′br,g. Seeing CT n(tbr,g) as lying in the boundary of CT n(t′br,g), this determines again

a collection of outward-pointing vectors νi,1, . . . , νi,ji for i = 1, . . . , s. We then coorient CT n(tbr,g)

inside ]−∞,+∞[s×]0,+∞[e(tbr) with the vectors (ν1,1, . . . , ν1,j1 , . . . , νs,1, . . . , νs,js).

De�nition 25. We de�ne CT n(tbr,g, ω) to be the moduli space CT n(tbr,g) endowed with the previous
orientation.

We moreover insist on the fact that for a given broken stable ribbon tree type tbr all gauged trees
tbr,g whose underlying ribbon tree is tbr form polyhedral cones ⊂]−∞,+∞[s×]0,+∞[e(tbr), and the

collection of these polyhedral cones is a partition of ] −∞,+∞[s×]0,+∞[e(tbr). This is illustrated
in �gure 17.

λ

l

λ
l

λl

λ
l

Figure 17

5.2.3. Compacti�cation. Recall from section 3.2 that each broken gauged ribbon tree tbr,g can be
seen as a broken two-colored ribbon tree tbr,c. Using the two-colored metric trees viewpoint, the
compacti�cation of CT n(tbr,c) is de�ned by allowing lengths of internal edges to go towards 0 or +∞,
where combinatorics are induced by the equalities de�ned by the colored vertices. The compacti�-
cation rule for gauged metric trees is then simply de�ned by transporting the compacti�cation rule
from the two-colored viewpoint to the gauged viewpoint. We do not give further details here, as we
won't need them in our upcoming computations.

For a gauged stable ribbon tree tg, the compacti�ed moduli space CT n(tg) has codimension
1 strata given by the four components (int-collapse), (gauge-vertex), (above-break) and (below-
break). Choose an orientation ω for tg. As for the moduli spaces Tn(t, ω), the question is now to
determine which signs appear in the boundary of the compacti�cation of the oriented moduli space
CT n(tg, ω). We will inspect this matter in the four upcoming sections, computing the signs for each
boundary component. Note that this time the compacti�cation is much more elaborate than the
cubical compacti�cation of the Tn(t, ω), and as a result we will not be able to write nice and elegant
formulae. We will rather give recipes to compute the signs in each case.

5.2.4. The (int-collapse) boundary component. Consider a gauged stable ribbon tree tg. The (int-
collapse) boundary corresponds to the collapsing of an internal edge that does not intersect the
gauge of the tree t. Choosing an ordering ω = e1∧· · ·∧ei, suppose that it is the p-th edge of t which
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collapses. Write moreover (t/ep)g for the resulting gauged tree, and ωp := e1 ∧ · · · ∧ êp ∧ · · · ∧ ei for
the induced ordering on the edges of t/ep.

We begin by considering the case of a gauged tree tg whose gauge does not intersect any of its
vertices. Suppose �rst that the collapsing edge is located above the gauge. A neighbordhood of the
boundary can then be parametrized as

]− 1, 0]× CT n((t/ep)g, ωp) −→ CT n(tg, ω)

(δ, λ, l1, . . . , l̂p, . . . , li) 7−→ (λ, l1, . . . , lp := −δ, . . . , li) .
This map has sign (−1)p+1, and the component CT n((t/ep)g, ωp) consequently bears a (−1)p+1 sign

in the boundary of CT n(tg, ω).

Suppose next that the collapsing edge is located below the gauge. We de�ne a parametrization
of a neighborhood of the boundary

]− 1, 0]× CT n((t/ep)g, ωp) −→ CT n(tg, ω)

as follows : λ is sent to λ+ δ ; if the edge eq is located directly below a gauge-edge intersection

eq
,

then we send lq to lq−δ ; for all the other edges eq of (t/ep), we send lq to lq ; �nally, we set lp := −δ.
We check again that this map has sign (−1)p+1. Hence, in general, for a gauged tree tg whose gauge
does not intersect any of its vertices, the component CT n((t/ep)g, ωp) bears a (−1)p+1 sign in the

boundary of CT n(tg, ω).

Move on to the case of a gauged stable ribbon tree tg whose gauge may intersect some of its
vertices. Order the j gauge-vertex intersections from left to right as depicted in subsection 5.2.2.
We are going to distinguish three cases, but will eventually end up with the same sign in each case.
Suppose to begin with that the collapsing edge ep is located above the gauge, and is not adjacent
to a gauge-vertex intersection. Then, denoting (t/ep)

′
g the tree obtained via the same process as t′g,

we check that the �rst parametrization introduced in this section

Φ : ]− 1, 0]× CT n((t/ep)
′
g, ωp) −→ CT n(t′g, ω) ,

restricts to a parametrization of a neighborhood of the boundary

φ : ]− 1, 0]× CT n((t/ep)g, ωp) −→ CT n(tg, ω) .

We also check that Φ sends the outward-pointing vectors ν
(t/ep)
k associated to the gauge-vertex inter-

sections in (t/ep)g, to the outward-pointing vectors ν
t
k associated to the gauge-vertex intersections in

tg. Computing the sign of φ amounts to computing the sign of Φ and then exchanging the direction
δ with the outward-pointing vectors νt1, . . . , ν

t
j . The total sign is hence (−1)p+1+j .

Suppose, as second case, that the collapsing edge ep is located above the gauge, and directly
adjacent to a gauge-vertex intersection.

vk

ep
.

We cannot use the trees (t/ep)
′
g and t

′
g as in the last paragraph, as the gauge would then cut the edge

ep in the gauged tree t′g. A small change is required. We form the tree t′′g as the tree t
′
g, but instead



46 THIBAUT MAZUIR

of moving the gauge up at the vertex vk, we move it down. The tree (t/ep)
′′
g is de�ned similarly.

Applying the same argument as previously, we compute again a (−1)p+1+j sign for the boundary.

Finally, suppose that the collapsing edge ep is located below the gauge. It may this time be
directly adjacent to a gauge-vertex intersection. Introducing again the trees (t/ep)

′
g and t′g, and

using this time the second parametrization introduced in this section, we �nd a (−1)p+1+j sign for
the boundary. Note that there is a small adjustment to make in the proof for the outward-pointing

vectors. Indeed, the outward-pointing vector ν
(t/ep)
k gets again sent to the outward-pointing vector

νtk, except if the edge ep is located in the non-self crossing path going from the vertex vk intersected

by the gauge to the root. For such an intersection, the vector ν
(t/ep)
k is sent to νtk − ep by the map

Φ, where ep is the positive direction for the length lp. Though the vector νtk − ep is not equal to

νtk, it is still outward-pointing to the half-space −λ > d(r, vk). As a result, Φ(ν
(t/ep)
1 ), . . . ,Φ(ν

(t/ep)
j )

de�nes indeed the same coorientation of CT n(tg, ω) as νt1, . . . , ν
t
j .

Proposition 8. For a gauged stable ribbon tree tg whose gauge intersects j vertices, the boundary
component CT n((t/ep)g, ωp) corresponding to the collapsing of the p-th edge of t bears a (−1)p+1+j

sign in the boundary of CT n(tg, ω).

5.2.5. The (gauge-vertex) boundary component. Consider a gauged stable ribbon tree tg whose gauge
may intersect some of its vertices. We order the gauge-vertex intersections from left to right as
depicted in subsection 5.2.2. The (gauge-vertex) boundary corresponds to the gauge crossing exactly
one additional vertex of t. We suppose that this intersection takes place between the k-th and k+1-
th intersections of tg. We write moreover t0g for the resulting gauged tree, and introduce again the
tree t′g of subsection 5.2.2.

Proposition 9. Suppose the crossing results from a move

.

Then the boundary component CT n(t0g, ω) has sign (−1)j+k in the boundary of CT n(tg, ω).

Indeed the orientation induced on CT n(t0g, ω) in the boundary of CT n(tg, ω), is de�ned by the coori-

entation (ν1, . . . , νk, ν̂, νk+1, . . . , νj , ν) inside CT n(t′g, ω). The orientation de�ned by ω on CT n(t0g, ω),
is the one de�ned by the coorientation (ν1, . . . , νk, ν, νk+1, . . . , νj) inside CT n(t′g, ω). Hence, these

two orientations di�er by a (−1)j+k sign.

Proposition 10. Suppose the crossing results from a move

.

Then the boundary component CT n(t0g, ω) has sign (−1)j+k+1 in the boundary of CT n(tg, ω).

Again the orientation induced on CT n(t0g, ω) in the boundary of CT n(tg, ω), is de�ned by the
coorientation (ν1, . . . , νk, ν̂, νk+1, . . . , νj ,−ν) inside CT n(t′g, ω). The orientation de�ned by ω on

CT n(t0g, ω), is the one de�ned by the coorientation (ν1, . . . , νk, ν, νk+1, . . . , νj) inside CT n(t′g, ω).

Hence, these two orientations di�er by a (−1)j+k+1 sign.
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5.2.6. The (above-break) boundary component. The (above-break) boundary corresponds either to
the breaking of an internal edge of t, that is located above the gauge or intersects the gauge, or,
when the gauge is below the root, to the outgoing edge breaking between the gauge and the root.
Choosing an ordering ω = e1 ∧ · · · ∧ ei, suppose that it is the p-th edge of t which breaks and write
moreover (tp)g for the resulting broken gauged tree.

We begin by considering the case of a gauged tree tg whose gauge does not intersect any of its
vertices. Suppose �rst that the breaking edge does not intersect the gauge. A neighborhood of the
boundary can then be parametrized as

]0,+∞]× CT n((tp)g, ωp) −→ CT n(tg, ω)

(δ, λ, l1, . . . , l̂p, . . . , li) 7−→ (λ, l1, . . . , lp := δ, . . . , li) .

This map has sign (−1)p. In the case when the breaking edge does intersect the gauge, a neighbor-
dhood of the boundary can be parametrized as

]0,+∞]× CT n((tp)g, ωp) −→ CT n(tg, ω)

(δ, λ, l1, . . . , l̂p, . . . , li) 7−→ (λ, l1, . . . , lp := δ − λ, . . . , li) ,
where we set this time lp := δ−λ in order for the inequality −λ < d(r, v′) to hold in this case. This
parametrization again has sign (−1)p.

The case of a gauged tree tg whose gauge may intersect some of its vertices is treated as in
subsection 5.2.4. We check again that the parametrization maps Φ introduced in the previous
paragraph, restrict to parametrizations of a neighborhood of the boundary

]0,+∞]× CT n((tp)g, ωp) −→ CT n(tg, ω) ,

and that Φ sends moreover the coorientation of CT n((tp)g, ωp) to the coorientation of CT n(tg, ω).
These coorientations introduce as previously an additional (−1)j sign.

Finally, suppose that the gauge of tg intersects its outgoing edge and compute the sign of the
(above-break) boundary component corresponding to the gauge going towards +∞. A parametriza-
tion of a neighborhood of the boundary is simply given by

]0,+∞]× CT n((t0)g, ωp) −→ CT n(tg, ω)

(δ, l1, . . . , li) 7−→ (λ := δ, l1, . . . , li) .

This map has sign 1.

Proposition 11. For a gauged stable ribbon tree tg whose gauge intersects j vertices, the boundary
component CT n((tp)g, ωp) corresponding to the breaking of the p-th edge of t bears a (−1)p+j sign in

the boundary of CT n(tg, ω), where we set e0 for the outgoing edge of t.

5.2.7. The (below-break) boundary component. The (below-break) boundary corresponds to the break-
ing of edges of t that are located below the gauge or intersect it, such that there is exactly one edge
breaking in each non-self crossing path from an incoming edge to the root. Write (tbr)g for the
resulting broken gauged tree. Consider now an ordering ω = e1 ∧ · · · ∧ ei of tg. We order again
from left to right the s non-trivial unbroken gauged trees t1g, . . . , t

s
g of (tbr)g, and denote moreover

ej1 , . . . , ejs the internal edges of t whose breaking produce the trees t1g, . . . , t
s
g. Beware that we do

not necessarily have that j1 < · · · < js. We assume in the next paragraphs that j1 = 1, . . . , js = s,
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and will explain how to deal with the general case at the end of this section. We set to this extent
ωbr := es+1 ∧ · · · ∧ ei.

We introduce two more pieces of notation. We will denote E∞ the set of incoming edges of t
which are crossed by the gauge and correspond to the trivial gauged trees in (tbr)g. In other words,
the set of edges which are breaking in the (below-break) boundary component associated to (tbr)g
is E∞ ∪ {ej1 , . . . , ejs}. For an edge e, internal or external, we will moreover write we for the vertex
adjacent to e which is closest to the root r of t, and set wu := weu for u = 1, . . . , s.

Start by considering the case of a gauged tree tg whose gauge does not intersect any of its vertices.
Suppose �rst that among the breaking internal edges, none of them intersects the gauge. We de�ne
a parametrization of a neighbourhood of the boundary

]0,+∞]× CT n((tbr)g, ωbr) −→ CT n(tg, ω)

by sending (δ, λ1, . . . , λs, ls+1, . . . , li) to the element of CT n(tg, ω) whose entries are de�ned as

λ := −δ +
s∑

u=1

(λu − d(r, wu))−
∑

e∈E∞
d(r, we) ,

lv := δ +
∑

u=1,...,s
u6=v

(−λu + d(r, wu)) +
∑

e∈E∞
d(r, we) for v = e1, . . . , es ,

lk := lk for k = s+ 1, . . . , i .

We compute that this map has sign −1.

Suppose now that among the breaking internal edges of tg, some of them may intersect the gauge.
We denote N∩ ⊂ {1, . . . , s} for the set of indices corresponding to the breaking internal edges
which intersect the gauge, and N∅ ⊂ {1, . . . , s} for the set of indices corresponding to the breaking
of internal edges which do not intersect the gauge. We de�ne this time a parametrization of a
neighbourhood of the boundary

]0,+∞]× CT n((tbr)g, ωbr) −→ CT n(tg, ω)

by sending (δ, λ1, . . . , λs, ls+1, . . . , li) to the element of CT n(tg, ω) whose entries are set to be

λ := −δ +
∑

u∈N∅
(λu − d(r, wu))−

∑

u∈N∩
d(r, wu)−

∑

e∈E∞
d(r, we) ,

lv := δ +
∑

u∈N∅
u6=v

(−λu + d(r, wu)) +
∑

u∈N∩
d(r, wu) +

∑

e∈E∞
d(r, we) for v ∈ N∅ ,

lv := δ + λv +
∑

u∈N∅
(−λu + d(r, wu)) +

∑

u∈N∩
u6=v

d(r, wu) +
∑

e∈E∞
d(r, we) for v ∈ N∩ ,

lk := lk for k = s+ 1, . . . , i .

We compute that this map has again sign −1.

Consider now the case of a gauged tree tg whose gauge intersects j of its vertices. We check as in
the previous sections that the parametrization maps introduced in the previous paragraphs, restrict
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to parametrizations of a neighborhood of the boundary

]0,+∞]× CT n((tbr)g, ωbr) −→ CT n(tg, ω) ,

and that these maps send moreover the coorientation of CT n((tbr)g, ωbr) to the coorientation of
CT n(tg, ω). These coorientations introduce an additional (−1)j sign.

We have thus computed the sign of the (below-break) boundary when j1 = 1, . . . , js = s. Now,
consider the general case where we dot no necessarily have that j1 = 1, . . . , js = s. We denote
ε(j1, . . . , js;ω) the sign obtained after modifying ω by moving ejk to the k-th spot in ω, and write ω0

for the newly obtained orientation on tg. Twisting the orientation on CT n(tg, ω) by (−1)ε(j1,...,js;ω)

amounts to identifying it with CT n(tg, ω0). We can apply the previous constructions and �nd the
desired sign for the associated (below-break) component.

Proposition 12. For a gauged stable ribbon tree tg whose gauge intersects j vertices, the boundary
component CT n((tbr)g, ωbr) corresponding to the breaking of the internal edges ej1 , . . . , ejs of t bears

a (−1)ε(j1,...,js;ω)+1+j sign in the boundary of CT n(tg, ω).

5.3. The operadic bimodule ΩBAs−Morph.

5.3.1. De�nition of the operadic bimodule ΩBAs−Morph. We choose to de�ne the operadic bimod-
ule ΩBAs−Morph with the formalism of orientations on gauged trees, so that it be compatible with
the de�nition of Markl-Shnider for the operad ΩBAs. As before, tbr,g will stand for a broken gauged
stable ribbon tree, while tg will denote an unbroken gauged stable ribbon tree. We also respectively
write tbr and t for the underlying stable ribbon trees.

De�nition 26 (Spaces of operations and action-composition maps). Consider the Z-module freely
generated by the pairs (tbr,g, ω). We de�ne the arity n space of operations ΩBAs −Morph(n)∗ to
be the quotient of this Z-module under the relation

(tbr,g,−ω) = −(tbr,g, ω) .

An element (tbr,g, ω) where tbr,g has e(tbr) �nite internal edges and g non-trivial gauges which
intersect j vertices of tbr is de�ned to have degree j − (e(tbr) + g). The operad ΩBAs then acts on
ΩBAs−Morph as follows

(tbr,g, ω) ◦i (t′br, ω
′) = (tbr,g ◦i t′br, ω ∧ ω′) ,

µ((tbr, ω), (t1br,g, ω1), . . . , (tsbr,g, ωs)) = (−1)†(µ(tbr, t
1
br,g . . . , t

s
br,g), ω ∧ ω1 ∧ · · · ∧ ωs) ,

where the tree tbr,g◦it′br is the gauged broken ribbon tree obtained by grafting t′br to the i-th incoming

edge of tbr,g and µ(tbr, t
1
br,g . . . , t

s
br,g) is the gauged broken ribbon tree de�ned by grafting each tjbr,g to

the j-th incoming edge of tbr. Writing gi for the number of non-trivial gauges and ji for the number
of gauge-vertex intersections of tibr,g, i = 1, . . . , s, and setting t0br := tbr and g0 = j0 = 0,

† :=
s∑

i=1

gi

i−1∑

l=0

e(tlbr) +
s∑

i=1

ji

i−1∑

l=0

(e(tlbr) + gl − jl) ,

or equivalently

† =

s∑

i=1

gi

(
|tbr|+

i−1∑

l=1

|tlbr|
)

+

s∑

i=1

ji

(
|tbr|+

i−1∑

l=1

|tlbr,g|
)
.
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Choosing a distinguished orientation for every gauged stable ribbon tree tg ∈ SCRT , this de�ni-
tion of the operadic bimodule ΩBAs−Morph amounts to de�ning it as the free operadic bimodule
in graded Z-modules

FΩBAs,ΩBAs( , , , , · · · , SCRTn, · · · ) .
It remains to de�ne a di�erential on the generating operations (tg, ω) to recover the de�nition given
in subsection 3.2.4.

De�nition 27 (Di�erential). The di�erential of a gauged stable ribbon tree (tg, ω) is de�ned as the
signed sum of all codimension 1 contributions

∂(tg, ω) =
∑
±(int− collapse) +

∑
±(gauge− vertex) +

∑
±(above− break) +

∑
±(below − break) ,

where the signs are as computed in Propositions 8 to 12.

For instance, choosing the ordering e1 ∧ e2 on

e1 e2 ,

the signs in the computation of subsection 3.2.4 are

∂

(
, e1 ∧ e2

)
=

(
, e1 ∧ e2

)
−
(

, e1 ∧ e2

)
−
(

, e1 ∧ e2

)

+


 , e1


−


 , e2


−

(
, ∅
)
.

5.3.2. The moduli spaces CT n realize the operadic bimodule ΩBAs−Morph. We only have to check
that the signs for the action-composition maps of ΩBAs −Morph are indeed the ones determined
by the moduli spaces CT n, to conclude that the moduli spaces CT n endowed with their �ne cell
decomposition realize the operadic bimodule ΩBAs−Morph under the functor Ccell−∗ .

The computation for ◦i is straighforward. Consider now the map

µ : T (tbr, ω)× CT (t1br,g, ω1)× · · · × CT (tsbr,g, ωs) −→ CT (µ(tbr, t
1
br,g . . . , t

s
br,g), ω ∧ ω1 ∧ · · · ∧ ωs)

(Lω, (Λ1, Lω1), . . . , (Λs, Lωs)) 7−→ (Λ1, . . . ,Λs, Lω, Lω1 , . . . , Lωs) ,

where Lωi stands for the list of lengths of t
i
br according to the ordering ωi, and Λi := (λi,1, . . . , λi,gi)

stands for the list of non-trivial gauges of tibr,g. We compute that, in the absence of gauge vertex
intersections, this map has sign

(−1)
∑s
i=1 gi

∑i−1
l=0 e(t

l
br) .

Assuming that there are some gauge-vertex intersections, the combinatorics of coorientations intro-
duce an additional sign

(−1)
∑s
i=1 ji

∑i−1
l=0(e(tlbr)+gl−jl) .

In total, we recover the sign (−1)†, which concludes the proof.
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5.3.3. Canonical orientations for the gauged binary ribbon trees. For a �xed n > 2, the set of gauged
binary ribbon trees CBRTn can be endowed with a partial order, inspired by the Tamari order on
BRTn. It is introduced in [MMV].

De�nition 28 ([MMV]). The Tamari order on CBRTn is the partial order generated by the covering
relations

t1 t2

t3

>

t1 t2

t3

(A)

where t1, t2 and t3 are binary ribbon trees,

t2gt1g t3g

t

>

t2gt1g t3g

t

(B.1)

where t1g, t
2
g, t

3
g are gauged binary ribbon trees and t is a binary ribbon tree, and

t2t1 t3

tg

>

t2t1 t3

tg

(B.2)

where t1, t2, t3 are binary ribbon trees and tg is a gauged binary ribbon tree.

For example in the case of CBRT4, we obtain the Hasse diagram in �gure 18. This Tamari-
like poset has a unique maximal element and a unique minimal element, respectively given by the
right-leaning comb whose gauge intersects the outgoing edge, and the left-leaning comb whose gauge
intersects all incoming edges.

e e

e e

e e

e − e

e − e

e − e

Figure 18. On the left, the Hasse diagram of the poset CBRT3, where the maximal
element is written at the top. On the right, all the canonical orientations for CBRT3

computed going down the poset.
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The canonical orientation on the maximal gauged binary tree is de�ned as

e1

en−2

ωcan := e1 ∧ · · · ∧ en−2 .

Using this Tamari-like order, we can now build inductively canonical orientations on all gauged
binary trees. We start at the maximal gauged binary tree, and transport the orientation ωcan to its
immediate neighbours as follows : the immediate neighbours of tmaxg obtained under the covering
relation (A) are endowed with the orientation ωcan, while the ones obtained under the covering
relations (B) are endowed with the orientation −ωcan. We then repeat this operation while going
down the poset until the minimal gauged binary tree is reached. This process is consistent (see next
section), i.e. it does not depend on the path taken in the poset from tmaxg to the gauged binary tree
whose orientation is being de�ned. A full example for CBRT3 is illustrated in �gure 18.

De�nition 29. The such obtained orientations will again be called the canonical orientations and
written ωcan. They coincide in fact with the canonical orientations on the underlying binary trees.

5.3.4. MacLane's coherence. We stated in subsections 5.1.2 and 5.3.3 that our process of transform-
ing orientations is consistent, i.e. it does not depend on the path taken in the Tamari poset from
the maximal tree to the tree whose orientation is being de�ned. In fact, our rules to transform
orientations under the covering relations enable us to transport the orientation ω of any (gauged)
tree t(g) to any (gauged) tree t

′
(g), along a path in the Tamari poset. The following result then holds :

for a given oriented (gauged) tree (t(g), ω), any two paths in the Tamari poset from t(g) to t
′
(g) yield

the same orientation on t′(g).

As pointed out by Markl and Shnider in [MS06], an adaptation of the proof of MacLane's coherence
theorem shows that it is enough to prove that the diagram described by K4 commutes to conclude
that this statement holds for BRTn. And this is the case as shown in �gure 14. In the case of
CBRTn, an adaptation of these arguments shows this time that it is enough to prove that the
diagrams described by K4 and J3 commute in order to conclude. This is again the case.

A conceptual explanation for these two "coherence theorems" can be given as follows. In the
case of BRTn, a path between two trees t and t′ in the Tamari poset corresponds to a path in the
1-skeleton of Kn. The faces of the 2-skeleton of Kn consist moreover of the products

K2 × · · · ×K2 ×K3 ×K2 × · · · ×K2 ×K3 ×K2 × · · · ×K2 ,

K2 × · · · ×K2 ×K4 ×K2 × · · · ×K2 .

The �rst type of face corresponds to a square diagram that tautologically commutes, while the
second type of face corresponds to the K4 diagram. Given now two paths from t to t′, they delineate
a family of faces in the 2-skeleton of Kn. Translating this into algebra, as all faces translate into
commuting diagrams, the two paths produce the same orientation.

5.3.5. The morphism of operadic bimodules A∞ − Morph → ΩBAs − Morph. The moduli space
CT n endowed with its A∞-cell decomposition is isomorphic to the Forcey-Loday realization Jn of
the multiplihedron. Forcey shows in [For08] that under this isomorphism, the ΩBAs-decomposition
is sent to the dual subdivision of Jn. This is illustrated on �gure 11 for instance. The goal of this
section is again to show that :
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Proposition 13. The map id : (CT n)A∞ → (CT n)ΩBAs is sent under the functor Ccell−∗ to the
morphism of operadic bimodules A∞ −Morph→ ΩBAs−Morph acting as

fn 7−→
∑

tg∈CBRTn
(tg, ωcan) .

We prove that taking the restriction of the orientation of Jn chosen in section 4.4 to the top
dimensional cells of its dual subdivision, yields the canonical orientations on these cells in the CT n
viewpoint. We follow in this regard the exact same line of proof as in subsection 5.1.4.

This statement is at �rst shown for the maximal gauged binary tree tmaxg , the right-leaning comb

whose gauge crosses the outgoing edge. The orientation on the cell CT n(tmaxg ) induced by the
canonical orientation e1 ∧ · · · ∧ en−2 de�nes an isomorphism

CT n(tmaxg ) −̃→ [0,+∞]× [0,+∞]n−2 ,

where the factor [0,+∞] corresponds to the gauge λ, and the factor [0,+∞]n−2 to the lengths of the
inner edges. The face of CT n(tmaxg ) associated to the gauge going to +∞ corresponds to the face
H0,n,0 when seen in the Forcey-Loday polytope, while the face associated to the breaking of the i-th
edge corresponds to the face Hi,n−i,0. An outward-pointing vector for the face Hi,n−i,0 is moreover

νi := (0, . . . , 0, 1i+1, . . . , 1n−1) ,

where coordinates are taken in the basis fωj . The orientation de�ned by the canonical basis of

[0,+∞]× [0,+∞]n−2 is exactly the one de�ned by the ordered list of the outward-pointing vectors to
the +∞ boundary. This orientation is thus sent to the orientation de�ned by the basis (ν0, . . . , νn−2)
in the Forcey-Loday polytope. It remains to check that

detfωj (νj) = 1 .

As a result, the orientation induced by Jn and the one de�ned by the canonical orientation coincide
for the cell CT n(tmaxg ).

The rest of the proof is a mere adaptation of the proof of subsection 5.1.4. The cells labeled by
the gauged binary trees which are immediate neighbours of the maximal gauged binary tree, are
exactly the ones having a codimension 1 stratum in common with CT n(tmaxg ). Choosing one such

tree tg, and gluing the cells CT n(tg) and CT n(tmaxg ) along their common boundary, one can read

the induced orientation on CT n(tg). In the case when the immediate neighbour tg is obtained under
the covering relation (A), the cells CT n(tg) and CT n(tmaxg ) are in fact both oriented as subspaces

of ] − ∞,+∞[×]0,+∞[n−2. In the case when the immediate neighbour tg is obtained under the
covering relations (B), we send the reader back to subsection 5.1.4 for explanations on why a −1
twist of the orientation has to be introduced. In each case, the induced orientation is exactly the
canonical orientation on CT n(tg). This argument can now be repeated going down the poset, and the
induced orientation will always coincide with the canonical orientation on the cell, which concludes
the proof of Proposition 3.
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Part 2

Geometry

1. A∞ and ΩBAs-algebra structures on the Morse cochains

LetM be an oriented closed Riemannian manifold endowed with a Morse function f together with
a Morse-Smale metric. Following [Hut08], the Morse cochains C∗(f) form a deformation retract of
the singular cochains onM . The cup product naturally endows the singular cochains C∗sing(M) with
a dg-algebra structure. The homotopy transfer theorem then ensures that it can be transferred to
an A∞-algebra structure on the Morse cochains C∗(f). The following question then naturally arises.
The di�erential on the Morse cochains is de�ned by a count of moduli spaces of gradient trajectories
connecting critical points of f . Is it possible to de�ne higher multiplications mn on C

∗(f) by a count
of moduli spaces such that they �t in a structure of A∞-algebra ?

We have seen in the previous part that the polytopes encoding the operad A∞ are the associahedra
and that they can be realized as the compacti�ed moduli spaces of stable metric ribbon trees. A
natural candidate would thus be an interpretation of metric ribbon trees in Morse theory. A naive
approach would be to de�ne trees each edge of which corresponds to a Morse gradient trajectory as
in �gure 19. These moduli spaces are however not well de�ned, as two trajectories coming from two
distinct critical points cannot intersect. A second problem is that moduli spaces of trajectories issued
from the same critical point do not intersect transversely. In his article [Abo11], Abouzaid bypasses
this problem by perturbing the equation around each vertex, so that a transverse intersection can
be achieved. See also [Mes18]. This is illustrated in �gure 19.

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

Perturbing the gradient vector

�eld around each vertex of the tree

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

−∇f + X

−∇f + X

Figure 19

Trees obtained in this way will be called perturbed Morse gradient trees. Let t be a stable rib-
bon tree type and y, x1, . . . , xn a collection of critical points of the Morse function f . We prove in
this section that for a generic choice of perturbation data Xt on the moduli space Tn(t), the mod-
uli space of perturbed Morse gradient trees modeled on t and connecting x1, . . . , xn to y, denoted
Tt(y;x1, . . . , xn), is an orientable manifold (Proposition 15). Under some additional generic assump-
tions on the choices of perturbation data Xt, these moduli spaces are compact in the 0-dimensional
case, and can be compacti�ed to compact manifolds with boundary in the 1-dimensional case (The-
orems 7 and 8). We are �nally able to de�ne operations on the Morse cochains C∗(f) by counting
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the 0-dimensional moduli spaces of Morse gradient trees : these operations de�ne an ΩBAs-algebra
structure on C∗(f) (Theorem 9). Our constructions are carried out using the formalism intro-
duced in [Abo11] and some terminology of [Mes18]. Technical details are moreover postponed to
sections 3 and 4.

Note that in Floer theory, A∞-structures arise from the fact that moduli spaces of closed pointed
disks naturally yield the A∞-cell decompositions of the associahedra. This is not the case in our
situation, where it is the ΩBAs-cell decompositions that naturally arise.

1.1. Conventions. We refer to section 4.2 for additional details on the moduli spaces introduced
in this section. We will study Morse theory of the Morse function f : M → R using its negative
gradient vector �eld −∇f . Denote d the dimension of the manifold M and φs the �ow of −∇f . For
a critical point x de�ne its unstable and stable manifolds

WU (x) := {z ∈M, lim
s→−∞

φs(z) = x}

WS(x) := {z ∈M, lim
s→+∞

φs(z) = x} .

Their dimensions are such that dim(WU (x)) + dim(WS(x)) = d. We then de�ne the degree of a
critical point x to be |x| := dim(WS(x)). This degree is often referred to as the coindex of x in the
litterature.

We will moreover work with Morse cochains. For two critical point x 6= y, de�ne

T (y;x) := WS(y) ∩WU (x)/R

to be the moduli space of negative gradient trajectories connecting x to y. Denote moreover
T (x;x) = ∅. Under the Morse-Smale assumption on f and the Riemannian metric on M , for
x 6= y the moduli space T (y;x) has dimension dim (T (y;x)) = |y| − |x| − 1. The Morse di�erential
∂Morse : C∗(f)→ C∗(f) is then de�ned to count descending negative gradient trajectories

∂Morse(x) :=
∑

|y|=|x|+1

#T (y;x) · y .

1.2. Perturbed Morse gradient trees.

De�nition 30 ([Abo11]). Let T := (t, {le}e∈E(t)) be a metric tree, where {le}e∈E(t) are the lengths
of its internal edges. A choice of perturbation data on T consists of the following data :

(i) a vector �eld

[0, le]×M −→
Xe

TM ,

that vanishes on [1, le − 1], for every internal edge e of t ;
(ii) a vector �eld

[0,+∞[×M −→
Xe0

TM ,

that vanishes away from [0, 1], for the outgoing edge e0 of t ;
(iii) a vector �eld

]−∞, 0]×M −→
Xei

TM ,

that vanishes away from [−1, 0], for every incoming edge ei (1 6 i 6 n) of t.
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Note that when le 6 2, the vanishing condition on [1, le − 1] is empty, that is we do not require
any speci�c vanishing property for Xe. For brevity's sake we will write De for all segments [0, le] as
well as for all semi-in�nite segments ]−∞, 0] and [0,+∞[ in the rest of the paper.

De�nition 31 ([Abo11]). A perturbed Morse gradient tree TMorse associated to (T,X) is the data
for each edge e of t of a smooth map γe : De → M such that γe is a trajectory of the perturbed
negative gradient −∇f + Xe, i.e.

γ̇e(s) = −∇f(γe(s)) + Xe(s, γe(s)) ,
and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree T .

l1

l2

e0e0

e1e1 e2e2
e3e3

e4e4
ff

gg

Figure 20. Choosing perturbation data X for this metric tree, we have that φ1,X =

φl1g,X ◦ φl2f,X ◦ φ1
e1,X, φ2,X = φl1g,X ◦ φl2f,X ◦ φ1

e2,X, φ3,X = φl1g,X ◦ φ1
e3,X and φ4,X = φ1

e4,X

A perturbed Morse gradient tree TMorse associated to (T,X) is determined by the data of the
time -1 points on its incoming edges plus the time 1 point on its outgoing edge. Indeed, for each
edge e of t, we write φe,X for the �ow of −∇f + Xe. We moreover de�ne for every incoming edge ei
(1 6 i 6 n) of T , the di�eomorphism φi,X to be the composition of all �ows obtained by following
the time -1 point of the metric tree on ei along the only non-self crossing path connecting it to the
root. We also set φ0,X for the �ow of φe0,X at time -1, where e0 is the outgoing edge of t. This is
depicted on �gure 20. Setting

ΦT,X : M × · · · ×M −→
φ0,X×···×φn,X

M × · · · ×M ,

and ∆ for the thin diagonal of M × · · · ×M , it is then clear that :

Proposition 14 ([Abo11]). There is a one-to-one correspondence
{

perturbed Morse gradient trees
associated to (T,X)

}
←→ (ΦT,X)−1(∆) .

The vector �elds on the external edges are equal to −∇f away from a length 1 segment, hence
the trajectories associated to these edges all converge to critical points of the function f . For critical
points y and x1, . . . , xn, the map ΦT,X can be restricted to

WS(y)×WU (x1)× · · · ×WU (xn) ,

such that the inverse image of the diagonal yields all perturbed Morse gradient trees associated to
(T,X) connecting x1, . . . , xn to y.
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1.3. Moduli spaces of perturbed Morse gradient trees. Recall that E(t) stands for the set
of internal edges of t, and E(t) for the set of all its edges. We previously saw that a choice of
perturbation data on a metric ribbon tree T := (t, {le}e∈E(t)) is the data of maps XT,f : Df ×M −→
TM , for every edge f ∈ E(t) of t. De�ne the cone Cf ⊂ Tn(t)× R ' Re(t)+1 to be

(i) {((le)e∈E(t), s) such that 0 6 s 6 lf} if f is an internal edge ;
(ii) {((le)e∈E(t), s) such that s 6 0} if f is an incoming edge ;
(iii) {((le)e∈E(t), s) such that s > 0} if f is the outgoing edge.

Then a choice of perturbation data for every metric ribbon tree in Tn(t) yields a map

Xt,f : Cf ×M −→ TM ,

for every edge f of t. This choice of perturbation data is said to be smooth if all these maps are
smooth.

De�nition 32. Let Xt be a smooth choice of perturbation data on Tn(t). For critical points y and
x1, . . . , xn, we de�ne the moduli space

T Xt
t (y;x1, . . . , xn) :=

{
perturbed Morse gradient trees associated to (T,XT )

and connecting x1, . . . , xn to y, for T ∈ Tn(t)

}
.

Introduce now the map

φXt : Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

whose restriction to every T ∈ Tn(t) is as de�ned previously :

Proposition 15. (i) The moduli space T Xt
t (y;x1, . . . , xn) can be rewritten as

T Xt
t (y;x1, . . . , xn) = φ−1

Xt (∆) ,

where ∆ is the thin diagonal of M×n+1.
(ii) Given a choice of perturbation data Xt making φXt transverse to the diagonal ∆, the moduli

space T Xt
t (y;x1, . . . , xn) is an orientable manifold of dimension

dim (Tt(y;x1, . . . , xn)) = e(t) + |y| −
n∑

i=1

|xi| .

(iii) Choices of perturbation data Xt such that φXt is transverse to ∆ exist.

Item (i) is straightforward and item (ii) stems from the fact that if φXt transverse to ∆, the moduli

spaces T Xt
t (y;x1, . . . , xn) are manifolds of codimension

codim (Tt(y;x1, . . . , xn)) = codimM×n+1(∆) = nd ,

where d := dim(M). Note that we have chosen to grade the Morse cochains using the coindex in
order for this convenient dimension formula to hold. We refer to sections 3 for details on item (iii).
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1.4. Compacti�cations. We now would like to compactify the moduli spaces T Xt
t (y;x1, . . . , xn)

that have dimension 1 to 1-dimensional manifolds with boundary. They are de�ned as the inverse
image in Tn(t) ×WS(y) ×WU (x1) × · · · ×WU (xn) of the diagonal ∆ under φXt . The boundary
components in the compacti�cation should hence come from those of Tn(t), of the WU (xi), and of
WS(y) : that is they will respectively come from internal edges of the perturbed Morse gradient
tree collapsing, or breaking at a critical point (boundary of Tn(t)), its semi-in�nite incoming edges
breaking at a critical point (boundary of WU (xi)) and its semi-in�nite outgoing edge breaking at a
critical point (boundary of WS(y)). Some of these phenomena are represented on �gure 21.

x1 x3

y

z

x2

z x3

y

x1 x2

Figure 21. Two examples of perturbed Morse gradient trees breaking at a critical point

Choose smooth perturbation data Xt for all t ∈ SRTi, 2 6 i 6 n. We denote Xn := (Xt)t∈SRTn
and call it a choice of perturbation data on the moduli space Tn. We construct the boundary of the
compacti�cation of the moduli space T Xt

t (y;x1, . . . , xn) by using the perturbation data (Xt)t∈SRTi16i6n .
It is given by the spaces

(i) corresponding to an internal edge collapsing (int-collapse) :

T Xt′
t′ (y;x1, . . . , xn)

where t′ ∈ SRTn are all the trees obtained by collapsing exactly one internal edge of t ;
(ii) corresponding to an internal edge breaking (int-break) :

T Xt1
t1

(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T Xt2
t2

(z;xi1+1, . . . , xi1+i2),

where t2 is seen to lie above the i1 + 1-incoming edge of t1 ;
(iii) corresponding to an external edge breaking (Morse) :

T (y; z)× T Xt
t (z;x1, . . . , xn) and T Xt

t (y;x1, . . . , z, . . . , xn)× T (z;xi) .

While the (Morse) boundary simply comes from the fact that external edges are Morse trajectories
away from a length 1 segment, the analysis for the (int-collapse) and (int-break) boundaries requires
to re�ne our de�nitions of perturbation data. It namely appears here why we had to choose more
perturbation data than Xt, as they will appear in the boundary of the compacti�ed moduli space.

We begin by tackling the conditions coming with the (int-collapse) boundary. Let t be a stable
ribbon tree type and consider a choice of perturbation data on Tn(t) : it is a choice of perturbation

data XT for every T ∈ Tn(t) ']0,+∞[e(t). Denote coll(t) ⊂ SRTn the set of all trees obtained
by collapsing internal edges of t. A choice of perturbation data (Xt′)t′∈coll(t) then corresponds to a

choice of perturbation data XT for every T ∈ [0,+∞[e(t). Following section 1.3, such a choice of
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perturbation data is equivalent to a map

X̃t,f : C̃f ×M −→ TM ,

for every edge f of t, where C̃f ⊂ [0,+∞[e(t)×R is de�ned in a similar fashion to Cf .

De�nition 33. A choice of perturbation data (Xt′)t′∈coll(t) is said to be smooth if all maps X̃t,f are
smooth. A choice of perturbation data Xn is said to be smooth if for every t ∈ SRTn, the choice of
perturbation data (Xt′)t′∈coll(t) is smooth.

We now tackle the conditions coming with the (int-break) boundary. We work again with a �xed
stable ribbon tree type t. Consider a choice of perturbation data Xt = (Xt,e)e∈E(t) on Tn(t). We

have to specify what happens on the Xt,e when the length of an internal edge f of t, denoted lf ,
goes towards +∞. Write t1 and t2 for the trees obtained by breaking t at the edge f .

(i) For e ∈ E(t) and 6= f , assuming for instance that e ∈ t1, we require that
lim

lf→+∞
Xt,e = Xt1,e .

(ii) For f = e, Xt,f yields two parts when lf → +∞ : the part corresponding to the in�nite
edge in t1 and the part corresponding to the in�nite edge in t2. We then require that they
coincide respectively with Xt1,f and Xt2,f .

Two examples illustrating these two cases are detailed in the following paragraphs.

Begin with an example of the �rst case, where e 6= f . This is represented on �gure 22. We only
represent the perturbation Xt,f3 on this �gure for clarity's sake. The perturbation datum X∞t,f3

could
a priori depend on lf1 : the requirement X∞t,f3

= Xt1,f3 says in particular that it is independent of
lf1 .

t

f1f1

f2f2 f3f3

Xt,f3
lf2 −→ +∞

t1
f3f3

X∞t,f3

t2
f1f1

Figure 22

Similarly, we illustrate the second case, where e = f , on �gure 23. A priori, X+
t,f2

and X−t,f2
can

depend on both lf1 and lf3 : the requirement X+
t,f2

= Xt2,f2 says exactly that X+
t,f2

is independent of

lf3 , and similarly for X−t,f2
= Xt1,f2 with respect to lf1 .

De�nition 34. A choice of perturbation data (Xi)26i6n is said to be gluing-compatible if it satis�es
conditions (i) and (ii) for lengths of edges going toward +∞. A choice of perturbation data (Xn)n>2

being both smooth and gluing-compatible, and such that all maps φXt are transverse to ∆, is said
to be admissible.
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t

f1f1

f2f2 f3f3

Xt,f2
lf2 −→ +∞

t1
f3f3

X−t,f2

t2
f1f1

X+
t,f2

Figure 23

Theorem 7. Admissible choices of perturbation data on the moduli spaces Tn exist.

Theorem 8. Let (Xn)n>2 be an admissible choice of perturbation data. The 0-dimensional moduli

spaces T Xt
t (y;x1, . . . , xn) are compact. The 1-dimensional moduli spaces T Xt

t (y;x1, . . . , xn) can be

compacti�ed to 1-dimensional manifolds with boundary T Xt
t (y;x1, . . . , xn), whose boundary is de-

scribed at the beginning of this section.

We refer to section 3 for a proof of Theorem 7. Theorem 8 is proven in chapter 6 of [Mes18].

Using the results of [Weh12], we could in fact try to prove that all moduli spaces T Xt
t (y;x1, . . . , xn)

can be compacti�ed to compact manifolds with corners. The analysis involved therein goes however
beyond the scope of this paper.

Consider now a stable ribbon tree t together with an internal edge f ∈ E(t) and write t1 and t2 for
the trees obtained by breaking t at the edge f , where t2 is seen to lie abpve t1. Given critical points
y, z, x1, . . . , xn suppose moreover that the moduli spaces Tt1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn) and
Tt2(z;xi1+1, . . . , xi1+i2) are 0-dimensional. Let TMorse

1 and TMorse
2 be two perturbed Morse gradient

trees which belong respectively to the former and the latter moduli spaces. Theorem 8 implies in
particular that there exists R > 0 and an embedding

#TMorse
1 ,TMorse

2
: [R,+∞] −→ T t(y;x1, . . . , xn)

parametrizing a neighborhood of the boundary {TMorse
1 } × {TMorse

2 } ⊂ ∂T Morse
t , i.e. sending +∞

to (TMorse
1 , TMorse

2 ) ∈ ∂T Morse
t . Such a map is called a gluing map for TMorse

1 and TMorse
2 . Explicit

gluing maps are constructed in subsection 4.4.3.

1.5. ΩBAs -algebra structure on the Morse cochains. We now have all the necessary material
to de�ne an ΩBAs-algebra structure on the Morse cochains C∗(f).

Theorem 9. Let X := (Xn)n>2 be an admissible choice of perturbation data. De�ning for every n
and t ∈ SRTn the operations mt as

mt : C∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(f)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=∑n
i=1 |xi|−e(t)

#T X
t (y;x1, · · · , xn) · y ,

they endow the Morse cochains C∗(f) with an ΩBAs-algebra structure.
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The proof of this theorem is detailed in section 4.4. Putting it shortly, counting the boundary

points of the 1-dimensional orientable compacti�ed moduli spaces T X
t (y;x1, · · · , xn) whose boundary

is described in the previous section yields the ΩBAs-equations

[∂Morse,mt] =
∑

t′∈coll(t)
±mt′ +

∑

t1#it2=t

±mt1 ◦i mt2 .

In fact, the collection of operations {mt} does not exactly de�ne an ΩBAs-algebra structure : one
of the two di�erentials ∂Morse appearing in the bracket [∂Morse, ·] has to be twisted by a speci�c
sign for the ΩBAs-equations to hold. We will speak about a twisted ΩBAs-algebra structure. In the
case when M is odd-dimensional, this twisted ΩBAs-algebra is exactly an ΩBAs-algebra.

If we want to recover an A∞-algebra structure on the Morse cochains, it su�ces to apply the
morphism of operads A∞ → ΩBAs described in section 3.1.5. In his paper [Abo11], Abouzaid
constructs a geometric A∞-morphism C∗sing(M) → C∗(f), where the Morse cochains are endowed
with the A∞-algebra structure constructed in this subsection. This A∞-morphism is in fact a quasi-
isomorphism. This implies in particular that the Morse cochains C∗(f) endowed with the A∞-algebra
structure constructed in this subsection are quasi-isomorphic as an A∞-algebra to the Morse cochains
endowed with the A∞-algebra structure induced by the homotopy transfer theorem. His construction
of the A∞-morphism C∗sing(M) → C∗(f) could be adapted to our present framework, and lifted to
an ΩBAs-morphism. We will however not give more details on that matter.

2. A∞ and ΩBAs-morphisms between the Morse cochains

Let M be an oriented closed Riemannian manifold endowed with a Morse function f together
with a Morse-Smale metric. We have proven in the previous section that, upon choosing admissible
perturbation data on the moduli spaces of stable metric ribbon trees Tn(t), we can de�ne moduli
spaces of perturbed Morse gradient trees, whose count will de�ne the operations mt, t ∈ SRT , of
an ΩBAs-algebra structure on the Morse cochains C∗(f).

Consider now another Morse function g on M . Apply again the homotopy transfer theorem to
C∗(f) and C∗(g), which are deformation retracts of the singular cochains on M . Endowing them
with their induced A∞-algebra structures, the theorem yields a diagram

(C∗(f),mind
n )−̃→(C∗sing(M),∪)−̃→(C∗(g),mind

n ) ,

where each arrow is an A∞-quasi-isomorphism, hence an A∞-quasi-isomorphism (C∗(f),mind
n ) →

(C∗(g),mind
n ). Let Xg be an admissible perturbation data for g. This motivates the following

question : endowing C∗(f) and C∗(g) with their ΩBAs-algebra structures, can we construct an
ΩBAs-morphism

(C∗(f),mXf
t ) −→ (C∗(g),mXg

t ) ?

While stable metric ribbon trees control ΩBAs-algebra structures, we have seen that two-colored
stable metric ribbon trees control ΩBAs-morphisms. The answer to the previous question is then of
course positive, and the morphism will be constructed using moduli spaces of two-colored perturbed
Morse gradient trees. As in section 1, two-colored Morse gradient trees will be de�ned by perturbing
Morse gradient equations around each vertex of the tree, where the Morse gradient is −∇f above
the gauge, and −∇g below the gauge. This is illustrated in �gure 24. The �gure is incorrect, because
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−∇f −∇f −∇f −∇f

−∇f + Xf −∇f + Xf

−∇f −∇f−∇f + Y
−∇g + Y

−∇g −∇g

−∇g + Xg

−∇g

x1 x2 x3 x4

y

Figure 24. An example of a perturbed two-colored Morse gradient tree, where the
xi are critical points of f and y is a critical point of g

we won't choose the perturbation to be equal to Xf above the gauge and to Xg below, but gives the
correct intuition on the construction we unfold in this section.

The structure of this section follows the same lines as the previous section, and the only di�-
culty will consist in adapting properly our arguments to the combinatorics of two-colored ribbon
trees. Under a generic choice of perturbation data on the moduli spaces CT n, the moduli spaces
of two-colored perturbed Morse gradient trees connecting x1, . . . , xn ∈ Crit(g) to y ∈ Crit(g),
that we denote CT tg(y;x1, . . . , xn), are orientable manifolds. They are moreover compact when
0-dimensional and can be compacti�ed to compact manifolds with boundary when 1-dimensional
(Theorems 10 and 11). Counting 0-dimensional moduli spaces of two-colored Morse gradient trees
then de�nes an ΩBAs-morphism from C∗(f) to C∗(g) (Theorem 12).

2.1. Notation. A two-colored ribbon tree will be written tg using the gauge viewpoint, and tc using
the colored vertices viewpoint. The tree tg then comes with an underlying stable ribbon tree t, while
the tree tc is already a ribbon tree (though not necessarily stable because of its colored vertices).

A two-colored stable metric ribbon tree T will be written (tg, (le)e∈E(t), λ) using the gauge view-
point. The lengths associated to the underlying metric ribbon tree with colored vertices will then
be written Lfc((le)e∈E(t), λ) where fc ∈ E(tc). For instance, on �gure 8,

L1 = −λ L2 = l + λ L3 = −λ .
For the sake of readability, we do not write the dependence on ((le)e∈E(t), λ) in the sequel.

2.2. Perturbed two-colored Morse gradient trees.

De�nition 35. Let Tg = (tg, (le)e∈E(t), λ) be a two-colored metric ribbon tree. A choice of pertur-
bation data Y on Tg is de�ned to be a choice of perturbation data on the associated metric ribbon
tree (tc, Lfc) in the sense of section 1.2.

De�nition 36. A two-colored perturbed Morse gradient tree TMorse
g associated to a pair two-colored

metric ribbon tree and perturbation data (Tg,Y) is the data
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(i) for each edge fc of tc which is above the gauge, of a smooth map

Dfc −→γfc
M ,

such that γfc is a trajectory of the perturbed negative gradient −∇f + Yfc ,
(ii) for each edge fc of tc which is below the gauge, of a smooth map

Dfc −→γfc
M ,

such that γfc is a trajectory of the perturbed negative gradient −∇g + Yfc ,

and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree tc.

Note that the above de�nitions still work for . A choice of perturbation data for is the
data of vector �elds

[0,+∞[×M −→
Y+

TM ,

]−∞, 0]×M −→
Y−

TM ,

which vanish away from a length 1 segment, and a two-colored perturbed Morse gradient tree
associated to ( ,Y) is then simply the data of two smooth maps

]−∞, 0] −→
γ−

M ,

[0,+∞[ −→
γ+

M ,

such that γ− is a trajectory of −∇f + Y− and γ+ is a trajectory of −∇g + Y+.

There is also an equivalent formulation for two-colored perturbed Morse gradient trees, by fol-
lowing the �ows of −∇f + Y and −∇g + Y along the the metric ribbon tree (tc, Lfc). That is, a
two-colored perturbed Morse gradient tree is determined by the data of the time -1 points on its
incoming edges plus the time 1 point on its outgoing edge. Introduce again the map

ΦTg ,Y : M × · · · ×M −→
φ0,Y×···×φn,Y

M × · · · ×M ,

de�ned as before, and set ∆ for the diagonal of M×n+1

Proposition 16. There is a one-to-one correspondence
{

two-colored perturbed Morse gradient trees
associated to (Tg,Y)

}
←→ (ΦTg ,Y)−1(∆) .

The vector �elds on the incoming edges are equal to −∇f away from a length 1 segment, hence
the trajectories associated to these edges all converge to critical points of the function f , while the
vector �eld on the outgoing edge is equal to −∇g away from a length 1 segment, hence the trajectory
associated to these edge converges to a critical point of the function g. For critical points y of the
function g and x1, . . . , xn of the function f , the map ΦT,Y can be restricted to

WS
g (y)×WU

f (x1)× · · · ×WU
f (xn) ,

such that the inverse image of the diagonal yields all two-colored perturbed Morse gradient trees
associated to (T,Y) connecting x1, . . . , xn to y.
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2.3. Moduli spaces of two-colored perturbed Morse gradient trees. Choose a two-colored
stable ribbon tree tg ∈ SCRTn whose underlying stable ribbon tree is t and whose associated ribbon
tree with colored vertices is tc. We write (∗)tg for the set of inequalities and equalities on {le}e∈E(t)

and λ, which de�ne the polyedral cone CT n(tg) ⊂ Re(t)+1. See part 1 section 5.2 for more details.

De�ne for all fc ∈ E(tc), the cone Cfc ⊂ CT n(tg)× R ⊂ Re(t)+1 × R to be

(i) {((le)e∈E(T ), λ, s) such that (∗)tg , 0 6 s 6 Lfc((le)e∈E(T ), λ)} if fc is an internal edge ;
(ii) {((le)e∈E(T ), λ, s) such that (∗)tg , s 6 0} if fc is an incoming edge ;
(iii) {((le)e∈E(T ), λ, s) such that (∗)tg , s > 0} if fc is the outgoing edge.

Then a choice of perturbation data for every two-colored metric ribbon tree in CT n(tg), yields maps
Ytg ,fc : Cfc ×M −→ TM for every edge fc of tc. These perturbation data are said to be smooth if
all these maps are smooth.

De�nition 37. Let Ytg be a smooth choice of perturbation data on the stratum CT n(tg). Given
y ∈ Crit(g) and x1, . . . , xn ∈ Crit(f), we de�ne the moduli spaces

CT Ytg
tg (y;x1, . . . , xn) :=

{
two-colored perturbed Morse gradient trees associated to (Tg,YTg)

and connecting x1, . . . , xn to y for Tg ∈ CT n(tg)

}
.

Using the smooth map

φYtg : CT n(tg)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

this moduli space can be rewritten as

CT Ytg
tg (y;x1, . . . , xn) = φ−1

Ytg
(∆) .

Proposition 17. (i) Given a choice of perturbation data Ytg making φYtg transverse to the

diagonal ∆ ⊂ M×n+1, the moduli spaces CT Ytg
tg (y;x1, . . . , xn) are orientable manifolds of

dimension

dim
(
CT tg(y;x1, . . . , xn)

)
= +|y| −

n∑

i=1

|xi| − |tg| .

(ii) Choices of perturbation data Ytg such that φYtg is transverse to the diagonal ∆ exist.

The proof of this proposition is again postponed to section 3.

2.4. Compacti�cations. We �nally proceed to compactify the moduli spaces CT Ytg
tg (y;x1, . . . , xn)

that have dimension 1 to 1-dimensional manifolds with boundary. Their boundary components are
going to be given by those coming from the compacti�cation of CT n(tg), and the compacti�cations
of the WU (xi) and of WS(y).

Choose admissible perturbation data Xf and Xg for the functions f and g. Choose moreover
smooth perturbation data Ytg for all tg ∈ SCRTi, 1 6 i 6 n. We will again denote Yn :=
(Ytg)tg∈SCRTn , and call it a choice of perturbation data on CT n. Fixing a two-colored stable ribbon

tree tg ∈ SCRTn we would like to compactify the 1-dimensional moduli space CT Ytg
tg (y;x1, . . . , xn)

using the perturbation data Xf , Xg and (Yi)16i6n. Its boundary will be given by the following
phenomena
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(i) an external edge breaks at a critical point (Morse) :

T (y; z)× CT Ytg
tg (z;x1, . . . , xn) and CT Ytg

tg (y;x1, . . . , z, . . . , xn)× T (z;xi) ;

(ii) an internal edge of the tree t collapses (int-collapse) :

CT
Yt′g
t′g

(y;x1, . . . , xn)

where t′g ∈ SCRTn are all the two-colored trees obtained by collapsing exactly one internal
edge, which does not cross the gauge ;

(iii) the gauge moves to cross exactly one additional vertex of the underlying stable ribbon tree
(gauge-vertex) :

CT
Yt′g
t′g

(y;x1, . . . , xn)

where t′g ∈ SCRTn are all the two-colored trees obtained by moving the gauge to cross
exactly one additional vertex of t ;

(iv) an internal edge located above the gauge or intersecting it breaks or, when the gauge is below
the root, the outgoing edge breaks between the gauge and the root (above-break) :

CT
Y
t1g

t1g
(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T Xf

t2

t2
(z;xi1+1, . . . , xi1+i2) ;

(v) edges (internal or incoming) that are possibly intersecting the gauge, break below it, such
that there is exactly one edge breaking in each non-self crossing path from an incoming edge
to the root (below-break) :

T Xg
t0

t1
(y; y1, . . . , ys)× CT

Y
t1g

t1g
(y1;x1, . . . )× · · · × CT

Ytsg
tsg

(ys; . . . , xn) .

The (Morse) boundaries are again a simple consequence of the fact that external edges are Morse
trajectories away from a length 1 segment. Perturbation data that behave well with respect to the
(int-collapse) and (gauge-vertex) boundaries are de�ned using simple adjustments of the discussion
in section 1.4. Hence, it only remains to specify the required behaviours under the breaking of edges.

We begin with the (above-break) boundary. Writing tc for the two-colored ribbon tree associated
to tg, it corresponds to the breaking of an internal edge fc of tc situated above the set of colored
vertices. Denote t1c and t

2 the trees obtained by breaking tc at the edge fc, where t
2 is seen to lie

above t1c . We have to specify, for each edge ec ∈ E(tc), what happens to the perturbation Ytc,e at
the limit.

(i) For ec ∈ E(t2) and 6= fc, we require that

limYtc,ec = Xf
t2,ec

.

(ii) For ec ∈ E(t1c) and 6= fc, we require that

limYtc,ec = Yt1c ,ec .

(iii) For fc = ec, Ytc,fc yields two parts at the limit : the part corresponding to the outgoing
edge of t1 and the part corresponding to the incoming edge of t1c . We then require that they

coincide respectively with the perturbation Xf
t2,ec

and Yt1c ,ec .
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tg

Ytg ,ec

limYtg ,ec = Xf
t2,ec

t1g

t2

(above-break) case (i)

tg

Ytg ,ec
limYtg ,ec = Yt1g ,ec

t1g

t2

(above-break) case (ii)

tg

Ytg ,ec
limt1g

Ytg ,ec = Yt1g ,ec
limt2 Ytg ,ec = Xf

t2,ec

t1g

t2

(above-break) case (iii)

Figure 25

Leaving the notations aside, an example of each case is illustrated in �gure 25.

We conclude with the (below-break) boundary. Denote t1g, . . . , t
s
g and t

0 the trees obtained by the

chosen breaking of tg below the gauge, where t1g, . . . , t
s
g are seen to lie above t0.

(i) For ec ∈ E(tic) and not among the breaking edges, we require that

limYtc,ec = Ytic,ec .

(ii) For ec ∈ E(t1) and not among the breaking edges, we require that

limYtc,ec = Xg
t0,ec

.

(iii) For fc among the breaking edges, Ytc,fc yields two parts at the limit : the part corresponding

to the outgoing edge of a tjc and the part corresponding to the incoming edge of t0. We then
require that they coincide respectively with the perturbation Y

tjc
and Xg

t0
.

This is again illustrated on �gure 26.

De�nition 38. A choice of perturbation data Y on the moduli spaces CT n is said to be smooth if it is
compatible with the (int-collapse) and (gauge-vertex) boundaries. A smooth choice of perturbation
data is said to be gluing-compatible w.r.t. Xf and Xg if it satis�es the (above-break) and (below-
break) conditions described in this section. Smooth and consistent choices of perturbation data
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tg

Ytg ,ec
limYtg ,ec = Yt1g ,ec

t1

t1g t2g

(below-break) case (i)

tg

Ytg ,ec
limYtg ,ec = Xg

t0,ec

t0

t1g t2g

(below-break) case (ii)

tg

Ytg ,ec
limt1 Ytg ,ec = Xg

t0,ec

limt2g
Ytg ,ec = Yt2g ,ec

t0

t1g t2g

(below-break) case (iii)

Figure 26

(Yn)n>1 such that all maps φYtg are transverse to the diagonal ∆ are called admissible w.r.t. Xf
and Xg or simply admissible.

Theorem 10. Given admissible choices of perturbation data Xf and Xg on the moduli spaces Tn,
choices of perturbation data on the moduli spaces CT n that are admissible w.r.t. Xf and Xg exist.

Theorem 11. Let (Yn)n>1 be an admissible choice of perturbation data on the moduli spaces CT n.
The 0-dimensional moduli spaces CT Ytg

tg (y;x1, . . . , xn) are compact. The 1-dimensional moduli spaces

CT Ytg
tg (y;x1, . . . , xn) can be compacti�ed to 1-dimensional manifolds with boundary, whose boundary

is described at the beginning of this section..

Theorem 10 is proven in section 3. Theorem 11 is a consequence of the results in chapter 6
of [Mes18]. We moreover point out that Theorem 11 implies in particular the existence of gluing
maps

#above−break
T 1,Morse
g ,T 2,Morse

: [R,+∞] −→ CT tg(y;x1, . . . , xn)

#below−break
T 0,Morse,T 1,Morse

g ,...,T s,Morse
g

: [R,+∞] −→ CT tg(y;x1, . . . , xn)

where notations are as in section 1.4. Such gluing maps are constructed in subsection 4.5.4.
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2.5. The ΩBAs-morphism between Morse cochains. Let Xf and Xg be admissible choices of

perturbation data for the Morse functions f and g. Denote (C∗(f),mXf
t ) and (C∗(g),mXg

t ) the
ΩBAs-algebras constructed in section 1.5.

Theorem 12. Let (Yn)n>1 be a choice of perturbation on the moduli spaces CT n that is admissible
w.r.t. Xf and Xg. De�ning for every n and tg ∈ SCRTn the operations µtg as

µYtg : C∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=∑n
i=1 |xi|+|tg |

#CT Y
tg(y;x1, · · · , xn) · y .

they �t into an ΩBAs-morphism µY : (C∗(f),mXf
t )→ (C∗(g),mXg

t ).

Again, the collection of operations {µtg} does not exactly de�ne an ΩBAs-morphism but rather
a twisted ΩBAs-morphism. In the case when M is odd-dimensional, this twisted ΩBAs-morphism
is exactly an ΩBAs-morphism between two ΩBAs-algebras. All sign computations are detailed
in section 4. If we want to go back to the more classical algebraic framework of A∞-algebras, an
A∞-morphism between the induced A∞-algebra structures on the Morse cochains is simply obtained
under the morphism of operadic bimodules A∞ −Morph→ ΩBAs−Morph.

3. Transversality

The goal of this section is to prove Theorems 7 and 10. In this regard, we recall at �rst the
parametric transversality lemma and then build an admissible choice of perturbation data (Xn)n>2

on the moduli spaces Tn, proceeding by induction on the number of internal edges e(t) of a stable
ribbon tree t. It moreover appears in our construction that all arguments adapt nicely to the
framework of two-colored trees and admissible choices of perturbation data (Yn)n>1 on the moduli
spaces CT n.

3.1. Parametric transversality lemma. We begin by recalling Smale's generalization of the clas-
sical Sard theorem. See [Sma65] or [MS12] for a detailed proof :

Theorem 13 (Sard-Smale theorem). Let X and Y be separable Banach manifolds. Suppose that
f : X → Y is a Fredholm map of class C l with l > max(1, ind(f) + 1). Then the set Yreg(f) of
regular values of f is residual in Y in the sense of Baire.

This theorem implies in particular the following corollary in transversality theory, that will constitute
the cornerstone of our proof of Theorem 7 :

Corollary 1 (Parametric transversality lemma). Let X be a Banach space, M and N two �nite-
dimensional manifolds and S ⊂ N a submanifold of N . Suppose that f : X ×M → N is a map of
class C l with l > max(1, dim(M) + dim(S)− dim(N) + 1) and that it is transverse to S. Then the
set

XtS := {X ∈ X such that fX t S}
is residual in X in the sense of Baire.
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Proof. The map f being transverse to S, the inverse image f−1(S) is a Banach submanifold of
X ×M . Consider the standard projection pX : X ×M → X and denote π := pX|f−1(S). Following
Lemma 19.2 in [AR67], this map is Fredholm and has index dim(M) + dim(S)−dim(N). Moreover,
drawing from an argument in section 3.2. of [MS12], there is an equality Xreg(π) = XtS . One can
then conclude by applying the Sard-Smale theorem to the map π. �

3.2. Proof of theorem 7.

3.2.1. The case e(t) = 0. If e(t) = 0, the tree t is a corolla. Fix an integer l such that

l > max

(
1, e(t) + |y| −

n∑

i=1

|xi|+ 1

)
.

We de�ne C l-choices of perturbation data in a similar fashion to smooth choices of perturbation data.
A C l-choice of perturbation data Xt on Tn(t) then simply corresponds to a C l-choice of perturbation
datum on each external edge of t. De�ne the parametrization space

Xlt := {C l-perturbation data Xt on the moduli space Tn(t)} .
This parametrization space is a Banach space. The linear combination of choices of perturbation
data is simply de�ned as the linear combination of each perturbation datum Xt,e with e an external

edge of t. The vector space Xlt is moreover Banach as each perturbation datum Xt,e vanishes away
from a length 1 segment in De.

Given critical points y and x1, . . . , xn, introduce the C
l-map

φt : Xlt × Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

such that for every Xt ∈ Xlt, φt(Xt, ·) = φXt . Note that we should in fact write φy,x1,...,xn
t as

the domain of φt depends on y, x1, . . . , xn. The map φt is then a submersion. This is proven in
Lemma 7.3. of [Abo11] and Abouzaid explains it informally in the following terms : "[this lemma] is
the in�nitesimal version of the fact that perturbing the gradient �ow equation on a bounded subset
of an edge integrates to an essentially arbitrary di�eomorphism".

In particular the map φt is transverse to the diagonal ∆ ⊂ M×n+1. Applying the parametric

transversality theorem of subsection 3.1, there exists a residual set Yl;y,x1,...xn
t ⊂ Xlt such that

for every choice of perturbation data Xt ∈ Yl;y,x1,...xn
t the map φXt is transverse to the diagonal

∆ ⊂M×n+1. Considering the intersection

Yl
t :=

⋂

y,x1,...,xn

Yy,x1,...xn
t ⊂ Xt

which is again residual, any Xt ∈ Yl
t yields a C

l-choice of perturbation data on Tn(t) such that all
the maps φXt are transverse to the diagonal ∆ ⊂M×n+1. It remains to prove this statement in the
smooth case.

3.2.2. Achieving smoothness à la Taubes. Using an argument drawn from section 3.2. of [MS12] and
attributed to Taubes, we now prove that the set

Yt :=

{
smooth choices of perturbation data Xt on Tn(t) such that
all the maps φXt are transverse to the diagonal ∆ ⊂M×n+1

}
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is residual in the Fréchet space

Xt := {smooth choices of perturbation data Xt on Tn(t)} .

Choose an exhaustion by compact sets L0 ⊂ L1 ⊂ L2 ⊂ · · · of the space Tn(t)×WS(y)×WU (x1)×
· · · ×WU (xn). De�ne

Yt,Lm :=

{
smooth choices of perturbation data Xt on Tn(t) such that
all maps φXt are transverse on Lm to the diagonal of M×n+1

}

and note that

Yt =
+∞⋂

m=0

Yt,Lm .

We will prove that each Yt,Lm ⊂ Yt is open and dense in Xt to conclude that Yt is indeed residual.

Fix m > 0. To prove that the set Yt,Lm is open in Xt it su�ces to prove that for every l, the

set Yl
t,Lm

is open in Xlt, where Yl
t,Lm

is de�ned by replacing "smooth" by "C l" in the de�nition
of Yt,Lm . This last result is a simple consequence of the fact that "being transverse on a compact
subset" is an open property : if the map φX0

t
is transverse on Lm to the diagonal ∆ ⊂M×n+1 then

for Xt ∈ Xlt su�ciently close to X0
t the map φXt is again transverse on Lm to the diagonal on Lm.

Let now Xt ∈ Xt. As Xt ∈ Xlt and the set Yl
t is dense in Xlt, there exists a sequence Xlt ∈ Yl

t such
that for all l

||Xt − Xlt||Cl 6 2−l .

Note that Xlt ∈ Yl
t,Lm

. Now since the set Yl
t,Lm

is open in Xlt for the Cl-topology, there exists εl > 0

such that for all X′lt ∈ Xlt if

||Xlt − X′lt ||Cl 6 min(2−l, εl) ,

then X′lt ∈ Yl
t,Lm

. Choosing X′lt to be smooth, this yields a sequence of smooth choices of perturbation
data lying in Yt,Lm and converging to Xt, which concludes the proof.

3.2.3. Induction step and conclusion. Let k > 0 and suppose that we have constructed an admissible
choice of perturbation data (X0

t )e(t)6k. This notation should not be confused with the notation
(Xi)i6k : the former corresponds to a choice of perturbation data on the strata T (t) of dimension
6 k while the latter corresponds to a choice of perturbation data on the moduli spaces Ti with i 6 k.
Let t be a stable ribbon tree with e(t) = k + 1. We want to construct a choice of perturbation data
Xt on Tn(t) which is smooth, gluing-compatible and such that each map φXt is transverse to the
diagonal ∆ ⊂M×n+1.

Under a choice of identi�cation T n(t) ' [0,+∞]e(t), de�ne Tn(t) ⊂ T n(t) as the inverse image of

[0,+∞[e(t). Introduce the parametrization space

Xlt :=





C l-perturbation data Xt on Tn(t) such that
Xt|T (t′) = X0

t′ for all t
′ ∈ coll(t) and such that

lim
le→+∞

Xt = X0
t1#eX0

t2 for all e ∈ E(t)





,

where t1#et2 = t, and limle→+∞Xt = X0
t1#eX0

t2 denotes the gluing-compatibility condition described
in section 1.4. Following [Mes18] this parametrization space is an a�ne space which is Banach. One
can indeed show that the le → +∞ conditions imply that each Xt ∈ Xlt is bounded in the C l-norm,
and that the C l-norm is thus well de�ned on Xlt although Tn(t) is not compact.
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Consider the C l-map

φt : Xlt × Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 .

Using the same argument as in subsection 3.2.1, the map φt is again transverse to the diagonal
∆ ⊂M×n+1. Applying the parametric transversality theorem and proceeding as in the case e(t) = 0,
there exists a residual set Yl

t ⊂ Xlt such that for every choice of perturbation data Xt ∈ Yl
t the map

φXt is transverse to the diagonal ∆ ⊂ M×n+1. Using the previous argument à la Taubes, we can
moreover prove the same statement in the smooth context. By de�nition of the parametrization
spaces Xt this construction yields indeed an admissible choice of perturbation data (Xt)e(t)6k+1,
which concludes the proof of Theorem 7 by induction.

4. Signs, orientations and gluing

We now complete and conclude the proofs of Theorems 9 and 12, by expliciting all orientations
conventions on the moduli spaces of Morse gradient trees and computing the signs involved therein.
We use to this extent the ad hoc formalism of signed short exact sequences of vector bundles.
Particular attention will be paid to the behaviour of orientations under gluing in our proof.

4.1. More on signs and orientations.

4.1.1. Additional tools for orientations. Consider a short exact sequence of vector spaces

0 −→ V2 −→W −→ V1 −→ 0 .

It induces a direct sum decomposition W = V1 ⊕ V2. Suppose that the vector spaces W , V1 and
V2 are oriented. We denote (−1)ε the sign obtained by comparing the orientation on W to the one
induced by the direct sum V1 ⊕ V2. We will then say that the short exact sequence has sign (−1)ε.
In particular, when (−1)ε = 1, we will say that the short exact sequence is positive.

Now, consider two short exact sequences

0 −→ V2 −→W −→ V1 −→ 0 and 0 −→ V ′2 −→W ′ −→ V ′1 −→ 0 ,

of respective signs (−1)ε and (−1)ε
′
. Then the short exact sequence obtained by summing them

0 −→ V2 ⊕ V ′2 −→W ⊕W ′ −→ V1 ⊕ V ′1 −→ 0 ,

has sign (−1)ε+ε
′+dim(V ′1)dim(V2). Indeed, the direct sum decomposition writes as

W ⊕W ′ = (−1)ε(V1 ⊕ V2)⊕ (−1)ε
′
(V ′1 ⊕ V ′2) ' (−1)ε+ε

′+dim(V ′1)dim(V2)V1 ⊕ V ′1 ⊕ V2 ⊕ V ′2 .

4.1.2. Orientation and transversality. Given two manifolds M,N , a codimension k submanifold
S ⊂ N and a smooth map

φ : M −→ N

which is tranverse to S, the inverse image φ−1(S) is a codimension k submanifold of M . Moreover,
choosing a complementary νS to TS, the transversality assumption yields the following short exact
sequence of vector bundles

0 −→ Tφ−1(S) −→ TM |φ−1(S) −→
dφ

νS −→ 0 .
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Suppose now that M , N and S are oriented. The orientations on N and S induce an orientation on
νS . The submanifold φ−1(S) is then oriented by requiring that the previous short exact sequence
be positive. We will refer to this choice of orientation as the natural orientation on φ−1(S).

In the particular case of two submanifolds S and R of M which intersect transversely, we will use
the inclusion map S ↪→ M , which is transverse to R ⊂ M , to de�ne the intersection S ∩ R. The
orientation will then be de�ned using the positive short exact sequence

0 −→ T (S ∩R) −→ TS|S∩R −→ νR −→ 0 ,

or equivalently with the direct sum decomposition

TS = νR ⊕ T (S ∩R) .

The intersection R ∩ S (in contrast to S ∩ R) is oriented by interchanging S and R in the above

discussion. The two orientations on the intersection di�er then by a (−1)codim(S)codim(R) sign.

4.2. Basic moduli spaces in Morse theory and their orientations.

4.2.1. Orienting the unstable and stable manifolds. Recall that for a critical point x of a Morse
function f , its unstable and stable manifolds are respectively de�ned as

WU (x) := {z ∈M, lim
s→−∞

φs(z) = x}

WS(x) := {z ∈M, lim
s→+∞

φs(z) = x} ,

where we denote φs the �ow of −∇f , and its degree is de�ned as |x| := dim(WS(x)).

The unstable and stable manifolds are respectively di�eomorphic to a (d − |x|)-dimensional ball
and a |x|-dimensional ball. They are hence orientable. They intersect moreover transversely in a
unique point, which is x. Assume now that the manifold M is orientable and oriented. We choose
for the rest of this section an arbitrary orientation on WU (x), and endow WS(x) with the unique
orientation such that the concatenation of orientations orWU (x) ∧ orWS(x) at x coincides with the
orientation orM .

4.2.2. Orienting the moduli spaces T (y;x). For two critical points x 6= y, the moduli spaces of
negative gradient trajectories T (y;x) can be de�ned in two ways. The �rst point of view hinges on
the fact that R acts on WS(y)∩WU (x), by de�ning s ·p = φs(p) for s ∈ R and p ∈WS(y)∩WU (x).
The moduli space T (y;x) is then de�ned by considering the quotient associated to this action, i.e.
by de�ning T (y;x) := WS(y) ∩WU (x)/R. The second point of view is to consider the transverse
intersection with the level set of a regular value a,

T (y;x) := WS(y) ∩WU (x) ∩ f−1(a) .

Using this description, and coorienting the level set f−1(a) with −∇f , the spaces T (y;x) can
easily be oriented with the formalism of section 4.1.2 on transverse intersections :

TWS(y) ' TWS(x)⊕ T
(
WS(y) ∩WU (x)

)
' TWS(x)⊕−∇f ⊕ TT (y;x) .

Note that the spaceWS(y)∩WU (x) consists in a union of negative gradient trajectories γ : R→M .
We will therefore use the notation γ̇ for −∇f , which will become handy in the next section.
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We point out that the moduli spaces T (y;x) are constructed in a di�erent way than the moduli
spaces Tt(y;x1, . . . , xn) : they cannot naturally be viewed as an arity 1 case of the moduli spaces of
gradient trees. This observation will be of importance in our upcoming discussion on signs for the
ΩBAs-algebra structure on the Morse cochains.

Finally, the moduli spaces T (y;x) are manifolds of dimension

dim(T (y;x)) = |y| − |x| − 1 ,

which can be compacti�ed to manifolds with corners T (y;x), by allowing convergence towards broken
negative gradient trajectories. See for instance [Weh12]. In the case where they are 1-dimensional,
their boundary is given by the signed union

∂T (y;x) =
⋃

z∈Crit(f)

−T (y; z)× T (z;x) .

We moreover recall from section 1.1 that we work under the convention T (x;x) = ∅.

4.2.3. Compacti�cations of the unstable and stable manifolds. Using the moduli spaces T (y;x), we

can now compactify the manifolds WS(y) and WU (x) to compact manifolds with corners WS(y)

and WU (x). See [Hut08] for instance. With our choices of orientations detailed in the previous
section, the top dimensional strata in their boundary are given by

∂WS(y) =
⋃

z∈Crit(f)

(−1)|z|+1WS(z)× T (y; z) ,

∂WU (x) =
⋃

z∈Crit(f)

(−1)(d−|z|)(|x|+1)WU (z)× T (z;x) ,

where d is the dimension of the ambient manifold M .

The pictures in the neighborhood of the critical point z are represented in �gure 27. For instance,

in the case of ∂WS(y), an element of WS(y) is seen as lying on a negative semi-in�nite trajectory
converging to y, and an outward-pointing vector to the boundary is given by −γ̇. We hence have
that

−γ̇ ⊕ TWS(z)⊕ TT (y; z) = (−1)|z|TWS(z)⊕−γ̇ ⊕ TT (y; z) = (−1)|z|+1TWS(y) .

γ

WS(z)

−γ̇

WS(y)

z y

WU (x)

γ

WU (z)

γ̇

x

z .

Figure 27
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4.2.4. Euclidean neighborhood of a critical point. Following [Weh12], we will assume in the rest of
this part that the pair (Morse function,metric) on the manifold M is Euclidean. Denote Bk

δ := {x ∈
Rk, |x| < δ}. Such a pair is said to Euclidean if it is Morse-Smale and is such that for each critical

point z ∈ Crit(f) there exists a local chart φ : B
d−|z|
δ × B|z|δ −̃→Uz ⊂ M , such that φ(0) = z and

such that the function f and the metric g read as

f(x1, . . . , xn−|z|, y1, . . . , y|z|) = f(p)− 1

2
(x2

1 + · · ·+ x2
n−|z|) +

1

2
(y2

1 + · · ·+ y2
|z|)

g =

n−|z|∑

i=1

dxi ⊗ dxi +

|z|∑

i=1

dyi ⊗ dyi

in the chart φ. In this chart, we then have that

WU (z) := {y1 = · · · = y|z| = 0}
WS(z) := {x1 = · · · = xn−|z| = 0} ,

and M = WU (z) ×WS(z). Hence any point of Uz can be uniquely written as a sum x + y where
x ∈WU (z) and y ∈WS(z). Choosing now s ∈ R such that the the image of x+ y under the Morse
�ow map φs still lies in Uz, we have that

φs(x+ y) = esx+ e−sy .

These observations will reveal crucial in the proof of subsection 4.4.3.

4.3. Preliminaries for section 4.4.

4.3.1. Counting the points on the boundary of an oriented 1-dimensional manifold. Consider an
oriented 1-dimensional manifold with boundary. Then its boundary ∂M is oriented. Assume it can
be written set-theoretically as a disjoint union

∂M =
⊔

i

Ni .

Suppose now that each Ni comes with its own orientation, and write (−1)†i for the sign obtained by
comparing this orientation to the boundary orientation. As oriented manifolds, the union writes as

∂M =
⊔

i

(−1)†iNi .

The Ni being 0-dimensional, they can be seen as collections of points each coming with a + or −
sign. Noticing that an orientable 1-dimensional manifold with boundary is either a segment or a
circle, and writing #Ni for the signed count of points of Ni, the previous equality �nally implies
that ∑

(−1)†i#Ni = 0 .

This basic observation is key to constructing most algebraic structures arising in symplectic topology
(and in particular Morse theory).
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For instance, for a critical point x, counting the boundary points of the 1-dimensional manifolds
T (y;x) proves that

∂Morse ◦ ∂Morse(x) =
∑

y∈Crit(f)
|y|=|x|+2

∑

z∈Crit(f)
|z|=|x|+1

#T (y; z)#T (z;x) · y = 0 .

The equations for ΩBAs-algebras and ΩBAs-morphisms will be proven using this method in the
following two subsections.

4.3.2. Reformulating the ΩBAs-equations. We �x for each t ∈ SRTn an orientation ωt. Given a
t ∈ SRTn the orientation ωt de�nes an orientation of the moduli space Tn(t), and we write moreover
mt for the operations (t, ω). The ΩBAs-equations for an ΩBAs-algebra then read as

[∂,mt] =
∑

t′∈coll(t)
(−1)†ΩBAsmt′ +

∑

t1#it2=t

(−1)†ΩBAsmt1 ◦i mt2 ,

where the notations for trees are as de�ned previously. The signs (−1)†ΩBAs are obtained as in
section 5.1, by computing the signs of Tn(t′) and Ti1+1+i3(t1) ×i Ti2(t2) in the boundary of Tn(t).
We will not need to compute their explicit value, and will hence keep this useful notation (−1)ΩBAs

to refer to them.

4.3.3. Twisted A∞-algebras and twisted ΩBAs-algebras. It is clear using this counting method, that
the operations mt of section 1.5 will endow the Morse cochains C∗(f) with a structure of ΩBAs-
algebra over Z/2. Working over integers will prove more di�cult, and we will prove a weaker result in
this case. We introduce to this extent the notion of twisted A∞-algebras and twisted ΩBAs-algebras.

De�nition 39. A twisted A∞-algebra is a dg-Z-module A endowed with two di�erent di�erentials
∂1 and ∂2, and a sequence of degree 2− n operations mn : A⊗n → A such that

[∂,mn] = −
∑

i1+i2+i3=n
26i26n−1

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,

where [∂, ·] denotes the bracket for the maps (A⊗n, ∂1)→ (A, ∂2). A twisted ΩBAs-algebra is de�ned
similarly.

We make explicit the formulae obtained by evaluating the ΩBAs-equations on A⊗n, as we will
need them in our next proof :

− ∂2mt(a1, . . . , an) + (−1)|t|+
∑i−1
j=1 |aj |mt(a1, . . . , ai−1, ∂1ai, ai+1, . . . , an)

+
∑

t1#t2=t

(−1)†ΩBAs+|t2|
∑i1
j=1 |aj |mt1(a1, . . . , ai1 ,mt2(ai1+1, . . . , ai1+i2), ai1+i2+1, . . . , an)

+
∑

t′∈coll(t)
(−1)†ΩBAsmt′(a1, . . . , an)

= 0 .

We refer to them as "twisted", as these algebras will occur in the upcoming lines by setting ∂2 :=
(−1)σ∂1, that is by simply twisting the di�erential ∂1 by a speci�c sign.
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Note that these two de�nitions cannot be phrased in terms of operads, as Hom((A, ∂1), (A, ∂2)) is
an (End(A,∂1),End(A,∂2))-operadic bimodule but is NOT an operad : the composition maps on
Hom((A, ∂1), (A, ∂2)) are associative, but they fail to be compatible with the di�erential [∂, ·].
As a result, a twisted A∞-algebra cannot be described as a morphism of operads from A∞ to
Hom((A, ∂1), (A, ∂2)). However, a twisted ΩBAs-algebra structure always transfers to a twisted
A∞-algebra structure. Indeed, while the functorial proof of 3.1.5 does not work anymore, we point
out that the morphism of operads A∞ → ΩBAs still contains the proof that a sequence of opera-
tions mt de�ning a twisted ΩBAs-algebra structure on A can always be arranged in a sequence of
operations mn de�ning a twisted A∞-algebra structure on A.

4.3.4. The maps ψei,Xt. Consider again a stable ribbon tree t and order its external edges clockwise,
starting with e0 at the outgoing edge. Given a choice of perturbation data Xt, we illustrate in
�gure 28 a mean to visualize the map

φXt : Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1

de�ned in section 1.3. We introduce a family of maps de�ned in a similar fashion. Consider ei an
incoming edge of t. De�ne the map

ψei,Xt : Tn(t)×WS(y)×WU (x1)× · · · × ŴU (xi)× · · · × · · · ×WU (xn) −→M×n

to be the map which for a �xed metric tree T takes a point of a WU (xj) for j 6= i to the point in
M obtained by following the only non-self crossing path from the time −1 point on ej to the time
−1 point on ei in T through the perturbed gradient �ow maps associated to XT , and which takes a
point ofW s(y) to the point inM obtained by following the only non-self crossing path from the time
1 point on e0 to the time −1 point on ei in T through the perturbed gradient �ow maps associated
to XT . The map ψe0,Xt is de�ned similarly for the outgoing edge e0. These two de�nitions are two
be understood as depicted on two examples in �gure 28.

WU (x3)

WS(y)

WU (x1) WU (x2)

φXt

WU (x3)

WS(y)

WU (x1)

ψe2,Xt

WU (x3)

WU (x1) WU (x2)

ψe0,Xt

Figure 28. Representations of a map φXt , a map ψe2,Xt and a map ψe0,Xt

4.4. The twisted ΩBAs-algebra structure on the Morse cochains.

4.4.1. Summary of the proof of Theorem 9.

De�nition 40. (i) We de�ne T̃ X
t (y;x1, . . . , xn) to be the oriented manifold T X

t (y;x1, . . . , xn)
whose natural orientation has been twisted by a sign of parity

σ(t; y;x1, . . . , xn) := dn(1 + |y|+ |t|) + |t||y|+ d
n∑

i=1

|xi|(n− i) .
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(ii) Similarly, we de�ne T̃ (y;x) to be the oriented manifold T (y;x) whose natural orientation
has been twisted by a sign of parity

σ(y;x) := 1 .

The operations mt and the di�erential on C∗(f) are then de�ned as

mt(x1, . . . , xn) =
∑

|y|=∑n
i=1 |xi|+|t|

#T̃ X
t (y;x1, . . . , xn) · y ,

∂Morse(x) =
∑

|y|=|x|+1

#T̃ (y;x) · y .

Proposition 18. If T̃t(y;x1, . . . , xn) is 1-dimensional, its boundary decomposes as the disjoint union
of the following components

(i) (−1)|y|+†ΩBAs+|t2|
∑i1
i=1 |xi|T̃t1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T̃t2(z;xi1+1, . . . , xi1+i2) ;

(ii) (−1)|y|+†ΩBAs T̃t′(y;x1, . . . , xn) for t′ ∈ coll(t) ;

(iii) (−1)|y|+†Koszul+(d+1)|xi|T̃t(y;x1, . . . , z, . . . , xn)× T̃ (z;xi) where †Koszul = |t|+∑i−1
j=1 |xj | ;

(iv) (−1)|y|+1T̃ (y; z)× T̃t(z;x1, . . . , xn).

Applying the method of subsection 4.3.1 �nally proves that :

Theorem 9. The operations mt de�ne a twisted ΩBAs-algebra structure on (C∗(f), ∂TwMorse, ∂Morse),
where

(∂TwMorse)
k = (−1)(d+1)k∂kMorse .

4.4.2. Signs for the (int-break) boundary. We resort to the formalism of short exact sequences of
vector bundles to handle orientations in this section. For the sake of readability, we will write N
rather than TN for the tangent bundle of a manifold N in the upcoming computations.

The moduli space Tt(y;x1, . . . , xn) is de�ned as the inverse image of the diagonal ∆ ⊂ M×n+1

under the map

φXt : Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

where the factors of M×n+1 are labeled in the order My ×Mx1 × · · · ×Mxn . Orienting the domain
and codomain of φXt by taking the product orientations, and orienting ∆ as M , de�nes the nat-
ural orientation on Tt(y;x1, . . . , xn) as in subsection 4.1.2. Choose M×n labeled by x1, . . . , xn as
complementary to ∆. Then the orientation induced on M×n by the orientations on M×n+1 and on

∆, di�ers by a (−1)d
2n sign from the product orientation of M×n. In the language of short exact

sequences, Tt(y;x1, . . . , xn) is oriented by the short exact sequence

0 −→ Tt(y;x1, . . . , xn) −→ Tn(t)×WS(y)×
n∏

i=1

WU (xi) −→M×n −→ 0 ,

which has a sign of parity

dn .(A)

In the case of T Morse
t1 := Tt1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn), we choose M×i1+1+i3 labeled by

y, x1, . . . , xi1 , xi1+i2+1, . . . , xn as complementary to ∆. The orientation induced on M×i1+1+i3 , by
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the orientations on M×i1+2+i3 and on ∆, di�ers by a (−1)d
2i3 sign from the product orientation of

M×i1+1+i3 . Hence the short exact sequence

0 −→ T Morse
t1 −→ Ti1+1+i3(t1)×WS(y)×

i1∏

i=1

WU (xi)×WU (z)×
n∏

i=i1+i2+1

WU (xi) −→M×i1+1+i3 → 0 ,

has a sign of parity

di3 .(B)

In the case of T Morse
t2 := Tt2(z;xi1+1, . . . , xi1+i2), we choose M×i2 labeled by xi1+1, . . . , xi1+i2 as

complementary to ∆. The orientation induced on M×i2 di�ers this time by a (−1)d
2i2 sign from the

product orientation. The short exact sequence

0 −→ T Morse
t2 −→ Ti2(t2)×WS(z)×

i1+i2∏

i=i1+1

WU (xi) −→M×i2 → 0 ,

has now a sign given by the parity of

di2 .(C)

Following the convention of subsection 4.1.1, taking the product

0 −→ T Morse
t1 × T Morse

t2 −→ Ti1+1+i3(t1)×WS(y)×
i1∏

i=1

WU (xi)×WU (z)×
n∏

i=i1+i2+1

WU (xi)× Ti2(t2)×WS(z)×
i1+i2∏

i=i1+1

WU (xi)

−→M×i1+1+i3 ×M×i2 → 0

doesn't introduce a sign, as T Morse
t1 and T Morse

t2 are 0-dimensional.

In the previous short exact sequence, M×i1+1+i3 ×M×i2 is labeled by

y, x1, . . . , xi1 , xi1+i2+1, . . . , xn, xi1+1, . . . , xi1+i2 .

We rearrange this labeling into

y, x1, . . . , xn ,

which induces a sign given by the parity of

di2i3 .(D)

We also rearrange the expression

Ti1+1+i3(t1)×WS(y)×
i1∏

i=1

WU (xi)×WU (z)×
n∏

i=i1+i2+1

WU (xi)× Ti2(t2)×WS(z)×
i1+i2∏

i=i1+1

WU (xi) ,

into

WU (z)×WS(z)× Ti1+1+i3(t1)× Ti2(t2)×WS(y)×
n∏

i=1

WU (xi) .
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The parity of the produced sign is that of

|z|
(
|t2|+

n∑

i=i1+i2+1

(d− |xi|)
)

+m

(
|t1|+ |y|+

i1∑

i=1

(d− |xi|)
)

(E)

+ |t2|
(
|y|+

i1∑

i=1

(d− |xi|) +

n∑

i=i1+i2+1

(d− |xi|)
)

+

(
i1+i2∑

i=i1+1

(d− |xi|)
)(

n∑

i=i1+i2+1

(d− |xi|)
)
.

Introduce now the factor [L,+∞[, corresponding to the length le increasing towards +∞, where
e is the edge of t whose breaking produces t1 and t2. Following convention 4.1.2, the short exact
sequence

0 −→ [L,+∞[×T Morse
t1 × T Morse

t2 −→ [L,+∞[×WU (z)×WS(z)× T (t1)× T (t2)××WS(y)×
n∏

i=1

WU (xi) −→M×n+1 −→ 0 ,

induces a sign change whose parity is given by

d(n+ 1) .(F)

De�ne the map

ψ : M × Tn(t)×WS(y)×
n∏

i=1

WU (xi) −→M ×M×n+1 ,

which is de�ned on the factors Tn(t)×WS(y)×∏n
i=1W

U (xi) as φ and is de�ned on M × Tn(t) by
seeing M as the point lying in the middle of the edge e in t. This map is depicted on �gure 29. The
inverse image of the diagonal ofM ×M×n+1 is exactly Tt(y;x1, . . . , xn). Fix now a su�ciently great
L > 0. We prove in subsection 4.4.3 that orienting [L,+∞[×T Morse

t1 × T Morse
t2 with the previous

short exact sequence, the orientation induced on T Morse
t by gluing is the exactly the one given by

the short exact sequence

0 T Morse
t [L,+∞[×M × T (t1)× T (t2)×WS(y)×∏n

i=1W
U (xi) M×n+1 0

dψ
,

where our convention on orientations for the unstable and stable manifolds of z implies thatWU (z)×
WS(z) yields indeed the orientation of M , and M×n+1 is labeled by y, x1, . . . , xn.

M WU (x3)

WS(y)

WU (x1) WU (x2)

ψ

Figure 29. Representation of the map ψ

Transform the coorientation labeled by y, x1, . . . , xn into the coorientation labeled byM,x1, . . . , xn
and rearrange the factors [L,+∞[×M ×T (t1)×T (t2)×· · · into M × [L,+∞[×T (t1)×T (t2)×· · ·
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This produces a sign change of parity

d+ d ≡ 0 .(G)

We can moreover now delete the two M factors associated to the label M to obtain the short exact
sequence

0 −→ Tt(y;x1, . . . , xn) −→ [L,+∞[×T (t1)× T (t2)×WS(y)×
n∏

i=1

WU (xi) −→M×n −→ 0 ,

where M×n = Mx1 × · · · ×Mxn .

Transforming �nally [L,+∞[×T (t1)× T (t2) into Tn(t) gives a sign of parity

†ΩBAs .(H)

In closing, the short exact sequence

0 −→ Tt(y;x1, . . . , xn) −→ Tn(t)×WS(y)×
n∏

i=1

WU (xi) −→M×n −→ 0 ,

has sign given by the parity of A when T Morse
t is endowed with its natural orientation. It has sign

given by the parity of B + C +D + E + F +G+H when T Morse
t is endowed with the orientation

induced by [L,+∞[×T Morse
t1 × T Morse

t2 , where the �rst factor is the length le and determines the

outward-pointing direction νe to the boundary component T Morse
t1 × T Morse

t2 .

We thus obtain that with our choice of orientation on the moduli spaces T Morse
t , the sign of

Tt1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)×Tt2(z;xi1+1, . . . , xi1+i2) in the boundary of the 1-dimensional
moduli space Tt(y;x1, . . . , xn) is given by the parity of

(∗) A+B + C +D + E + F +G+H

= |z||t2|+ d|y|+ d|t1|+ (n+ 1)d+

i1∑

i=1

d|xi|+ |t2||y|+ di1|t2|+ di2

n∑

i=i1+i2+1

|xi|+ †ΩBAs + |t2|
i1∑

i=1

|xi| .

Hence the sign of T̃t1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T̃t2(z;xi1+1, . . . , xi1+i2) in the boundary of

the 1-dimensional moduli space T̃t(y;x1, . . . , xn) is given by the parity of

σ(t; y;x1, . . . , xn) + σ(t1; y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn) + σ(t2; z;xi1+1, . . . , xi1+i2) + (∗)

= |y|+ †ΩBAs + |t2|
i1∑

i=1

|xi| .

4.4.3. Gluing and orientations. We prove in this subsection that after orienting [L,+∞[×T Morse
t1 ×

T Morse
t2 with the short exact sequence

0 [L,+∞[× T Morse
t1 × T Morse

t2 [L,+∞[×WU (z)×WS(z)× T (t1)× T (t2)×WS(y)×∏n
i=1W

U (xi) M×n+1 0 ,

the orientation induced on T Morse
t by gluing is the one given by the short exact sequence

0 T Morse
t [L,+∞[×M × T (t1)× T (t2)×WS(y)×∏n

i=1W
U (xi) M×n+1 0

dψ
.

The proof boils down to the following lemma.
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Lemma 1. LetM and N be manifolds and S ⊂ N a submanifold of N . Suppose thatM , N and S are
orientable and oriented. Let f : [0, 1] ×M → N be a smooth map such that f1 := f(1, ·) : M → N
is transverse to S. Let x ∈ f−1

1 (S). Then there exist an open subset V of M containing x and
0 6 t1 < 1 such that

(i) The map f |[t1,1]×V : [t1, 1] × V → N is transverse to S. In particular the inverse image

f |−1
[t1,1]×V (S) is then a submanifold of [t1, 1]× V .

(ii) There exists an orientation-preserving embedding

f |−1
[t1,1]×V (S) −→ [t1, 1]× f−1

1 (S)

equal to the identity on f1|−1
V (S) and preserving the t coordinate, where we orient [t1, 1] ×

f−1
1 (S) with the short exact sequence

0 −→ [t1, 1]× f−1
1 (S) −→ [0, 1]×M −→ νS −→ 0

and we orient f |−1
[t1,1]×V (S) with the short exact sequence

0 −→ f |−1
[t1,1]×V (S) −→ [0, 1]×M −→ νS −→ 0 .

Proof. Choose an adapted chart for S around f1(x), i.e. a chart φ : U ′ ⊂ N → Rn such that

φ(U ′ ∩ S) = {(y1, . . . , yn−s, x1, . . . , xs) ∈ Rn, y1 = · · · = yn−s = 0} ,
where n and s respectively denote the dimensions of N and S. Using the local normal form theorem
for submersions, there exists a local chart ψ : U ⊂ M → Rm around x such that the map f1 reads
as

(y1, . . . , yn−s, x1, . . . , xm+s−n) 7−→ (y1, . . . , yn−s, F1(~y, ~x), . . . , Fs(~y, ~x))

in the local charts ψ and φ, where the Fi are smooth maps and ~y := y1, . . . , yn−s, ~x := x1, . . . , xm+s−n
and m := dim(M). In these local charts,

U ∩ f−1
1 (U ′ ∩ S) = {(y1, . . . , yn−s, x1, . . . , xm+s−n) ∈ Rm, y1 = · · · = yn−s = 0} .

The property "being transverse to S" being open, there exists a neighborhood W of x in M and
t0 ∈ [0, 1[ such that the map f |[t0,1]×W : [t0, 1] ×W → N is transverse to S. Suppose W ⊂ U and

consider now the projection π : Rm → Rm+s−n given by

(y1, . . . , yn−s, x1, . . . , xm+s−n) 7−→ (x1, . . . , xm+s−n)

and de�ne the smooth map

ι := idt × π : f |−1
[t0,1]×W (S) −→ [0, 1]× f−1

1 (S)

in the local charts φ and ψ. The di�erential of this map is invertible at (1, x). The inverse function
theorem then ensures that there exits t1 ∈ [t0, 1[ and a neighborhood V ⊂ W of x such that the
map

ι : f |−1
[t1,1]×V (S) −→ [0, 1]× f−1

1 (S)

is a di�eomorphism on its image.

Orient now [0, 1]× f−1
1 (S) and f |−1

[t1,1]×V (S) with the previous short exact sequences. It remains

to show that the map ι is orientation-preserving. The proof of this result can be reduced to a proof
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in linear algebra, i.e. by considering a smooth family of linear maps f : [0, 1]× Rm → Rn such that
f1 reads as

(y1, . . . , yn−s, x1, . . . , xm+s−n) 7−→ (y1, . . . , yn−s, F1(~y, ~x), . . . , Fs(~y, ~x)) ,

and the linear subspace S = {0} × Rs ⊂ Rn. Then there exists t0 ∈ [0, 1] such that f |[t0,1]×Rm is
transverse to S, and we can consider the smooth map

ι := idt × π : f |−1
[t0,1]×Rm(S) −→ [0, 1]× f−1

1 (S)

which is a di�eomorphism on its image. Basic computations �nally show that the map ι is indeed
orientation-preserving. �

We now go back to our initial problem. Let TMorse
1 ∈ T Morse

1 and TMorse
2 ∈ T Morse

2 , where we
refer to subsection 4.4.2 for notations. Consider a local Euclidean chart φz : Uz → Rd for the critical
point z as in subsection 4.2.4. Introduce the map ev : [0,+∞]× Uz → Uz × Uz reading as

(δ, x+ y) 7−→ (e−2δx+ y, x+ e−2δy)

in the chart φz. The pair ev(δ, x + y) corresponds to the two endpoints of the unique �nite Morse
trajectory parametrized by [−δ, δ] and meeting e−δx+ e−δy at time 0.

Consider the trajectory γe,1 : ] −∞, 0] → M and the trajectory γe,2 : [0,+∞[→ M , respectively
associated to the incoming edge of TMorse

1 and to the outgoing edge of TMorse
2 which result from the

breaking of the edge e in t. Choose L large enough such that γe,1(−L) and γe,2(L) belong to Uz.

Introduce the map f := ev × (φ−(L−1))×i1+1+i3 ◦ ψe,Xt1 × (φL−1)×i2 ◦ ψe,Xt2 acting as

[0,+∞]× Uz × Ti1+1+i3(t1)×WS(y)×∏i1
i=1W

U (xi)×
∏n
i=i1+i2+1W

U (xi)× Ti2(t2)×∏i1+i2
i=i1+1W

U (xi)

−→M×2 ×M×i1+1+i3 ×M×i2 ,

where φL−1 stands for the time L−1 Morse �ow and the maps ψe,Xt2 and ψe,Xt1 have been introduced
in subsection 4.2.4. This map is depicted in �gure 30.

WU (x1) WU (x2)

WU (x3)

WS(y)

z
Uz

M

ψe,Xt2

φL−1

ψe,Xt1

φ−(L−1)

evδ

Figure 30. Representation of the map f . The label M corresponds to the point
e−δx+ e−δy and not to the point x+ y.
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De�ne the 2d-dimensional submanifold Λ ⊂M×2 ×M×i1+1+i3 ×M×i2 to be

Λ :=





(m1
z,m

2
z,my,m1, . . . ,mi1 ,mi1+1+i2 , . . . ,mn,mi1+1, . . . ,mi1+i2)

such that m1
z = mi1+1 = · · · = mi1+i2 and

m2
z = my = m1 = · · · = mi1 = mi1+1+i2 = · · · = mn



 .

The pair (TMorse
1 , TMorse

2 ) then belongs to the inverse image f−1
+∞(Λ). By assumption on the choice

of perturbation data (Xn)n>2, the map f+∞ is moreover transverse to Λ. Applying Lemma 1 to the
map f at the point (TMorse

1 , TMorse
2 ), there exists R > 0 and an embedding

#TMorse
1 ,TMorse

2
: [R,+∞] −→ T t(y;x1, . . . , xn) .

Note that the parameter δ corresponds to an edge of length 2L+2δ in the resulting glued tree. Upon
reordering the factors of the domain of f , it is �nally easy to check that this lemma also implies the
result on orientations stated at the beginning of this subsection.

4.4.4. Signs for the (int-collapse) and (Morse) boundary. Repeating the beginning of the previous
section, for the moduli spaces Tt′(y;x1, . . . , xn), where t′ ∈ coll(t), and Tt(y;x1, . . . , xn), we choose
M×n labeled by x1, . . . , xn as complementary to the diagonal ∆ ⊂M×n+1. The parity of the total
sign change coming from these coorientation choices is

dn+ dn = 0 .(A)

Introduce the factor ]0, L], corresponding to the length le going towards 0, where e is the edge of
t whose collapsing produces t′. Applying again Lemma 1 and following convention 4.1.1, the short
exact sequence

0 −→ Tt(y;x1, . . . , xn) =]0, L]× Tt′(y;x1, . . . , xn) −→]0, L]× Tn(t′)×WS(y)×
n∏

i=1

WU (xi) −→M×n −→ 0 ,

introduces a sign change whose parity is given by

dn .(B)

Transforming �nally ]0, L]× Tn(t′) into Tn(t) gives a sign of parity

†ΩBAs .(C)

Adding these contributions, we obtain that the sign of Tt′(y;x1, . . . , xn) in the boundary of the
1-dimensional moduli space Tt(y;x1, . . . , xn) is given by the parity of

A+B + C = dn+ †ΩBAs .(*)

The sign of T̃t′(y;x1, . . . , xn) in the boundary of the 1-dimensional moduli space T̃t(y;x1, . . . , xn) is
hence given by the parity of

σ(t; y;x1, . . . , xn) + σ(t′; y;x1, . . . , xn) + (∗) = |y|+ †ΩBAs .
Finally, the signs for the (Morse) boundary can be computed following the exact same lines of the
two previous proofs.

4.5. The twisted ΩBAs-morphism between the Morse cochains.
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4.5.1. Reformulating the ΩBAs-equations. We set again for the rest of this section an orientation
ω for each tg ∈ SCRTn, which endows each moduli space CT n(tg) with an orientation, and write
moreover µtg for the operations (tg, ω) of ΩBAs − Morph. The ΩBAs-equations for an ΩBAs-
morphism then read as

[∂, µtg ] =
∑

t′g∈coll(tg)

(−1)†ΩBAsµt′g +
∑

t′g∈g−vert(tg)

(−1)†ΩBAsµt′g +
∑

t1g#it2=tg

(−1)†ΩBAsµt1g ◦i mt2

+
∑

t0#(t1g ,...,t
s
g)=tg

(−1)†ΩBAsmt0 ◦ (µt1g ⊗ · · · ⊗ µtsg) ,

where the notations for trees are transparent. The signs (−1)†ΩBAs are obtained as in subsection 4.3.2.

4.5.2. Twisted A∞-morphisms and twisted ΩBAs-morphisms. Again, it is clear using the counting
method of 4.3.1 that if we work over Z/2, the operations µtg of 2.5 de�ne an ΩBAs-morphism. We
will prove a weaker result in the case of integers, introducing for this matter the notion of twisted
A∞-morphisms and twisted ΩBAs-morphisms.

De�nition 41. Let (A, ∂1, ∂2,mn) and (B, ∂1, ∂2,mn) be two twisted A∞-algebras. A twisted A∞-
morphism from A to B is de�ned to be a sequence of degree 1 − n operations fn : A⊗n → B such
that

[∂, fn] =
∑

i1+i2+i3=n
i2>2

(−1)i1+i2i3fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)−
∑

i1+···+is=n
s>2

(−1)εBms(fi1 ⊗ · · · ⊗ fis) ,

where [∂, ·] denotes the bracket for the maps (A⊗n, ∂1) → (B, ∂2). A twisted ΩBAs-morphism
between twisted ΩBAs-algebras is de�ned similarly.

The formulae obtained by evaluating the ΩBAs-equations on A⊗n then become

− ∂2µtg(a1, . . . , an) + (−1)|tg |+
∑i−1
j=1 |aj |µtg(a1, . . . , ai−1, ∂1ai, ai+1, . . . , an)

+
∑

t1g#t2=t

(−1)†ΩBAs+|t
2|∑i1

j=1 |aj |µt1g(a1, . . . , ai1 ,mt2(ai1+1, . . . , ai1+i2), ai1+i2+1, . . . , an)

+
∑

t1#(t1g ,...,t
s
g)=tg

(−1)†ΩBAs+†Koszulmt0(µt1g(a1, . . . , ai1), . . . , µtsg(ai1+···+is−1+1, . . . , an))

+
∑

t′g∈coll(tg)

(−1)†ΩBAsµt′g(a1, . . . , an) +
∑

t′g∈g−vert(tg)

(−1)†ΩBAsµt′g(a1, . . . , an)

= 0 ,

where

†Koszul =
s∑

r=1

|trg|



r−1∑

t=1

it∑

j=1

|ai1+···+ait−1
+j |


 .

Again these two de�nitions cannot be phrased using an operadic viewpoint. However, a twisted
ΩBAs-morphism between twisted ΩBAs-algebras always descends to a twisted A∞-morphism be-
tween twisted A∞-algebras, for the same reason as in subsection 4.3.3.
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4.5.3. Summary of the proof of Theorem 12. Let Xf and Xg be admissible choices of perturbation
data on the moduli spaces Tn for the Morse functions f and g, and Y be a choice of perturbation
data on the moduli spaces CT n that is admissible w.r.t. Xf and Xg.

De�nition 42. We de�ne C̃T Y
tg(y;x1, . . . , xn) to be the oriented manifold CT Y

tg(y;x1, . . . , xn) whose
natural orientation has been twisted by a sign of parity

σ(tg; y;x1, . . . , xn) := dn(1 + |y|+ |tg|) + |tg||y|+ d

n∑

i=1

|xi|(n− i) .

The moduli spaces T̃ (y;x) and T̃t(y;x1, . . . , xn) are moreover de�ned as in section 4.4. We de�ne
the operations µtg : C∗(f)⊗n → C∗(g) as

µtg(x1, . . . , xn) =
∑

|y|=∑n
i=1 |xi|+|tg |

#C̃T Y
tg(y;x1, . . . , xn) · y .

Proposition 19. If C̃T tg(y;x1, . . . , xn) is 1-dimensional, its boundary decomposes as the disjoint
union of the following components

(i) (−1)|y|+†ΩBAs+|t
2|∑i1

i=1 |xi|C̃T t1g(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T̃t2(z;xi1+1, . . . , xi1+i2) ;

(ii) (−1)|y|+†ΩBAs+†Koszul T̃t1(y; y1, . . . , ys)× C̃T t1g(y1;x1, . . . )× · · · × C̃T tsg(ys; . . . , xn) ;

(iii) (−1)|y|+†ΩBAs C̃T t′g(y;x1, . . . , xn) for t′ ∈ coll(t) ;

(iv) (−1)|y|+†ΩBAs C̃T t′g(y;x1, . . . , xn) for t′ ∈ g − vert(t) ;

(v) (−1)|y|+†Koszul+(m+1)|xi|C̃T tg(y;x1, . . . , z, . . . , xn)× T̃ (z;xi) where †Koszul = |tg|+
i−1∑

j=1

|xj | ;

(vi) (−1)|y|+1T̃ (y; z)× C̃T tg(z;x1, . . . , xn).

Applying the method of subsection 4.3.1 again �nally proves that :

Theorem 12. The operations µtg de�ne a twisted ΩBAs-morphism between the Morse cochains

(C∗(f), ∂TwMorse, ∂Morse) and (C∗(g), ∂TwMorse, ∂Morse).

4.5.4. Gluing. We construct explicit gluing maps in the two-colored framework using Lemma 1.
Gluing maps for the (above-break) boundary components are built as in subsection 4.4.3. In the
(below-break) case, consider critical points y, y1, . . . , ys ∈ Crit(g) and x1, . . . , xn ∈ Crit(f) such that
the moduli spaces Tt0(y; y1, . . . , ys) and CT trg(yr;xi1+···+ir−1+1, . . . , xi1+···+ir) are 0-dimensional. Let

T 0,Morse ∈ T Morse
t0 and T r,Morse

g ∈ CT Morse
trg

. Fix moreover an Euclidean neighborhood Uzr of

each critical point zr and choose L large enough such that for r = 1, . . . , s, γer,T 0,Morse(−L) and

γ
e0,T

r,Morse
g

(L) belong to Uzr . De�ne �nally the map σe0,Xt0 : M → M×s in a similar fashion to

the maps ψei,Xt , as depicted for instance in �gure 31. Gluing maps for the perturbed Morse trees

T 0,Morse and T r,Morse
g can then be de�ned by applying Lemma 1 to the map

[0,+∞]×
s∏

r=1

Uzr × Ts(t0)×WS(y)×
s∏

r=1


CT ir(trg)×

i1+···+ir∏

i=i1+···+ir−1+1

WU (xi)


 −→M×2s ×M×s ×

s∏

r=1

M×ir .

de�ned as follows :
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(i) the factor Ts(t0)×WS(y) is sent to M×s under the map (φ−(L−1))×s ◦ σe0,t0 ;

(ii) the factor CT ir(trg)×
∏
WU (xi) is sent to M

×ir under the map (φ(L−1))×ir ◦ σe0,trg ;
(iii) the factor [0,+∞] ×∏s

r=1 Uzr is sent to M×2s under the map ev
Uz1
l1δ
× · · · × evUzslsδ

where δ

denotes the parameter in [0,+∞] and the lengths lrδ are de�ned as in subsection 5.2.7 of
part 1 in order for them to de�ne a two-colored metric ribbon tree. In particular, we have
explicit formulae depending on δ for the resulting edges in the glued tree.

WS(y)
σe0,Xt1

Figure 31. Representation of the map σe0,Xt1 .

4.6. On these twisted structures. Note �rst that if we work with coe�cients in Z/2, the opera-
tionsmt de�ne of course an ΩBAs-algebra structure on the Morse cochains. The operations µtg then
de�ne an ΩBAs-morphism between two ΩBAs-algebras. We will say that the structure we de�ned
are untwisted. We hence work now over the integers Z. It appears from the de�nition of ∂TwMorse that
when M is odd-dimensional, the structures we de�ne are untwisted. In the even-dimensional case,
the structures are twisted, and it remains to be proven that all the operations mt could be twisted
in order to get an untwisted structure.

We also point out that the twisted structures arise from the two uncompatible orientation con-
ventions on an intersection R ∩ S and S ∩R detailed in 4.1.2. Indeed, we decided to orient T (y;x)
inside the intersection WS(y)∩WU (x). The signs then compute nicely for the boundary component

T̃ (y; z)× C̃T tg(z;x1, . . . , xn), and the twist in ∂TwMorse arises in C̃T tg(y;x1, . . . , z, . . . , xn)× T̃ (z;xi).

Orienting T (y;x) inside the intersection WU (x)∩WS(y) makes these two boundary components
switch roles. In that case, rede�ning the twist on the orientation of the moduli space T (y;x) as
given by the parity of

σ(y;x) := 1 + |x| ,
we check that the operationsmt de�ne a twisted ΩBAs-algebra structure on (C∗(f), ∂Morse, ∂

Tw
Morse).

The operations µtg on their side de�ne a twisted ΩBAs-morphism between (C∗(f), ∂Morse, ∂
Tw
Morse)

and (C∗(g), ∂Morse, ∂
Tw
Morse).
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Part 3

Further developments

1. The map µY is a quasi-isomorphism

The goal of this section is to prove the following proposition :

Proposition 20. The twisted ΩBAs-morphism µY : (C∗(f),mXf
t ) −→ (C∗(g),mXg

t ) constructed in
Theorem 12 is a quasi-isomorphism.

In other words we want to prove that the arity 1 component µY : C∗(f) → C∗(g) is a map which

induces an isomorphism in cohomology. The map µY is a dg-map (C∗(f), ∂TwMorse)→ (C∗(g), ∂Morse),

but the cohomologies de�ned by the di�erentials ∂TwMorse and ∂Morse are equal.

In this regard, we will prove that given three perturbation data on CT 1 := { }, Yfg , Ygf and

Yff , de�ning dg-maps

µ
Yij

: (C∗(i), ∂TwMorse) −→ (C∗(j), ∂Morse) ,

we can construct a homotopy h : C∗(f)→ C∗(f) such that

(−1)dµY
gf ◦ µYfg − µYff = ∂Morseh+ h∂TwMorse .

Specializing to the case where Yff is null, µ
Yff

= id and this yields the desired result. For the

sake of readability, we will write Yij := Yij in the rest of this section. Note also that the choice of

perturbation data Xf and Xg are not necessary for this construction.

In the last paragraph of subsection 1.5 of part 2, we explained that given any Morse function
f together with an admissible choice of perturbation data Xf , the Morse cochains C∗(f) and the
singular cochains C∗sing(M) are quasi-isomorphic as twisted ΩBAs-algebras. In particular, given
another Morse function g together with an admissible choice of perturbation data Xg, the Morse
cochains C∗(f) and C∗(g) are quasi-isomorphic as twisted ΩBAs-algebras. Proposition 20 show
that the twisted ΩBAs-morphism µY realizes such a quasi-isomorphism explicitly.

1.1. The moduli space H(y;x). Begin by considering the moduli space of metric trees H, repre-
sented in two equivalent ways in �gure 32. Adapting the discussions of section 1.2, we infer without
di�culty the notion of smooth choice of perturbation data on H. Given such a choice of perturbation
data W, we then say that it is consistent with the Yij if it is such that, when l→ 0, lim(W) = Yff ,
and when l → +∞, the limit lim(W) on the above part of the broken tree is Yfg and the limit
lim(W) on the bottom part of the broken tree is Ygf .

For x and y critical points of the function f , introduce now the moduli space HW(y;x) consisting
of perturbed Morse gradient trees modeled on , and such that the two external edges correspond to
perturbed Morse equations for f , and the internal edge corresponds to a perturbed Morse equation
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l l

Figure 32

for g. We then check that a generic choice of perturbation data W makes them into orientable
manifolds of dimension

dim(HW(y;x)) = |y| − |x|+ 1 .

The 1-dimensional moduli spacesH(y;x) can be compacti�ed into compact manifolds with boundary
H(y;x), whose boundary is given by the three following phenomena :

(i) an external edge breaks at a critical point of f (Morse) ;
(ii) the length of the internal edge tends towards 0 : this yields the moduli spaces

CT Yff (y;x) ;

(iii) the internal edge breaks at a critical point of g : this yields the moduli spaces
⋃

z∈Crit(g)

CT Ygf (y; z)× CT Yfg(z;x) .

De�ning the map h : C∗(f) → C∗(f) as h(x) :=
∑
|y|=|x|−1 #HW(y;x) · y, a signed count of the

boundary points of the 1-dimensional compacti�ed moduli spaces HW
(y;x) then proves that :

Proposition 21. The map h de�nes an homotopy between (−1)dµY
gf ◦ µYfg and µY

ff
i.e. is such

that
(−1)dµY

gf ◦ µYfg − µYff = ∂Morseh+ h∂TwMorse .

Proposition 20 is then a simple corollary to this proposition.

1.2. Proof of Propositions 20 and 21. We de�ne the moduli space H(y;x) as before, by intro-
ducing the map

φW : H×WS(y)×WU (x) −→M ×M ,

and setting H(y;x) := φ−1(∆) where ∆ is the diagonal of M × M . We recall moreover that
σ( ; y;x) = d(1 + |y|), σ(y;x) = 1 and that

µY
ij

(x) =
∑

|y|=|x|
#C̃T Yij

(y;x) · y ∂Morse(x) =
∑

|y|=|x|+1

#T̃ (y;x) · y .

We then set
σ( ; y;x) = (d+ 1)|y| ,

and write H̃(y;x) for the moduli space H(y;x) endowed with the orientation obtained by twisting
its natural orientation by a sign of parity σ( ; y;x). We can now de�ne the map h : C∗(f)→ C∗(f)
by

h(x) :=
∑

|y|=|x|−1

#H̃(y;x) · y .
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If H̃(y;x) is 1-dimensional, its boundary decomposes as the disjoint union of the following four
types of components

(−1)|y|+dC̃T Ygf
(y; z)× C̃T Yfg

(z;x) (−1)|y|+1C̃T Yff
(y;x)

(−1)|y|+1T̃ (y; z)× H̃(z;x) (−1)|y|+1+(d+1)|x|H̃(y; z)× T̃ (z;x) .

Counting the boundary points of these 1-dimensional moduli spaces implies that

(−1)dµY
gf ◦ µYfg − µYff = ∂Morseh+ h∂TwMorse .

To prove Proposition 20, it remains to note that this relation descends in cohomology to the relation

(−1)d[µY
gf

] ◦ [µY
fg

] = [µY
ff

] .

2. More on the ΩBAs viewpoint

We stated in section 1.6 that because the two-colored operad A2
∞ is a �brant-co�brant replace-

ment of As2 in the model category of two-colored operads, the category of A∞-algebras with A∞-
morphisms between them yields a nice homotopic framework to study the notion of "dg-algebras
which are associative up to homotopy". In fact, most classical theorems for A∞-algebras can be
proven using the machinery of model categories, on the model category of two-colored operads in
dg-Z-modules. We can thus similarly introduce the two-colored operad ΩBAs2, which is again a
�brant-co�brant replacement of As2 in the model category of two-colored operads. The category of
ΩBAs-algebras with ΩBAs-morphisms between them yields another satisfactory homotopic frame-
work to study "dg-algebras which are associative up to homotopy", in which most classical theorems
for A∞-algebras still hold.

We also point out that while there exists a morphism of operads A∞ → ΩBAs which is canoni-
cally given by re�ning the cell decompositions on the associahedra, Markl and Shnider constructed
in [MS06] an explicit non-canonical morphism of operads ΩBAs → A∞. The operads ΩBAs and
A∞ being �brant-co�brant replacements of As, model category theory tells us that there necessarily
exist two morphisms A∞ → ΩBAs and ΩBAs→ A∞. Hence the noteworthy property of these two
morphisms is not that they exist, but that they are explicit and computable.

Switching to the two-colored operadic viewpoint, model category theory tells us again that there
necessarily exist two morphisms A2

∞ → ΩBAs2 and ΩBAs2 → A2
∞. We have already introduced the

necessary material to de�ne an explicit and computable morphism of two-colored operads A2
∞ →

ΩBAs2. To render explicit a morphism ΩBAs2 → A2
∞ it would be enough to construct a morphism

of operadic bimodules ΩBAs−Morph→ A∞−Morph. To our knowledge, this has not yet been done,
but we conjecture that the construction of Markl-Shnider should adapt nicely to the multiplihedra
to de�ne such a morphism.

3. A∞-structures in symplectic topology

We explained in this article how the associahedra can be realized as compacti�ed moduli spaces
of stable metric ribbon trees. In fact, writing Dn,1 for the moduli space of stable disks with n + 1
marked points on their boundary, where n points are seen as incoming, and 1 as outgoing, the moduli
space Dn,1 can be compacti�ed and topologized in such a way that it is isomorphic as a CW-complex
to the associahedron Kn. See [Sei08] for instance. Mau-Woodward also prove in [MW10] that the
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multiplihedra Jn can be realized as the compacti�ed moduli spaces of stable quilted disks QDn,1.
The objects of QDn,1 are disks with n + 1 points z0, z1, · · · , zn marked on the boundary, with an
additional interior disk passing through the point z0. An instance is depicted in �gure 33. These
families of moduli spaces however only contain the A∞-cell decompositions of the associahedra resp.
multiplihedra, and do not contain their ΩBAs-cell decompositions.

A symplectic manifold corresponds to the data of a smooth manifold M together with a closed
non-degenerate 2-form ω on M . The purpose of symplectic topology is the study of the geometrical
properties of symplectic manifolds (M,ω), and of the way they are preserved under smooth trans-
formations preserving the symplectic structure. As algebraic topology seeks to associate algebraic
invariants to topological spaces, in the hope of distinguishing them and understanding some of their
topological properties, the same modus operandi can be applied to the study of symplectic manifolds.
This point view was prompted by the seminal work of Gromov [Gro85] on moduli spaces of pseudo-
holomorphic curves. By counting the points of 0-dimensional moduli spaces of pseudo-holomorphic
curves, one will be able to de�ne algebraic operations stemming from the geometry of the underlying
symplectic manifolds.

The most famous example is that of the Fukaya category Fuk(M) of a symplectic manifoldM (with
additional technical assumptions). It is an A∞-category whose higher multiplications are de�ned by
counting moduli spaces of pseudo-holomorphic disks with Lagrangian boundary conditions and n+1
marked points on their boundary, in other words by realizing the moduli spaces Dn,1 in symplectic
topology. We refer for instance to [Smi15] and [Aur14] for introductions to the subject. The moduli
spaces of quilted disks can be similarly realized as pseudo-holomorphic curves in symplectic topology
as in [MWW18], to construct A∞-functors between Fukaya categories.

xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M

z3

z2

z1

z0

Figure 33. On the left, an example of a pseudo-holomorphic disk with Lagrangian
boundary conditions on the Lagrangian submanifolds L0, . . . , Ln whose n+1 marked
points are sent to the points y, x1, . . . , xn inM . On the right, an example of a quilted
disk in QD3,1.

It is also worth mentioning the work of Bottman on that matter. He is currently developing an
algebraic model for the notion of (A∞, 2)-categories, using moduli spaces of witch curves. The goal
is to prove that one can then de�ne an (A∞, 2)-category Symp whose objects would be symplectic
manifolds (with suitable technical assumptions), and such that the space of morphisms between two
symplectic manifolds M and N would be the Fukaya category Fuk(M−×N). We refer to his recent
papers [Bot19a] and [Bot19b] for more details.
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4. Towards higher algebra

In closing, two questions naturally arise from this construction. They will respectively represent
the starting points to the parts II and III to this article.

Problem 1. Given two Morse functions f, g, choices of perturbation data Xf and Xg, and choices
of perturbation data Y and Y′, is µY always A∞-homotopic (resp. ΩBAs-homotopic) to µY

′
? I.e.,

when can the following diagram be �lled in the A∞ (resp. ΩBAs) world

C∗(f) C∗(g)

µY

µY
′

?

In which sense, with which notion of homotopy can it be �lled ? And in general, which notion of
higher operadic algebra naturally encodes this type of problem ?

Problem 2. Given three Morse functions f0, f1, f2, choices of perturbation data Xi, and choices of
perturbation data Yij de�ning morphisms

µY
01

: (C∗(f0),mX0

t ) −→ (C∗(f1),mX1

t ) ,

µY
12

: (C∗(f1),mX1

t ) −→ (C∗(f2),mX2

t ) ,

µY
02

: (C∗(f0),mX0

t ) −→ (C∗(f2),mX2

t ) ,

can we construct an A∞-homotopy (or an ΩBAs-homotopy), such that µY
12 ◦ µY01 ' µY02

through
this homotopy ? That is, can the following cone be �lled in the A∞ (resp. ΩBAs) world

C∗(f0) C∗(f1)

C∗(f2)

µY
02

µY
01

µY
12 ?

Which higher operadic algebra naturally arises from this basic question ? Note that the construction
of section 1 solves the arity 1 step of this problem.

Problem 1 is solved in [Maz21] by introducing the notions of n−A∞-morphisms and n−ΩBAs-
morphisms. Problem 2 will be adressed in an upcoming paper, in which it will appear that the
higher algebra of n−A∞-morphisms provides a natural framework to solve this problem.
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HIGHER ALGEBRA OF A∞ AND ΩBAs-ALGEBRAS IN MORSE THEORY II

THIBAUT MAZUIR

Abstract. This paper introduces the notion of n-morphisms between two A∞-algebras, such
that 0-morphisms correspond to standard A∞-morphisms and 1-morphisms correspond to A∞-
homotopies between A∞-morphisms. The set of higher morphisms between two A∞-algebras then
de�nes a simplicial set which has the property of being a Kan complex, whose simplicial homotopy
groups can be explicitly computed. The operadic structure of n − A∞-morphisms is also encoded
by new families of polytopes, which we call the n-multiplihedra and which generalize the standard
multiplihedra. These are constructed from the standard simplices and multiplihedra by lifting the
Alexander-Whitney map to the level of simplices. Rich combinatorics arise in this context, as conve-
niently described in terms of overlapping partitions. Shifting from the A∞ to the ΩBAs framework,
we de�ne the analogous notion of n-morphisms between ΩBAs-algebras, which are again encoded
by the n-multiplihedra, endowed with a re�ned cell decomposition by stable gauged ribbon tree
type. We then realize this higher algebra of A∞ and ΩBAs-algebras in Morse theory. Given two
Morse functions f and g, we construct n−ΩBAs-morphisms between their respective Morse cochain
complexes endowed with their ΩBAs-algebra structures, by counting perturbed Morse gradient trees
associated to an admissible simplex of perturbation data. We moreover show that the simplicial set
consisting of higher morphisms de�ned by a count of perturbed Morse gradient trees is a contractible
Kan complex.

The 1-multiplihedron ∆1 × J3 ...

1
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Introduction

Summary and results of article I . This article is the direct sequel to [Maz21]. We thus begin
by summarizing our �rst article, after which we outline the main results and constructions carried
out in the present paper.

The structure of strong homotopy associative algebra, or equivalently A∞-algebra, was introduced
in the seminal paper of Stashe� [Sta63]. It provides an operadic model for the notion of di�erential
graded algebra whose product is associative up to homotopy. It is de�ned as the datum of a set
of operations {mm : A⊗m → A}m>2 of degree 2 − m on a dg-Z-module (A, ∂), which satisfy the
sequence of equations

[∂,mm] =
∑

i1+i2+i3=m
26i26m−1

±mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3).

The �rst two equations respectively ensure that m2 is compatible with ∂ and that it is associa-
tive up to the homotopy m3. This algebraic structure is encoded by an operad in dg-Z-modules,
called the operad A∞. As shown in [MTTV21], this operad stems in fact from an operad in the
category of polytopes, whose arity m space of operations is de�ned to be the (m − 2)-dimensional
associahedron Km.

Similarly, the notion of A∞-morphism between two A∞-algebras A and B o�ers an operadic model
for the notion of morphism of strong homotopy associative algebras which preserves the product up
to homotopy. It is de�ned as the datum of a set of operations {fm : A⊗m → B}m>1 of degree 1−m
which satisfy the sequence of equations

[∂, fm] =
∑

i1+i2+i3=m
i2>2

±fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) +
∑

i1+···+is=m
s>2

±ms(fi1 ⊗ · · · ⊗ fis) .

The �rst two equations show this time that f1 commutes with the di�erentials and that it preserves
the product up to the homotopy f2. From the point of view of operadic algebra, A∞-morphisms are
encoded by an operadic bimodule in dg-Z-modules : the operadic bimodule A∞−Morph. It occurs
from an operadic bimodule in polytopes, whose aritym space of operations is the (m−1)-dimensional
multiplihedron Jm as shown in [LAM].

A∞-algebras and A∞-morphisms between them provide a satisfactory framework for homotopy
theory. The most famous instance of this statement is the homotopy transfer theorem : given (A, ∂A)
and (H, ∂H) two cochain complexes and a homotopy retract diagram

(A, dA) (H, dH) ,h
p

i

if (A, ∂A) is endowed with an A∞-algebra structure, then H can be made into an A∞-algebra such
that i and p extend to A∞-morphisms. See also [Val20] and [LH02] for an extensive study on the
homotopy theory of A∞-algebras.
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The associahedra and multiplihedra, respectively encoding the operad A∞ and the operadic bi-
module A∞−Morph, can in fact be both realized as moduli spaces of metric trees. The associahedron
Km is isomorphic as a CW-complex to the compacti�ed moduli space of stable metric ribbon trees
T m as �rst pointed out in [BV73]. The multiplihedron Jm is isomorphic as a CW-complex to the
compacti�ed moduli space of stable gauged metric ribbon trees CT m as shown in [For08] and [MW10].
These moduli spaces come in fact with re�ned cell decompositions, called their ΩBAs-cell decom-
positions : the cell decomposition by stable ribbon tree type for T m, and the cell decomposition
by stable gauged ribbon tree type for CT m. These re�ned decompositions provide another operadic
model for strong homotopy associative algebras with morphisms preserving the product up to ho-
motopy between them : the standard operad ΩBAs and the operadic bimodule ΩBAs − Morph
introduced in [Maz21]. We show moreover in [Maz21] that one can naturally shift from the ΩBAs to
the A∞ framework via a geometric morphism of operads A∞ → ΩBAs and a geometric morphism
of operadic bimodules A∞ −Morph→ ΩBAs−Morph.

Consider now a Morse function f on a closed oriented Riemannian manifold M together with a
Morse-Smale metric. Following [Hut08], the Morse cochain complex C∗(f) is a homotopy retract
of the singular cochain complex C∗sing(M) which is a dg-algebra with respect to the standard cup

product. The dg-algebra structure on C∗sing(M) can thus be transferred to an A∞-algebra structure

on C∗(f) using the homotopy transfer theorem. We show in [Maz21] that one can in fact directly
de�ne an ΩBAs-algebra structure on the Morse cochains C∗(f) by realizing the moduli spaces of
stable metric ribbon trees Tm in Morse theory. Given a choice of perturbation data {Xm}m>2 on the
moduli spaces Tm as introduced by Abouzaid in [Abo11] and further studied by Mescher in [Mes18],
we de�ne the moduli spaces of perturbed Morse gradient trees modeled on a stable ribbon tree type
t and connecting the critical points x1, . . . , xm ∈ Crit(f) to the critical point y ∈ Crit(f), denoted
T X
t (y;x1, . . . , xm). We prove in [Maz21] that under generic assumptions on the choice of perturbation

data, these moduli spaces are in fact orientable manifolds of �nite dimension. If they have dimension
1, they can moreover be compacti�ed to 1-dimensional manifolds with boundary, whose boundary
is modeled on the top dimensional strata in the boudary of the compacti�ed moduli space T m. The
ΩBAs-algebra structure on the Morse cochains C∗(f) is �nally de�ned by counting the points of
the 0-dimensional moduli spaces T X

t (y;x1, . . . , xm). The induced geometric A∞-algebra structure
on C∗(f) is then quasi-isomorphic to the A∞-algebra structure on C∗(f) given by the homotopy
transfer theorem.

Consider now two Morse functions f and g on M together with generic choices of perturbation
data Xf and Xg. Endow the Morse cochains C∗(f) and C∗(g) with their associated ΩBAs-algebra
structures. We prove in [Maz21] that one can adapt the construction of the previous paragraph, to
de�ne an ΩBAs-morphism from the ΩBAs-algebra C∗(f) to the ΩBAs-algebra C∗(g). We count
this time 0-dimensional moduli spaces of perturbed Morse stable gauged trees modeled on a stable
gauged ribbon tree type tg and connecting the critical points x1, . . . , xm ∈ Crit(f) to the critical

point y ∈ Crit(g), denoted CT Y
tg(y;x1, . . . , xm), after making a generic choice of perturbation data

Y on the moduli spaces CT m.
Motivational question . Let Y and Y′ be two admissible choices of perturbations data on the
moduli spaces CT m. Writing µY resp. µY

′
for the ΩBAs-morphisms they de�ne, the question which
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motivates this paper is to know whether µY and µY
′
are always homotopic or not

C∗(f) C∗(g)

µY

µY
′

.

In particular, one needs to determine what is the correct notion of a homotopy between two ΩBAs-
morphisms.

Outline of the present paper and main results. The �rst step towards answering this problem
is carried out on the algebraic side in part 1, where we de�ne the notion of n-morphisms between A∞-
algebras and n-morphisms between ΩBAs-algebras. In section 1, we recall at �rst the suspended
bar construction point of view on A∞-algebras and the de�nition of an A∞-homotopy between
A∞-morphisms from [LH02]. After introducing the cosimplicial dg-coalgebra ∆∆∆n together with the
language of overlapping partitions, we can �nally de�ne a n-morphism between two A∞-algebras A
and B :

De�nition 6. Let A and B be two A∞-algebras. A n-morphism from A to B is de�ned to be a
morphism of dg-coalgebras

F : ∆∆∆n ⊗ T (sA) −→ T (sB) ,

where T (sA) denotes the suspended bar construction of A (see subsection 1.1).

Using the universal property of the bar construction, this de�nition is equivalent to the following
one in terms of operations :

De�nition 7. Let A and B be two A∞-algebras. A n-morphism from A to B is de�ned to be a

collection of maps f
(m)
I : A⊗m −→ B of degree 1−m− dim(I) for I ⊂ ∆n and m > 1, that satisfy

[
∂, f

(m)
I

]
=

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m
i2>2

±f (i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3) +

∑

i1+···+is=m
I1∪···∪Is=I

s>2

±ms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) .

We show in Proposition 2 that the datum of a n-morphism is also equivalent to the datum of a
morphism of A∞-algebras A → ∆∆∆n ⊗ B, where ∆∆∆n is the dg-algebra dual to the dg-coalgebra ∆∆∆n.
While the operad A∞ stems from the associahedra Km and the operadic bimodule A∞ −Morph
stems from the multiplihedra Jm, we introduce in section 2 a family of polytopes encoding the A∞-
equations for n-morphisms : the n-multiplihedra n−Jm. In this regard, we begin by introducing a lift
of the Alexander-Whitney coproduct AW at the level of the polytopes ∆n, following [MTTV21]. The

map AW◦s := (id×(s−1) ×AW) ◦ · · · ◦ (id×AW) ◦AW then induces a re�ned polytopal subdivision
of ∆n, whose top dimensional cells can be labeled by all overlapping (s + 1)-partitions of ∆n.
After introducing the maps AWaaa, which generalize the maps AW◦s and still induce the previous
subdivisions on the simplices ∆n, we construct a re�ned polytopal subdivision of the polytopes
∆n × Jm :

De�nition 12. The polytopes ∆n × Jm endowed with the polytopal subdivisions induced by the
maps AWaaa will be called the n-multiplihedra and denoted n− Jm.

The boundaries of the n-multiplihedra n− Jm yield the n−A∞-equations :
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Proposition 8. The boundary of the top dimensional cell [n− Jm] of the n-multiplihedron n− Jm
is given by

∂sing[n− Jm] ∪
⋃

h+k=m+1
16i6k
h>2

[n− Jk]×i [Kh] ∪
⋃

i1+···+is=m
I1∪···∪Is=∆n

s>2

[Ks]× [dim(I1)− Ji1 ]× · · · × [dim(Is)− Jis ] ,

where I1 ∪ · · · ∪ Is = ∆n is an overlapping partition of ∆n. In other words, the n-multiplihedra
encode the A∞-equations for n-morphisms.

We then show in section 3 that these constructions can be transported from the A∞ to the ΩBAs
realm. We de�ne n-morphisms between ΩBAs-algebras as follows :

De�nition 13. n− ΩBAs-morphisms are the higher morphisms between ΩBAs-algebras encoded
by the quasi-free operadic bimodule generated by all pairs (face I ⊂ ∆n , two-colored stable ribbon
tree),

n− ΩBAs−Morph := FΩBAs,ΩBAs( I , I ,
I
,
I
, · · · , (I, SCRTn), · · · ; I ⊂ ∆n) .

An operation tI,g := (I, tg), whose underlying stable ribbon tree t has e(t) inner edges, and such that
its gauge crosses j vertices of t, is de�ned to have degree |tI,g| := j−1−e(t)−dim(I) = |I|+|tg|. The
di�erential of tI,g is given by the rule prescribed by the top dimensional strata in the boundary of

CT m(tg) combined with the algebraic combinatorics of overlapping partitions, added to the simplicial
di�erential of I, i.e.

∂tI,g = t∂singI,g +±(∂CT mtg)I .

We show that the n − ΩBAs-equations are also encoded by the n-multiplihedra, endowed this
time with a re�ned cell decomposition taking the ΩBAs-decomposition of the multiplihedra Jm
into account. What's more, a n-morphism between ΩBAs-algebras naturally yields a n-morphism
between A∞-algebras :

Proposition 9. There exists a morphism of (A∞, A∞)-operadic bimodules n − A∞ − Morph →
n− ΩBAs−Morph.

Using the same tools as in [Maz21], we �nally unravel all sign conventions in section 4.

In part 2, we study the simplicial set HOMA∞−Alg(A,B)• of higher morphisms from A to B,
whose n-simplices are the n-morphisms from A to B. We recall at �rst basic results on∞-categories
and Kan complexes, which are simplicial sets having the left-lifting property with respect to the
inner horn inclusions resp. to all horn inclusions Λkn ⊂ ∆n. We also introduce the convenient setting
of cosimplicial resolutions in model categories, following [Hir03]. We can then prove the following
theorem in section 2 :

Theorem 1. For A and B two A∞-algebras, the simplicial set HOMA∞(A,B)• is a Kan complex.

This Kan complex is in particular an algebraic ∞-category as explained in Proposition 11. Fix now
F : A → B an A∞-morphism, i.e. a point of the simplicial set HOMA∞(A,B)•. We proceed to
compute the simplicial homotopy groups with basepoint F of this Kan complex in subsection 2.4 :
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Theorem 2. (i) For n > 1, the set πn (HOMA∞−Alg(A,B)•, F ) consists of the equivalence

classes of collections of degree −n maps F
(m)
∆n : (sA)⊗m → sB satisfying the following equa-

tions

(−1)n
∑

i1+i2+i3=m

F
(i1+1+i3)
∆n

(
id⊗i1 ⊗ bi2 ⊗ id⊗i3

)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t

(
F (i1) ⊗ · · · ⊗ F (is) ⊗ F (l)

∆n ⊗ F (j1) ⊗ · · · ⊗ F (jt)
)
,

where two such collections of maps (F
(m)
∆n )m>1 and (G

(m)
∆n )m>1 are equivalent if and only if

there exists a collection of degree −(n+ 1) maps H(m) : (sA)⊗m → sB such that

G
(m)
∆n − F (m)

∆n + (−1)n+1
∑

i1+i2+i3=m

H(i1+1+i3)(id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t(F
(i1) ⊗ · · · ⊗ F (is) ⊗H(l) ⊗ F (j1) ⊗ · · · ⊗ F (jt)) .

(ii) If n = 1, given two such collection of maps (F
(m)
∆1 )m>1 and (G

(m)
∆1 )m>1, the composition law

on π1 (HOMA∞−Alg(A,B)•, F ) is given by the formula

G
(m)
∆1 + F

(m)
∆1 −

∑

i1+···+is+l1
+j1+···+jt+l2
+k1+···+ku=m

bs+t+u+2(F (i1) ⊗ · · · ⊗ F (is) ⊗ F (l1)
∆1 ⊗ F (j1) ⊗ · · · ⊗ F (jt) ⊗G(l2)

∆1 ⊗ F (k1) ⊗ · · · ⊗ F (ku)) .

(iii) If n > 2, given two such collection of maps (F
(m)
∆n )m>1 and (G

(m)
∆n )m>1, the composition law

on πn (HOMA∞−Alg(A,B)•, F ) is given by the formula

G
(m)
∆n + F

(m)
∆n .

In section 3, we begin by generalizing the notion of a n-morphism between A∞-algebras to that of a
n-functor between A∞-categories. We de�ne the simplicial set HOMA∞−Cat(A,B)• of higher functors
between two A∞-categories, which we expect to also be a Kan complex. We then recall the de�nition
of the A∞-category of A∞-functors FuncA,B of [Fuk02], as well as the simplicial nerve functor NA∞
of [Fao17b]. These constructions yield a new simplicial set NA∞(FuncA,B) which has the property
of being an ∞-category. Although the simplicial sets HOMA∞−Cat(A,B)• and NA∞(FuncA,B) bear
many similarities, they actually di�er fundamentally : while the simplices of HOMA∞−Cat(A,B)•
correspond to higher homotopies between A∞-functors, the simplices of NA∞(FuncA,B) correspond
to higher natural transformations between A∞-functors A → B. Heuristically, the simplicial set
NA∞(FuncA,B) has thereby no reason to be a Kan complex, as homotopies are reversible whether
functors are not. Nevertheless, the Kan complex HOMA∞−Cat(A,B)• and the A∞-category FuncA,B
each de�ne a notion of homotopy between A∞-functors, that we compare when the A∞-category
B is unital by recalling a proposition of [Fuk17]. In section 4, we �nally explore two approaches
to lift the composition of A∞-morphisms to a composition between n − A∞-morphisms. We fall
however short of de�ning a natural simplicial enrichment of the category A∞ − Alg. We also discuss
the results of Faonte, Lyubashenko, Fukaya and Bottman concerning a statement of a similar nature
involving the A∞-categories FuncA,B.
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In part 3 we illustrate how n-morphisms naturally arise in geometry, here in the context of Morse
theory, solving our motivational question at the same time. In section 1 we detail the construction
of n-morphisms between ΩBAs-algebras in Morse theory. Given two Morse functions f and g on a
closed oriented manifold M , endow their Morse cochains with their ΩBAs-algebra structure coming
from a choice of perturbation data on the moduli spaces Tm. A n-morphism between C∗(f) and C∗(g)
can be constructed by adapting the techniques of [Abo11] and [Mes18] that we used in [Maz21] for
moduli spaces of perturbed Morse gradient trees. We de�ne to this extent the notion of n-simplices
of perturbation data Y∆n :

De�nition 22. A n-simplex of perturbation data for a gauged metric stable ribbon tree Tg is de�ned

to be a choice of perturbation data Yδ,Tg for Tg for every δ ∈ ∆̊n.

Given a smooth n-simplex of perturbation data Y∆n,tg on the moduli space CT m(tg), we introduce
the following moduli spaces of perturbed Morse gradient trees :

De�nition 24. Let y ∈ Crit(g) and x1, . . . , xm ∈ Crit(f), we de�ne the moduli spaces

CT Y∆n,tg

∆n,tg
(y;x1, . . . , xm) :=

⋃

δ∈∆̊n

CT Yδ,tg
tg (y;x1, . . . , xm) .

As in [Maz21], these moduli spaces are orientable manifolds under some generic transversality as-
sumptions on the perturbation data :

Theorems 4 and 5. Under some generic assumptions on the choice of perturbation data (YI,m)m>1
I⊂∆n,

the moduli spaces CT I,tg(y;x1, . . . , xm) are orientable manifolds. If they have dimension 0 they are
moreover compact. If they have dimension 1 they can be compacti�ed to 1-dimensional manifolds
with boundary, whose boundary is modeled on the boundary of the n-multiplihedron n− Jm endowed
with its n− ΩBAs -cell decomposition.

Perturbation data (YI,m)m>1
I⊂∆n satisfying the generic assumptions under which Theorems 4 and 5 hold

will be called admissible. Given admissible choices of perturbation data Xf and Xg, we construct
a n − ΩBAs-morphism between the ΩBAs-algebras C∗(f) and C∗(g) by counting 0-dimensional
moduli spaces of Morse gradient trees :

Theorem 6. Let (YI,m)m>1
I⊂∆n be an admissible choice of perturbation data. For every m and tg ∈

SCRTm, and every I ⊂ ∆n we de�ne the operation µI,tg as

µI,tg : C∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xm 7−→
∑

|y|=∑m
i=1 |xi|+|tI,g |

#CT YI,tg
I,tg

(y;x1, · · · , xm) · y .

This set of operations then de�nes a n− ΩBAs-morphism (C∗(f),mXf
t )→ (C∗(g),mXg

t ).

This n-morphism is in fact a twisted n-morphism as de�ned in [Maz21]. We subsequently prove a
�lling theorem for simplicial complexes of perturbation data :

Theorem 7. For every admissible choice of perturbation data YS parametrized by a simplicial sub-
complex S ⊂ ∆n, there exists an admissible n-simplex of perturbation data Y∆n extending YS.
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De�ning HOMgeom
ΩBAs(C

∗(f), C∗(g))• to be the simplicial subset of HOMΩBAs(C
∗(f), C∗(g))• con-

sisting of higher morphisms de�ned by a count of perturbed Morse gradient trees, we prove that
Theorem 7 implies the following theorem :

Theorem 8. The simplicial set HOMgeom
ΩBAs(C

∗(f), C∗(g))• is a Kan complex which is contractible.

This solves in particular the motivational question to this paper. It is quite clear that given two com-
pact symplectic manifoldsM andN , one should be able to construct n-functors between their Fukaya
categories Fuk(M) and Fuk(N) by counting pseudo-holomorphic quilted disks with Lagrangian cor-
respondence seam condition, as suggested by the construction of geometric A∞-functors between
Fukaya categories in [MWW18].

All transversality arguments and sign computations are performed in section 2 : they are mere
adaptations of the analogous constructions in [Maz21]. We �nally recall the second question stated
at the end of [Maz21] in section 3, which is going to be tackled in an upcoming article.
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and support through the settling of this series of papers. I also express my gratitude to Bruno
Vallette for his constant reachability and his suggestions and ideas on the algebra underlying this
work. I specially thank Jean-Michel Fischer and Guillaume Laplante-Anfossi who repeatedly took
the time to o�er explanations on higher algebra and ∞-categories. I �nally adress my thanks to
Florian Bertuol, Thomas Massoni, Amiel Pei�er-Smadja, Victor Roca Lucio, Geo�roy Horel, Brice
Le Grignou, Nate Bottman and the members of the Roberta seminar for useful discussions.
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Part 1

Higher morphisms between A∞ and

ΩBAs-algebras

1. n−A∞-morphisms

This section is dedicated to the study of the higher algebra of A∞-algebras. Our starting point is
the study of homotopy theory in the category of A∞-algebras. Putting it simply, considering two
A∞-morphisms F,G between A∞-algebras, we would like to determine which notion would give a
satisfactory meaning to the sentence "F and G are homotopic". This question is solved in section 1.2
following [LH02], where we de�ne the notion of an A∞-homotopy.

Studying higher algebra ofA∞-algebras means that we will be concerned with the higher homotopy
theory of A∞-algebras. Typically, the questions arising are the following ones. Homotopies being
de�ned, what is now a good notion of a homotopy between homotopies ? And of a homotopy between
two homotopies between homotopies ? And so on. Higher algebra is a general term standing for all
problems that involve de�ning coherent sets of higher homotopies (also called n-morphisms) when
starting from a basic homotopy setting.

The sections following the de�nition of A∞-homotopies will then be concerned with de�ning a
good notion of n-morphisms between A∞-algebras, i.e. such that A∞-morphisms correspond to 0-
morphisms and A∞-homotopies to 1-morphisms. This will be done using the viewpoint of section 1.1,
which de�nes the category of A∞-algebras as a full subcategory of the category of dg-coalgebras.
Sections 1.3 and 1.4 consist in a pedestrian approach to the construction of these n-morphisms,
and section 1.6 sums it all up. In section 1.5 we moreover introduce an equivalent de�nition of
n-morphisms, that we will need in section 4.3 of part 2. We postpone all sign computations to
section 4.2.

1.1. Recollections and de�nitions. Let A be a graded Z-module. We introduce its suspension
sA de�ned as the graded Z-module (sA)i := Ai+1. In other words, |sa| = |a| − 1. This is merely
a notation that gives a convenient way to handle certain degrees. Note for instance that a degree
2− n map A⊗n → A is simply a degree +1 map (sA)⊗n → sA.

Our main category of interest will be the category whose objects are A∞-algebras and whose
morphisms are A∞-morphisms. It will be written as A∞ − Alg. Recall that a structure of A∞-algebra
on a dg-Z-module A can equivalently be de�ned as a collection of operationsmn : A⊗n → A satisfying
the A∞-equations, or as a codi�erential DA on its shifted bar construction T (sA). Similarly, an
A∞-morphism is equivalently de�ned as a collection of operations fn : A⊗n → B satisfying the
A∞-equations, or as a morphism of dg-coalgebras (T (sA), DA)→ (T (sB), DB). We refer to the �rst
article of this series [Maz21] for a detailed discussion on these results.
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As a consequence, the shifted bar construction functor identi�es the category A∞ − Alg with a
full subcategory of the category of dg-coalgebras dg − Cog, that is

A∞ − Alg ⊂ dg − Cog .

This basic idea is the key to our �rst construction of n-morphisms in this section. We will perform
some natural constructions in the category dg − Cog, and then specialize them to the category
A∞ − Alg using the above inclusion. As before, these natural constructions will then admit an
interpretation in terms of operations A⊗n → B, using the universal property of the bar construction.

1.2. A∞-homotopies. The material presented in this section is taken from the thesis of Lefèvre-
Hasegawa [LH02].

1.2.1. Homotopies between morphisms of dg-coalgebras.

De�nition 1 ([LH02]). Let C and C ′ be two dg-coalgebras. Let F and G be morphisms C → C ′

of dg-coalgebras. A (F,G)-coderivation is de�ned to be a map H : C → C ′ such that

∆C′H = (F ⊗H +H ⊗G)∆C .

The morphisms F and G are then said to be homotopic if there exists a (F,G)-coderivation H of
degree -1 such that

[∂,H] = G− F .

Introduce the dg-coalgebra

∆∆∆1 := Z[0]⊕ Z[1]⊕ Z[0 < 1] .

Its di�erential is the singular di�erential ∂sing

∂sing([0 < 1]) = [1]− [0] ∂sing([0]) = 0 ∂sing([1]) = 0 ,

its coproduct is the Alexander-Whitney coproduct

∆∆∆∆1([0 < 1]) = [0]⊗ [0 < 1] + [0 < 1]⊗ [1] ∆∆∆∆1([0]) = [0]⊗ [0] ∆∆∆∆1([1]) = [1]⊗ [1] ,

the elements [0] and [1] have degree 0, and the element [0 < 1] has degree −1. We refer to subsec-
tion 1.3.1 for a broader interpretation of ∆∆∆1.

Proposition 1 ([LH02]). There is a one-to-one correspondence between (F,G)-coderivations and
morphisms of dg-coalgebras ∆∆∆1 ⊗ C −→ C ′.

Proof. One checks indeed that :

(i) F and G are the restrictions to the summands Z[0] ⊗ C and Z[1] ⊗ C, H is the restriction
to the summand Z[0 < 1]⊗ C ;

(ii) the coderivation relation is given by the compatibility with the coproduct ;
(iii) the homotopy relation is given by the compatibility with the di�erential.

�
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1.2.2. A∞-homotopies. Using the inclusion A∞ − Alg ⊂ dg − Cog, this yields a notion of homotopy
between two A∞-morphisms, which we call a A∞-homotopy :

De�nition 2 ([LH02]). Let (T (sA), DA) and (T (sB), DB) be two A∞-algebras. Given two A∞-
morphisms F,G : (T (sA), DA) → (T (sB), DB), an A∞-homotopy from F to G is de�ned to be a
morphism of dg-coalgebras

H : ∆∆∆1 ⊗ T (sA) −→ T (sB) ,

whose restriction to the [0] summand is F and whose restriction to the [1] summand is G.

An alternative and equivalent de�nition ensues then as follows (see subsection 1.4.2 for a more
general proof of the equivalence between the two de�nitions) :

De�nition 3 ([LH02]). An A∞-homotopy between two A∞-morphisms (fn)n>1 and (gn)n>1 of A∞-
algebras A and B is de�ned to be a collection of maps

hn : A⊗n −→ B ,

of degree −n, which satisfy the equations

[∂, hn] =gn − fn +
∑

i1+i2+i3=m
i2>2

±hi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)

+
∑

i1+···+is+l
+j1+···+jt=n
s+1+t>2

±ms+1+t(fi1 ⊗ · · · ⊗ fis ⊗ hl ⊗ gj1 ⊗ · · · ⊗ gjt) .

The signs will be made explicit in section 4.2. Using the same symbolic formalism as in [Maz21],
this can be represented as

[∂,
[0 < 1]

] =
[1]

−
[0]

+
∑
±

[0 < 1]

+
∑
± [1][1][0 < 1][0][0]

[0] [1]

,

where we denote
[0]

,
[0 < 1]

and
[1]

respectively for the fn, the hn and the gn.

1.2.3. On this notion of homotopy. The relation being A∞-homotopic on the class of A∞-morphisms
is in fact an equivalence relation. It is moreover stable under composition. These results cannot be
proven using naive tools, and are obtained through considerations of model categories. We refer to
Lefèvre-Hasegawa [LH02] for the reader interested in the proof of these two results.

1.3. Some de�nitions.

1.3.1. The cosimplicial dg-coalgebra ∆∆∆n.

De�nition 4. De�ne∆∆∆n to be the graded Z-module generated by the faces of the standard n-simplex
∆n,

∆∆∆n =
⊕

06i0<···<ik6n
Z[i0 < · · · < ik] ,
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where the grading is |I| := −dim(I) for I a face of ∆n. We endow this graded Z-module with a
dg-coalgebra structure, whose di�erential is the simplicial di�erential

∂∆∆∆n([i0 < · · · < ik]) :=

k∑

j=0

(−1)j [i0 < · · · < îj < · · · < ik] ,

and whose coproduct is the Alexander-Whitney coproduct

∆∆∆∆n([i0 < · · · < ik]) :=

k∑

j=0

[i0 < · · · < ij ]⊗ [ij < · · · < ik] .

These dg-coalgebras are to be seen as the realizations of the simplices ∆n in the world of dg-
coalgebras. The collection of dg-coalgebras ∆∆∆• := {∆∆∆n}n>0 is then naturally a cosimplicial dg-
coalgebra. The coface map

δi : ∆∆∆n−1 −→∆∆∆n , 0 6 i 6 n ,
is obtained by seeing the simplex ∆n−1 as the i-th face of the simplex ∆n. The codegeneracy map

σi : ∆∆∆n+1 −→∆∆∆n , 0 6 i 6 n ,
is de�ned as

[j0 < · · · < jr < î < jr+1 < · · · < js] 7−→ [j0 < · · · < jr < jr+1 − 1 < · · · < js − 1] ,

[j0 < · · · < jr < î+ 1 < jr+1 < · · · < js] 7−→ [j0 < · · · < jr < jr+1 − 1 < · · · < js − 1] ,

[j0 < · · · < js] 7−→ 0 if [i < i+ 1] ⊂ [j0 < · · · < js] .

In other words, the face [0 < · · · < î < · · · < n + 1] and its subfaces are identi�ed with ∆n and its

subfaces. The same goes for [0 < · · · < î+ 1 < · · · < n+ 1] and its subfaces. All faces of ∆n+1 that
contain [i < i+ 1] are taken to 0.

Heuristically, the coface and codegeneracy maps are obtained by applying the functor

Csing−∗ : Spaces −→ dg − Cog

to the cosimplicial space ∆n, and then quotienting out each Csing−∗ (∆n) by the subcomplex generated

by all degenerate singular simplices. For instance, the codegeneracy map σi : ∆n+1 → ∆n is
obtained by contracting the edge [i < i + 1] of ∆n+1, which yields the above codegeneracy map
σi : ∆∆∆n+1 →∆∆∆n. We refer to [GJ09] for more details on the matter.

1.3.2. Overlapping partitions.

De�nition 5 ([MS03]). Let I be a face of ∆n. An overlapping partition of I is de�ned to be a
sequence of faces (Il)16`6s of I such that

(i) the union of this sequence of faces is I, i.e. ∪16`6sIl = I ;
(ii) for all 1 6 ` < s, max(I`) = min(I`+1).

These two requirements then imply in particular that min(I1) = min(I) and max(Is) = max(I).
If the overlapping partition has s components I`, we will refer to it as an overlapping s-partition.
These sequences of faces are those which naturally arise when applying several times the Alexander-
Whitney coproduct to a face I. For instance, the Alexander-Whitney coproduct corresponds to the
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sum of all overlapping 2-partitions of I. Iterating n times the Alexander-Whitney coproduct, we get
the sum of all overlapping (n + 1)-partitions of I. An overlapping 6-partition for [0 < 1 < 2] is for
instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [0 < 1] ∪ [1] ∪ [1 < 2] ∪ [2] .

1.4. n-morphisms between A∞-algebras. We now want to de�ne a notion of higher homotopies,
or n-morphisms, between A∞-algebras, such that 0-morphisms are A∞-morphisms and 1-morphisms
are A∞-homotopies. Since A∞-morphisms correspond to the set

Homdg−Cog(T (sA), T (sB))

and A∞-homotopies correspond to the set

Homdg−Cog(∆∆∆1 ⊗ T (sA), T (sB)) ,

a natural candidate for the set of n-morphisms is

HOMA∞−Alg(A,B)n := Homdg−Cog(∆∆∆n ⊗ T (sA), T (sB)) .

1.4.1. n-morphisms between dg -coalgebras. We begin by making explicit the n-simplices of the
HOM-simplicial sets

HOMdg−Cog(C,C ′)n := Homdg−Cog(∆∆∆n ⊗ C,C ′) .
Take a morphism of dg-coalgebras

f : ∆∆∆n ⊗ C −→ C ′ .
Write f[i0<···<ik] : C → C ′ for its restriction to the Z[i0 < · · · < ik]⊗C summand. Then the property
that f is a morphism of dg-Z-modules is equivalent to the system of equations

(1.1) [∂, f[i0<···<ik]] =
k∑

j=0

(−1)jf[i0<···<îj<···<ik] ,

while the property that f is a morphism of coalgebras is equivalent to the system of equations

(1.2) ∆C′f[i0<···<ik] =
k∑

j=0

(f[i0<···<ij ] ⊗ f[ij<···<ik])∆C .

These two sets of equations of morphisms hence characterize the n-simplices of the HOM-simplicial
sets HOMdg−Cog(C,C ′)•, i.e. the n-morphisms between the dg-coalgebras C and C ′.

1.4.2. n-morphisms between A∞-algebras. We now use the previous characterization of n-morphisms
between dg-coalgebras to obtain a simpler de�nition for n-morphisms between two A∞-algebras :

De�nition 6. Let A and B be two A∞-algebras. A n-morphism from A to B is de�ned to be a
morphism of dg-coalgebras

F : ∆∆∆n ⊗ T (sA) −→ T (sB) .

We will write bn for the degree +1 maps associated to the A∞-operations mn, which de�ne the
codi�erentials on T (sA) and T (sB). The property of being a morphism of coalgebras is equivalent
to the property of satisfying equations 1.2. Using the universal property of the bar construction,
this is equivalent to saying that the n-morphism is given by a collection of maps of degree |I|,

F
(m)
I : (sA)⊗m −→ sB ,
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where I is a face of ∆n and m > 1. The restriction of the map FI : T (sA) → T (sB) to (sA)⊗m is
then given by

F
(m)
I +

∑

i1+i2=m
I1∪I2=I

F
(i1)
I1
⊗F (i2)

I2
+ · · ·+

∑

i1+···+is=m
I1∪···∪Is=I

F
(i1)
I1
⊗ · · · ⊗F (is)

Is
+ · · ·+

∑

I1∪···∪Im=I

F
(1)
I1
⊗ · · · ⊗F (1)

Im
,

where I1 ∪ · · · ∪ Is = I stands for an overlapping partition of I. Corestricting to B⊗s yields the
morphism ∑

i1+···+is=m
I1∪···∪Is=I

F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
: (sA)⊗m −→ (sB)⊗s .

The property of being compatible with the di�erentials is equivalent to the property of satisfying

equations 1.1. This is itself equivalent to the fact that the collection of morphisms F
(m)
I satis�es the

following family of equations involving morphisms (sA)⊗m → sB,

dim(I)∑

j=0

(−1)jF
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

F
(i1+1+i3)
I (id⊗i1 ⊗ bi2 ⊗ id⊗i3) =

∑

i1+···+is=m
I1∪···∪Is=I

bs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
) .

We unwind the signs obtained by changing the bn into the mn and the degree |I| maps F
(m)
I :

(sA)⊗m −→ sB into degree 1 − m + |I| maps f
(m)
I : A⊗m −→ B in subsection 4.2.3. The �nal

equations read as

[
∂, f

(m)
I

]
=

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m
i2>2

±f (i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)(?)

+
∑

i1+···+is=m
I1∪···∪Is=I

s>2

±ms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) ,

or equivalently and more visually,

[∂, I ] =

dim(I)∑

j=0

(−1)j
∂sing
j I

+
∑

I1∪···∪Is=I
± IsI1

+
∑
±

I

.

De�nition 7. Let A and B be two A∞-algebras. A n-morphism from A to B is de�ned to be a

collection of maps f
(m)
I : A⊗m −→ B of degree 1 − m + |I| for I ⊂ ∆n and m > 1, that satisfy

equations ?.

1.5. An equivalent de�nition for n-morphisms. We show in this section that given A and B
two A∞-algebras, the datum of a n-morphism from A to B is equivalent to the datum of a morphism
of A∞-algebras A→∆∆∆n ⊗B.

Consider �rst C a dg-algebra and B an A∞-algebra. Then the tensor product C ⊗ B can be
naturally endowed with an A∞-algebra structure by de�ning mn : (A⊗B)⊗n → A⊗B as

mn := ((mA
2 )◦n−1 ⊗mB

n ) ◦ τn ,
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where τn denotes the map rearranging an element a1b1 . . . anbn of (A ⊗ B)⊗n into an element
a1 . . . anb1 . . . bn of A⊗n ⊗ B⊗n and (mA

2 )◦n−1 : A⊗n → A denotes the (n − 1)-th iterate of the
multiplication mA

2 on A. We moreover de�ne ∆∆∆n to be the simplicial dg-algebra ∆∆∆n := Hom(∆∆∆n,Z)
dual to the cosimplicial dg-coalgebra ∆∆∆n. Its underlying graded module is in particular

∆∆∆n =
⊕

06i0<···<ik6n
Z[i0 < · · · < ik]

where the grading is |I|∆∆∆n := dim(I) for I a face of ∆n. It is endowed with the standard cup
product.

An A∞-morphism F : A → ∆∆∆n ⊗ B then corresponds to a collection of degree 1 − m maps
F (m) : A⊗m → ∆∆∆n ⊗ B which can be rewritten as a collection of degree 1 − m − dim(I) maps

f
(m)
I : A⊗m → B such that

F (m) =
⊕

I⊂∆n

I ⊗ f (m)
I .

We denote πI : ∆∆∆n → Z · I the projection from ∆∆∆n to its summand labeled by I. Then, the
A∞-equations for the A∞-morphism F : A→∆∆∆n ⊗B read as
[
∂, F (m)

]
=

∑

i1+i2+i3=m
i2>2

±F (i1+1+i3)(id⊗i1 ⊗mA
i2 ⊗ id⊗i3) +

∑

i1+···+is=m
s>2

±m∆∆∆n⊗B
s (F (i1) ⊗ · · · ⊗ F (is)) ,

and their images under the map πI yield exactly the A∞-equations ? for the collection of morphisms

f
(m)
I .

Proposition 2. Let A and B be two A∞-algebras. A n-morphism from A to B can be equivalently
de�ned as an A∞-morphism A→∆∆∆n ⊗B.

We will only need this equivalent de�nition of n-morphisms in subsection 4.3 of part 2, and will
stick to the de�nition ∆∆∆n ⊗ T (sA) → T (sB) and to the de�nition in terms of operations in the
rest of this paper. We moreover point out that the natural sign convention for n-morphisms arising
from this new de�nition di�ers slightly from the one arising from the two previous de�nitions, as we
explain in subsection 4.2.4.

1.6. Résumé. Given A and B two A∞-algebras, we de�ne a n-morphism between A and B to be
an element of the simplicial set

HOMA∞−Alg(A,B)n := Homdg−Cog(∆∆∆n ⊗ T (sA), T (sB)) ,

or equivalently a collection of operations I : A⊗m → B of degree 1−m− dim(I) for all faces I
of ∆n and all m > 1, satisfying the A∞-equations

[∂, I ] =

dim(I)∑

j=0

(−1)j
∂sing
j I

+
∑

I1∪···∪Is=I
± IsI1

+
∑
±

I

,

where we refer to subsection 4.2.3 for signs.
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2. The n-multiplihedra

Recall from [Maz21] that, in the language of operadic algebra, A∞-algebras are governed by the
operad A∞, and A∞-morphisms are governed by the (A∞, A∞)-operadic bimodule A∞ −Morph.
These two operadic objects actually stem from collections of polytopes. Under the functor Ccell−∗
the associahedra {Km} realise the operad A∞, while the multiplihedra {Jm} form a ({Km}, {Km})-
operadic bimodule realising A∞ −Morph.

The �rst section shows that the operadic bimodule formalism for A∞-morphisms can be gener-
alised to the setting of n − A∞ -morphisms : for each n > 0 there exists an (A∞, A∞)-operadic
bimodule n−A∞−Morph, which encodes n-morphisms between A∞-algebras. In fact, they �t into
a cosimplicial operadic bimodule {n−A∞ −Morph}n>0. Reproducing the previous progression, we
would like to realise the combinatorics of n-morphisms at the level of polytopes. The �rst step in
this direction is performed in section 2.2 : we explain how to lift the Alexander-Whitney coproduct
to the level of the standard simplices ∆n and study the rich combinatorics that arise in this problem.
Section 2.3 subsequently introduces the n-multiplihedra n−Jm, which are the polytopes ∆n×Jm en-
dowed with a re�ned polytopal subdivision. These polytopes do not form a ({Km}, {Km})-operadic
bimodule, but they su�ce to recover all the combinatorics of n-morphisms.

2.1. The cosimplicial (A∞, A∞)-operadic bimodule encoding higher morphisms.

2.1.1. The (A∞, A∞)-operadic bimodules n − A∞ −Morph. The (A∞, A∞)-operadic bimodule en-
coding A∞-morphisms is the quasi-free (A∞, A∞)-operadic bimodule generated in arity n by one
operation of degree 1− n,

A∞ −Morph = FA∞,A∞( , , , , · · · ) .

Representing the generating operations of the operad A∞ acting on the right in blue and the
ones of the operad A∞ acting on the left in red , its di�erential is de�ned by

∂(
1 2 m

) =
∑

h+k=m+1
16i6k
h>2

± 1 ki

1 h

+
∑

i1+···+is=m
s>2

±
1 isi11

.

De�nition 8. The (A∞, A∞)-operadic bimodule encoding n − A∞-morphisms is the quasi-free

(A∞, A∞)-operadic bimodule generated in arity m by the operations f
(m)
I of degree 1−m+ |I|, for

all faces I of ∆n, and whose di�erential is de�ned by

∂(f
(m)
I ) =

dimI∑

j=0

(−1)jf
(m)

∂singj I
+

∑

i1+i2+i3=m
i2>2

±f (i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3) +

∑

i1+···+is=m
I1∪···Is=I

s>2

±ms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) .

Representing the operations f
(m)
I as I , this can be rewritten as

n−A∞ −Morph = FA∞,A∞( I , I , I , I , · · · ; I ⊂ ∆n) .
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where

∂( I ) =
dimI∑

j=0

(−1)j
∂sing
j I

+
∑

I1∪···∪Is=I
± IsI1

+
∑
±

I

.

The collection of (A∞, A∞)-operadic bimodules {n − A∞ − Morph}n>0 forms a cosimplicial
(A∞, A∞)-operadic bimodule whose coface and codegeneracy maps are built out of those of sec-
tion 1.3. Given two A∞-algebras A∞ → Hom(A) and A∞ → Hom(B), the set of n-morphisms is
then simply given by

HOMA∞−Alg(A,B)n = Hom(A∞,A∞)−op.bimod.(n−A∞ −Morph,Hom(A,B)) .

2.1.2. The two-colored operadic viewpoint. Recall that A∞-algebras and A∞-morphisms between
them are naturally encoded by the quasi-free two-colored operad

A2
∞ := F( , , , · · · , , , , · · · , , , , , · · · ) ,

with di�erential given by the A∞-algebra relations on the one-colored operations, and the A∞-
morphism relations on the two-colored operations.

Similarly, A∞-algebras and n−A∞-morphisms between them are naturally encoded by the quasi-
free two-colored operad

n−A2
∞ := F( , , , · · · , , , , · · · , ( I , I , I , I , · · · ; I ⊂ ∆n)) ,

with di�erential given by the A∞-algebra relations on the one-colored operations, and the n−A∞-
morphism relations on the two-colored operations. The collection of two-colored operads {n −
A2
∞}n>0 constitutes again a cosimplicial two-colored operad.

2.2. Polytopal subdivisions on ∆n induced by the Alexander-Whitney coproduct. One
way of interpreting the Alexander-Whitney coproduct

∆∆∆∆n : ∆∆∆n −→∆∆∆n ⊗∆∆∆n

is to say that it is a diagonal on the dg-Z-module ∆∆∆n. The following natural question then arises.
Does there exist a diagonal (i.e. a polytopal map that is homotopic to the usual diagonal - the usual
diagonal map failing to be polytopal in general) on the standard n-simplex ∆n,

AW : ∆n −→ ∆n ×∆n ,

such that its image under the functor Ccell−∗ is AW−∗ = ∆∆∆∆n ?

The answer to this question is positive, and contains rich combinatorics that we now lay out.

2.2.1. The map AW. We recall in this section the construction of a diagonal on the standard sim-
plices explained in [MTTV21] (example 1 of section 2.3.).

De�nition 9 ([MTTV21]). Consider the realizations of the standard n-simplices

∆n := conv{(1, . . . , 1, 0, . . . , 0) ∈ Rn} = {(z1, . . . , zn) ∈ Rn|1 > z1 > · · · > zn > 0} .
We de�ne the map AW by the formula

AW(z1, · · · , zn) = ((2z1 − 1, . . . , 2zi − 1, 0, . . . , 0), (1, · · · , 1, 2zi+1, . . . , 2zn)) ,

for 1 > z1 > · · · > zi > 1/2 > zi+1 > · · · > zn > 0.
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In particular, the map AW comes with a re�ned polytopal subdivision of ∆n, whose n + 1 top
dimensional strata are given by the subsets

{(z1, . . . , zn) ∈ Rn|1 > z1 > · · · > zi > 1/2 > zi+1 > · · · > zn > 0} ⊂ ∆n ,

and whose i-codimensional strata are simply obtained by replacing i symbols ">" by a symbol "=" in
the previous sequence of inequalities. This re�ned subdivision is represented on the �gures 1, 2 and 3,
together with the value of AW on each stratum of the subdivision.

Figure 1. The AW-subdivision of ∆1 and ∆2

7−→ × ,

7−→ × .

Figure 2. Values of AW on ∆1 : the stratum to which AW is applied is colored in red

2.2.2. The polytopal map AW is not coassociative. The Alexander-Whitney coproduct ∆∆∆∆n on the
dg-level is coassociative. However, the diagonal map AW is not ! This can be checked for the
1-simplex ∆1 :

(AW × id) ◦AW(2/5) = AW × id(0, 4/5) = (0, 0, 4/5)

(id×AW) ◦AW(2/5) = id×AW(0, 4/5) = (0, 3/5, 1) .

Proposition 3. The polytopal map AW is not coassociative.

The polytopal subdivisions that the polytopal maps

(AW × id) ◦AW : ∆n −→ ∆n ×∆n ×∆n,

(id×AW) ◦AW : ∆n −→ ∆n ×∆n ×∆n

induce on ∆n are also di�erent. See an instance on �gure 4.
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7−→ × ,

7−→ × ,

7−→ × .

Figure 3. Values of AW on ∆2

Figure 4. The (AW × id) ◦AW-subdivision and the (id×AW) ◦AW-subdivision of ∆2

2.2.3. i-overlapping s-partitions. We de�ned in subsection 1.3.2 the notion of an overlapping s-
partition of a face I of ∆n. We re�ne it now :

De�nition 10. An i-overlapping s-partition of I is a sequence of faces (I`)16`6s of I such that

(i) the union of this sequence of faces is I, i.e. ∪16`6sI` = I ;
(ii) there are exactly i integers ` such that 1 6 ` < s and max(I`) = min(I`+1).

An overlapping s-partition as de�ned in de�nition 5 is then simply a (s−1)-overlapping s-partition.
A 1-overlapping 3-partition for [0 < 1 < 2] is for instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [1 < 2] .

2.2.4. Polytopal subdivisions of ∆n induced by iterations of AW.

De�nition 11. De�ne the s-th right iterate of the map AW as

AW◦s := (id×(s−1) ×AW) ◦ · · · ◦ (id×AW) ◦AW : ∆n −→ (∆n)×s+1 .
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Figure 5. The �rst three subdivisions of ∆2

For each s > 1, the map AW◦s induces a re�ned polytopal subdivision of ∆n. These subdivisions
will be called the AW◦s-subdivisions of ∆n. They can be described rather simply. While the AW-
subdivision is obtained by dividing ∆n into pieces using all hyperplanes zi = 1/2 for 1 6 i 6 n, the
AW◦s-subdivision can be constructed as follows :

Proposition 4. The AW◦s-subdivision of ∆n is the subdivision obtained by dividing ∆n using all
hyperplanes zi = (1/2)k, for 1 6 i 6 n and 1 6 k 6 s.

The �rst three subdivisions of ∆2 are represented in �gure 5. Note that a di�erent choice for AW◦s,
for instance AW◦2 = (AW × id) ◦ AW, would have yielded a di�erent subdivision of ∆n. Choices
have to be made, because AW is not coassociative.

The n-dimensional cells of ∆n endowed with its AW◦s-subdivision are then de�ned by inequalities

· · · > zik > (1/2)k > zik+1 > · · ·
for 1 6 k 6 s. We write Ci1,...,is for such a cell. An explicit formula for the map AW◦s : ∆n →
(∆n)×s+1 can then be computed as follows. Its projection on the k-th factor ∆n of (∆n)×s+1

restricted to Ci1,...,is ⊂ ∆n is

(z1, . . . , zn) 7−→ (1, . . . , 1, 2kzik−1+1 − 1, . . . , 2kzik − 1, 0, . . . , 0) for 1 6 k 6 s,
(z1, . . . , zn) 7−→ (1, . . . , 1, 2szis+1, . . . , 2

szn) for k = s+ 1.

This explicit formula for the map AW◦s implies the following proposition :

Proposition 5. The map AW◦s sends the cell Ci1,...,is ⊂ ∆n homeomorphically to the face

[0 < · · · < i1]× [i1 < · · · < i2]× · · · × [is < · · · < n] ⊂ (∆n)×s+1 .

Hence not only does the map AW◦s determine a subdivision of the simplex ∆n but it also deter-
mines a labeling of its strata. They are labeled by the term of (∆∆∆n)⊗s+1 which they determine after
taking the image of AW◦s under the functor Ccell−∗ . Proposition 5 implies that the top-dimensional
strata de�ned by the inequalities

· · · > zik > (1/2)k > zik+1 > · · ·
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are labeled by
[0 < · · · < i1]⊗ [i1 < · · · < i2]⊗ · · · ⊗ [is < · · · < n] .

Proposition 6. (i) The codimension i strata of the AW◦s-subdivision of ∆n lying in the interior
of ∆n are in one-to-one correspondence with the (s− i)-overlapping (s+ 1)-partitions of ∆n.
More generally, given a face I ⊂ ∆n, the strata of the AW◦s-subdivision of ∆n which are
lying in the interior of I and have codimension i w.r.t. the dimension of I are in one-to-one
correspondence with the (s− i)-overlapping (s+ 1)-partitions of I.

(ii) Consider a codimension i stratum of the AW◦s-subdivision of ∆n lying in the interior of ∆n.
This stratum is de�ned by s− i inequalities of the form

· · · > zik > (1/2)k > zik+1 > · · · ,
and i equalities of the form

· · · > zik = (1/2)k > zik+1 > · · · .
The labeling of this stratum can then be obtained under the following simple transformation
rules :

· · · > zik > (1/2)k > zik+1 > · · · 7−→ · · · < ik]⊗ [ik < · · · ,
· · · > zik = (1/2)k > zik+1 > · · · 7−→ · · · < ik − 1]⊗ [ik < · · · .

This recipe easily carries over to the case of strata lying in the boundary of ∆n. The AW and AW◦2

subdivisions of ∆2 are represented in �gure 6.

Figure 6. The AW and AW◦2 subdivisions of ∆2

2.2.5. The AWaaa-subdivisions of ∆n. Let now aaa be a sequence of real numbers 1 > a1 > · · · > as > 0,
where we denote |aaa| := s the length of aaa. We call such a sequence a dividing sequence. We de�ne the
AWaaa-subdivision of ∆n to be the subdivision obtained after dividing ∆n by all hyperplanes zi = ak,
for 1 6 i 6 n and 1 6 k 6 |aaa|. We denote ∆n

aaa for ∆n endowed with its AWaaa-subdivision. The cells

Ci1,...,isaaa of ∆n
aaa are again de�ned by the inequalities

· · · > zik > ak > zik+1 > · · · ,
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for 1 6 k 6 |aaa|. We de�ne moreover the map AWaaa : ∆n → (∆n)×|aaa|+1 as follows. Its projection on

the k-th factor ∆n of (∆n)×|aaa|+1 restricted to the cell Ci1,...,isaaa ⊂ ∆n
aaa is de�ned by the formula

(z1, . . . , zn) 7−→ (1, . . . , 1,
(zik−1

− ak)
ak−1 − ak

, . . . ,
(zik − ak)
ak−1 − ak

, 0, . . . , 0) for 1 6 k 6 |aaa|,

(z1, . . . , zn) 7−→ (1, . . . , 1, zi|aaa|+1/a|aaa|, . . . , zn/a|aaa|) for k = |aaa|+ 1,

where we have set a0 := 1. We check in particular that for aaa = 1/2 > · · · > (1/2)s we have
AWaaa := AW◦s. The maps AWaaa are to be understood as generalizations of the maps AW◦s, that still
realize the |aaa|-th iterate of the Alexander-Whitney coproduct under the functor Ccell−∗ . In particular,
the analogous statements of Propositions 3, 5 and 6 still hold for the maps AWaaa.

We can now state a coassociativity-like property that the maps AWaaa satisfy, which did not hold
when only using the map AW as proven in Proposition 3. For two dividing sequences aaa and bbb, we
write aaa > bbb if a|aaa| > b1, and we then denote aaa · bbb the concatenation a1 > · · · > a|aaa| > b1 > · · · > b|bbb|.

Proposition 7. Let aaa, bbb and ccc be three dividing sequences such that aaa > bbb > ccc. Then,

AWaaa·bbb·ccc = (id×|aaa| ×AWbbb′ × id×|ccc|) ◦AWaaa·ccc ,

where bbb′ is the dividing sequence 1 > (b1 − c1)/(aaaa − c1) > · · · > (bbbb − c1)/(aaaa − c1) > 0 which is
obtained from bbb by shifting by c1 and then rescaling by 1/(aaaa − c1).

This proposition will be used in subsection 1.4.4 of part 3. We illustrate it on the simplex ∆2 in
�gure 7, where aaa := 6/7, 5/7, bbb := 4/7, 3/7 and ccc := 2/7, 1/7, which implies that bbb′ := 2/3, 1/3. On
the left is represented the AWaaa·bbb·ccc-subdivision of ∆2, in the middle its AWaaa·ccc-subdivision and on
the right the subdivision induced by the map (id×|aaa| × AWbbb′ × id×|ccc|) ◦ AWaaa·ccc, where the red lines
represent the subdivision induced by AWbbb′ . The left and right subdivisions then coincide.

Figure 7

2.3. The n-multiplihedra n− Jm.

2.3.1. The multiplihedra. The polytopes encoding A∞-morphisms between A∞-algebras are the mul-
tiplihedra Jm, m > 1 : they form a collection {Jm}m>1 which is a ({Km}, {Km})-operadic bimodule
whose image under the functor Ccell−∗ is the (A∞, A∞)-operadic bimodule A∞−Morph. The faces of
codimension i of Jm are labeled by all possible broken two-colored trees obtained by blowing-up i
times the two-coloredm-corolla. See for instance [Maz21] for pictures of the multiplihedra J1, J2 and
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J3. The multiplihedra Jm can moreover be realized as the compacti�cations of moduli spaces of sta-
ble two-colored metric ribbon trees CT m, where each CT m is seen as the unique (m−1)-dimensional
stratum of CT m.

2.3.2. The n-multiplihedra n− Jm. Consider the polytope ∆n × Jm for n > 0 and m > 1. It is the
most natural candidate for a polytope encoding n-morphisms between A∞-algebras. However, it
does not ful�ll that property as it is. Indeed, its faces correspond to the data of a face of ∆n, that
is of some I ⊂ ∆n, and of a face of Jm, that is of a broken two-colored tree obtained by blowing-
up several times the two-colored m-corolla. This labeling is too coarse, as it does not contain the
following trees, that appear in the A∞-equations for n-morphisms

IsI1

.

We resolve this issue by constructing a re�ned polytopal subdivision of ∆n× Jm. Consider a face
F of Jm labeled by a broken two-colored tree tbr,c such that exactly s unbroken two-colored trees tic
for r = 1, . . . , s appear in tbr,c. We see the trees trc as ordered from left to right in tbr,c, write ir for

the number of incoming edges of tbrc located above trc in tbr,c, and recall that tbr,c has arity m. We
have in particular that i1 + · · ·+ is = m. De�ne the dividing sequence aaatbr,c of length s− 1 as

i1 + · · ·+ is−1

m
>
i1 + · · ·+ is−2

m
> · · · > i1

m
.

We then re�ne the polytopal subdivision of ∆n × F into ∆n
aaatbr,c

× F , where ∆n
aaatbr,c

denotes ∆n

endowed with its AWaaatbr,c
-subdivision. This re�nement process is moreover consistent : for two

faces F ′ ⊂ F , the subdivision on ∆n de�ned by the face F ′ is a re�nement of the subdivision on ∆n

de�ned by the face F .

De�nition 12. The n-multiplihedra are de�ned to be the polytopes ∆n × Jm endowed with the
previous polytopal subdivision. We denote them n− Jm.

See some examples in �gures 8, 9 and 10. We illustrate de�nition 12 with the construction of the
2-multiplihedron ∆2× J2 depicted on �gure 9. The polytope ∆2 has one 2-dimensional face labeled
by [0 < 1 < 2] and three 1-dimensional faces labeled by [0 < 1], [1 < 2] and [0 < 2]. The polytope

J2 has one 1-dimensional face labeled by and has two 0-dimensional faces labeled by and

. Consider now the product polytope ∆2 × J2. Its has one unique 3-dimensional face labeled
by [0 < 1 < 2]× and �ve 2-dimensional faces. The faces [0 < 1]× , [1 < 2]× , [0 < 2]×
and [0 < 1 < 2] × that are left unchanged under the construction of the previous paragraph, as
they each feature only 1 unbroken two-colored tree. They respectively correspond to the faces A, B,

F and G on �gure 9. The �fth face is the face [0 < 1 < 2]× . It features 2 unbroken two-colored

trees : we thus have to re�ne the polytopal subdivision of ∆2× into ∆2
AW× . This re�nement

produces the strata ([0]⊗ [0 < 1 < 2])× , ([0 < 1]⊗ [1 < 2])× and ([0 < 1 < 2]⊗ [2])× ,
which respectively correspond to the labels C, D and E on �gure 9. This concludes the construction
of the 2-multiplihedron ∆2 × J2.
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Figure 8. The 1-multiplihedron ∆1 × J2

Figure 9. The 2-multiplihedron ∆2 × J2

2.3.3. The n-multiplihedra encode n−A∞-morphisms. Now in which sense do these polytopes encode
n − A∞-morphisms ? Note �rst that the collection {n − Jm}m>1 is not a ({Km}, {Km})-operadic
bimodule ! Indeed, a ({Km}, {Km})-operadic bimodule structure would for instance make appear a
stratum labeled by

I1Is

,

where I1 ∪ · · · ∪ Is = ∆n is an overlapping partition of ∆n. This stratum does not appear in the
polytopal subdivision of n − Jm. Hence these polytopes do not recover the (A∞, A∞)-operadic
bimodule n−A∞ −Morph.



26 THIBAUT MAZUIR

Figure 10. The 1-multiplihedron ∆1 × J3

However, the polytopal subdivision of n − Jm still contains enough combinatorics to recover a
n-morphism. This polytope has a unique (n+m− 1)-dimensional cell [n− Jm], which is labeled by

∆n . By construction :

Proposition 8. The boundary of the cell [n− Jm] is given by

∂sing[n− Jm] ∪
⋃

h+k=m+1
16i6k
h>2

[n− Jk]×i [Kh] ∪
⋃

i1+···+is=m
I1∪···∪Is=∆n

s>2

[Ks]× [dim(I1)− Ji1 ]× · · · × [dim(Is)− Jis ] ,

where I1 ∪ · · · ∪ Is = ∆n is an overlapping partition of ∆n.

Details on the orientation of the top dimensional strata in this boundary are worked out in
section 4.3. Note moreover that the collection {n− Jm}n>0 is a cosimplicial polytope. This implies
that the image of each cell [dim(I)− Jm] under the functor Ccell−∗ yields an element whose boundary
is exactly given by the A∞-equations for n-morphisms. It is in that sense that the n − Jm encode
n-morphisms. The previous boundary formula also implies that the n − Jm will constitute a good
parametrizing space for constructing moduli spaces in symplectic topology, whose count should give
rise to n-morphisms between Floer complexes.

3. n− ΩBAs-morphisms

The multiplihedra Jm can be realized by compactifying the moduli spaces of stable two-colored
metric ribbon trees CT m and come with two cell decompositions. The �rst one consists in considering
each CT m as a (m− 1)-dimensional stratum and encodes the operadic bimodule A∞−Morph. The
second one is obtained by considering the strati�cation of the moduli spaces CT m by two-colored
stable ribbon tree types, and encodes the operadic bimodule ΩBAs − Morph. The ΩBAs-cell
decomposition is moreover a re�nement of the A∞-cell decomposition. As a consequence, there
exists a morphism of operadic bimodules A∞ −Morph→ ΩBAs−Morph, as shown in [Maz21]. It
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is hence su�cient to construct an ΩBAs-morphism between ΩBAs-algebras to then naturally get
an A∞-morphism between A∞-algebras.

We de�ne in this section n−ΩBAs-morphisms between ΩBAs-algebras. Building on the viewpoint
of the previous paragraph, we then explain how, by re�ning the cell decomposition of the polytope
n− Jm, we get a new cell decomposition encoding n− ΩBAs-morphisms. This construction yields
in particular a morphism of operadic bimodules n− A∞ −Morph→ n− ΩBAs−Morph. All sign
computations are moreover postponed to section 4.4.

3.1. n− ΩBAs-morphisms.

3.1.1. Recollections on ΩBAs-morphisms. ΩBAs-morphisms are the morphisms between ΩBAs-
algebras encoded by the quasi-free operadic bimodule generated by all two-colored stable ribbon
trees

ΩBAs−Morph := FΩBAs,ΩBAs( , , , , · · · , SCRTn, · · · ) .
A two-colored stable ribbon tree tg whose underlying stable ribbon tree t has e(t) inner edges, and
such that its gauge crosses j vertices of t, has degree |tg| := j − 1− e(t).

The di�erential of a two-colored stable ribbon tree tg is given by the signed sum of all two-colored
stable ribbon trees obtained from tg under the rule prescribed by the top dimensional strata in the

boundary of CT n(tg). : the gauge moves to cross exactly one additional vertex of the underlying
stable ribbon tree (gauge-vertex) ; an internal edge located above the gauge or intersecting it breaks
or, when the gauge is below the root, the outgoing edge breaks between the gauge and the root
(above-break) ; edges (internal or incoming) that are possibly intersecting the gauge, break below it,
such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to
the root (below-break) ; an internal edge that does not intersect the gauge collapses (int-collapse).

3.1.2. n− ΩBAs-morphisms.

De�nition 13. n− ΩBAs-morphisms are the higher morphisms between ΩBAs-algebras encoded
by the quasi-free operadic bimodule generated by all pairs (face I ⊂ ∆n , two-colored stable ribbon
tree),

n− ΩBAs−Morph := FΩBAs,ΩBAs( I , I ,
I
,
I
, · · · , (I, SCRTn), · · · ; I ⊂ ∆n) .

An operation tI,g := (I, tg) is de�ned to have degree |tI,g| := |I| + |tg|. The di�erential of tI,g is

given by the rule prescribed by the top dimensional strata in the boundary of CT m(tg) combined
with the algebraic combinatorics of overlapping partitions, added to the simplicial di�erential of I,
i.e.

∂tI,g = t∂singI,g +±(∂CT mtg)I .

We refer to section 4.4 for a more complete de�nition and sign conventions. The sign computations
are in particular more involved, as we did not describe an ad hoc construction analogous to the shifted
bar construction as in the A∞ case. We also point out that the symbol I used here is the same as
the one used for the arity 2 generating operation of n−A∞ −Morph. It will however be clear from
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the context what I stands for in the rest of this paper. We moreover compute the di�erential in
the following instance

| [0 < 1 < 2] | =− 5 ,

∂( [0 < 1 < 2] ) =± [1 < 2] ± [0 < 2] ± [0 < 1]

± [0 < 1 < 2] ± [0 < 1 < 2] ±
[0 < 1 < 2]

±
[0 < 1 < 2]

±
[0 < 1 < 2]

± [0] [0 < 1 < 2] ± [0 < 1] [1 < 2] ± [0 < 1 < 2] [2] .

3.1.3. From n − ΩBAs-morphisms to n − A∞-morphisms. A n − ΩBAs-morphism between two
ΩBAs-algebras naturally yields a n−A∞-morphism between the induced A∞-algebras :

Proposition 9. There exists a morphism of (A∞, A∞)-operadic bimodules n − A∞ − Morph →
n− ΩBAs−Morph given on the generating operations of n−A∞ −Morph by

fI,m 7−→
∑

tg∈CBRTm
±fI,tg ,

where CBRTm denotes the set of two-colored binary ribbon trees of arity m.

This proposition is proven in subsection 4.4.7. Note that the collection of operadic bimodules
{n − ΩBAs − Morph}n>0 is once again a cosimplicial operadic bimodule, where the cofaces and
codegeneracies are as in subsection 1.3.1. This sequence of morphisms of operadic bimodules de�nes
then in fact a morphism of cosimplicial operadic bimodules

{n−A∞ −Morph}n>0 −→ {n− ΩBAs−Morph}n>0 .

3.2. The n-multiplihedra encode n− ΩBAs-morphisms.

3.2.1. The n−ΩBAs-cell decomposition of ∆n×CT m. The polytopes encoding n−A∞-morphisms
have been de�ned to be the polytopes ∆n×Jm endowed with a re�ned polytopal subdivision induced
by the maps AWaaa. These re�ned subdivisions incorporate the combinatorics of i-overlapping s-
partitions in the boundary of the polytopes ∆n × Jm. Consider now the multiplihedra Jm = CT m
endowed with its ΩBAs-cell decomposition, i.e. its cell decomposition by broken stable two-colored
ribbon tree type. We can de�ne a re�ned cell decomposition on the product CW-complex ∆n×CT m
following the construction of subsection 2.3.2. Each stratum CT m(tbr,c) of the moduli space CT m
determines again a dividing sequence aaatbr,c obtained from the unbroken two-colored trees of the
two-colored tree tbr,c labeling it. We then re�ne the cell decomposition of ∆n × CT m(tbr,c) into
∆n
aaatbr,c

× CT m(tbr,c). This re�nement process can again be done consistently in order to obtain a

re�ned cell decomposition of ∆n × CT m.
De�nition 14. We de�ne the n− ΩBAs-cell decomposition of the n-multiplihedron ∆n × CT m to
be the cell decomposition described in the previous paragraph.

See some examples in �gures 11 and 12. By construction, the n − ΩBAs-cell decomposition of
∆n × CT m is moreover a re�nement of the n−A∞-cell decomposition of ∆n × CT m.
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Figure 11. The 1− ΩBAs-cell decomposition of ∆1 × CT 2

Figure 12. The 1− ΩBAs-cell decomposition of ∆1 × CT 3

3.2.2. These CW-complexes encode n − ΩBAs-morphisms. Consider the associahedra Km = T m
endowed with their ΩBAs-cell decompositions. We endow moreover the spaces ∆n×CT m with their
n−ΩBAs-cell decompositions. As in the A∞ case, the collection of CW-complexes {∆n×CT m}m>1

is not a ({T m}, {T m})-operadic bimodule. Carrying over the details of subsection 2.3.3, it contains
however enough combinatorics to recover a n − ΩBAs-morphism. What's more, the collection
{∆n × CT m}n>0 is again a cosimplicial CW-complex.

3.3. Résumé. The higher homotopies or n-morphisms extending the notion of A∞-morphisms and
A∞-homotopies between A∞-algebras are de�ned to be the morphisms of dg-coalgebras

∆∆∆n ⊗ T (sA) −→ T (sB) .
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From an operadic viewpoint, they are naturally encoded by the operadic bimodule,

n−A∞ −Morph = FA∞,A∞( I , I , I , I , · · · ; I ⊂ ∆n) .

where the di�erential is de�ned as

[∂, I ] =

dim(I)∑

j=0

(−1)j
∂sing
j I

+
∑

I1∪···∪Is=I
± IsI1

+
∑
±

I

.

The combinatorics of this di�erential are encoded by new families of polytopes called the n-multipli-
hedra, which are the data of the polytopes ∆n × Jm together with a polytopal subdivision induced
by the maps AWaaa. They will constitute a good parametrizing space for constructing moduli spaces
in symplectic topology, whose count should recover a n-morphism between Floer complexes.

On the other side, the natural n-morphisms extending the notion of ΩBAs-morphisms are de�ned
by adapting the operadic viewpoint on n − A∞-morphisms. They are naturally encoded by the
operadic bimodule,

n− ΩBAs−Morph = FΩBAs,ΩBAs( I , I ,
I
,
I
, · · · , (I, SCRTm), · · · ; I ⊂ ∆n) ,

where the di�erential is again de�ned as a signed sum prescribed by a rule on two-colored trees
combinatorics combined with the algebraic combinatorics of overlapping partitions, added to the
simplicial di�erential. This di�erential is encoded in the data of the polytopes ∆n × Jm endowed
with a re�ned cell decomposition induced by two-colored stable ribbon tree types and the maps
AWaaa. It is moreover su�cient to construct a n−ΩBAs-morphism between ΩBAs-algebras in order
to recover a n−A∞-morphism between the induced A∞-algebras, thanks to the morphism of operadic
bimodules

n−A∞ −Morph −→ n− ΩBAs−Morph .

We show in part 3 that the previous CW-complexes constitute a good parametrizing space for
moduli spaces in Morse theory, whose count will recover a n − ΩBAs-morphism between Morse
cochain complexes.

4. Signs for n-morphisms

We now work out all the signs left uncomputed in the previous sections of this part. These
computations will be done resorting to the basic conventions on signs and orientations that we were
already using in [Maz21], and that we brie�y recall in the �rst section. In the next two sections,
we display and explain the two natural sign conventions for n − A∞-morphisms ensuing from the
bar construction viewpoint, and then show that one of these conventions is in fact contained in the
polytopes n − Jm. We �nally give a complete de�nition of the operadic bimodule n − ΩBAs −
Morph and build the morphism of operadic bimodules n− A∞ −Morph→ n− ΩBAs−Morph of
Proposition 9.

4.1. Conventions for signs and orientations.
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4.1.1. Koszul sign rule. The formulae in this section will be written using the Koszul sign rule. We
will moreover work exclusively with cohomological conventions.

Given A and B two dg Z-modules, the di�erential on A⊗B is de�ned as

∂A⊗B(a⊗ b) = ∂Aa⊗ b+ (−1)|a|a⊗ ∂Bb .
Given A and B two dg Z-modules, we consider the graded Z-module Hom(A,B) whose degree r
component is given by all maps A→ B of degree r. We endow it with the di�erential

∂Hom(A,B)(f) := ∂B ◦ f − (−1)|f |f ◦ ∂A =: [∂, f ] .

Given f : A→ A′ and g : B → B′ two graded maps between dg-Z-modules, we set

(f ⊗ g)(a⊗ b) = (−1)|g||a|f(a)⊗ g(b) .

Finally, given f : A→ A′, f ′ : A′ → A′′, g : B → B′ and g′ : B′ → B′′, we de�ne

(f ′ ⊗ g′) ◦ (f ⊗ g) = (−1)|g
′||f |(f ′ ◦ f)⊗ (g′ ◦ g) .

We check in particular that with this sign rule, the di�erential on a tensor product A1 ⊗ · · · ⊗An is
given by

∂A1⊗···⊗An =
n∑

i=1

idA1 ⊗ · · · ⊗ ∂Ai ⊗ · · · ⊗ idAn .

4.1.2. Tensor product of dg-coalgebras. Given A and B two dg Z-modules, de�ne the twist map
τ : A⊗B → B ⊗A,

τ(a⊗ b) = (−1)|a||b|b⊗ a .
Suppose now that A and B are dg-coalgebras, with respective coproducts ∆A and ∆B. The tensor
product A⊗B can then be endowed with a structure of dg-coalgebra whose coproduct is de�ned as

∆A⊗B := A⊗B −→
∆A⊗∆B

A⊗A⊗B ⊗B −→
idA⊗τ⊗idB

(A⊗B)⊗ (A⊗B) ,

and whose di�erential is the product di�erential

∂A⊗B = ∂A ⊗ idB + idA ⊗ ∂B .

4.1.3. Orientation of the boundary of a manifold with boundary. Let (M,∂M) be an oriented n-
manifold with boundary. We choose to orient its boundary ∂M as follows : given x ∈ ∂M , a basis
e1, . . . , en−1 of Tx(∂M), and an outward pointing vector ν ∈ TxM , the basis e1, . . . , en−1 is positively
oriented if and only if the basis ν, e1, . . . , en−1 is a positively oriented basis of TxM .

Under this convention, given two manifolds with boundary K and L, the boundary of the product
manifold K × L is then

∂(K × L) = ∂K × L ∪ (−1)dim(K)K × ∂L ,

where the (−1)dim(K) sign means that the product orientation of K× ∂L di�ers from its orientation

as the boundary of K ×L by a (−1)dim(K) sign. This convention also recovers the classical singular
and cubical di�erentials as detailed in [Maz21] :

∂∆n =

n⋃

i=0

(−1)i∆n−1
i and ∂In =

n⋃

i=1

(−1)i(In−1
i,0 ∪ −In−1

i,1 ) .
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4.2. Signs for n−A∞-morphisms. We now work out the signs in the A∞-equations for n−A∞-
morphisms, thus completing de�nition 7. More precisely, we will unwind two sign conventions using
the bar construction viewpoint. The impatient reader can straightaway jump to subsection 4.2.3
where the signs used in the rest of this paper are made explicit.

4.2.1. Recollections on the bar construction and A∞-algebras. Let A be a dg-Z-module. De�ne the
suspension and desuspension maps

s : A −→ sA w : sA→ A

a 7−→ sa sa 7−→ a ,

which are respectively of degree −1 and +1. We verify that with the Koszul sign rule,

w⊗m ◦ s⊗m = (−1)(
m
2 )idA⊗m .

Then, note for instance that a degree 2 −m map mm : A⊗m → A yields a degree +1 map bm :=
smmw

⊗m : (sA)⊗m → sA.

To the set of operations bm one can associate a unique coderivation D on T (sA). We proved
in [Maz21] using this viewpoint that the equation D2 = 0 yields two sign conventions for the A∞-
equations

[m1,mm] = −
∑

i1+i2+i3=m
26i26n−1

(−1)i1i2+i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,(A)

[m1,mm] = −
∑

i1+i2+i3=m
26i26n−1

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,(B)

and that these conventions are related by a (−1)(
m
2 ) twist applied to the operation mm, which comes

from the formula w⊗m ◦ s⊗m = (−1)(
m
2 )idA⊗m .

We will adopt the exact same approach to work out two sign conventions for n−A∞-morphisms
in the following subsection : �rst by writing A∞-equations without signs using the viewpoint of a
morphism between bar constructions F : ∆∆∆n⊗T (sA)→ T (sB), and secondly by unfolding the signs
coming from the suspension and desuspension maps.
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4.2.2. The two conventions coming from the bar construction. The two conventions for the A∞-
equations for n−A∞-morphisms are

[
m1, f

(m)
I

]
=

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m
i2>2

(−1)i1i2+i3f
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)(A)

−
∑

i1+···+is=m
I1∪···∪Is=I

s>2

(−1)εAms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) ,

[
m1, f

(m)
I

]
=

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m
i2>2

(−1)i1+i2i3f
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)(B)

−
∑

i1+···+is=m
I1∪···∪Is=I

s>2

(−1)εBms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) ,

which can we rewritten as

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

(−1)i1i2+i3f
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)(A)

=
∑

i1+···+is=m
I1∪···∪Is=I

(−1)εAms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) ,

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

(−1)i1+i2i3f
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)(B)

=
∑

i1+···+is=m
I1∪···∪Is=I

(−1)εBms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) ,

where

εA =

s∑

j=1

(s− j)|Ij |+
s∑

j=1

ij




s∑

k=j+1

(1− ik − |Ik|)


 ,

εB =
s∑

j=1


ij

s∑

k=j+1

|Ik|


+

s∑

j=1

(s− j)(1− ij − |Ij |) .

These two sign conventions are equivalent : given a sequence of operations mm and f
(m)
I satisfying

equations (A), we check that the operations m′m := (−1)(
m
2 )mm and f

′(m)
I := (−1)(

m
2 )f

(m)
I satisfy

equations (B).

Consider now two dg-Z-modules A and B, together with a collection of degree 2 − m maps
mm : A⊗m → A and mm : B⊗m → B (we use the same notation for sake of readability), and a
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collection of degree 1−m+ |I| maps f
(m)
I : A⊗m → B. We associate to the maps mm the degree +1

maps bm := smmw
⊗m, and also associate to the maps f

(m)
I the degree |I| maps F

(m)
I := sf

(m)
I w⊗m :

(sA)⊗m → sB. We denote DA and DB the unique coderivations coming from the maps bm acting
respectively on T (sA) and T (sB), and F : ∆∆∆n⊗T (sA)→ T (sB) the unique morphism of coalgebras

associated to the maps F
(m)
I . The equation

F (∂sing ⊗ idT (sA) + id∆∆∆n ⊗DA) = DBF

is then equivalent to the equations

dim(I)∑

j=0

(−1)jF
(m)
∂jI

+(−1)|I|
∑

i1+i2+i3=m

F
(i1+1+i3)
I (id⊗i1⊗bi2⊗id⊗i3) =

∑

i1+···+is=m
I1∪···∪Is=I

bs(F
(i1)
I1
⊗· · ·⊗F (is)

Is
) .

There are now two ways to unravel the signs from these equations, which will lead to conventions
(A) and (B).

The �rst way consists in simply replacing the bm and the F
(m)
I by their de�nition. It yields sign

conventions (A). The left-hand side transforms as

dim(I)∑

j=0

(−1)jF
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

F
(i1+1+i3)
I (id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=

dim(I)∑

j=0

(−1)jsf
(m)
∂jI

w⊗m + (−1)|I|
∑

i1+i2+i3=m

sf
(i1+1+i3)
I w⊗i1+1+i3(id⊗i1 ⊗ smi2w

⊗i2 ⊗ id⊗i3)

=

dim(I)∑

j=0

(−1)jsf
(m)
∂jI

w⊗m + (−1)|I|
∑

i1+i2+i3=m

(−1)i3sf
(i1+1+i3)
I (w⊗i1 ⊗ wsmi2w

⊗i2 ⊗ w⊗i3)

=

dim(I)∑

j=0

(−1)jsf
(m)
∂jI

w⊗m + (−1)|I|
∑

i1+i2+i3=m

(−1)i1i2+i3sf
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)(w⊗i1 ⊗ w⊗i2 ⊗ w⊗i3)

=s




dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

(−1)i1i2+i3f
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)


w⊗m ,
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while the right-hand side transforms as

∑

i1+···+is=m
I1∪···∪Is=I

bs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
)

=
∑

i1+···+is=m
I1∪···∪Is=I

smsw
⊗s(sf (i1)

I1
w⊗i1 ⊗ · · · ⊗ sf (is)

Is
w⊗is)

=
∑

i1+···+is=m
I1∪···∪Is=I

(−1)
∑s
j=1(s−j)|Ij |sms(wsf

(i1)
I1

w⊗i1 ⊗ · · · ⊗ wsf (is)
Is

w⊗is)

=s




∑

i1+···+is=m
I1∪···∪Is=I

(−1)εAms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
)


w⊗m ,

where εA =
∑s

j=1(s− j)|Ij |+
∑s

j=1 ij

(∑s
k=j+1(1− ik − |Ik|)

)
.

The second way consists in �rst composing and post-composing by w and s⊗m and then replacing

the bm and F
(m)
I by their de�nition. It yields the (B) sign conventions. We will denote m′m :=

(−1)(
m
2 )mm and f

′(m)
I := (−1)(

m
2 )f

(m)
I . The left-hand side then transforms as

dim(I)∑

j=0

(−1)jwF
(m)
∂jI

s⊗m + (−1)|I|
∑

i1+i2+i3=m

wF
(i1+1+i3)
I (id⊗i1 ⊗ bi2 ⊗ id⊗i3)s⊗m

=

dim(I)∑

j=0

(−1)jf
′(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

(−1)i1f
(i1+1+i3)
I w⊗i1+1+i3(s⊗i1 ⊗ smi2w

⊗i2s⊗i2 ⊗ s⊗i3)

=

dim(I)∑

j=0

(−1)jf
′(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

(−1)i1+i2i3f
(i1+1+i3)
I w⊗i1+1+i3s⊗i1+1+i3(id⊗i1 ⊗m′i2 ⊗ id⊗i3)

=

dim(I)∑

j=0

(−1)jf
′(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=m

(−1)i1+i2i3f
′(i1+1+i3)
I (id⊗i1 ⊗m′i2 ⊗ id⊗i3) ,
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while the right-hand side transforms as
∑

i1+···+is=m
I1∪···∪Is=I

wbs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
)s⊗m

=
∑

i1+···+is=m
I1∪···∪Is=I

msw
⊗s(sf (i1)

I1
w⊗i1 ⊗ · · · ⊗ sf (is)

Is
w⊗is)s⊗m

=
∑

i1+···+is=m
I1∪···∪Is=I

(−1)
∑s
j=1(ij

∑s
k=j+1 |Ik|)msw

⊗s(sf (i1)
I1

w⊗i1s⊗i1 ⊗ · · · ⊗ sf (is)
Is

w⊗iss⊗is)

=
∑

i1+···+is=m
I1∪···∪Is=I

(−1)εBmsw
⊗ss⊗s(f ′(i1)

I1
⊗ · · · ⊗ f ′(is)Is

)

=
∑

i1+···+is=m
I1∪···∪Is=I

(−1)εBm′s(f
′(i1)
I1
⊗ · · · ⊗ f ′(is)Is

) ,

where εB =
∑s

j=1

(
ij
∑s

k=j+1 |Ik|
)

+
∑s

j=1(s− j)(1− ij − |Ij |).

4.2.3. Choice of convention in this paper. We will work in the rest of this paper with the set of
conventions (B). The operations mm of an A∞-algebra will satisfy equations

[∂,mm] = −
∑

i1+i2+i3=m
26i26n−1

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,

and a n−A∞-morphism between two A∞-algebras will satisfy equations

[
∂, f

(m)
I

]
=

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=n
i2>2

(−1)i1+i2i3f
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)

−
∑

i1+···+is=m
I1∪···∪Is=I

s>2

(−1)εBms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) ,

where εB =
∑s

j=1

(
ij
∑s

k=j+1 |Ik|
)

+
∑s

j=1(s− j)(1− ij − |Ij |).

In [Maz21] we had chosen conventions (B) for A∞-algebras and A∞-morphisms because they were
the ones naturally arising in the realizations of the associahedra and the multiplihedra à la Loday.
We prove a similar result in the following section : these sign conventions are contained in the
polytopes n− Jm = ∆n × Jm where Jm is a Forcey-Loday realization of the multiplihedron.

4.2.4. The sign conventions coming from Proposition 2. We proved in Proposition 2 that the datum
of a n-morphism from A to B is equivalent to the datum of an A∞-morphism A → ∆∆∆n ⊗ B. In
fact, the two sign conventions arising from this equivalent de�nition di�er slightly from the two
conventions (A) and (B) for n-morphisms computed from the bar construction formulation.
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Indeed, we can check that if we work with convention (A) (resp. (B)) for A∞-morphisms (not
higher morphisms !) and if we write as in subsection 1.5 the A∞-morphism F : A→∆∆∆n ⊗B as

F (m) =
⊕

I⊂∆n

I ⊗ f (m)
I ,

then the signs for the A∞-equations for F read exactly as the signs for the A∞-equations for n-
morphisms computed in the previous subsection, apart from the simplicial di�erential terms which
read this time as

dim(I)∑

j=0

(−1)j+|I|+1f
(m)
∂jI

.

4.3. Signs and the polytopes n− Jm.

4.3.1. Loday associahedra and Forcey-Loday multiplihedra. In [Maz21] we introduced explicit poly-
topal realizations of the associahedra and the multiplihedra : the weighted Loday realizations Kω

of the associahedra from [MTTV21] and the weighted Forcey-Loday realizations Jω of the multipli-
hedra from [LAM]. We then proved using basic considerations on a�ne geometry that, under the
convention of section 4.1, their boundaries were equal to

∂Kω = −
⋃

i1+i2+i3=n
26i26n−1

(−1)i1+i2i3Kω ×Kω̃ ,

∂Jω =
⋃

i1+i2+i3=n
i2>2

(−1)i1+i2i3Jω ×Kω̃ ∪ −
⋃

i1+···+is=m
s>2

(−1)εBKω × Jω̃1
× · · · × Jω̃s

where the weights ω, ω̃ and ω̃t are derived from the weights ω, and

εB =

s∑

j=1

(s− j)(1− ij) .

In particular, these polytopes contain sign conventions (B) for A∞-algebras and A∞-morphisms.

4.3.2. The boundary of n−Jm. Consider now a n-multiplihedron ∆n×Jω, where Jω is a Forcey-Loday
realization of the multiplihedron Jm. Forgetting for now about its re�ned polytopal subdivision, its
boundary reads as

∂(∆n × Jω) = ∂∆n × Jω ∪ (−1)n∆n × ∂Jω .
Recall moreover that given any dividing sequence aaa of length s, each top dimensional cell in the
AWaaa-polytopal subdivision of ∆n labeled by an overlapping partition I1 ∪ · · · ∪ Is+1 = ∆n is in fact
isomorphic to the product I1 × · · · × Is+1. We write this as

∆n
aaa =

⋃

I1∪···∪Is=∆n

I1 × · · · × Is .

Proposition 10. The n-multiplihedra ∆n × Jω endowed with their n − A∞-polytopal subdivision
contain sign conventions (B) for n−A∞-morphisms.
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Proof. The �rst component of the boundary of ∆n × Jω is given by

∂∆n × Jω =

n⋃

i=0

(−1)i∆n−1
i × Jω .

The second, by the �rst part of the boundary of ∂Jω,

(−1)n
⋃

i1+i2+i3=m
i2>2

(−1)i1+i2i3(∆n × Jω)×Kω̃ .

The third and last component transforms as follows :

(−1)n∆n × (−1)
⋃

i1+···+is=m
s>2

(−1)εBKω × Jω̃1
× · · · × Jω̃s

=(−1)n+1
⋃

i1+···+is=m
s>2

(−1)εB∆n ×Kω × Jω̃1
× · · · × Jω̃s

=(−1)n+1
⋃

i1+···+is=m
s>2

(−1)εB
⋃

I1∪···∪Is=∆n

I1 × · · · × Is ×Kω × Jω̃1
× · · · × Jω̃s

=(−1)n+1
⋃

i1+···+is=m
s>2

⋃

I1∪···∪Is=∆n

(−1)εB+s
∑s
j=1 |Ij |Kω × I1 × · · · × Is × Jω̃1

× · · · × Jω̃s

=− (−1)n
⋃

i1+···+is=m
I1∪···∪Is=∆n

s>2

(−1)εB+sn+
∑s
j=1(ij−1)(

∑s
k=j+1 |Ik|)Kω × (I1 × Jω̃1

)× · · · × (Is × Jω̃s) .

We then check that εB = n+ εB + sn+
∑s

j=1(ij−1)
(∑s

k=j+1 |Ik|
)
modulo 2. Hence, the polytopes

n− Jm contain indeed sign conventions (B) for n−A∞-morphisms. �

4.4. The operadic bimodule n−ΩBAs−Morph. In [Maz21], we computed the signs for ΩBAs-
morphisms as follows. Endowing the compacti�ed moduli spaces CT m with their ΩBAs-cell decom-
positions, we de�ne the operadic bimodule ΩBAs −Morph to be the realization under the functor
Ccell−∗ of the operadic bimodule {CT m}m>1. The signs in the di�erential are then computed as the

signs arising in the top dimensional strata in the boundary of the moduli spaces CT m(tg). The signs

for the action-composition maps are the signs ensuing from the image under the functor Ccell−∗ of the

action-composition maps for the moduli spaces CT m(tg).

The goal of this section is to completely state de�nition 13, with explicit signs and formulae. We
have however seen in subsection 3.2.2 that there is no operadic bimodule in compacti�ed moduli
spaces whose image under the functor Ccell−∗ could realize the operadic bimodule n−ΩBAs−Morph.
We will still compute the signs for the action-composition maps by introducing some suitable spaces
of metric trees, which do not de�ne an operadic bimodule but will however carry enough structure
for our computations. The di�erential will simply be de�ned by reading the signs arising in the top
dimensional strata of the boundary of the CW-complex ∆n×CT m endowed with its n−ΩBAs-cell
decomposition.
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4.4.1. Notation. As in [Maz21], we choose to use the formalism of orientations on trees to de�ne the
operadic bimodule n− ΩBAs−Morph. Recall that this formalism originates from [MS06].

De�nition 15. Given a broken stable ribbon tree tbr, an ordering of tbr is de�ned to be an ordering
of its i �nite internal edges e1, . . . , ei. Two orderings are said to be equivalent if one passes from
one ordering to the other by an even permutation. An orientation of tbr is then de�ned to be
an equivalence class of orderings, and written ω := e1 ∧ · · · ∧ ei. Each tree tbr has exactly two
orientations. Given an orientation ω of tbr we will write −ω for the second orientation on tbr, called
its opposite orientation.

In this section, we write tbr,g for a broken gauged stable ribbon tree, and tg for an unbroken
gauged stable ribbon tree.

De�nition 16. We set to be the unique stable gauged tree of arity 1 and call it the trivial
gauged tree. We de�ne the underlying broken stable ribbon tree tbr of a tbr,g to be the ribbon tree
obtained by �rst deleting all the in tbr,g, and then forgetting all the remaining gauges of tbr,g.
We will moreover refer to a gauge in tbr,g which is associated to a non-trivial gauged tree, as a
non-trivial gauge of tbr,g. An orientation on a broken gauged stable ribbon tree tbr,g is then de�ned
to be an orientation ω on tbr.

An instance of association tbr,g 7→ tbr

De�nition 17. Consider a gauged tree tbr,g which has b gauges, trivial or not. A list I := (I1, . . . , Ib)
of faces Ia ⊂ ∆n will be called a ∆n-labeling of tbr,g. The tree tbr,g endowed with its labeling will be
written (I, tbr,g).

We think of (I, tbr,g) as depicted in the �gure below, where trees are represented as corollae for the
sake of readability.

IbI1

4.4.2. De�nition of the spaces of operations.

De�nition 18 (Spaces of operations). Consider the Z-module freely generated by the pairs (I, tbr,g, ω),
where ω is an orientation on tbr,g and I is a ∆n-labeling of tbr,g. We de�ne the arity m space of
operations n− ΩBAs−Morph(m)∗ to be the quotient of this Z-module under the relation

(I, tbr,g,−ω) = −(I, tbr,g, ω) .

Introducing the notation |I| := ∑b
a=1 |Ia|, a pair (I, tbr,g, ω) is then de�ned to have degree

|(I, tbr,g, ω)| := |I|+ |tbr,g| .
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4.4.3. The oriented spaces CT m(I, tbr,g, ω). Consider a ∆n-labeled gauged tree (I, tbr,g), together
with a choice of orientation ω on tbr,g. We de�ne the spaces

CT m(I, tbr,g, ω) := I1 × · · · × Ib × CT m(tbr,g, ω) .

An element of CT m(I, tbr,g, ω) is thus of the form

(δ1, . . . , δb, λ1, . . . , λg, le1 , . . . , le(tbr)) ∈ I1 × · · · × Ib×]−∞,+∞[g×]0,+∞[e(tbr) ,

where the λi are the non-trivial gauges of tbr,g ordered from left to right, and the lei are the lengths
of the �nite internal edges of tbr ordered according to ω. These spaces are then simply oriented by
taking the product orientation of their factors.

4.4.4. De�nition of the action-compositions maps. We may now introduce the "action-composition"
maps on the spaces CT m(I, tbr,g), that we will use to de�ne the signs of the action-composition maps
for n− ΩBAs−Morph. De�ne the maps

Oi : CT (I, tbr,g, ω)× T (t′br, ω
′) = I× CT (tbr,g, ω)× T (t′br, ω

′)

−→ I× CT (tbr,g ◦i t′br, ω ∧ ω′) = CT (I, tbr,g ◦i t′br, ω ∧ ω′)
where I stands for the product I1 × · · · × Ib, and the arrow corresponds to the action-composition
map

CT (tbr,g, ω)× T (t′br, ω
′) −→ CT (tbr,g ◦i t′br, ω ∧ ω′) ,

of the operadic bimodule {CT m}m>1. De�ne also the maps

M : T (tbr, ω)× CT (I1, t1br,g, ω1)× · · · × CT (Is, tsbr,g, ωs)
−→ I1 × · · · × Is × T (tbr, ω)× CT (t1br,g, ω1)× · · · × CT (tsbr,g, ωs)

−→ CT (I1 ∪ · · · ∪ Is, µ(tbr, t
1
br,g . . . , t

s
br,g), ω ∧ ω1 ∧ · · · ∧ ωs)

where the second arrow corresponds to the action-composition map

T (tbr, ω)× CT (t1br,g, ω1)× · · · × CT (tsbr,g, ωs) −→ CT (µ(tbr, t
1
br,g . . . , t

s
br,g), ω ∧ ω1 ∧ · · · ∧ ωs) .

The maps Oi have sign +1. The maps M have sign (−1)†, where † is de�ned as follows. Writing
gi for the number of non-trivial gauges and ji for the number of gauge-vertex intersections of tibr,g,

i = 1, . . . , s, and setting t0br := tbr and g0 = j0 = dim(I0) = 0,

† :=

s∑

i=1

|Ii|
(
|tbr|+

i−1∑

l=1

|tlbr,g|
)

+

s∑

i=1

gi

(
|tbr|+

i−1∑

l=1

|tlbr|
)

+

s∑

i=1

ji

(
|tbr|+

i−1∑

l=1

|tlbr,g|
)
.

De�nition 19 (Action-composition maps). The action of the operad ΩBAs on n−ΩBAs−Morph
is de�ned as

(I, tbr,g, ω) ◦i (t′br, ω
′) = (I, tbr,g ◦i t′br, ω ∧ ω′) ,

µ((tbr, ω), (I1, t1br,g, ω1), . . . , (Is, tsbr,g, ωs)) = (−1)†(I1 ∪ · · · ∪ Is, µ(tbr, t
1
br,g . . . , t

s
br,g), ω ∧ ω1 ∧ · · · ∧ ωs) .

Using for instance the maps Oi and M , and remembering the Koszul sign rules, we can check
that these action-composition maps satisfy indeed all the associativity conditions for an operadic
bimodule. What's more, choosing a distinguished orientation for every gauged stable ribbon tree
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tg ∈ SCRT , this de�nition of the operadic bimodule n− ΩBAs−Morph amounts to de�ning it as
the free operadic bimodule in graded Z-modules

n− ΩBAs−Morph = FΩBAs,ΩBAs( I , I ,
I
,
I
, · · · , (I, SCRTm), · · · ; I ⊂ ∆n) .

It remains to de�ne a di�erential on the generating operations (I, tg, ω) to recover de�nition 13.

4.4.5. The boundary of the compacti�ed moduli spaces CT m(tg). Before de�ning the di�erential on
the operadic bimodule n−ΩBAs−Morph, we recall the signs for the top dimensional strata in the
boundary of the compacti�ed moduli spaces CT m(tg) that were computed in section I.5.2 in [Maz21].

We �x for the rest of this subsection a gauged stable ribbon tree tg whose gauge intersects j of its
vertices. We also choose an orientation e1 ∧ · · · ∧ ei on tg and order the j gauge-vertex intersections
from left to right

v1 vj
.

The (int-collapse) boundary corresponds to the collapsing of an internal edge that does not inter-
sect the gauge of the tree t. Suppose that it is the p-th edge ep of t which collapses. Write moreover
(t/ep)g for the resulting gauged tree and ωp := e1 ∧ · · · ∧ êp ∧ · · · ∧ ei for the induced orientation on
the edges of t/ep. The boundary component CT m((t/ep)g, ωp) bears a sign

(−1)p+1+j(int-collapse)

in the boundary of CT m(tg, ω).

The (gauge-vertex) boundary corresponds to the gauge crossing exactly one additional vertex of t.
We suppose that this intersection takes place between the k-th and (k+ 1)-th intersections of tg and
write t0g for the resulting gauged tree. If the crossing results from a move

,

the boundary component CT m(t0g, ω) has sign

(−1)j+k(gauge-vertex A)

in the boundary of CT m(tg, ω). If the crossing results from a move

,

the boundary component CT m(t0g, ω) has sign

(−1)j+k+1(gauge-vertex B)

in the boundary of CT m(tg, ω).

The (above-break) boundary corresponds either to the breaking of an internal edge of t, that is
located above the gauge or intersects the gauge, or, when the gauge is below the root, to the outgoing
edge breaking between the gauge and the root. Denote e0 the outgoing edge of t. Suppose that it
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is the p-th edge ep of t which breaks and write moreover (tp)g for the resulting broken gauged tree.
The boundary component CT m((tp)g, ωp) bears a sign

(−1)p+j(above-break)

in the boundary of CT m(tg, ω).

The (below-break) boundary corresponds to the breaking of edges of t that are located below the
gauge or intersect it, such that there is exactly one edge breaking in each non-self crossing path
from an incoming edge to the root. Write (tbr)g for the resulting broken gauged tree. We order from
left to right the s non-trivial unbroken gauged trees t1g, . . . , t

s
g of (tbr)g and denote ej1 , . . . , ejs the

internal edges of t whose breaking produces the trees t1g, . . . , t
s
g. Beware that we do not necessarily

have that j1 < · · · < js. To this extent, we denote ε(j1, . . . , js;ω) the sign obtained after modifying
ω by moving ejk to the k-th spot in ω. We write ωbr for the induced orientation on (tbr)g, which is
obtained by deleting the edges ejk in ω. The boundary component CT m((tbr)g, ωbr) has sign

(−1)ε(j1,...,js;ω)+1+j(below-break)

in the boundary of CT m(tg, ω).

4.4.6. De�nition of the di�erential.

De�nition 20 (Di�erential). The di�erential of a generating operation (I, tg, ω) is de�ned by reading

the signs of the top dimensional strata in the boundary of the space I × CT m(tg, ω), endowed with
its dim(I)− ΩBAs cell decomposition. It reads as

∂(I, tg, ω) :=

dim(I)∑

l=0

(−1)l(∂singl I, tg, ω) + (−1)|I|
∑

(−1)†ΩBAs(I, int− collapse(tg, ω))

+ (−1)|I|
∑

(−1)†ΩBAs(I, gauge− vertex(tg, ω)) + (−1)|I|
∑

(−1)†ΩBAs(I, above− break(tg, ω))

+ (−1)|I|
∑

I1∪···∪Ib=I
(−1)†ΩBAs((I1, . . . , Ib), below − break(tg, ω)) ,

where b denotes the number of gauges of below − break(tg) and the signs (−1)†ΩBAs denote the
ΩBAs−Morph signs listed in the previous subsection.

For instance, choosing the orientation e1 ∧ e2 on

e1 e2 ,

the signs in the computation of subsection 3.1.2 are

∂

(
[0 < 1 < 2] , e1 ∧ e2

)
=

(
[1 < 2] , e1 ∧ e2

)
−
(

[0 < 2] , e1 ∧ e2

)
+

(
[0 < 1] , e1 ∧ e2

)

−
(

[0 < 1 < 2] , e1 ∧ e2

)
−
(

[0 < 1 < 2] , e1 ∧ e2

)
+

(
[0 < 1 < 2]

, e1 ∧ e2

)

−
(

[0] [0 < 1 < 2] , ∅
)
−
(

[0 < 1] [1 < 2] , ∅
)
−
(

[0 < 1 < 2] [2] , ∅
)

+

(
[0 < 1 < 2]

, e1

)
−
(

[0 < 1 < 2]
, e2

)
.



HIGHER ALGEBRA OF A∞ AND ΩBAs-ALGEBRAS IN MORSE THEORY II 43

This concludes the construction of the operadic bimodule n− ΩBAs−Morph.

4.4.7. The morphism of operadic bimodules n−A∞ −Morph→ n−ΩBAs−Morph. To conclude,
it remains to de�ne the morphism of operadic bimodules n−A∞ −Morph→ n− ΩBAs−Morph.
It is enough to de�ne this morphism on the generating operations of n−A∞ −Morph and to check
that it is compatible with the di�erentials.

Proposition 9. The map n−A∞−Morph→ n−ΩBAs−Morph de�ned on the generating operations
of n−A∞ −Morph as

fI,m 7−→
∑

tg∈CBRTm
(I, tg, ωcan)

is a morphism of (A∞, A∞)-operadic bimodules.

We refer to section I.5.3 of [Maz21] for the de�nition of the canonical orientations ωcan. It is
easy to check that this map is indeed compatible with the di�erentials : either making explicit
signs computations, or noting that this morphism corresponds to the re�nement of the n−A∞-cell
decomposition of n− Jm to its n− ΩBAs-cell decomposition.
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Part 2

The simplicial sets HOMA∞−Alg(A,B)•

1. ∞-categories, Kan complexes and cosimplicial resolutions

1.1. ∞-categories and Kan complexes.

1.1.1. Motivation. The operads A∞ and ΩBAs provide two equivalent frameworks to study the
notion of "dg-algebras which are associative up to homotopy". See section III.2 of [Maz21] for a
detailed account on the matter. In fact, the operad A∞ can also be used to de�ne the notion of
"dg-categories whose composition is associative up to homotopy" : these categories are called A∞-
categories. We recall their de�nition in subsection 3.1. They are of prime interest in symplectic
topology for instance, where they appear as the Fukaya categories of symplectic manifolds. The
notion of ΩBAs-categories could be de�ned similarly, but it has never appeared in the litterature to
the author's knowledge.

A∞-categories are thus "categories" which are endowed with a collection of operations corre-
sponding to all the higher coherent homotopies arising from the associativity up to homotopy of
their composition. They are thus operadic in essence. The notion of ∞-category that we are going
to de�ne below, provides another framework to study "categories whose composition is associative
up to homotopy" but is, on the other hand, not operadic : it does not come with a speci�c set of
operations encoding rigidly all the higher coherent homotopies.

1.1.2. Intuition. A category can be seen as the data of a set of points, its objects, together with a
set of arrows between them, the morphisms. The composition is then simply an operation which
produces from two arrows A→ B and B → C a new arrow A→ C.

Part of the data of an ∞-category will also consist in a set of objects and arrows between them.
The di�erence will lie in the notion of composition. Given two arrows u : A → B and v : B → C,
an ∞-category will have the property that there always exists a new arrow A → C, which can be
called a composition of u and v. But this arrow is not necessarily unique, and above all, it results
from a property of the "category" and is not produced by an operation of composition. It is in this
sense that an ∞-category is not operadic.

1.1.3. De�nition. The correct framework to formulate this paradigm is the one of simplicial sets. We
write ∆n for the simplicial set naturally realizing the standard n-simplex ∆n, and Λkn for the simplicial
set realizing the simplicial subcomplex obtained from ∆n by removing the faces [0 < · · · < n] and

[0 < · · · < k̂ < · · · < n]. The simplicial set Λkn is called a horn, if 0 < k < n it is called an inner
horn, and if k = 0 or k = n it is called an outer horn.

An ∞-category is then de�ned to be a simplicial set X which has the left-lifting property with
respect to all inner horn inclusions Λkn → ∆n : for each n > 2 and each 0 < k < n, every simplicial
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map u : Λkn → X extends to a simplicial map u : ∆n → X whose restriction to Λkn is u. This is
illustrated in the diagram below.

Λkn X

∆n

u

∃ u

The vertices of X are then to be seen as objects, while its edges correspond to morphisms. An
∞-groupoid, also called Kan complex, is de�ned to be a simplicial set X which has the left-lifting
property with respect to all horn inclusions.

For an ∞-category, the left-lifting property with respect to Λ1
2 → ∆2 ensures that the following

diagram can always be �lled by the dashed arrows

0 1

2

.

The [0 < 2] edge will represent a composition of the morphisms associated to [0 < 1] and [1 < 2].
For an ∞-groupoid, the left-lifting property with respect to the outer horns Λ0

2 → ∆2 and Λ2
2 → ∆2

ensures that every morphism is invertible up to homotopy (hence the name ∞-groupoid). The
intuition of subsection 1.1.2 is thus realized, and gives rise to a wide range of higher homotopies
controlled by the combinatorics of simplicial algebra.

1.1.4. Simplicial homotopy groups of a Kan complex ([GJ99]). Let XXX := {Xn}n>0 be a simplicial
set. It is straighforward to de�ne its set of path components π0(X). We de�ne a simplicial homotopy
between two simplicial maps f, g : ∆n → X to be a simplicial map h : ∆1 × ∆n → X such that
h ◦ (id× d1) = g and h ◦ (id× d0) = f , i.e. such that the following diagram commutes

∆n

∆1 ×∆n X

∆n

id×d0
f

h

id×d1

g

.

Suppose now thatXXX is a Kan complex and choose a vertex x ∈ X0. One can associate to the pair
(XXX,x) a sequence of groups called its simplicial homotopy groups. For n > 1, consider the set of
simplicial maps ∆n →XXX taking ∂∆n to x. We say that two such maps f, g : ∆n →XXX are equivalent
if there exists a simplicial homotopy h from f to g, that maps ∆1 × ∂∆n to x. We de�ne πn(XXX,x)
to be the set of equivalence classes of such maps under this equivalence relation. It can be endowed
with a composition law as follows. Given two representatives f and g in πn(XXX,x), de�ne the inner
horn φf,g : Λnn+1 → XXX to send the i-th face to x for i = 0, . . . , n − 2, the (n − 1)-th face to f and
the (n + 1)-th face to g. The simplicial set XXX being a Kan complex, this horn can be �lled to a
(n+ 1)-simplex Φ : ∆n+1 →XXX. We then de�ne [f ] · [g] ∈ πn(XXX,x) to be the equivalence class of the
n-th face of Φ.
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The assumption that XXX is a Kan complex then ensures that this composition law is well-de�ned,
and that the set πn(X,x) endowed with this composition law is indeed a group, called the n-th
(simplicial) homotopy group of XXX at x. This group is abelian when n > 2. Moreover, it is naturally
isomorphic to the classical homotopy group πn(|XXX|, x) of the geometric realization |XXX| of XXX.

1.2. Cosimplicial resolutions in model categories. One way to produce Kan complexes is
through cosimplicial resolutions in model categories. All the results stated in this section are drawn
from [Hir03]. We refer to chapters 7 and 8 for basics on model categories, and will only list the
technical details that we will need in the proof of Theorem 1.

We de�ne the simplex category ∆ to be the category whose objets are nonnegative integers [n] and
whose sets of morphisms ∆([n], [m]) consists of the increasing maps from {0, . . . , n} to {0, . . . ,m}.
This is the category encoding cosimplicial objects : a cosimplicial object in a category C corresponds
to a functor ∆ → C. We denote C∆ the category of cosimplicial objects, whose morphisms are the
morphisms of cosimplicial objects, i.e. the natural transformations between the associated functors
∆ → C. For an object C ∈ C we denote moreover const∗C the constant cosimplicial object whose
cofaces and codegeneracies are the identity maps of C.

Let now C be a model category. The category of cosimplicial objects C∆ can then also be endowed
with a model category structure, called its Reedy model category structure. Its weak equivalences
are the maps of cosimplicial objects that are level-wise weak equivalences in C. Its co�brants objects
are the cosimplicial objects CCC := {Cn} such that the latching maps LnCCC → Cn are co�brations in
C. We refer to chapters 15 and 16 of [Hir03] for a de�nition of latching objects and latching maps,
together with a complete description of the Reedy model category structure on C∆.

Let C ∈ C. A cosimplicial resolution of C is de�ned to be a co�brant approximation CCC of const∗C
in the model category C∆. In other words, it is the data of a cosimplicial object CCC := {Cn}n>0 of
C together with a cosimplicial morphism CCC → const∗C, such that the maps Cn → C are weak
equivalences in C and the latching maps LnCCC → Cn are co�brations in C.

Lemma 1 (Lemma 16.5.3 of [Hir03]). If CCC → const∗C is a cosimplicial resolution in C and D is a
�brant object of C, then the simplicial set C(CCC,D) is a Kan complex.

Following [DK80], the simplicial set C(CCC,D) is called a function complex or homotopy function
complex from C to D, and its homotopy type is sometimes called the derived hom space from C to
D.

2. The HOM-simplicial sets HOMA∞−Alg(A,B)•

2.1. The HOM-simplicial set HOMA∞(A,B)• is a Kan complex. The HOM-simplicial sets
HOMA∞−Alg(A,B)• provide a satisfactory framework to study the higher algebra of A∞-algebras
thanks to the following theorem :

Theorem 1. For A and B two A∞-algebras, the simplicial set HOMA∞(A,B)• is a Kan complex.

The simplicial homotopy groups of this Kan complex are computed in subsection 2.4. In fact, we
can moreover give an explicit description of all inner horn �llers :
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Proposition 11. For every inner horn Λkn ⊂ ∆n, there is a one-to-one correspondence




�llers

Λkn HOMA∞(A,B)•

∆n





←→
{

families of maps of degree −n
F

(m)
∆n : (sA)⊗m → sB, m > 1

}
.

In other words, the Kan complex HOMA∞(A,B)• is in particular an algebraic ∞-category.

Note that our choice of terminology algebraic ∞-category is borrowed from [RNV20].

One aspect of this construction needs however to be clari�ed. The points of these∞-groupoids are
the A∞-morphisms, and the arrows between them are the A∞-homotopies. This can be misleading at
�rst sight, but the points are the morphisms and NOT the algebras and the arrows are the homotopies
and NOT the morphisms.

2.2. Proof of Theorem 1.

2.2.1. The model category structure on dg − Cogc. Let C be a dg-coalgebra. De�ne for every n > 2,

∆(n) := (id⊗n−2 ⊗∆) ◦ (id⊗n−3 ⊗∆) ◦ · · · ◦∆

FnC := Ker(∆(n+1)) .

We say that C is cocomplete if C = ∪n>1FnC. Every tensor coalgebra TV is cocomplete. Given
any coalgebra C and any cocomplete coalgebra D, their tensor product C ⊗D is also a cocomplete
dg-coalgebra.

We denote dg − Cogc ⊂ dg − Cog the full subcategory of cocomplete dg-coalgebras. We introduce
moreover dg − Alg, the category of dg-algebras with morphisms of dg-algebras between them. These
two categories can then be related through the classical bar-cobar adjunction

Ω : dg − Cogc dg − Alg : B

a

.

Theorem 1.3.1.2 of [LH02] states that the category dg − Cogc can be made into a model category
with the three following classes of morphisms :

(i) the class of weak equivalences is the class of morphisms f : C → C ′ such that Ωf : ΩC → ΩC ′

is a quasi-isomorphism ;
(ii) the class of co�brations is the class of morphisms which are monomorphisms when seen as

standard morphisms between cochain complexes ;
(iii) the class of �brations is the class of morphisms which admit the right-lifting property with

respect to trivial co�brations.

We point out that a weak equivalence between cocomplete dg-coalgebras is always a quasi-isomorphism,
but the converse is not true. We list in Lemma 2 some noteworthy properties of this model category
structure on dg − Cogc that we will need in our upcoming proof of Theorem 1. They can all be
found in section 1.3 of [LH02].
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Let C be a dg-Z-module. A �ltration of C is de�ned to be a sequence of sub-dg-Z-modules Ci ⊂ C
such that

C0 ⊂ C1 ⊂ · · · ⊂ Ci ⊂ Ci+1 ⊂ · · · .
It is admissible if colim(Ci) = C and C0 = 0. Given two �ltered dg-Z-modules C and C ′, one can
then de�ne a �ltered morphism f : C → C ′ to be a dg-morphism such that ∀i, f(Ci) ⊂ C ′i. It is
de�ned to be a �ltered quasi-isomorphism if ∀i, the induced morphism

fi : Ci/Ci−1 −→ C ′i/C
′
i−1

is a quasi-isomorphism. A �ltered dg-coalgebra is then de�ned to be a coalgebra in the category of
�ltered dg-Z-modules, in other words a dg-coalgebra together with a �ltration Ci on its underlying
dg-Z-module and whose coproduct satis�es

∆C(Ci) ⊂
⊕

p+q=i

Cp ⊗ Cq ∀i .

Lemma 2 ([LH02]). (1) Every dg-coalgebra in dg − Cogc is co�brant.
(2) A dg-coalgebra in dg − Cogc is �brant if and only if it is isomorphic as a graded coalgebra to

a tensor coalgebra TV .
(3) Filtered quasi-isomorphisms between admissible �ltered cocomplete dg-coalgebras are weak

equivalences.

2.2.2. Proof of Theorem 1. Recall that the simplicial set HOMA∞−Alg(A,B)• is de�ned as

HOMA∞−Alg(A,B)n = Homdg−Cogc(∆∆∆
n ⊗ T (sA), T (sB)) .

Following Lemma 2, the cocomplete dg-coalgebra T (sB) is �brant. It is thus enough to prove that the
cosimplicial cocomplete dg-coalgebra CCC := {∆∆∆n⊗T (sA)}n>0 is a cosimplicial replacement of T (sA)
and then apply Lemma 1 in the model category dg − Cogc, to conclude that HOMA∞−Alg(A,B)• is
a Kan complex. Following subsection 1.2, we have to prove that :

(i) the latching maps LnCCC → Cn = ∆∆∆n ⊗ T (sA) are co�brations, i.e. they are injective ;
(ii) the maps p ⊗ IdT (sA) : ∆∆∆n ⊗ T (sA) → ∆∆∆0 ⊗ T (sA) = T (sA) are weak equivalences in the

model category dg − Cogc, where p : ∆∆∆n →∆∆∆0 is the map collapsing the simplex ∆n on one
of its vertices.

The latching map LnCCC → Cn simply corresponds to the inclusion ∂∆∂∆∂∆n ⊗ T (sA) ↪→ ∆∆∆n ⊗ T (sA),
hence is injective. See chapters 15 and 16 of [Hir03] for details on how to compute LnCCC. This proves
point (i).

To prove point (ii), Lemma 2 states that it is enough to show that p⊗ IdT (sA) is in fact a �ltered

quasi-isomorphism. Endow ∆∆∆n ⊗ T (sA) with the �ltration

Fi
(
∆∆∆n ⊗ T (sA)

)
:= ∆∆∆n ⊗

i⊕

j=1

(sA)⊗j .

This �ltration is admissible. To prove that p⊗ IdT (sA) is a �ltered quasi-isomorphism of admissible

�ltered dg-coalgebras, we have to prove that the maps

p⊗ Id(sA)⊗i : ∆∆∆n ⊗ (sA)⊗i −→ (sA)⊗i
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are quasi-isomorphisms. This is a simple consequence of the fact that the dg-module ∆∆∆n is a
deformation retract of ∆∆∆0. Indeed, de�ning the degree 0 dg-morphism i : ∆∆∆0 →∆∆∆n as [0]→ [0] and
the degree -1 map h : ∆∆∆n →∆∆∆n as

[i0 < · · · < ik] 7−→ 0 if i0 = 0 ,

[i0 < · · · < ik] 7−→ [0 < i0 < · · · < ik] if i0 6= 0 ,

we check that pi = Id and Id− ip = [∂, h]. This concludes the proof of Theorem 1.

2.3. Proof of Proposition 11.

2.3.1. Proof of Proposition 11. Let A and B be two A∞-algebras. We now prove Proposition 11,
using the shifted bar construction framework, that is by de�ning an A∞-algebra to be a set of degree
+1 operations bn : (sA)⊗n → sA satisfying equations

∑

i1+i2+i3=n

bi1+1+i3(id⊗i1 ⊗ bi2 ⊗ id⊗i3) = 0 .

The proof will mainly consist of easy but tedious combinatorics. We recommend reading it in two
steps : �rst ignoring the signs ; then adding them at the second reading stage and referring to
section 4.2 for the sign conventions on the shifted A∞-equations.

Consider an inner horn Λkn → HOMA∞(A,B)•, where 0 < k < n. It corresponds to a collection
of degree −dim(I) morphisms

F
(m)
I : (sA)⊗m −→ sB

for I ⊂ Λkn, which satisfy the A∞-equations

dim(I)∑

j=0

(−1)jF
(m)
∂jI

+(−1)|I|
∑

i1+i2+i3=m

F
(i1+1+i3)
I (id⊗i1⊗bi2⊗id⊗i3) =

∑

i1+···+is=m
I1∪···∪Is=I

bs(F
(i1)
I1
⊗· · ·⊗F (is)

Is
) .

Filling this horn amounts then to de�ning a collection of operations

F
(m)

[0<···<k̂<···<n]
: (sA)⊗m −→ sB and F

(m)
∆n : (sA)⊗m −→ sB ,

of respective degree −(n− 1) and −n, and respectively satisfying the equations

n−1∑

l=0

(−1)lF
(m)

∂l[0<···<k̂<···<n]
+(−1)n−1

∑

i1+i2+i3=m

F
(i1+1+i3)

[0<···<k̂<···<n]
(id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is=m
I1∪···∪Is=[0<···<k̂<···<n]

bs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
) ,(i)

and
n∑

j=0

(−1)jF
(m)
∂j∆n+(−1)n

∑

i1+i2+i3=m

F
(i1+1+i3)
∆n (id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is=m
I1∪···∪Is=∆n

bs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
) .(ii)
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We begin by pointing out that the operations F
(m)
∆n indeed completely determine the maps

F
(m)

[0<···<k̂<···<n]
under the formula

F
(m)

[0<···<k̂<···<n]
= (−1)k




n∑

j=0
j 6=k

(−1)j+1F
(m)

[0<···<ĵ<···<n]
+

∑

i1+···+is=m
I1∪···∪Is=∆n

bs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
)

+(−1)n+1
∑

i1+i2+i3=m

F
(i1+1+i3)
∆n (id⊗i1 ⊗ bi2 ⊗ id⊗i3)

)
.

To prove Proposition 11, it remains to show that for any collection of operations (F
(m)
∆n )m>1, we

can �ll the inner horn Λkn → HOMA∞(A,B)• by de�ning the operations F
(m)

[0<···<k̂<···<n]
as above.

Note that the F
(m)

[0<···<k̂<···<n]
are well-de�ned as all the morphisms F

(m)
I appearing in their de�nition

correspond to faces of the horn Λkn or to the F
(m)
∆n .

It is clear that this choice of �ller satis�es equations (ii), and we have now to verify that equations
(i) are satis�ed. For the sake of readability, we will only carry out the details of the proof in the

case where F
(m)
∆n = 0 for all m. In this regard, we will list one by one the terms of the left-hand side

and right-hand side of this equality with their signs, and use the A∞-equations for the bi and the

F
(m)
I where I ⊂ Λkn, in order to show that the two sides are indeed equal.

The left-hand side consists of the following terms :

(−1)lF
(m)

∂l[0<···<k̂<···<n]
(A)

for l = 0, . . . , n− 1 ;

(−1)n+k+jF
(i1+1+i3)

[0<···<ĵ<···<n]
(id⊗i1 ⊗ bi2 ⊗ id⊗i3)(B)

for i1 + i2 + i3 = m and j = 0, . . . , k̂, . . . ,m ;

(−1)n−1+kbs(F
(j1)
I1
⊗ · · · ⊗ F (js)

Is
)(id⊗i1 ⊗ bi2 ⊗ id⊗i3)(C)

for i1 + i2 + i3 = m, j1 + · · ·+ js = i1 + 1 + i3 and I1 ∪ · · · ∪ Is = ∆n with Iu 6= ∆n for all u.

The right-hand side has the following terms :

bs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
)(D)

for i1 + · · · + is = m and I1 ∪ · · · ∪ Is = [0 < · · · < k̂ < · · · < n] with Iu 6= [0 < · · · < k̂ < · · · < n]
for all u ;

(−1)kbs(F
(i1)
I1
⊗ · · · ⊗ F (it−1)

It−1
⊗ bq(F (j1)

J1
⊗ · · · ⊗ F (jq)

Jq
)⊗ F (it+1)

It+1
⊗ · · · ⊗ F (is)

Is
)(E)

where, setting It = J1 ∪ · · · ∪ Jq, it = j1 + · · · + jq, i1 + · · · + is = m and I1 ∪ · · · ∪ Is = ∆n, with
It = ∆n and Jr 6= ∆n for all r ;

(−1)j+k+1bs(F
(i1)
I1
⊗ · · · ⊗ F (it)

It
⊗ · · · ⊗ F (is)

Is
)(F)
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for j = 0, . . . , k̂, . . . , n, where i1 + · · · + is = m and I1 ∪ · · · ∪ Is = [0 < · · · < ĵ < · · · < n] with

It = [0 < · · · < ĵ < · · · < n].

Our goal is to prove that A+B + C = D + E + F or equivalently, that

A+B + C −D − E − F = 0 .

Applying the A∞-equations for the F
(m)

[0<···<ĵ<···<n]
, j 6= k, we have that

A+B − F = G ,

the terms of the sum G being of the form

(−1)j+k+1bs(F
(i1)
I1
⊗ · · · ⊗ F (is)

Is
)(G)

where j = 0, . . . , k̂, . . . , n, i1 + · · · + is = m and I1 ∪ · · · ∪ Is = [0 < · · · < ĵ < · · · < n] with

Iu 6= [0 < · · · < ĵ < · · · < n] for all u.

Applying now the A∞-equations for the F
(iu)
Iu

, where Iu 6= ∆n, yields the equality

C −D +G = H ,

the terms of the sum H having the form

(−1)n−1+k+
∑s
u=t |Iu|bs(F

(i1)
I1
⊗ · · · ⊗ F (it−1)

It−1
⊗ bq(F (j1)

J1
⊗ · · · ⊗ F (jq)

Jq
)⊗ F (it+1)

It+1
⊗ · · · ⊗ F (is)

Is
)(H)

where, setting It = J1 ∪ · · · ∪ Jq and it = j1 + · · ·+ jq, i1 + · · ·+ is = m and I1 ∪ · · · ∪ Is = ∆n with
Iu 6= ∆n for all u.

Finally, applying the A∞-equations for the bi proves the equality

−E +H = 0 ,

which concludes the proof.

2.3.2. Remark on the proof. We point out that this proof does not adapt to the more general case
of a HOM-simplicial set HOMdg−Cog(C,C ′)•. Indeed, while we can always solve the equation

[∂, f∆n ] =
n∑

j=0

(−1)jf[0<···<ĵ<···<n] ,

by setting f∆n = 0 and f
[0<···<k̂<···<n]

= (−1)k
∑n

j=0,6=k(−1)j+1f[0<···<ĵ<···<n], this choice of mor-

phisms falls short to satisfy the equation

∆C′f∆n =
∑

I1∪I2=∆n

(fI1 ⊗ fI2)∆C .

2.4. Homotopy groups. The simplicial set HOMA∞−Alg(A,B)• being a Kan complex, we can in
particular compute its simplicial homotopy groups. We �x throughout the rest of this subsection an
A∞-morphism F from A to B, i.e. a point of HOMA∞−Alg(A,B)•. We will moreover work with the
suspended de�nition of n-morphisms that we already used in subsection 2.3.1.

Proposition 12. The set of path components π0 (HOMA∞−Alg(A,B)•) corresponds to the set of
equivalence classes of A∞-morphisms from A to B under the equivalence relation "being A∞-homotopic".
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A simplicial map ∆n → HOMA∞−Alg(A,B)• taking ∂∆n to F corresponds to a n-morphism

(F
(m)
I )m>1

I⊂∆n such that F
(m)
I = F (m) for all I such that dim(I) = 0 and F

(m)
I = 0 for all I such

that 0 < dim(I) < n. In other words, this simplicial map simply corresponds to the data of maps

F
(m)
∆n : (sA)⊗m → sB of degree −n such that

(−1)n
∑

i1+i2+i3=m

F
(i1+1+i3)
∆n

(
id⊗i1 ⊗ bi2 ⊗ id⊗i3

)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t

(
F (i1) ⊗ · · · ⊗ F (is) ⊗ F (l)

∆n ⊗ F (j1) ⊗ · · · ⊗ F (jt)
)
.(?)

Proposition 13. Let F ,G : ∆n → HOMA∞−Alg(A,B)• be two simplicial maps taking ∂∆n to F ,

that we will respectively denote (F
(m)
∆n ) and (G

(m)
∆n ). Two such maps are then equivalent under the

simplicial homotopy relation if and only if there exists a collection of maps H(m) : (sA)⊗m → sB of
degree −(n+ 1) such that

G
(m)
∆n − F (m)

∆n + (−1)n+1
∑

i1+i2+i3=m

H(i1+1+i3)(id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t(F
(i1) ⊗ · · · ⊗ F (is) ⊗H(l) ⊗ F (j1) ⊗ · · · ⊗ F (jt)) .

Proof. Recall from subsection 1.1.4 that a simplicial homotopy from F to G is de�ned to be a
simplicial map H : ∆1×∆n → HOMA∞−Alg(A,B)• such that H|[0]×∆n = F , H|[1]×∆n = G and that

maps ∆1×∂∆n to F . Beware that the datum of a simplicial mapH : ∆1×∆n → HOMA∞−Alg(A,B)•
is in general NOT equivalent to a morphism of dg-coalgebras ∆∆∆1 ⊗ ∆∆∆n ⊗ T (sA) → T (sB). To
understand the map H, we �rst have to make explicit the non-degenerate simplices of the simplicial
set ∆1 ×∆n.

Recall that the k-simplices of the simplicial set ∆m are the monotone sequences of integers
bounded by 0 and m

(
i0 i1 · · · ik

)
where 0 6 i0 6 i1 6 · · · 6 ik 6 m .

Following [Mil57], the non-degenerate k-simplices of the simplicial set ∆1 ×∆n are then labeled by
all pairs composed of a k-simplex σ of ∆1 and a k-simplex σ′ of ∆n such that there does not exist
0 6 j < k such that σj = σj+1 and σ′j = σ′j+1. For instance, the following two pairs of sequences

label non-degenerate 3-simplices of ∆1 ×∆3

(
0 0 0 1
0 1 2 3

) (
0 0 1 1
0 1 1 2

)
,

while the following pair of sequences is a degenerate 3-simplex of ∆1 ×∆3

(
0 0 0 1
0 1 1 3

)
.

We will use the following properties of the non-degenerate simplices of the simplicial set ∆1×∆n

in our proof of proposition 13 :
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(
0
0

) (
0
1

)

(
1
1

)(
1
0

)

(
0 1
0 1

)

(
0 1 1
0 0 1

)

(
0 0 1
0 1 1

)

(
0 0
0 1

)

(
0 1
1 1

)

(
1 1
0 1

)

(
0 1
0 0

)

Figure 13. On the left, the labeling of the non-degenerate simplices of ∆1 × ∆1.
On the right, the (unlabeled) non-degenerate simplices of ∆1 × ∆2. The two inner
non-degenerate 2-simplices of ∆1 ×∆2 are colored in red and in blue.

(i) There are exactly n+ 1 non-degenerate (n+ 1)-simplices, labeled by the pairs of sequences
(

0 0 0 · · · 0 1 1 · · · 1
0 1 2 · · · k k k + 1 · · · n

)
.

The non-degenerate (n+ 1)-simplex labeled by the above pair of sequences will be called the
k-th non-degenerate (n+ 1)-simplex of ∆1 ×∆n.

(ii) All non-degenerate simplices of dimension 6 n− 1 lie in ∆1 × ∂∆n.
(iii) All simplices of dimension > n+ 2 are degenerate.
(iv) There are exactly n non-degenerate n-simplices lying in the interior of ∆1 ×∆n. They are

labeled by the pairs of sequences
(

0 0 · · · 0 1 1 · · · 1
0 1 · · · k − 1 k k + 1 · · · n

)
for 1 6 k 6 n .

The non-degenerate n-simplex labeled by the above pair of sequences will be called the k-th
inner non-degenerate n-simplex of ∆1 ×∆n.

We point out that taking the l-th face of a simplex of ∆1 ×∆n simply corresponds to deleting the
l-th column of the array labeling it. For instance,

∂1

(
0 0 1 1
0 1 1 2

)
=

(
0 1 1
0 1 2

)
∂3

(
0 0 1 1
0 1 1 2

)
=

(
0 0 1
0 1 1

)
.

A simplicial homotopy H : ∆1 × ∆n → HOMA∞−Alg(A,B)• is equivalent to the data of maps

H
(m)
K : (sA)⊗m → sB for every non-degenerate simplex K of ∆1 ×∆n, which moreover satisfy the

A∞-equations for higher morphisms. According to the previous description of the non-degenerate
simplices of ∆1 ×∆n :

(i) The condition ∆1×∂∆n 7→ F implies that for every non-degenerate simplex K of dimension

1 6 dim(K) 6 n− 1, H
(m)
K = 0, and for every vertex v of ∆1 ×∆n, H

(m)
v = F (m). This also

implies that all non-degenerate n-simplices K lying in ∆1 × ∂∆n are such that H
(m)
K = 0.

(ii) The condition H|[0]×∆n = F , H|[1]×∆n = G implies that the non-degenerate n-simplices

[0]×∆n and [1]×∆n are respectively sent to the F
(m)
∆n and the G

(m)
∆n .
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(iii) For K the k-th inner non-degenerate n-simplex, we will write L
(m)
k := H

(m)
K . For a �xed k,

the maps L
(m)
k satisfy the same A∞-equations (?) as F

(m)
∆n and G

(m)
∆n . We moreover set

L
(m)
n+1 := F

(m)
∆n and L

(m)
0 := G

(m)
∆n .

(iv) Finally, we denote H
(m)
k for the collection of maps associated to the k-th (n+ 1)-simplex. It

satis�es the following A∞-equations

(−1)k+1L
(m)
k+1 + (−1)kL

(m)
k + (−1)n+1

∑

i1+i2+i3=m

H
(i1+1+i3)
k (id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t(F
(i1) ⊗ · · · ⊗ F (is) ⊗H(l)

k ⊗ F (j1) ⊗ · · · ⊗ F (jt)) .

Using this characterization of a simplicial homotopy from F to G, we check that the collection of
degree −(n+ 1) maps

H(m) :=

n∑

k=0

(−1)kH
(m)
k

is such that

G
(m)
∆n − F (m)

∆n + (−1)n+1
∑

i1+i2+i3=m

H(i1+1+i3)(id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t(F
(i1) ⊗ · · · ⊗ F (is) ⊗H(l) ⊗ F (j1) ⊗ · · · ⊗ F (jt)) .

Conversely, we check that such a collection of maps can be arranged into a simplical homotopy from

F to G, by de�ning L
(m)
0 := G

(m)
∆n , L

(m)
k := F

(m)
∆n for k > 1, H

(m)
0 := H(m) and H

(m)
k := 0 for k > 1.

This concludes the proof of the proposition. �

We �nally make explicit the composition law on these simplicial homotopy groups. Consider

(F
(m)
∆n )m>1 and (G

(m)
∆n )m>1 two representatives in πn (HOMA∞−Alg(A,B)•, F ). Filling the cone

φF∆n ,G∆n
: Λnn+1 → HOMA∞−Alg(A,B)• de�ned in subsection 1.1.4 with φ

(m)
∆n+1 = 0 as in the

proof of Proposition 11, we get that a representative for [F ] · [G] is

G
(m)
∆1 + F

(m)
∆1 −

∑

i1+···+is+l1
+j1+···+jt+l2
+k1+···+ku=m

bs+t+u+2(F (i1) ⊗ · · · ⊗ F (is) ⊗ F (l1)
∆1 ⊗ F (j1) ⊗ · · · ⊗ F (jt) ⊗G(l2)

∆1 ⊗ F (k1) ⊗ · · · ⊗ F (ku)) .

in the n = 1 case, and

G
(m)
∆n + F

(m)
∆n

if n > 2. We get in particular that this composition law is indeed abelian when n > 2. All of our
computations are summarized in the following theorem :

Theorem 2. (i) For n > 1, the set πn (HOMA∞−Alg(A,B)•, F ) corresponds to the equivalence

classes of collections of degree −n maps F
(m)
∆n : (sA)⊗m → sB satisfying equations ?, where

two such collections of maps (F
(m)
∆n )m>1 and (G

(m)
∆n )m>1 are equivalent if and only if there
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exists a collection of degree −(n+ 1) maps H(m) : (sA)⊗m → sB such that

G
(m)
∆n − F (m)

∆n + (−1)n+1
∑

i1+i2+i3=m

H(i1+1+i3)(id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t(F
(i1) ⊗ · · · ⊗ F (is) ⊗H(l) ⊗ F (j1) ⊗ · · · ⊗ F (jt)) .

(ii) The composition law on π1 (HOMA∞−Alg(A,B)•, F ) is given by the formula

G
(m)
∆1 + F

(m)
∆1 −

∑

i1+···+is+l1
+j1+···+jt+l2
+k1+···+ku=m

bs+t+u+2(F (i1) ⊗ · · · ⊗ F (is) ⊗ F (l1)
∆1 ⊗ F (j1) ⊗ · · · ⊗ F (jt) ⊗G(l2)

∆1 ⊗ F (k1) ⊗ · · · ⊗ F (kU )) .

(iii) If n > 2, the composition law on πn (HOMA∞−Alg(A,B)•, F ) is given by the formula

G
(m)
∆n + F

(m)
∆n .

2.5. A conjecture on the HOM-simplicial sets HOMΩBAs−Alg(A,B)•. Given A and B two
ΩBAs-algebras, we de�ne the HOM-simplicial set

HOMΩBAs−Alg(A,B)n := Hom(ΩBAs,ΩBAs)−op.bimod.(n− ΩBAs−Morph,Hom(A,B)) .

Drawing from Theorem 1, we conjecture the following result :

Conjecture 1. The simplicial sets HOMΩBAs−Alg(A,B)• are ∞-categories.

The proof without signs should follow the same lines as the proof without signs of Theorem 1,
working this time with stable ribbon trees and gauged stable ribbon trees instead of corollae. The
sign computations will however be much more complicated, as we did not describe a construction
analogous to the shifted bar construction which would yield ad hoc sign conventions.

3. Higher functors and pre-natural transformations between A∞-categories

3.1. n-functors between A∞-categories. Recall that an A∞-category A is de�ned to be the data

(i) of a collection of objects Ob(A) ;
(ii) for every A0, A1 ∈ Ob(A) of a dg-module A(A0, A1) ;
(iii) for every A0, . . . , An ∈ Ob(A) of a degree 2− n map

mn : A(A0, A1)⊗ · · · ⊗ A(An−1, An) −→ A(A0, An) ,

such that the maps mn satisfy a categorical version of the A∞-equations for A∞-algebras.

The maps mn are called the higher compositions of A and are to be thought of as the higher
homotopies encoding the lack of associativity of the composition maps m2. In particular, an A∞-
category A induces an ordinary category H∗(A) in cohomology. We refer to subsection 3.3 for a
discussion of the existence of identity morphisms in H∗(A).

An A∞-functor between two A∞-categories F : A → B is then de�ned to be the data

(i) of a map F : Ob(A)→ Ob(B) ;
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(ii) for every A0, . . . , An ∈ Ob(A) of a degree 1− n map

fn : A(A0, A1)⊗ · · · ⊗ A(An−1, An) −→ B(F(A0),F(An)) ,

such that the maps fn satisfy a categorical version of the A∞-equations for A∞-morphisms.

A∞-functors correspond to functors between A∞-categories that preserve the composition up to
higher coherent homotopies, and induce ordinary functors H∗(F) : H∗(A) → H∗(B) between the
cohomological categories.

One can then similarly de�ne a categorical generalization of n-morphisms between A∞-algebras
given by n-functors between A∞-categories. The sets of n-functors between two A∞-categories A
and B then �t into a simplicial set

HOMA∞−Cat(A,B)• .

It is straightforward from the proof of subsection 2.3.1 that these simplicial sets are again algebraic
∞-categories. In analogy with Theorem 1, we expect that these simplicial sets are Kan complexes.
The proof of this statement would rely on working out the homotopy theory of dg-cocategories.

3.2. The A∞-category of A∞-functors FuncA,B and the simplicial nerve functor. Given two
A∞-categories A and B, Fukaya constructed in [Fuk02] an A∞-category FuncA,B whose objects are
A∞-functors from A to B. See also [LH02] and [Sei08]. The goal of this section is to compare the
construction of [Fuk02] to the Kan complex HOMA∞−Cat(A,B)•.

We begin by de�ning the A∞-category FuncA,B. The objects of FuncA,B are A∞-functors A → B.
Given two A∞-functors F0 = {f (m)

0 } and F1 = {f (m)
1 }, an element F01 ∈ FuncA,B(F0,F1) is called

a pre-natural transformation and consists of a collection of morphisms

f
(m)
01 : A(A0, A1)⊗ · · · ⊗ A(An−1, An) −→ B(F0(A0),F1(An))

for m > 0, where f
(0)
01 corresponds to an element of B(F0(A),F1(A)) for all A ∈ A. A pre-natural

transformation has degree r if each morphism f
(m)
01 has degree r − m. The di�erential m1 on

FuncA,B(F0,F1) is then de�ned as

(m1(F01))(m) :=
∑

i1+i2+i3=m

±f (i1+1+i3)
01 (id⊗i1 ⊗mi2 ⊗ id⊗i3) +

∑

|iii0|+l+|iii1|=m
±ms(fff

iii0
0 ⊗ f

(l)
01 ⊗ fffiii11 ) ,

where for a list iii0 := (i10, . . . , i
k0
0 ) of indices, we denote

|iii0| :=
k0∑

j=1

ij0 l(iii0) := k0 fffiii00 := f
(i10)
0 ⊗ · · · ⊗ f (i

k0
0 )

0 ,

and where s := l(iii0) + 1 + l(iii1) in the second sum. The A∞-operation

mn := FuncA,B(F0,F1)⊗ · · · ⊗ FuncA,B(Fn−1,Fn)→ FuncA,B(F0,Fn)

evaluated on an element F01 ⊗ · · · ⊗ Fn−1,n is de�ned as

(mn(F01, . . . ,Fn−1,n))(m) :=
∑

∑n
r=0 |iiir|+

∑n−1
r=0 lr,r+1=m

±ms(fff
iii0
0 ⊗ f

(l01)
01 ⊗ fffiii11 ⊗ · · · ⊗ f

(ln−1,n)
n−1,n ⊗ fffiiinn ) ,

where s := n+
∑s

r=0 l(iiir).
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In [Fao17b], Faonte de�nes the simplicial nerve NA∞ of an A∞-category. Given an A∞-category
C, the simplicial nerve NA∞ of C is a simplicial set NA∞(C) which has the property of being an
∞-category. A n-simplex in this simplicial set corresponds to the data for every 0 6 i 6 n of an
object fi ∈ C and for every 0 6 i0 < · · · < ik 6 n with k > 1 of an element fi0...ik ∈ C(fi0 , fik) of
degree 1− k, such that

m1(fi0...ik) =

k−1∑

j=1

(−1)jfi0...îj ...ik +
∑

0<j1<···<js−1<k
s>2

±ms(fi0...ij1 , . . . , fijs−1
...ik) .

One can thereby consider the simplicial set NA∞(FuncA,B), which is an ∞-category. Its n-simplices
correspond to the data of

(i) an A∞-functor F[i] = (f
(m)
[i] )m>1 from A to B for every 0 6 i 6 n,

(ii) and of a pre-natural transformation FI = (f
(m)
I )m>0 of degree 1−m+ |I| for every I ⊂ ∆n

such that dim(I) > 1,

which satisfy the following equations

[
∂, f

(m)
I

]
=

dim(I)−1∑

j=1

(−1)jf
(m)
∂jI

+
∑

i1+i2+i3=m
i2>2

±f (i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3) +

∑

i1+···+is=m
I1∪···∪Is=I

s>2

±ms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) .

These equations are almost but not exactly identical to the A∞-equations for n-functors de�ned
in this article. Indeed, the sum for the simplicial di�erential now runs over j = 1, . . . ,dim(I) − 1

and the operations f
(m)
I de�ning the n-simplex can have arity 0 when dim(I) > 1. These seemingly

minor di�erences account for the fact that the simplicial sets HOMA∞−Cat(A,B)• and NA∞(FuncA,B)
di�er fundamentally. Indeed, the 1-simplices of the simplicial set HOMA∞−Cat(A,B)• correspond to
A∞-homotopies between two A∞-functors and its higher simplices are to be understood as the higher
coherent homotopies generalizing A∞-homotopies. The simplices of the simplicial set NA∞(FuncA,B)
are to be interpreted di�erently. The equations computed in the previous paragraph show that
a 1-simplex F01 of NA∞(FuncA,B) corresponds exactly to an A∞-natural transformation between
two A∞-functors F0 and F1. A 1-simplex F01 corresponds indeed to a collection of operations
from the A∞-category A to the A∞-category B, and the arity 0 and 1 part of the equations they
satisfy show that F01 descends to an ordinary natural transformation H∗(F01) : H∗(F0)⇒ H∗(F1).
This is also the reason why the morphisms of the A∞-category FuncA,B are called pre-natural
transformations. The n-simplices of NA∞(FuncA,B) are then to be understood as higher A∞-natural
transformations between A∞-functors. This interpretation explains in particular why the simplicial
set HOMA∞−Cat(A,B)• is a Kan complex while NA∞(FuncA,B) is an∞-category but not necessarily
a Kan complex : homotopies should always be invertible (up to homotopy), but this has no reason
to hold in general for natural transformations.

3.3. Two notions of homotopies between A∞-functors. The A∞-category FuncA,B provides in
fact an alternative framework to de�ne a homotopy equivalence relation between A∞-functors. Fol-
lowing [Fuk17], we compare in this subsection this homotopy equivalence relation to our equivalence
relation induced by A∞-homotopies between A∞-functors.
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De�ne a unital A∞-algebra B to be an A∞-algebra B together with an element e ∈ B such that
∂e = 0, m2(e, ·) = m2(·, e) = id and mn(· · · , e, · · · ) = 0 when n > 3. A unital A∞-algebra yields in
particular a unital algebra H∗(B) in cohomology. One de�nes the notion of a unital A∞-category B
in a similar fashion. A unital A∞-category yields in fact an ordinary category H∗(B) whose identity
morphisms correspond to the cohomology classes of its unit morphisms. For two A∞-categories A
and B such that B is unital, one can moreover check that the A∞-category FuncA,B is again unital.

We suppose in the rest of this subsection that the A∞-category B is unital. Following [Fuk17],
de�ne a homotopy equivalence between two A∞-functors F and G to be a degree 0 pre-natural
transformation T ∈ FuncA,B(F ,G) for which there exists a degree 0 pre-natural transformation
T ′ ∈ FuncA,B(G,F) such that

(i) m1(T ) = 0 and m1(T ′) = 0, i.e. the pre-natural transformations T and T ′ are A∞-natural
transformations as de�ned in the previous subsection ;

(ii) m2(T , T ′) − IdF ∈ Im(m1) and m2(T ′, T ) − IdG ∈ Im(m1), where IdF denotes the unit of
FuncA,B(F ,F).

Two A∞-functors F and G are said to be homotopy equivalent if there exists a homotopy equivalence
between them. The A∞-natural transformations T and T ′ then induce natural equivalences H∗(T ) :
H∗(F) ⇒ H∗(G) and H∗(T ′) : H∗(G) ⇒ H∗(F) which are inverse to one another. In particular, if
F and G are homotopy equivalent then H∗(T ) ◦H∗(F) ◦H∗(T )−1 = H∗(G).

We say that two A∞-functors F and G are homotopic if there exists an A∞-homotopy between
them. Two homotopic A∞-functors F and G de�ne in particular the same functorH∗(F) = H∗(G) in
cohomology. These two notions of homotopy on A∞-functors are related by the following proposition
proven by Fukaya in [Fuk17] :

Proposition 14. Let B be a unital A∞-category and F ,G : A → B be two A∞-functors. If F and
G are homotopic then they are homotopy equivalent.

The converse is however not true in general.

4. The ∞-category of A∞-algebras ?

Given three A∞-algebras A, B and C together with two n-morphisms going respectively from A
to B and from B to C, we have not yet de�ned a way to compose them. In other words, we have
not de�ned a simplicial enrichment of the category A∞ − Alg.

4.1. Simplicially enriched categories. A simplicially enriched category D, or simplicial category
for short, is the data of

(i) a collection of objects Ob(D) ;
(ii) for every two objects A and B a simplicial set of morphisms between A and B, that we write

HOMD(A,B)n ;
(iii) simplicial composition maps

HOMD(A,B)n ×HOMD(B,C)n −→ HOMD(A,C)• ;

which satisfy the standard axioms of an ordinary category. De�ning a simplicial enrichment of an
ordinary category C consists then in de�ning a simplicial category C∆ having the same objects as C
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and such that the sets of vertices of its HOM-simplicial sets are exactly the sets of morphisms of C,
in other words

HOMC∆
(A,B)0 = HomC(A,B) for each n.

In the particular case of the category C := A∞ − Alg we have already constructed the HOM-
simplicial sets, and we would now like to de�ne simplicial composition maps

HOMA∞−Alg(A,B)n ×HOMA∞−Alg(B,C)n −→ HOMA∞−Alg(A,C)n .

It is enough to construct these simplicial maps for dg − Cog, i.e. to de�ne simplicial composition
maps

HOMdg−Cog(A,B)n ×HOMdg−Cog(B,C)n −→ HOMdg−Cog(A,C)n ,

which are associative, preserve the identity and lift the composition on HOM0 = Hom.

4.2. A natural candidate that fails to preserve the coproduct. Let F : ∆∆∆n ⊗ C → C ′ and
G : ∆∆∆n ⊗ C ′ → C ′′ be two morphisms of dg-coalgebras. The only natural candidate to construct
a composition is the Alexander-Whitney coproduct ∆∆∆∆n , i.e. we de�ne G ◦ F to be the following
composite of maps

∆∆∆n ⊗ C ∆∆∆n ⊗∆∆∆n ⊗ C ∆∆∆n ⊗ C ′ C ′′
∆∆∆∆n⊗idC id∆∆∆n⊗F G

.

Note that we use the word "map" and not "morphism" because we have yet to check that this
composite is indeed a morphism of dg-coalgebras.

Before moving on, we point out that for the composition of continuous maps of topological spaces
∆n ×X → Y we use the diagonal map of ∆n,

∆n ×X −→
diag∆n×idX

∆n ×∆n ×X −→
id∆n×F

∆n × Y −→
G

Z .

This construction cannot be reproduced in our case, as the diagonal map ∆∆∆n →∆∆∆n ⊗∆∆∆n does not
respect the gradings, nor does it respect the di�erentials.

Set ∆∆∆n
1 := ∆∆∆n, ∆∆∆n

2 := ∆∆∆n and write ∆∆∆∆n : ∆∆∆n → ∆∆∆n
1 ⊗∆∆∆n

2 for the Alexander-Whitney map
seen as a map from the dg-coalgebra ∆∆∆n to the product dg-coalgebra ∆∆∆n

1 ⊗∆∆∆n
2 . In the previous

composition, it is su�cient to prove that ∆∆∆∆n : ∆∆∆n → ∆∆∆n
1 ⊗∆∆∆n

2 is a morphism of dg-coalgebras to
prove that G ◦ F is a morphism of dg-coalgebras. This map does preserve the di�erential, but it
does not preserve the coproduct ! Indeed, consider the following diagram

∆∆∆n ∆∆∆n
1 ⊗∆∆∆n

2 ∆∆∆n
1 ⊗∆∆∆n

1 ⊗∆∆∆n
2 ⊗∆∆∆n

2

∆∆∆n ⊗∆∆∆n (∆∆∆n
1 ⊗∆∆∆n

2 )⊗ (∆∆∆n
1 ⊗∆∆∆n

2 )

∆∆∆∆n

∆∆∆∆n

∆∆∆∆n1
⊗∆∆∆∆n2

id⊗τ⊗id

∆∆∆∆n⊗∆∆∆∆n

.

Up to specifying the correct signs, the upper composite path of the square is the map

I 7−→
∑

I1∪I2∪I3∪I4=I

I1 ⊗ I3 ⊗ I2 ⊗ I4 ,

where I1∪I2∪I3∪I4 denotes an overlapping partition of the face I ⊂ ∆n, while the lower composite
path of the square is the map

I 7−→
∑

I1∪I2∪I3∪I4=I

I1 ⊗ I2 ⊗ I3 ⊗ I4 .
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These two maps are not equal, the square does not commute. The map G ◦ F is in particular not a
morphism of dg-coalgebras, and as a result does not belong to HOMdg−Cog(A,C)n. It ensues that
the composition fails to be lifted to higher morphisms with this naive approach.

Still, something more can be said about the previous non-commutative square. Again, up to
computing the correct signs, the map

∆∆∆n −→ (∆∆∆n
1 ⊗∆∆∆n

2 )⊗ (∆∆∆n
1 ⊗∆∆∆n

2 )

I 7−→
∑

I1∪I2∪I3∪I4∪I5=I

I1 ⊗ I3 ⊗ (I2 ∪ I4)⊗ I5 ,

de�nes a homotopy between the upper composite path and the lower composite path of the square :
it �lls the square to make it homotopy-commutative. In the language introduced in [MS03], the
upper composite path is equal to 1324, the lower one is equal to 1234, and the �ller is equal to
13234. Using the results of [MS03], the author proves in [Maz] that :

Theorem 3. The Alexander-Whitney coproduct can be lifted to an A∞-morphism between the dg-
coalgebras ∆∆∆n and ∆∆∆n

1 ⊗∆∆∆n
2 , whose �rst higher homotopy is the map 13234.

4.3. A second approach using the tensor product of A∞-morphisms. We proved in sub-
section 1.5 of part 1 that a n-morphism from A to B can equivalently be de�ned as a morphism
of A∞-algebras A → ∆∆∆n ⊗ B. Using this de�nition, we can construct the composition of two
n-morphisms A→∆∆∆n ⊗B and B →∆∆∆n ⊗ C as

G ◦ F := A −→
F

∆∆∆n ⊗B −→
id∆∆∆n⊗G

∆∆∆n ⊗∆∆∆n ⊗ C −→∪⊗idc
∆∆∆n ⊗ C .

In this composition, we write tensor products of A∞-morphisms id∆∆∆n⊗G and ∪⊗ idc between tensor
A∞-algebras. This requires some further explanations.

Given two A∞-algebras A and B, it is not straightforward to de�ne an A∞-algebra structure on
the tensor dg-module A⊗B. Indeed, if we de�ne naively the operations mA⊗B

n as

mA⊗B
n (a1 ⊗ b1, · · · , an ⊗ bn) := ±mA

n (a1, · · · , an)⊗mB
n (b1, · · · , bn) ,

they fail to satisfy the A∞-equations and do not even have the right degree. As explained in [MS06],
the de�nition of a natural tensor product of A∞-algebras can be done by constructing a morphism
of operads A∞ → A∞⊗A∞, where A∞⊗A∞(n) := A∞(n)⊗A∞(n) denotes the Hadamard product
of operads. In [MTTV21], the authors construct such a morphism of operads by constructing a
polytopal diagonal on the associahedra Km and recover the formula originally computed on the dg-
level by Markl and Shnider in [MS06]. In the particular case of a dg-algebra A and an A∞-algebra
B, the A∞-structure on A ⊗ B deduced from a diagonal on the operad A∞ is moreover exactly
the one described at the beginning of subsection 1.5 of part 1. The A∞-algebras appearing in the
de�nition of the A∞-morphism G ◦ F : A→∆∆∆n ⊗ C are all of this form.

Given two A∞-morphisms fA : A1 → A2 and fB : B1 → B2, we would also like to de�ne a
morphism fA ⊗ fB : A1 ⊗ B1 → A2 ⊗ B2 between the tensor A∞-algebras A1 ⊗ B1 and A2 ⊗ B2.
This involves de�ning this time a morphism of operadic bimodules A∞ −Morph→ A∞ −Morph⊗
A∞−Morph, compatible with the morphism of operads A∞ → A∞⊗A∞ introduced in the previous
paragraph. Guillaume Laplante-Anfossi together with the author de�ne such a morphism in an
upcoming article [LAM], following the method of [MTTV21] by constructing an explicit polytopal
diagonal on the multiplihedra Jm. See also the work of Lipshitz, Ozsváth and Thurston in [LOT21].
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In the particular case when the A∞-algebras A1 and A2 are dg-algebras and the morphism fA is
a morphism of dg-algebras, the datum of a diagonal on A∞ −Morph is not necessary to de�ne the
A∞-morphism fA ⊗ fB. It can indeed simply be de�ned as

(fA ⊗ fB)m(a1 ⊗ b1, . . . , am ⊗ bm) := ±fA1 (a1 · · · · · am)⊗ fBm(b1, . . . , bm) ,

where a1 · · · · · am denotes the product of the elements a1, . . . , am. The map id∆∆∆n ⊗ G in the
composition G ◦ F is of this form. However, such a diagonal is necessary to de�ne the tensor A∞-
morphism ∪ ⊗ idC , as the map ∪ is this time an A∞-morphism and not a mere morphism between
dg-algebras. Here the map ∪ denotes indeed the A∞-morphism between the dg-algebras ∆∆∆n ⊗∆∆∆n

and ∆∆∆n, deduced from the A∞-morphism between the dg-coalgebras ∆∆∆n and ∆∆∆n⊗∆∆∆n of theorem 3.

Hence, the datum of a diagonal on the operadic bimodule A∞−Morph, as constructed in [LAM]
or [LOT21], allows us to de�ne the composition of two n-morphisms A→∆∆∆n⊗B and B →∆∆∆n⊗C.
It is however not immediately clear that this composition de�nes a map of simplicial sets

HOMA∞(A,B)n ×HOMA∞(B,C)n −→ HOMA∞(A,C)• ,

nor that this composition is associative. It is thereby still an open question to know whether these
HOM-simplicial sets could �t into a simplicial enrichment of the category A∞ − Alg. This would
then endow A∞ − Alg with a structure of ∞-category, following Proposition 1.1.5.10. of [Lur09].
The author plans to inspect these questions in an upcoming paper.

4.4. Enriching A∞ − Cat using the A∞-categories FuncA,B. In [Fao17a], Faonte claims that the
simplicial sets NA∞(FuncA,B) enhance the category A∞ − Cat of A∞-categories with A∞-functors
between them to an (∞, 2)-category. The same di�culties that were tackled in this section and
section 4.2 seem however to arise when lifting the composition of A∞-functors to the level of the
simplicial sets NA∞(FuncA,B).

In the same vein, Lyubashenko constructs in [Lyu03] an A∞-bifunctor

FuncA,B × FuncB,C −→ FuncA,C

de�ned as the composition of A∞-functors on objects. We refer to his paper for a de�nition of an
A∞-bifunctor and simply stress here that the notation FuncA,B × FuncB,C is a mere notation and
does not refer to the tensor product of the A∞-categories FuncA,B and FuncB,C . Fukaya then proves
in [Fuk17] that this composition A∞-bifunctor is associative up to homotopy equivalence.

This suggests that the A∞-categories FuncA,B should �t into an enrichment in A∞-categories of
the category A∞ − Cat. This enrichment should in particular induce in cohomology the 2-category
structure on the category Cat, whose objects are ordinary categories, whose 1-morphisms are functors
and whose 2-morphisms are natural transformations. The structure of a category enriched in A∞-
categories has however not been de�ned to this day. Bottman is currently working on such a
de�nition, which he calls an (A∞, 2)-category structure. See for instance [BC21]. The A∞-categories
FuncA,B and the problem of de�ning the notion of a category enriched in A∞-categories arise in
fact naturally in symplectic topology when considering moduli spaces of pseudo-holomorphic quilts
de�ning operations on Fukaya categories Fuk(M) of symplectic manifolds M . See for instance
[MWW18], [Fuk17], [Bot20] and [Bot19] for more details on the subject.



62 THIBAUT MAZUIR

Part 3

Higher morphisms in Morse theory

1. n-morphisms in Morse theory

LetM be a closed oriented Riemannian manifold endowed with a Morse function f together with a
Morse-Smale metric. In [Maz21], we explored how to realize the moduli spaces of stable metric ribbon
trees Tm and the moduli spaces of stable two-colored metric ribbon trees CT m in Morse theory. It was
proven that, upon choosing admissible perturbation data Xf on the moduli spaces Tm for the function
f , the Morse cochains C∗(f) can be endowed with an ΩBAs-algebra structure whose operations mt

for t ∈ SRTm are de�ned by counting 0-dimensional moduli spaces T Xf
t (y;x1, . . . , xm). Similarly,

choose an additional Morse function g together with admissible perturbation data Xg on the moduli
spaces Tm, and admissible perturbation data Y on the moduli spaces CT m which are compatible

with Xf and Xg. We can then de�ne an ΩBAs-morphism µY : (C∗(f),mXf
t ) → (C∗(g),mXg

t ),
whose operations µtg for tg ∈ SCRTm are de�ned by counting the 0-dimensional moduli spaces

CT Y
tg(y;x1, . . . , xm).

The goal of this section is to realize the n-multiplihedra n−Jm endowed with their n−ΩBAs-cell
decomposition in Morse theory. We �rst introduce the notion of n-simplices of perturbation data
on the moduli spaces CT m (de�nitions 22 and 23), generalizing the notion of perturbation data on
these moduli spaces de�ned in [Maz21]. We then use n-simplices of perturbation data to de�ne
the moduli spaces CT I,tg(y;x1, . . . , xm), I ⊂ ∆n. Under generic assumptions on the simplices of
perturbation data, these moduli spaces are orientable manifolds (Proposition 15). Requiring some
additional compatibilities involving the maps AWaaa on the simplices of perturbation data, the 1-
dimensional moduli spaces CT I,tg(y;x1, . . . , xm) can be compacti�ed to 1-dimensional manifolds with

boundary, whose boundary is modeled on the boundary of ∆n×CT m endowed with its n−ΩBAs-cell
decomposition (Theorems 4 and 5). We construct as a result a n − ΩBAs-morphism between the
Morse cochains C∗(f) and C∗(g) (Theorem 6), by counting the signed points of the 0-dimensional
oriented manifolds CT I,tg(y;x1, . . . , xm). We �nally prove a �lling theorem for perturbation data
parametrized by a simplicial subcomplex S ⊂ ∆n (Theorem 7), solving as a corollary the question
that initially motivated this paper (corollary 1).

1.1. Conventions. We will study Morse theory of the Morse function f : M → R using its negative
gradient vector �eld −∇f . Denote d the dimension of the manifold M and φs the �ow of −∇f . For
a critical point x de�ne its unstable and stable manifolds

WU (x) := {z ∈M, lim
s→−∞

φs(z) = x}

WS(x) := {z ∈M, lim
s→+∞

φs(z) = x} .

Their dimensions are such that dim(WU (x)) + dim(WS(x)) = d. We then de�ne the degree of a
critical point x to be |x| := dim(WS(x)). This degree is often referred to as the coindex of x in the
litterature.
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We will moreover work with Morse cochains. For two critical point x 6= y, de�ne

T (y;x) := WS(y) ∩WU (x)/R

to be the moduli space of negative gradient trajectories connecting x to y. Denote moreover
T (x;x) = ∅. Under the Morse-Smale assumption on f and the Riemannian metric on M , for
x 6= y the moduli space T (y;x) has dimension dim (T (y;x)) = |y| − |x| − 1. The Morse di�erential
∂Morse : C∗(f)→ C∗(f) is then de�ned to count descending negative gradient trajectories

∂Morse(x) :=
∑

|y|=|x|+1

#T (y;x) · y .

1.2. n-simplices of perturbation data on a stratum CT m(tg). Fix a gauged stable metric
ribbon tree Tg = (tg, λ, {le}e∈E(t)). Let Tc = (tc, Lfc) be its associated two-colored metric ribbon

tree, E(tc) the set of all edges of tc and E(tc) ⊂ E(tc) the set of internal edges of tc. We point
out that Lfc is a linear combination of the parameters λ, {le}e∈E(t) and that we should in fact write
Lfc(λ, {le}e∈E(t)). Recall from [Maz21] that :

De�nition 21 ([Maz21]). A choice of perturbation data on Tg consists of the following data :

(i) a vector �eld

[0, Lfc ]×M −→Xfc
TM ,

that vanishes on [1, Lfc − 1], for every internal edge fc of tc ;
(ii) a vector �eld

[0,+∞[×M −→
Xf0

TM ,

that vanishes away from [0, 1], for the outgoing edge f0 of tc ;
(iii) a vector �eld

]−∞, 0]×M −→
Xfi

TM ,

that vanishes away from [−1, 0], for every incoming edge fi (1 6 i 6 n) of tc.

In the rest of the paper, we will moreover write Dfc for all segments [0, Lfc ], as well as for all
semi-in�nite segments ]−∞, 0] and [0,+∞[.

De�nition 22. A n-simplex of perturbation data for Tg is de�ned to be a choice of perturbation

data Yδ,Tg for every δ ∈ ∆̊n. Equivalently, it is the datum of a vector �eld

∆̊n ×Dfc ×M −→
Y∆n,Tg,fc

TM

for every edge fc ∈ E(tc), abiding by the previous vanishing conditions on Dfc . We will denote it
as Y∆n,Tg := {Yδ,Tg}δ∈∆̊n .

Introduce the cone Cfc ⊂ CT m(tg)× R de�ned as

(i) {((λ, {le}e∈E(t)), s) such that (λ, {le}e∈E(t)) ∈ CT m(tg) and 0 6 s 6 Lfc} if fc is an internal
edge ;

(ii) {((λ, {le}e∈E(t)), s) such that (λ, {le}e∈E(t)) ∈ CT m(tg) and s 6 0} if fc is an incoming edge ;
(iii) {((λ, {le}e∈E(t)), s) such that (λ, {le}e∈E(t)) ∈ CT m(tg) and s > 0} if fc is the outgoing edge.
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De�nition 23. A n-simplex of perturbation data on CT m(tg), or choice of perturbation data on
CT m(tg) parametrized by ∆n, is de�ned to be the data of a n-simplex of perturbation data Y∆n,Tg

for every Tg ∈ CT m(tg). A n-simplex of perturbation data Y∆n,tg de�nes maps

Y∆n,tg ,fc : ∆̊n ×Dfc ×M −→ TM ,

for every edge fc of tc. It is said to be smooth if all these maps are smooth.

1.3. The moduli spaces CT I,tg(y;x1, . . . , xm). Recall from [Maz21] that given an admissible choice

of perturbation data Y on the moduli spaces CT m, the moduli spaces CT Y
tg(y;x1, . . . , xm) are de�ned

as the inverse image of the thin diagonal ∆ ⊂M×m+1 under the �ow map

φYtg : CT m(tg)×WS(y)×WU (x1)× · · · ×WU (xm) −→M×m+1 .

De�nition 24. Let Y∆n,tg be a smooth n-simplex of perturbation data on CT m(tg). Given y ∈
Crit(g) and x1, . . . , xm ∈ Crit(f), we de�ne the moduli spaces

CT Y∆n,tg

∆n,tg
(y;x1, . . . , xm) :=

⋃

δ∈∆̊n

CT Yδ,tg
tg (y;x1, . . . , xm)

=

{
( δ , two-colored perturbed Morse gradient tree associated to (Tg,Yδ,Tg)
which connects x1, . . . , xm to y), for Tg ∈ CT m(tg) and δ ∈ ∆̊n

}
.

x1 x2 x3 x4

y

Figure 14. An example of a perturbed two-colored Morse gradient tree associated
to the perturbation data Yδ for a δ ∈ ∆̊n. The black segments above the gauge
correspond to −∇f and the green ones to −∇f +Yδ. As for the segments below the
gauge, replace f by g in these formulae.

An example of a perturbed two-colored Morse gradient tree associated to the perturbation data
Yδ for a δ ∈ ∆̊n is represented on �gure 14. Introduce the �ow map

φY∆n,tg
: ∆̊n × CT m(tg)×WS(y)×WU (x1)× · · · ×WU (xm) −→M×m+1 ,

whose restriction to every δ ∈ ∆̊n is

φYδ,tg : CT m(tg)×WS(y)×WU (x1)× · · · ×WU (xm) −→M×m+1 .

Proposition 15. (i) The moduli space CT Y∆n,tg

∆n,tg
(y;x1, . . . , xm) can be rewritten as

CT Y∆n,tg

∆n,tg
(y;x1, . . . , xm) = φ−1

Y∆n,tg
(∆) ,

where ∆ ⊂M×m+1 is the thin diagonal of M×m+1.
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(ii) Given a n-simplex of perturbation data Y∆n,tg making φY∆n,tg
transverse to ∆, the moduli

space CT ∆n,tg(y;x1, . . . , xm) is an orientable manifold of dimension

dim
(
CT ∆n,tg(y;x1, . . . , xm)

)
= −|t∆n,g|+ |y| −

m∑

i=1

|xi| .

(iii) n-simplices of perturbation data Y∆n,tg such that φY∆n,tg
is transverse to ∆ exist.

Replacing ∆n by any face I ⊂ ∆n, the moduli spaces CT YI,tg
I,tg

(y;x1, . . . , xm) can be de�ned in the

same way and made into orientable manifolds of dimension

dim
(
CT I,tg(y;x1, . . . , xm)

)
= −|tI,g|+ |y| −

m∑

i=1

|xi| .

We refer to section 2 for the details on transversality and orientability.

1.4. Compacti�cations.

1.4.1. The compacti�ed moduli spaces CT I,tg(y;x1, . . . , xm). We now would like to compactify the
1-dimensional moduli spaces CT I,tg(y;x1, . . . , xm) to 1-dimensional manifolds with boundary. They

are de�ned as the inverse image in I̊×CT m(tg)×WS(y)×WU (x1)×· · ·×WU (xm) of the thin diagonal
∆ ⊂M×m+1 under the �ow map φYI,tg . The boundary components in the compacti�cation should

come from those of WS(y), of the WU (xi) and of I̊ × CT m(tg). However, rather than considering

the boundary components coming from the separate compacti�cations of I̊ and CT m(tg), we will

consider the n−ΩBAs-decomposition of I×CT m(tg) and model the remaining boundary components
on this decomposition.

Choose admissible perturbation data Xf and Xg for the functions f and g. Choose moreover
smooth simplices of perturbation data YI,tg for all tg ∈ SCRTi, 1 6 i 6 m and I ⊂ ∆n. We denote

(YI,m)I⊂∆n := (YI,tg)
tg∈SCRTm
I⊂∆n , and call it a choice of perturbation data on CT m parametrized

by ∆n. Fixing a two-colored stable ribbon tree type tg ∈ SCRTm and I ⊂ ∆n we want to compactify

the moduli space CT YI,tg
I,tg

(y;x1, . . . , xm) using the perturbation data Xf , Xg and (YI,k)k6mI⊂∆n . The

boundary will be described by the following phenomena :

(i) the parameter δ ∈ I tends towards the codimension 1 boudary of I (∂singI) ;
(ii) an external edge breaks at a critical point (Morse) ;
(iii) an internal edge of the tree t collapses (int-collapse) :

CT
YI,t′g
I,t′g

(y;x1, . . . , xm)

where t′g ∈ SCRTn are all the two-colored trees obtained by collapsing exactly one internal
edge, which does not cross the gauge ;

(iv) the gauge moves to cross exactly one additional vertex of the underlying stable ribbon tree
(gauge-vertex) :

CT
YI,t′g
I,t′g

(y;x1, . . . , xm)

where t′g ∈ SCRTn are all the two-colored trees obtained by moving the gauge to cross
exactly one additional vertex of t ;
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(v) an internal edge located above the gauge or intersecting it breaks or, when the gauge is below
the root, the outgoing edge breaks between the gauge and the root (above-break) :

CT
Y
I,t1g

I,t1g
(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xm)× T Xf

t2

t2
(z;xi1+1, . . . , xi1+i2) ,

where the tree resulting from grafting the outgoing edge of t2 to the i1 + 1-th incoming edge
of t1g is tg ;

(vi) edges (internal or incoming) that are possibly intersecting the gauge, break below it, such
that there is exactly one edge breaking in each non-self crossing path from an incoming edge
to the root (below-break) ; the simplex of perturbation data YI,tg then "breaks" according
to the combinatorics of the Alexander-Whitney coproduct :

T Xg
t0

t0
(y; y1, . . . , ys)× CT

Y
I1,t

1
g

I1,t1g
(y1;x1, . . . )× · · · × CT

YIs,tsg
Is,tsg

(ys; . . . , xm)

where the tree resulting from grafting for each r the outgoing edge of trg to the r-th incoming

edge of t0 is tg, and I1 ∪ · · · ∪ Is = I is an overlapping partition of I.

Note that the (Morse) boundaries are a simple consequence of the fact that external edges are Morse
trajectories away from a length 1 segment.

1.4.2. Smooth choice of perturbation data YI⊂∆n,m. We begin by tackling the conditions coming
with the (∂singI), (int-collapse) and (gauge-vertex) boundaries. Let tg ∈ SCRTm and denote coll ∪
g−v(tg) ⊂ SCRTm the set consisting of all stable gauged trees obtained by collapsing internal edges
of t and/or moving the gauge to cross additional vertices of t. In particular, tg ∈ coll ∪ g − v(tg).
We de�ne

CT m(tg) :=
⋃

t′g∈coll∪g−v(tg)

CT m(t′g)

for the stratum CT m(tg) ⊂ CT m together with its inner boundary components. A choice of pertur-
bation data (YI,t′g)t′g∈coll∪g−v(tg) for a �xed I ⊂ ∆n corresponds to a dim(I)-simplex of perturbation

data on CT m(tg). Following section 1.2, such a choice of perturbation data is equivalent to a map

ỸI,tg ,fc : I̊ × C̃fc ×M −→ TM ,

for every edge fc of tc, where C̃fc ⊂ CT m(tg)× R is de�ned in a similar fashion to Cfc .

De�nition 25. A choice of perturbation data (YI,m)I⊂∆n is said to be smooth if all maps

Ỹ∆n,tg ,fc : ∆n × C̃fc ×M −→ TM ,

are smooth, where we extended ∆̊n to ∆n by de�ning Ỹ∆n,tg ,fc := ỸI,tg ,fc on a face I ⊂ ∆n.

1.4.3. The (above-break) boundary. The (above-break) conditions are tackled as in [Maz21]. Write
tc for the two-colored ribbon tree associated to tg. The (above-break) boundary corresponds to the
breaking of an internal edge fc of tc located above the set of colored vertices. Denote t1c and t

2 the
trees obtained by breaking tc at the edge fc, where t

2 is seen to lie above t1c . We have to specify for

each edge ec ∈ E(tc) and each δ ∈ I̊, what happens to the perturbation Yδ,tc,ec at the limit.

(i) For ec ∈ E(t2) and 6= fc, we require that

limYδ,tc,ec = Xf
t2,ec

.
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(ii) For ec ∈ E(t1c) and 6= fc, we require that

limYδ,tc,ec = Yδ,t1c ,ec .

(iii) For fc = ec, Yδ,tc,fc yields two parts at the limit : the part corresponding to the outgoing
edge of t2 and the part corresponding to the incoming edge of t1c . We then require that they

coincide respectively with the perturbation Xf
t2
and Yδ,t1c .

An example of each case is illustrated in �gure 15.

tc

Yδ,tc,ec

limYδ,tc,ec = Xf
t2,ec

t1c

t2

(above-break) case (i)

tc

Yδ,tc,ec
limYδ,tc,ec = Yδ,t1c ,ec

t1c

t2

(above-break) case (ii)

tc

Yδ,tc,ec
limt1c

Yδ,tc,ec = Yδ,t1c ,ec
limt2 Yδ,tc,ec = Xf

t2,ec

t1c

t2

(above-break) case (iii)

Figure 15

1.4.4. The (below-break) boundary. Denote t1c , . . . , t
s
c and t

0 the trees obtained by breaking tc below
the gauge, where the trees trc for r = 1, . . . , s are seen to lie above t0 and are ordered from left to
right. We write ir for the arity of trc and introduce the dividing sequence aaa de�ned as

i1 + · · ·+ is−1

m
>
i1 + · · ·+ is−2

m
> · · · > i1

m
,

as in subsection 2.3.2 of part 1. Consider now the map AWaaa : I → Is. It comes with s maps

prr ◦AWaaa : I −→ I

for 1 6 r 6 s corresponding to the projection on the r-th factor of Is. For the sake of readability
we will simply denote them prr.
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We have to specify for each edge ec ∈ E(tc) and each δ ∈ I̊, what happens to the perturbation
Yδ,tc,ec at the limit. The maps prr will allow us to produce the overlapping partitions combinatorics
on the parameter δ.

(i) For ec ∈ E(trc) and not among the breaking edges, we require that

limYδ,tc,ec = Yprr(δ),t
r
c ,ec

.

(ii) For ec ∈ E(t0) and not among the breaking edges, we require that

limYδ,tc,ec = Xg
t0,ec

.

(iii) For fc among the breaking edges, Yδ,tc,fc yields two parts at the limit : the part corresponding
to the outgoing edge of trc and the part corresponding to the incoming edge of t0. We then
require that they coincide respectively with the perturbations Yprr(δ),t

r
c ,ec

and Xg
t0,ec

.

This is again illustrated in �gure 16. We also point out that Proposition 7 ensures that the limit
condition (iii) on the perturbation Yδ,tc,ec is consistent.

tc

Yδ,tc,ec
limYδ,tc,ec = Ypr1(δ),t1c ,ec

t0

t1c t2c

(below-break) case (i)

tc

Yδ,tc,ec
limYδ,tc,ec = Xg

t0,ec

t0

t1c t2c

(below-break) case (ii)

tc

Yδ,tc,ec
limt2 Yδ,tc,ec = Xg

t0,ec

limt2c
Yδ,tc,ec = Ypr2(δ),t2c ,ec

t0

t1c t2c

(below-break) case (iii)

Figure 16

1.4.5. Admissible n-simplices of perturbation data.
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De�nition 26. A smooth choice of perturbation data (YI,m)m>1
I⊂∆n is said to be gluing-compatible

w.r.t. Xf and Xg if it satis�es the (above-break) and (below-break) conditions described in sub-

sections 1.4.3 and 1.4.4. Smooth and gluing-compatible perturbation data (YI,m)m>1
I⊂∆n such that

all maps φYI,tg are transverse to the diagonal ∆ are called admissible w.r.t. Xf and Xg or simply

admissible.

Theorem 4. Admissible choices of perturbation data (YI,m)m>1
I⊂∆n exist.

Theorem 5. Let (YI,m)m>1
I⊂∆n be an admissible choice of perturbation data. The 0-dimensional moduli

spaces CT I,tg(y;x1, . . . , xm) are compact. The 1-dimensional moduli spaces CT I,tg(y;x1, . . . , xm) can

be compacti�ed to 1-dimensional manifolds with boundary CT I,tg(y;x1, . . . , xm), whose boundary is
described in subsection 1.4.1.

The proof of Theorem 4 is postponed to subsection 2.1.1 and will proceed as in [Maz21]. Theorem 5
is a direct consequence of the analysis carried out in chapter 6 of [Mes18]. For this reason, we will
not give details of its proof. We only point out that all spaces

T Xg
t0

t0
(y; y1, . . . , ys)× CT

Y
I1,t

1
g

I1,t1g
(y1;x1, . . . )× · · · × CT

YIs,tsg
Is,tsg

(ys; . . . , xm)

where I1 ∪ · · · ∪ Is = I is an i-overlapping s-partition of I, could a priori appear in the boudary
of CT I,tg(y;x1, . . . , xm). The assumption that our choice of perturbation data is admissible ensures
however in particular that whenever I1 ∪ · · · ∪ Is = I is not an (s − 1)-overlapping s-partition of I
the previous space is empty, as at least one of its factors then has negative dimension.

Theorem 5 implies moreover the existence of gluing maps

#above−break
T 1,Morse
I,g ,T 2,Morse

: [R,+∞] −→ CT I,tg(y;x1, . . . , xn) ,

#below−break
T 0,Morse,T 1,Morse

I1,g
,...,T s,Morse

Is,g

: [R,+∞] −→ CT I,tg(y;x1, . . . , xn) ,

whenever the perturbed Morse trees T 1,Morse
I,g , T 2,Morse and T 0,Morse, T 1,Morse

I1,g
, . . . , T s,Morse

Is,g
respec-

tively lie in a 0-dimensional moduli space, and where notations are as in items (v) and (vi) of subsec-
tion 1.4.1. The constructions of explicit gluing maps in subsections II.4.4.3 and II.4.5.4 of [Maz21] in
the case of the moduli spaces CT tg(y1;x1, . . . , xn) can be adapted without problems to the present
setting.

1.5. n − ΩBAs-morphisms between Morse cochains. Let Xf and Xg be admissible choices of

perturbation data for the Morse functions f and g. Denote (C∗(f),mXf
t ) and (C∗(g),mXg

t ) the
Morse cochains endowed with their ΩBAs-algebra structures constructed in [Maz21].

Theorem 6. Let (YI,m)m>1
I⊂∆n be a choice of perturbation that is admissible w.r.t. Xf and Xg.

De�ning for every m and tg ∈ SCRTm, and every I ⊂ ∆n the operations µI,tg as

µI,tg : C∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xm 7−→
∑

|y|=∑m
i=1 |xi|+|tI,g |

#CT YI,tg
I,tg

(y;x1, · · · , xm) · y ,

they �t into a n− ΩBAs-morphism (C∗(f),mXf
t )→ (C∗(g),mXg

t )
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The proof is postponed to section 2.4. It boils down to counting the boundary points of the 1-

dimensional oriented compacti�ed moduli spaces CT Y
I,tg(y;x1, · · · , xm) whose boundary is described

in the subsection 1.4.1. As a matter of fact, the set of operations {µI,tg} does not exactly de�ne a
n−ΩBAs-morphism. One of the two di�erentials ∂Morse in the bracket [∂Morse, µI,tg ] appearing in
the n − ΩBAs-equations has to be twisted by a speci�c sign for the n − ΩBAs-equations to hold.
We will speak about a twisted n − ΩBAs-morphism between twisted ΩBAs-algebras. In the case
where M is odd-dimensional, this twisted n−ΩBAs-morphism is a standard n−ΩBAs-morphism.

As explained in subsection 3.1.3 of part 1, if we want moreover to go back to the algebraic
framework of A∞-algebras, a n−A∞-morphism between the induced A∞-algebra structures on the
Morse cochains can simply be obtained under the morphism of operadic bimodules n−A∞−Morph→
n− ΩBAs−Morph.

1.6. Filling properties in Morse theory. Consider a simplicial subcomplex S ⊂ ∆n. De�ni-
tions 23 and 26 can be straightforwardly extended to de�ne an admissible choice of perturbation
data parametrized by S on the moduli spaces CT m, that we will denote YS := (YI,m)m>1

I⊂S . The
following theorem is proven in section 2.1 :

Theorem 7. For every admissible choice of perturbation data YS parametrized by a simplicial sub-
complex S ⊂ ∆n, there exists an admissible n-simplex of perturbation data Y∆n extending YS.

We de�ne for every n > 0,

HOMgeom
ΩBAs(C

∗(f), C∗(g))n ⊂ HOMΩBAs(C
∗(f), C∗(g))n

to be the set of n-ΩBAs-morphisms µ from C∗(f) to C∗(g) for which there exists an admissible
n-simplex of perturbation data Y∆n such that µ = µY∆n .

Theorem 8. The sets HOMgeom
ΩBAs(C

∗(f), C∗(g))n de�ne a simplicial subset of the simplicial set
HOMΩBAs(C

∗(f), C∗(g))•. The simplicial set HOMgeom
ΩBAs(C

∗(f), C∗(g))• has the property of being a
Kan complex which is contractible.

Proof. We �rst prove that the face and degeneracy maps of HOMΩBAs(C
∗(f), C∗(g))• preserve the

sets HOMgeom
ΩBAs(C

∗(f), C∗(g))•. This is clear for the face maps. Consider a n-simplex µY∆n ∈
HOMgeom

ΩBAs(C
∗(f), C∗(g))n and a degeneracy map

σi : HOMΩBAs(C
∗(f), C∗(g))n −→ HOMΩBAs(C

∗(f), C∗(g))n+1, 1 6 i 6 n+ 1 .

We have to construct an admissible (n+1)-simplex of perturbation data Y′ such that σi(µY∆n ) = µY
′
.

Using the realizations

∆n = {(z1, . . . , zn) ∈ Rn|1 > z1 > · · · > zn > 0} ,
we de�ne si : ∆n+1 → ∆n as si(z1, . . . , zn+1) := (z1, . . . , ẑi, . . . , zn+1). The (n+1)-simplex of pertur-
bation data de�ned as Y′δ := (Y∆n)si(δ) for δ ∈ ∆n+1 is then an admissible simplex of perturbation
data which has the desired property.

It is clear from Theorem 7 that the simplicial set HOMgeom
ΩBAs(C

∗(f), C∗(g))• is a Kan complex.
A Kan complex is contractible if and only if all its simplicial homotopy groups are trivial. One can
moreover check on the de�nition of the homotopy relation in subsection 1.1.4 of part 1 that if a Kan
complex X• has the property that each simplicial subcomplex S ⊂ ∆n can be �lled in X•, then its
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homotopy groups are trivial. In particular, Theorem 7 implies that HOMgeom
ΩBAs(C

∗(f), C∗(g))• has
trivial homotopy groups hence is contractible. �

Shifting from the ΩBAs to the A∞ viewpoint, we can de�ne in a similar fashion the simplicial
subset

HOMgeom
A∞ (C∗(f), C∗(g))• ⊂ HOMA∞(C∗(f), C∗(g))• .

The simplicial set HOMgeom
A∞ (C∗(f), C∗(g))• is then again a Kan complex which is contractible.

Given an admissible horn of perturbation data YΛkn
, Theorem 1 implies that the induced horn Λkn →

HOMA∞(C∗(f), C∗(g))• can always be �lled algebraically. The fact that HOMgeom
A∞ (C∗(f), C∗(g))•

is a Kan complex implies something stronger : this horn can not only be �lled algebraically, but
also geometrically. We moreover point out that we should in fact work with twisted n − A∞ and
n − ΩBAs-morphisms, as explained in section 2.4. However, the constructions of this section still
hold in that context.

The following proposition is a direct corollary to Theorem 8 and solves the motivational question
formulated in the introduction :

Corollary 1. Let Y and Y′ be two admissible choices of perturbation data on the moduli spaces
CT m. The ΩBAs-morphisms µY and µY

′
are then ΩBAs-homotopic

C∗(f) C∗(g)

µY

µY
′

.

2. Transversality, signs and orientations

2.1. Proof of theorems 4 and 7.

2.1.1. Proof of theorem 4. We detailed in section II.3. of [Maz21] how to build an admissible choice
of perturbation data (Xn)n>2 on the moduli spaces Tm. Drawing from this construction, we provide
a sketch of the proof of Theorem 4 in this subsection : admissible n-simplices of perturbation data
(YI,m)m>1

I⊂∆n on the moduli spaces CT (tg) exist. The proof proceeds again by induction on the integer
N = dim(CT (tg)) + dim(I).

If N = 0, dim(I) = 0 and the gauged tree tg is a corolla whose gauge intersects its root. Let
y ∈ Crit(g) and x1, · · · , xm ∈ Crit(f) and �x an integer l such that

l > max

(
1, |y| −

m∑

i=1

|xi|+ 1

)
.

De�ne the parametrization space

Xltg := {C l-perturbation data Ytg on CT m(tg)} ,
and introduce the C l-map

φtg : Xltg × CT m(tg)×WS(y)×WU (x1)× · · · ×WU (xm) −→M×m+1 ,

such that for every Ytg ∈ Xltg , φtg(Ytg , ·) = φYtg . Note that we should in fact write φy,x1,...,xn
tg as the

domain of φtg depends on y, x1, . . . , xn. The space Xltg is then a Banach space and the map φtg is a
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submersion. The map φtg is in particular transverse to the diagonal ∆ ⊂ M×m+1. The parametric

transversality lemma implies that there exists a subset Yl;y,x1,...xm
tg ⊂ Xltg which is residual in the

sense of Baire, and such that for every choice of perturbation data Ytg ∈ Yl;y,x1,...xm
t the map φYtg

is transverse to the diagonal ∆ ⊂M×m+1. Any Ytg in the intersection

Yl
tg :=

⋂

y,x1,...,xm

Yl;y,x1,...xm
tg ⊂ Xtg

then yields a C l-choice of perturbation data on CT (tg) such that all maps φYtg are transverse to

the diagonal ∆ ⊂M×m+1. Using an argument à la Taubes we prove that one can in fact construct
a residual set Ytg ⊂ Xtg , where Xtg is the Fréchet space de�ned by replacing "C l" by "smooth" in

the de�nition of Xltg , and such that any Ytg ∈ Ytg yields a smooth choice of perturbation data such

that all maps φYtg are transverse to the diagonal ∆ ⊂ M×m+1. See subsection II.3.2.2 of [Maz21]
for more details on that last point. This wraps up the �rst step of the induction.

Let N > 0 and suppose that we have constructed an admissible choice of perturbation data
(Y0

I,tg
), where I ⊂ ∆n and tg ∈ SCRTm are such that dim(CT (tg)) + dim(I) 6 N . Let I ⊂ ∆n and

tg ∈ SCRTm be such that dim(CT (tg))+dim(I) = N+1. Let y ∈ Crit(g) and x1, · · · , xm ∈ Crit(f)
and �x an integer l such that

l > max

(
1, |y| −

m∑

i=1

|xi| − |tI,g|+ 1

)
.

We introduce the parametrization space

XlI,tg :=





dim(I)-simplices of perturbation data YI,tg on CT m(tg) such that the perturbation

data {YI,tg} ∪ (Y0
J,t′g

)
t′g∈coll∪g−v(tg)

J⊂I are of class C l in the sense of de�nition 25,

and such that YI,tg is gluing-compatible w.r.t. the perturbation data (Y0
I,tg

)




.

This parametrization space is a Banach a�ne space. De�ne again the C l-map

φI,tg : XlI,tg × I̊ × CT m(tg)×WS(y)×WU (x1)× · · · ×WU (xm) −→M×m+1 .

The map φI,tg is then transverse to the diagonal ∆ ⊂ M×m+1. Applying the parametric transver-

sality theorem and proceeding as in the case N = 0, there exists a residual set Yl
I,tg
⊂ XlI,tg

such that for every choice of perturbation data YI,tg ∈ Yl
I,tg

the map φYI,tg is transverse to the

diagonal ∆ ⊂ M×m+1. Resorting again to an argument à la Taubes, we can prove the same state-
ment in the smooth context. By de�nition of the parametrization spaces XI,tg this construction
yields an admissible choice of perturbation data (YI,tg), where the indices I and tg are such that
dim(CT (tg)) + dim(I) 6 N + 1. This concludes the proof of Theorem 4 by induction.

2.1.2. Proof of theorem 7. The proof of Theorem 7 proceeds exactly as the previous proof, by
replacing the requirements in the de�nition of XlI,tg by the conditions prescribed by the simplicial

subcomplex S ⊂ ∆n.

2.2. Orientation and transversality.
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2.2.1. Signed short exact sequences. Consider a short exact sequence of vector spaces

0 −→ V2 −→W −→ V1 −→ 0 .

It induces a direct sum decomposition W = V1 ⊕ V2. Suppose that the vector spaces W , V1 and
V2 are oriented. We denote (−1)ε the sign obtained by comparing the orientation on W to the one
induced by the direct sum V1 ⊕ V2. We will then say that the short exact sequence has sign (−1)ε.
In particular, when (−1)ε = 1, we will say that the short exact sequence is positive.

2.2.2. Orientation and transversality. Given now two manifoldsM,N , a codimension k submanifold
S ⊂ N and a smooth map

φ : M −→ N

which is tranverse to S, the inverse image φ−1(S) is a codimension k submanifold of M . Moreover,
choosing a complementary νS to TS, the transversality assumption yields the following short exact
sequence of vector bundles

0 −→ Tφ−1(S) −→ TM |φ−1(S) −→
dφ

νS −→ 0 .

Suppose now that M , N and S are oriented. The orientations on N and S induce an orientation on
νS . The submanifold φ−1(S) is then oriented by requiring that the previous short exact sequence
be positive. We will refer to this choice of orientation as the natural orientation on φ−1(S).

For instance, the moduli space T X
t (y;x1, . . . , xm) is de�ned as the inverse image of the diagonal

∆ ⊂M×m+1 under the map

φXt : Tm(t)×WS(y)×WU (x1)× · · · ×WU (xm) −→M×m+1 .

Orienting the domain and codomain of φXt by taking the product orientation, and orienting the
diagonal ∆ ⊂M×m+1 as M , de�nes a natural orientation on Tt(y;x1, . . . , xm).

2.3. Algebraic preliminaries.

2.3.1. Reformulating the n − ΩBAs-equations. We set for the rest of this section an orientation ω
for each tg ∈ SCRTn, which endows each moduli space CT n(tg) with an orientation. We write
moreover µI,tg for the operations (I, tg, ω) of n − ΩBAs − Morph. The ΩBAs-equations for a
n− ΩBAs-morphism then read as

[∂, µI,tg ] =

dim(I)∑

l=0

(−1)lµ
∂singl I,tg

+ (−1)|I|




∑

t0#(t1g ,...,t
s
g)=tg

I1∪···∪Is=I

(−1)†ΩBAsmt0 ◦ (µI1,t1g ⊗ · · · ⊗ µIs,tsg)

+
∑

t′g∈coll(tg)

(−1)†ΩBAsµI,t′g +
∑

t′g∈g−vert(tg)

(−1)†ΩBAsµI,t′g +
∑

t1g#it2=tg

(−1)†ΩBAsµI,t1g ◦i mt2


 .

The signs (−1)†ΩBAs need not be made explicit, but can be computed as in section I.5.2 of [Maz21].
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2.3.2. Twisted n−A∞-morphisms and twisted n− ΩBAs-morphisms.

De�nition 27. (i) A twisted A∞-algebra is a dg-Z-module A endowed with two di�erent dif-
ferentials ∂1 and ∂2, and a collection of degree 2 − m operations mm : A⊗m → A such
that

[∂,mm] = −
∑

i1+i2+i3=m
26i26m−1

(−1)i1+i2i3mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3) ,

where [∂, ·] denotes the bracket for the maps (A⊗m, ∂1)→ (A, ∂2).
(ii) Let (A, ∂1, ∂2,mm) and (B, ∂1, ∂2,mm) be two twisted A∞-algebras. A twisted n − A∞-

morphism from A to B is de�ned to be a sequence of degree 1 −m + |I| operations f (m)
I :

A⊗m → B such that

[
∂, f

(m)
I

]
=

dim(I)∑

j=0

(−1)jf
(m)
∂jI

+ (−1)|I|
∑

i1+i2+i3=n
i2>2

(−1)i1+i2i3f
(i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3)

−
∑

i1+···+is=m
I1∪···∪Is=I

s>2

(−1)εBms(f
(i1)
I1
⊗ · · · ⊗ f (is)

Is
) ,

where [∂, ·] denotes the bracket for the maps (A⊗m, ∂1)→ (B, ∂2).
(iii) A twisted ΩBAs-algebra and a twisted n−ΩBAs-morphism between twisted ΩBAs-algebras

are de�ned similarly.

The explicit formulae obtained by evaluating the n − ΩBAs-equations of a twisted n − ΩBAs-
morphism on A⊗m then read as follows :

− ∂2µI,tg(a1, . . . , am) + (−1)|I|+|tg |+
∑i−1
j=1 |aj |µI,tg(a1, . . . , ai−1, ∂1ai, ai+1, . . . , am)

+
∑

t1g#t2=t

(−1)|I|+†ΩBAs+|t
2|∑i1

j=1 |aj |µI,t1g(a1, . . . , ai1 ,mt2(ai1+1, . . . , ai1+i2), ai1+i2+1, . . . , am)

+
∑

t0#(t1g ,...,t
s
g)=tg

I1∪···∪Is=I

(−1)|I|+†ΩBAs+†Koszulmt0(µI1,t1g(a1, . . . , ai1), . . . , µIs,tsg(ai1+···+is−1+1, . . . , am))

+
∑

t′g∈coll(tg)

(−1)|I|+†ΩBAsµI,t′g(a1, . . . , am) +
∑

t′g∈g−vert(tg)

(−1)|I|+†ΩBAsµI,t′g(a1, . . . , am)

+

dim(I)∑

l=0

(−1)lµ
∂singl I,tg

(a1, . . . , am) = 0 ,

where

†Koszul =

s∑

r=1

(|Ir|+ |trg|)



r−1∑

t=1

it∑

j=1

|ai1+···+ait−1
+j |


 .

As explained in [Maz21], these de�nitions cannot be phrased using an operadic viewpoint. However,
a twisted n − ΩBAs-morphism between twisted ΩBAs-algebras still always descends to a twisted
n−A∞-morphism between twisted A∞-algebras.
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2.4. Proof of Theorem 6.

2.4.1. Recollections on twisted ΩBAs-algebra structures on the Morse cochains. We prove in [Maz21]
that given a Morse function f and an admissible choice of perturbation data X on the moduli spaces
Tm, the Morse cochains C∗(f) can be endowed with a twisted ΩBAs-algebra structure by counting

the 0-dimensional moduli spaces T Xt
t (y;x1, . . . , xn).

We twist to this end the natural orientation on the moduli spaces T X
t (y;x1, . . . , xm) de�ned in

subsection 2.2.2, by a sign of parity

σ(t; y;x1, . . . , xm) := dm(1 + |y|+ |t|) + |t||y|+ d
m∑

i=1

|xi|(m− i) ,

and the orientation on the moduli spaces T (y;x) by a sign of parity

σ(y;x) := 1 ,

where d denotes the dimension of the manifoldM . The moduli spaces T X
t (y;x1, . . . , xm) and T (y;x)

endowed with these new orientations are then respectively written T̃ X
t (y;x1, . . . , xm) and T̃ (y;x).

The operations mt and the di�erential on C∗(f) are then de�ned as

mt(x1, . . . , xm) =
∑

|y|=∑m
i=1 |xi|+|t|

#T̃ X
t (y;x1, . . . , xm) · y ,

∂Morse(x) =
∑

|y|=|x|+1

#T̃ (y;x) · y .

Counting the signed points in the boundary of the oriented 1-dimensional manifolds T̃t(y;x1, . . . , xm)
proves that the operations mt de�ne a twisted ΩBAs-algebra structure on (C∗(f), ∂TwMorse, ∂Morse),
where

(∂TwMorse)
k = (−1)(d+1)k∂kMorse .

In particular, either working with coe�cients in Z/2, or with coe�cients in Z and an odd-dimensional
manifold M , the operations mt de�ne an ΩBAs-algebra structure on the Morse cochains.

2.4.2. Twisted n − ΩBAs-morphisms between the Morse cochains. Let Xf and Xg be admissible

choices of perturbation data for the Morse functions f and g. Denote (C∗(f),mXf
t ) and (C∗(g),mXg

t )
the Morse cochains endowed with their ΩBAs-algebra structures. Given an admissible n-simplex of
perturbation data (YI,m)m>1

I⊂∆n , we now construct a twisted n− ΩBAs-morphism

µI,tg : (C∗(f), ∂TwMorse, ∂Morse) −→ (C∗(g), ∂TwMorse, ∂Morse) , I ⊂ ∆n, tg ∈ SCRT ,

which completes the proof of Theorem 6.

The moduli space CT YI,tg
I,tg

(y;x1, . . . , xm) is de�ned as the inverse image of the diagonal ∆ ⊂
M×m+1 under the map

φYI,tg : I̊ × CT m(tg)×WS(y)×WU (x1)× · · · ×WU (xm) −→M×m+1 .

Orienting the domain and codomain of φYI,tg with the product orientation, and orienting the di-

agonal ∆ ⊂ M×m+1 as M , de�nes a natural orientation on CT I,tg(y;x1, . . . , xm) as explained in
subsection 2.2.2.
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De�nition 28. We de�ne C̃T YI,tg
I,tg (y;x1, . . . , xm) to be the oriented manifold CT YI,tg

I,tg
(y;x1, . . . , xm)

whose natural orientation has been twisted by a sign of parity

σ(tI,g; y;x1, . . . , xm) := dm(1 + |y|+ |tI,g|) + |tI,g||y|+ d
m∑

i=1

|xi|(m− i) .

Proposition 16. If the moduli space C̃T I,tg(y;x1, . . . , xm) is 1-dimensional, its boundary decom-
poses as the disjoint union of the following components

(i) (−1)|y|+|I|+†ΩBAs+|t
2|∑i1

i=1 |xi|C̃T I,t1g(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xm)×T̃t2(z;xi1+1, . . . , xi1+i2);

(ii) (−1)|y|+|I|+†ΩBAs+†Koszul T̃t0(y; y1, . . . , ys)× C̃T I1,t1g(y1;x1, . . . )× · · · × C̃T Is,tsg(ys; . . . , xm) ;

(iii) (−1)|y|+|I|+†ΩBAs C̃T I,t′g(y;x1, . . . , xm) for t′g ∈ coll(t) ;

(iv) (−1)|y|+|I|+†ΩBAs C̃T I,t′g(y;x1, . . . , xm) for t′g ∈ g − vert(t) ;

(v) (−1)|y|+†Koszul+(m+1)|xi|C̃T I,tg(y;x1, . . . , z, . . . , xm) × T̃ (z;xi) where we have set †Koszul =

|I|+ |tg|+
∑i−1

j=1 |xj | ;
(vi) (−1)|y|+1T̃ (y; z)× C̃T I,tg(z;x1, . . . , xm) ;

(vii) (−1)|y|+lC̃T
∂singl I,tg

(y;x1, . . . , xm).

De�ne the operations µI,tg : C∗(f)⊗m → C∗(g) as

µI,tg(x1, . . . , xm) =
∑

|y|=∑m
i=1 |xi|+|tI,g |

#C̃T Y
I,tg(y;x1, . . . , xm) · y .

Counting the points in the boundary of the oriented 1-dimensional manifolds C̃T I,tg(y;x1, . . . , xm)
�nally proves that :

Theorem 6. The operations µI,tg de�ne a twisted n−ΩBAs-morphism between the Morse cochains

(C∗(f), ∂TwMorse, ∂Morse) and (C∗(g), ∂TwMorse, ∂Morse).

We send the reader back to [Maz21] for the complete check of signs in the case of the operations
mt, which easily transports to the case of the operations µI,tg . Again, either working with coe�cients
in Z/2, or with coe�cients in Z and an odd-dimensional manifold M , the operations µI,tg �t into a
standard n− ΩBAs-morphism between ΩBAs-algebras.

3. Towards the problem of the composition

At the end of [Maz21] we stated two main questions. The �rst was the motivational question
solved in this article and the second one came as follows :

Problem 2. Given three Morse functions f0, f1, f2, choices of perturbation data Xi, and choices of
perturbation data Yij de�ning morphisms

µY
01

: (C∗(f0),mX0

t ) −→ (C∗(f1),mX1

t ) ,

µY
12

: (C∗(f1),mX1

t ) −→ (C∗(f2),mX2

t ) ,

µY
02

: (C∗(f0),mX0

t ) −→ (C∗(f2),mX2

t ) ,
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can we construct an ΩBAs-homotopy such that µY
12 ◦ µY01 ' µY

02
through this homotopy ? That

is, can the following cone be �lled in the ΩBAs realm

C∗(f0) C∗(f1)

C∗(f2)

µY
02

µY
01

µY
12 ?

The author plans to prove in an upcoming article that the answer to this question is positive.
This simple problem will in fact again generalize to a wider range of constructions in Morse theory,
involving the n-morphisms introduced in this article as well as some new interesting combinatorics.
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Troisième partie

Further developments





Chapitre 1

Higher algebra from multi-gauged trees and quilted curves

1. Moduli spaces of bigauged metric trees

At the end of [Maz21a], we stated two main questions. The first question was the starting
point of [Maz21b]. The second one was formulated as follows. Given three Morse functions
f0, f1, f2, choices of perturbation data Xi, and choices of perturbation data Yij defining mor-
phisms

µY
01

: (C∗(f0),mX0

t ) −→ (C∗(f1),mX1

t ) ,

µY
12

: (C∗(f1),mX1

t ) −→ (C∗(f2),mX2

t ) ,

µY
02

: (C∗(f0),mX0

t ) −→ (C∗(f2),mX2

t ) ,

can we construct an ΩBAs-homotopy such that

µY
02 ≃ µY12 ◦ µY01

?

More generally, which higher operadic algebra naturally arises in this context ?

1.1. Composing ΩBAs-morphisms. While we have introduced a satisfactory notion of a
ΩBAs-homotopy between ΩBAs-morphisms, we have yet to define how to compose two ΩBAs-
morphisms. Using the bar construction viewpoint in the A∞ context, the composition of two
A∞-morphisms F : T (sA) → T (sB) and G : T (sB) → T (sC) is defined as the standard
composition of morphisms of dg-coalgebras G ◦ F . This reads on the level of operations as

(G ◦ F )n :=
∑

i1+···+is=n
±gs(fi1 ⊗ · · · ⊗ fis) .

This composition can be defined on the operadic level as a morphism of (A∞, A∞)-operadic
bimodules

A∞ −Morph −→ A∞ −Morph ◦A∞ A∞ −Morph .

Starting from this formula, it is clear how to define the unsigned composition of ΩBAs-
morphisms. Given two ΩBAs-morphisms {ftg : A⊗m → B} and {gtg : B⊗m → C} between
ΩBAs-algebras A, B and C, we define their composition g ◦ f as

(g ◦ f)tg :=
∑

gt′g(ft1g ⊗ · · · ⊗ ftsg) ,
where the sum runs over gauged trees t′g ∈ sCRTs and trg ∈ sCRTir such that

(i) the gauged tree obtained by grafting each underlying ribbon tree tr of trg to the r-th
incoming edge of t′g is equal to tg, i.e. t′g#(t1, . . . , ts) = tg,

(ii) and the gauge of the gauged tree trg does not intersect the vertices of tr for r = 1, . . . , s.
It can be checked that this formula indeed defines a morphism satisfying the ΩBAs-equations,
and that the composition defined in this way is moreover associative. For instance,

(g ◦ f) = g f + g f + g (f ⊗ f ) .

215
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The morphism of (ΩBAs,ΩBAs)-operadic bimodules induced by this unsigned composition

◦ : ΩBAs−Morph −→ ΩBAs−Morph ◦ΩBAs ΩBAs−Morph

then fits into a commutative diagram of morphisms of (A∞, A∞)-operadic bimodules

A∞ −Morph A∞ −Morph ◦A∞ A∞ −Morph

ΩBAs−Morph ΩBAs−Morph ◦ΩBAs ΩBAs−Morph

.

More concretely, consider f and g two ΩBAs-morphisms and compose them to form a new
ΩBAs-morphism g ◦ f . Write f̃ , g̃ and g̃ ◦ f for the induced A∞-morphisms. Then g̃ ◦ f̃ = g̃ ◦ f ,
where the ◦ on the left-hand side denotes the composition of A∞-morphisms.

Hence the difficulty in defining the composition of ΩBAs-morphisms does not lie in working
out the trees combinatorics, but in working out the proper signs for these combinatorics. Indeed
notice that the operad ΩBAs and the operadic bimodule ΩBAs − Morph in dg− Vect have
been defined using the moduli spaces Tm(t) and CT m(tg), but not using an intrinsic algebraic
formalism as in the A∞ context. We do not know yet how to solve this difficulty and will thereby
work over Z/2Z in the rest of this subsection.

We also point out that the composition of ΩBAs-morphisms could have been defined by
replacing conditions (i) and (ii) by

(i ’) the gauged tree obtained by grafting each gauged tree trg to the r-th incoming edge of
the underlying ribbon tree t′ of t′g is equal to tg, i.e. t′#(t1g, . . . , t

s
g) = tg,

(ii ’) and the gauge of the gauged tree t′g does not intersect the vertices of t′.

The composition ◦′ for ΩBAs-morphisms would then still be associative and compatible with
the composition of A∞-morphisms. We expect in fact that the composition morphisms ◦ and
◦′ could be proven to be homotopy equivalent in some sense. We will work in the rest of this
chapter with the composition ◦.

1.2. Moduli spaces of bigauged metric trees. The naive intuition to construct a ho-
motopy between the ΩBAs-morphisms µY02 and µY12 ◦µY01 would be to introduce moduli spaces
of bigauged stable metric ribbon trees and realize them in Morse theory as moduli spaces of
bigauged perturbed Morse gradient trees. Define a bigauged stable metric ribbon tree to be a
stable metric ribbon tree together with two lengths λ1 and λ2 in R, such that λ2 < λ1. We think
of these lengths as gauges drawn over the metric tree, at distance λi from its root, where the
positive direction is pointing down. The two gauges moreover divide the tree into three parts,
each of which we imagine being painted in a different color. Two instances of bigauged stable
metric ribbon trees are represented in figure 1. We will refer to the gauge associated to the length
λi as the i-th gauge. We moreover define the inter-gauge gap as δ := λ1−λ2 ∈]0,+∞[. We finally
point out that, as for metric trees with a single gauge, there is a definition of bigauged metric
trees as three-colored metric trees, which we will not write down.

For m ⩾ 1, denote 2GT m the moduli space of bigauged stable metric ribbon trees. This space
is homeomorphic to Rm : the moduli space of stable metric ribbon trees Tm is homeomorphic to
Rm−2 and the datum of the two gauges adds the factor {(λ1, λ2) , λ2 < λ1} ⊂ R2. This moduli
space admits moreover a cell decomposition by bigauged stable ribbon tree type, that we will
not describe for the sake of concision. We set in the rest of this section GT m := CT m for the
moduli spaces of metric gauged ribbon trees, in order to be consistent with the notation 2GT m.
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l λ1

λ2
δ

l λ1
λ2

δ

Figure 1 – Two instances of bigauged stable metric ribbon trees

The moduli space 2GT m comes with a natural compactification 2GT m defined by allowing
length of internal edges towards +∞ and taking the two gauges into account in the process. We
describe the phenomena producing the codimension 1 boundary strata of 2GT m :

(i) the two gauges meet to produce a single-gauged metric tree. The corresponding boun-
dary stratum is canonically identified with

GT m ;

(ii) an internal edge located above the second gauge or intersecting it breaks or, when the
two gauges are below the root, the outgoing edge breaks between the second gauge and
the root. The corresponding boundary stratum is canonically identified with

2GT i1+1+i3 × Ti2 ,
where i1 + i2 + i3 = m ;

(iii) edges (internal or incoming) that are located below the first gauge and possibly inter-
secting it, break below it, such that there is exactly one edge breaking in each non-self
crossing path from an incoming edge to the root, and such that the inter-gauge gaps of
bigauged stable ribbon trees obtained in this way are equal. The corresponding boun-
dary stratum can be described as a fiber product

Ts ×
(
2GT i1 ×]0,+∞[ · · · ×]0,+∞[ 2GT is

)
,

where i1 + · · · + is = m and the fiber product is taken over the inter-gauge gap maps
δr : 2GT ir →]0,+∞[ ;

(iv) edges (internal or incoming) that are located between the two gauges and possibly
intersecting them, break between the two gauges, such that there is exactly one edge
breaking in each non-self crossing path from an incoming edge to the root. This boundary
stratum can be described as

GT s × GT i1 × · · · × GT is ,
where i1 + · · ·+ is = m.

(i) (ii) (iii)

δ1 = δ2

δ1 δ2

(iv)

Figure 2 – Examples of configurations of metric trees in the codimension 1
boundary of 2GT 4. We only represent the inter-gauge gaps in (iii), in order to
illustrate the fiber product description of this boundary stratum.
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Examples of elements lying in these boundary strata are depicted in figure 2, following the pre-
vious labeling. Considering the compactification of a cell 2GT m(tg1,g2) ⊂ 2GT m inside 2GT m,
where tg1,g2 is a bigauged stable ribbon tree type, would simply add boundary strata of type
(gauge-vertex) and (int-collapse). We refer to subsection 3.2.4 in part 1 of [Maz21a] for a des-
cription of these two boundary strata.

We return now to the question formulated at the beginning of this section. We would like to
construct an ΩBAs-homotopy between the ΩBAs-morphisms µY02 and µY12 ◦ µY01 by counting
the points of 0-dimensional moduli spaces of bigauged perturbed Morse gradient trees

2GT tg1,g2 (y;x1, . . . , xm) .

To prove that the operations associated to these counts define an ΩBAs-homotopy, we have to
inspect the boundary of the 1-dimensional compactified moduli spaces 2GT tg1,g2 (y;x1, . . . , xm).
A boundary will again decompose as the disjoint union of the (Morse) boundary components
and the (2GT m) boundary components. This is where we encounter a serious obstacle.

Indeed, until now we had described moduli spaces of metric trees encoding universally
the algebraic structures we were interested in. Said differently, we described moduli spaces
whose images under the functor Ccell−∗ model these algebraic structure. This is not the case
for the compactification of 2GT m. The first reason is that in general fiber products do not be-
have well under the functor Ccell−∗ . The second reason is that, in order for the moduli spaces
2GT tg1,g2 (y;x1, . . . , xm) to encode a homotopy between µY02 and µY12 ◦µY01 , we would need the
boundary strata

Ts ×
(
2GT i1 ×]0,+∞[ · · · ×]0,+∞[ 2GT is

)

to be replaced by the boundary strata

Ts+1+t ×
(
GT i1 × · · · × GT is × 2GT l × (GT j1 × (GT m1

1
× · · · × GT m1

j1
))× · · · × (GT jt × (GT mt

1
× · · · × GT mt

jt
))
)
,

where

l +

s∑

r=1

ir +

t∑

r=1

jr∑

i=1

mr
i .

We would then recover the following term in the ΩBAs-equations
∑

i1+···+is+l
+k1+···+kt=m

s+1+t⩾2

±ms+1+t

(
µY

02

i1 ⊗ · · · ⊗ µY
02

is ⊗ hl ⊗ (µY
12 ◦ µY01

)k1 ⊗ · · · ⊗ (µY
12 ◦ µY01

)kt

)
,

which we have written here in the A∞-context for the sake of readability.

As a result, we can state that the moduli spaces 2GT m cannot universally encode ΩBAs-
homotopies between an indivisible ΩBAs-morphism and the composite of two ΩBAs-morphisms
(we should in fact write A∞ instead of ΩBAs here, as we do not consider the cells 2GT m(tg1,g2)
but the full moduli space 2GT m). So in order to produce out of the moduli spaces

2GT tg1,g2 (y;x1, . . . , xm)

a homotopy between µY02 and µY12 ◦ µY01 , we have to come up with an argument living directly
at the level of Morse theory. A solution to this problem will be explained at the end of subsection
2.2.
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2. Higher algebra from moduli spaces of quilted disks

As a matter of fact, Mau, Wehrheim and Woodward encounter in [MWW18] the exact
same type of problem formulated at the end of subsection 1.2, when studying geometric A∞-
functors between Fukaya categories. The goal of this section is to provide an exposition to the
moduli spaces and algebraic structures appearing in their article. We describe in subsection 2.1
the moduli spaces of quilted disks involved in the definition of geometric A∞-functors between
Fukaya categories, and explain in subsection 2.2 how Mau, Wehrheim and Woodward solve the
problem of the comparison between algebraic and geometric composition in that framework. We
expect that their method should in particular be applicable to a Morse theoretic setup and solve
the motivational question to section 1. We then explain their construction of a categorification
A∞-functor Fuk(M−

0 × M1) → Func (Fuk(M0),Fuk(M1)) in [MWW18] and of a 2-functor
Floer→ Cat in [WW10a], where Floer denotes the 2-category whose objects are closed monotone
symplectic manifolds and whose categories of morphisms are the Donaldson categories Don(M−

0 ×
M1). We moreover point out that their constructions take place in the context of quilted Floer
cohomology, as explained in subsection 2.5.

2.1. A∞-functors associated to Lagrangian correspondences. Consider a closed mo-
notone symplectic manifold (M,ω). The Fukaya category Fuk(M,ω) is an A∞-category which
is defined as follows. The objects of Fuk(M) are the closed monotone and graded Lagrangians
L ⊂ M . The space of morphisms from a Lagrangian L0 to a Lagrangian L1 is the Z-module
CF ∗(L0, L1) freely generated by the points of L0 ∩ L1 and graded using the Maslov index. For
x1 ∈ L0 ∩ L1, . . . , xn ∈ Ln−1 ∩ Ln and y ∈ L0 ∩ Ln, introduce the moduli space of pseudo-
holomorphic disks with Lagrangian boundary conditions on the Li, n + 1 marked boundary
points that are clockwise sent to the xi and y, and that solve a Cauchy-Riemann equation with
suitable Hamiltonian perturbation, as depicted in figure 3. We denote it as

Dn,1(y;x1, . . . , xn) ,
where the n, 1 simply means that we see the pseudo-holomorphic disks with n entries x1, . . . , xn
and one exit y. The higher compositions of Fuk(M,ω) are then defined by counting the points
of the 0-dimensional moduli spaces Dn,1(y;x1, . . . , xn).

We are well-aware that the assumptions made in the previous paragraph are insufficient to
rigorously define the Fukaya category of a symplectic manifold. However, as our main goal is to
put the emphasis on the algebraic constructions arising from Fukaya categories, we will keep the
same level of details in the rest of this chapter in order not to obscure our algebraic statements.
We refer for instance to [Aur14] and [Sei08] for more details on the technicalities necessary to
define a Fukaya category.

xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M

Figure 3 – A pseudo-holomorphic disk with Lagrangian boundary conditions on
the Li and n+ 1 marked boundary points
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One would now like to construct geometric A∞-functors between two Fukaya categories
Fuk(M0) and Fuk(M1). Following Weinstein [Wei81], a Lagrangian L01 ⊂ M−

0 ×M1 can be
interpreted as a morphism from M0 to M1, where M−

0 ×M1 denotes the symplectic manifold
(M0×M1,−ω0⊕ω1). These Lagrangians will be called Lagrangian correspondences from M0 to
M1. Lagrangian correspondences generalize the notion of symplectomorphism, as every symplec-
tomorphism ψ :M0 →M1 defines a Lagrangian correspondence {(x, ψ(x)), x ∈M0} ⊂M−

0 ×M1.
Following this idea, Mau, Wehrheim and Woodward associate to a Lagrangian correspondence
L01 ⊂M−

0 ×M1 an A∞-functor ϕL01 : Fuk(M0)→ Fuk(M1) in [MWW18]. Their construction
goes as follows.

We define a quilted disk with n + 1 marked boundary points to be the data of a disk D ⊂
C, distinct points z0, z1, . . . , zn ordered clockwise on ∂D, and a circle C ⊂ D such that 0 <
radius(C) < radius(D), and which is tangent to z0. The circle C is called the seam of the quilt,
and divides the interior of D into two components, called the patches. An example of a quilted
disk with four marked boundary points is depicted in figure 4. Mau and Woodward provide an
extensive study of the moduli spaces of quilted disks in [MW10] and show in particular that the
moduli spaces QDn,1 provide another realization of the multiplihedra in the realm of geometry.
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Figure 4 – On the left, a quilted disk in QD3,1. On the right, a pseudo-
holomorphic quilted disk with Lagrangian boundary conditions on the Li, seam
condition on L01 and n+ 1 marked boundary points

The A∞-functor ϕL01 of [MWW18] is defined on objects as

ϕL01(L0) := πM1(L0 ×M0 L01) ,

where πM1 denotes the projection M0×M−
0 ×M1 →M1 and ×M0 is the fiber product over M0.

See subsection 2.5 for more details on the definition of ϕL01(L0). Let L0, . . . , Ln be Lagrangian
submanifolds of M0. For x1 ∈ L0∩L1, . . . , xn ∈ Ln−1∩Ln and y ∈ ϕL01(L0)∩ϕL01(Ln), introduce
the moduli space of pseudo-holomorphic quilted disks with Lagrangian boundary conditions on
the Li, seam condition on L01 and n+ 1 marked boundary points that are clockwise sent to the
xi and y, as depicted in figure 4. The labelings M0 and M1 mean that each patch comes with a
map ui from this patch to Mi, while the seam condition means that the map (u0, u1) which is
defined on the seam takes its values in L01. We denote this moduli space as

QDL01
n,1 (y;x1, . . . , xn) .

The operations of the A∞-functor

ϕL01 : Fuk(M0) −→ Fuk(M1)

can then finally be defined by counting pseudo-holomorphic quilted disks of this form.
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2.2. Algebraic composition versus geometric composition. We now consider three
monotone symplectic manifolds (M0, ω0), (M1, ω1) and (M2, ω2) and two Lagrangian correspon-
dences L01 ⊂ M−

0 ×M1 and L12 ⊂ M−
1 ×M2. They can be composed into a third Lagrangian

correspondence
L01 ◦ L12 ⊂M−

0 ×M2 ,

by defining L01 ◦ L12 := πM0×M2(L01 ×M1 L12). We assume from now on that this Lagrangian
correspondence is smooth and embedded in M0 × M2. Consider the three A∞-functors ϕL01 ,
ϕL12 and ϕL01◦L12 . The first main result of [MWW18] is the construction of an A∞-homotopy
between the two A∞-functors

ϕL01◦L12 ≃ ϕL12 ◦ ϕL01 .

The natural approach they follow is to introduce moduli spaces of biquilted disks and their
pseudo-holomorphic counterparts.

We define a biquilted disk with n + 1 marked boundary points to be the data of a disk
D ⊂ C, distinct points z0, z1, . . . , zn ordered clockwise on ∂D, and two circles C1, C2 ⊂ D such
that 0 < radius(C1) < radius(C2) < radius(D), and which are tangent to z0. The circle Ci is
called the i-th seam of the quilt, and the two seams divide the interior of D into three patches.
We moreover define the radii ratio as ρ := radius(C2)/radius(C1) − 1 : it lies in ]0,+∞[. An
instance of a biquilted disk with four marked boundary points is illustrated in figure 5.
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Figure 5 – On the left, a biquilted disk in 2QD3,1. On the right, a pseudo-
holomorphic biquilted disk with Lagrangian boundary conditions on the Li, seam
conditions on L01 and L12, and n+ 1 marked boundary points

For n ⩾ 1, denote 2QDn,1 the moduli space of biquilted disks with n + 1 marked points on
their boundary. These moduli spaces can be topologized and compactified in such a way that
the codimension 1 boundary of 2QDn,1 reads exactly as the one of 2GT n. As a result, the same
problem formulated at the end of section 1.2 arises from the boundary strata

Ds,1 ×
(
2QDi1,1 ×]0,+∞[ · · · ×]0,+∞[ 2QDis,1

)
,

where the fiber product is defined over the radii ratio maps ρr : 2QDir →]0,+∞[.

Let L0, . . . , Ln be Lagrangian submanifolds of M0. For x1 ∈ L0∩L1, . . . , xn ∈ Ln−1∩Ln and
y ∈ ϕL01◦L12(L0) ∩ ϕL01◦L12(Ln), define

2QDL01,L12
n,1 (y;x1, . . . , xn)

to be the moduli space of pseudo-holomorphic biquilted disks with Lagrangian boundary condi-
tions on the Li, seam conditions on L01 and L12, and n + 1 marked boundary points that are
clockwise sent to the xi and y, as represented in figure 5.

As explained in subsection 1.2, we cannot naively count the points of these 0-dimensional
moduli spaces in order to produce an A∞-homotopy ϕL01◦L12 ≃ ϕL12 ◦ ϕL01 . We have to come
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up with an argument living directly at the level of the pseudo-holomorphic biquilted disks.
Mau, Wehrheim and Woodward show that, under some generic assumptions, the moduli spaces
2QDn,1(y;x1, . . . , xn) can be used to produce a sequence of A∞-functors Fi and A∞-homotopies
Hi,i+1 between them,

ϕL01◦L12 = F0 F1 · · · Fn = ϕL12 ◦ ϕL01

H0,1 H1,2 Hn−1,n
.

Composing these A∞-homotopies finally produces an A∞-homotopy

ϕL01◦L12 ≃ ϕL12 ◦ ϕL01 .

As a matter of fact, the previous sequence of A∞-homotopies is not finite in general, but the
A∞-homotopy can nevertheless always be defined using an inductive limit argument.

The details of their proof go beyond the scope of this section. We only warn the reader that
their construction does not consist in transforming the boundary strata of the moduli spaces of
pseudo-holomorphic biquilted disks

Ds,1 ×
(
2QDi1,1 ×]0,+∞[ · · · ×]0,+∞[ 2QDis,1

)

into strata

Ds+1+t ×
(
QDi1 × · · · × QDis × 2QDl × (QDj1 × (QDm1

1
× · · · × QDm1

j1
))× · · · × (QDjt × (QDmt

1
× · · · × QDmt

jt
))
)
,

where we omit to write the (y;x1, . . . , xn) and replace the notation Ds+1+t,1 by Ds+1+t in the
second formula for the sake of readability. The proof comes however with a detailed analysis of
these fiber products, in order to produce the sequence of A∞-functors and A∞-homotopies. We
also mention that their proof crucially depends on an adiabatic limit type argument relying on
strip-shrinking analysis, and which is explained in [WW12].

We expect that the proof of [MWW18] should apply to the Morse-theoretic setup described
in section 1. Couting the points of 0-dimensional moduli spaces of perturbed Morse bigauged
trees should exhibit a ΩBAs-homotopy µY

02 ≃ µY
12 ◦ µY01 . The proof of this statement would

in fact again involve working out the tree combinatorics arising from the decomposition of the
moduli spaces 2GT m by bigauged ribbon tree types.

2.3. The categorification A∞-functor. The second main result of [MWW18] is the
construction of an A∞-functor

(⋆) Fuk(M−
0 ×M1) −→ Func (Fuk(M0),Fuk(M1))

where M0 and M1 are two closed monotone symplectic manifolds, and Func (Fuk(M0),Fuk(M1))
denotes the A∞-category whose objects are A∞-functors from Fuk(M0) to Fuk(M1) and mor-
phisms are pre-natural transformations from Fuk(M0) to Fuk(M1). We describe this A∞-category
thorougly in subsection 3.2 of part 2 in [Maz21b], drawing from [Sei08]. The A∞-functor (⋆)
is referred to as a categorification A∞-functor in [MWW18] and [WW10a].

The categorification A∞-functor is constructed as follows. It is defined on objects as L → ϕL,
where ϕL is the A∞-functor Fuk(M0)→ Fuk(M1) constructed in subsection 2.1. Let L0, . . . ,Lm
be Lagrangian correspondences in M−

0 × M1 and L0, . . . , Ln be Lagrangian submanifolds of
M0. Let x1 ∈ L0 ∩ L1, . . . , xn ∈ Ln−1 ∩ Ln, y1 ∈ L0 ∩ L1, . . . , ym ∈ Lm−1 ∩ Lm and z ∈
ϕL0(L0) ∩ ϕLm(Ln). Introduce the moduli space of pseudo-holomorphic quilted disks with La-
grangian boundary conditions on the Li and n + 1 marked boundary points that are clockwise
sent to the xi and z, and seam conditions on the Lj with m marked seam points that are clock-
wise sent to the yj . An example of such a quilted disk is depicted in figure 6. We denote these
moduli spaces as

QDn,m,1(z; y1, . . . , ym;x1, . . . , xn) .
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The operations of the categorificationA∞-functor are then defined by counting pseudo-holomorphic
quilted disks of the previous form : a sequence of intersection points y1 ∈ L0 ∩ L1, . . . , ym ∈
Lm−1 ∩ Lm is sent to the pre-natural transformation whose n-ary operations are defined as

CF ∗(L0, L1)⊗ · · · ⊗ CF ∗(Ln−1, Ln) −→ CF ∗(ϕL0(L0), ϕLm(Ln))

x1 ⊗ · · · ⊗ xn 7−→
∑

#QDn,m,1(z; y1, . . . , ym;x1, . . . , xn) · z .

We point out that there are four type of moduli spaces arising in the construction of the
categorification A∞-functor :

(i) The moduli spaces of disks with marked boundary points, encoding the operations of
the A∞-categories Fuk(M0) and Fuk(M1).

(ii) The moduli spaces of quilted spheres with marked seam points, encoding the operations
of the A∞-category Fuk(M−

0 ×M1). The crucial point here is that quilted spheres with
two patches can be identified with disks mapping to the product, and that the moduli
spaces of quilted spheres with marked seam points realize the associahedra.

(iii) The moduli spaces of quilted disks with marked boundary points, encoding the opera-
tions of the A∞-functors ϕL : Fuk(M0)→ Fuk(M1).

(iv) The moduli spaces of quilted disks with marked seam points and marked boundary
points, encoding the operations of the categorification A∞-functor itself.

A careful analysis of the boundary of the compactification of the 1-dimensional moduli spaces
QDn,m,1(z; y1, . . . , yn;x1, . . . , xm) then shows that it features combinations of these four moduli
spaces of pseudo-holomorphic curves and that it is exactly modeled on the A∞-equations that
the categorification A∞-functor has to satisfy.

xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M0

ymy1

LmL0
M1

Figure 6 – On the left, a biquilted disk with Lagrangian boundary conditions
and Lagrangian correspondence seam conditions. On the right, an example of a
quilted sphere with 4 marked seam points.

2.4. The 2-category Floer. Define a 2-category C to be the data of
(i) a set of objects Ob(C) ;
(ii) for every X,Y ∈ Ob(C) of a category C(X,Y ), together with an identity morphism if

X = Y ;
(iii) for every X,Y, Z ∈ Ob(C) of a bifunctor

C(X,Y )× C(Y, Z)→ C(X,Z) .
In other words, a 2-category is simply a category enriched in categories. The objects of C(X,Y ) are
called the 1-morphisms of C and their morphisms its 2-morphisms. The category Cat of categories
together with functors as 1-morphisms and natural transformations as 2-morphisms defines in
particular a 2-category. We moreover define a 2-functor F : C → D between 2-categories to be
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a functor between categories enriched in categories, i.e. the data of a map F : Ob(C) → Ob(D)
and of functors C(X,Y )→ D(F(X),F(Y )) respecting the composition and the identities.

In [WW10a], Wehrheim and Woodward define a Weinstein-Floer 2-category Floer whose
objects are (closed monotone) symplectic manifolds as follows. For M0 and M1 two symplectic
manifolds, we define

Floer(M0,M1) := Don(M−
0 ×M1) ,

where the category Don(M) is the category whose objects are Lagrangian submanifolds of M and
whose morphism spaces are the Floer cohomology groups of M , i.e. Don(M) := H∗(Fuk(M)).
Its composition bifunctor

Don(M−
0 ×M1)×Don(M−

1 ×M2) −→ Don(M−
0 ×M2)

is defined on objects as (L01,L12) 7→ L01 ◦ L12 (see subsection 2.5 for more details on that nota-
tion) and on the categories of morphisms by counting pseudo-holomorphic quilted pair of pants
as represented in figure 7. The categorification A∞-functor for Fukaya categories constructed in
subsection 2.3 then defines a categorification 2-functor

Floer −→ Cat ,

defined on objects as M 7→ Don(M) and on the categories of morphisms as

Floer(M0,M1) = Don(M−
0 ×M1) −→ Fun (Don(M0),Don(M1)) .

Figure 7 – An example of a pseudo-holomorphic quilted pair of pants

2.5. Quilted Floer cohomology and technical assumptions. This section was written
without any technical assumptions, as our main focus was to give an overview of the algebraic
constructions in [MWW18] and [WW10a] without dwelling into technical details. We refer
the reader interested in the exact technical assumptions on the symplectic manifolds and their
Lagrangians to these two papers.

There is however an important part of these constructions that we have eluded until now.
They do not take place in the framework of ordinary Lagrangian Floer cohomology, but of quilted
Floer cohomology. To put it shortly, the A∞-categories Fuk(M−×N) have to be replaced by A∞-
categories Fuk#(M,N) which are defined as follows. Their objects are generalized Lagrangian
correspondences, which are defined as sequences of Lagrangian correspondences

L :M =M0 −→L01

M1 −→L12

· · · −→
Ln−1,n

Mn = N

where an arrow Li,i+1 : Mi → Mi+1 denotes a Lagrangian correspondence Li,i+1 ⊂ M−
i ×

Mi+1. Their morphism spaces CF ∗(L,L′) are then defined in a similar way to Lagrangian Floer
cohomology, replacing pseudo-holomorphic strips by pseudo-holomorphic quilted strips with seam
conditions on the Lagrangian correspondences of L and L′. We refer to [WW10b] for more
details on the definition of the quilted Floer cohomology groups. In the same fashion, the moduli
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spaces of pseudo-holomorphic disks with Lagrangian boundary conditions can be adapted to the
quilted framework in order to define the operations of the A∞-category Fuk#(M,N). The Fukaya
categories Fuk(M) and the Donaldson categories Don(M) and Don(M− ×N) then also have to
be replaced by their enlargement Fuk#(M) := Fuk#(pt,M), Don#(M) and Don#(M− ×N).

3. Towards the (A∞, 2)-category Symp

In subsection 2.4 we recalled the construction in [WW10a] of a 2-category Floer whose
objects are closed manifolds M and morphism spaces are the Donaldson categories Don(M−

0 ×
M1). A natural question to ask is whether this 2-category can be lifted to the dg-level, by
defining a homotopy 2-category whose objects are symplectic manifolds and morphism spaces
the Fukaya categories Fuk(M−

0 ×M1). In other words, a category enriched in A∞-categories.
This expected category is referred to as the (A∞, 2)-category Symp by Bottman, and we will
expose in the subsections 3.1 and 3.2 his current progress towards its definition. We will then
expose in subsection 3.3 a series of conjectures that relates the work of Bottman and our work
in [Maz21b].

3.1. Pseudo-holomorphic quilts with figure eight singularity. In order to define the
category Symp, we would first like to define an A∞-bifunctor

Fuk(M−
0 ×M1)× Fuk(M−

1 ×M2) −→ Fuk(M−
0 ×M2) ,

i.e. a collection of operations

ϕk,l : CF
∗(L001,L101)⊗ · · · ⊗ CF ∗(Lk−1

01 ,Lk01)⊗ CF ∗(L012,L112)⊗ · · · ⊗ CF ∗(Ll−1
12 ,Ll12)

−→ CF ∗(L001 ◦ L012,Lk01 ◦ Ll12)
such that

[∂, ϕk,l] =
∑

k1+k2+k3=k

ϕk1+1+k3,l(id
⊗k1 ⊗m01

k2 ⊗ id⊗k3 ⊗ id⊗l)

+
∑

l1+l2+l3=l

ϕk,l1+1+l3(id
⊗k ⊗ id⊗l1 ⊗m12

l2 ⊗ id⊗l3)

+
∑

k1+···+ks=k
l1+···+ls=l

m02
s (ϕk1,l1 , · · · , ϕks,ls) .

Beware that Fuk(M−
0 ×M1)× Fuk(M−

1 ×M2) is a mere notation, and we do not think of it as
a tensor product of A∞-categories. We refer however to section 2 for more details on the tensor
product of Fukaya categories.

In order to define an A∞-bifunctor of this form, Bottman studies in [Bot20] the moduli spaces
of pseudo-holomorphic quilts with marked points on their seams and figure eight singularity. An
example of such a pseudo-holomophic quilt is depicted in figure 8. He expects that counting the
points of 0-dimensional moduli spaces of pseudo-holomorphic quilts of this form should define
the A∞-bifunctor sketched in the previous paragraph. Here one of the crucial argument is again
that quilted spheres with two patches can be identified with disks mapping to the product.

We moreover point out that such a bifunctor would recover the categorification A∞-functor
of [MWW18]. Indeed, setting M0 := {pt} it would yield an A∞-bifunctor

Fuk(M1)× Fuk(M−
1 ×M2) −→ Fuk(M2) ,

which can be shown to yield an A∞-functor

Fuk(M−
1 ×M2) −→ Func(Fuk(M1),Fuk(M2)) .
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This A∞-functor is the categorification A∞-functor of [MWW18], as moduli spaces of pseudo-
holomorphic quilts with marked seam points whose left patch is sent to a point correspond exactly
to moduli spaces of quilted disks with marked boundary and seam points.

Figure 8 – An example of a pseudo-holomorphic quilt with figure eight singu-
larity

3.2. Moduli spaces of witch curves, 2-associahedra and the (A∞, 2)-category Symp.
Bottman suggests that the higher operations of Symp should then be encoded by generalizing the
pseudo-holomorphic quilts of the previous subsection and allowing for more than three patches
(and still requiring that the seams all intersect at a single common point). He calls these moduli
spaces the moduli spaces of witch curves and denotes them 2Mnnn. They are studied in [Bot19b].
The stratification of the compactified moduli spaces of witch curves 2Mnnn can in fact be described
by a family of abstract polytopes, called the 2-associahedra and studied in [Bot19a]. The moduli
spaces of witch curves with more than four patches feature unfortunately yet again fiber products
in their boundary, hence do not naturally encode a dg-operadic object. In [BC21], Bottman and
Carmeli however bypass this issue by defining a relative 2-operad structure on the moduli spaces
of witch curves. More precisely, they prove that the 2-associahedra 2Mnnn form a 2-operad in
topological spaces relative to the associahedra Mr. Using this formalism, they then manage to
provide an explicit definition of an (A∞, 2)-category on the dg-level, using the notion of a linear
category over a relative 2-operad in topological spaces. Beware however that the relative 2-operad
in topological spaces (2Mnnn,Mr) still does not yield a relative 2-operad in dg-modules under the
image of the cellular chains functor. In other words, the relative 2-operadic viewpoint does not
yield a dg-model for the 2-associahedra.

3.3. Conjectures on the 2-associahedra and the n-multiplihedra. We have seen in
subsection 2.2 that the moduli spaces of biquilted disks 2QDm,1 withm+1 marked points on their
boundary can be represented in Floer theory to define an A∞-homotopy between algebraic and
geometric composition of A∞-functors associated to Lagrangian correspondences. The moduli
space of biquilted disks 2QDm,1 is in fact isomorphic to ]0,+∞[×QDm,1 where the ]0,+∞[
factor corresponds to the radii ratio value. The compactified moduli space of biquilted disks
2QDm,1 then fibers over [0,+∞] and its fibers can be described as follows :

(i) The fiber over any δ ∈ [0,+∞[ corresponds to a copy of the multiplihedron Jm, where
the two-colored corollae labeling the top dimensional stratum of Jm can be seen as
labeled by a biquilted disk with fixed radii ratio δ.

(ii) The fiber over +∞ corresponds to a CW-complex whose top dimensional strata can be
consistently labeled by all three-colored trees arising in the definition of the composition
of two A∞-morphisms.

We conjecture in fact that
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(i) There exists a refined polytopal decomposition of Jm which can be consistently labe-
led by all three-colored trees arising in the definition of the composition of two A∞-
morphisms. This decomposition is illustrated in the case of J3 in figure 9 and will be
called the ◦A∞-polytopal decomposition of Jm.

(ii) The compactified moduli space 2QDm,1 is then isomorphic as a CW-complex to the
polytope [0, 1]× Jm, whose face {1} × Jm is endowed with its ◦A∞-polytopal decompo-
sition.

Figure 9 – The ◦A∞-polytopal decomposition on J3 on the left, and the polytopal
decomposition on [0, 1]× J3 refining the 1-multiplihedron and the ◦A∞ polytopal
decompositions on the right

The 1-multiplihedra 1− Jm that we defined in [Maz21b] and which encode A∞-homotopies
between A∞-morphisms, were in fact also defined by refining the polytopal decomposition on
[0, 1]× Jm. We suspect in fact that there should exist a polytopal decomposition on [0, 1]× Jm
that refines simultaneously its 1-multiplihedron and its ◦A∞-decompositions. This decomposition
is represented on figure 9 in the case of [0, 1]× J3. It would then be interesting to know whether
one could endow the moduli spaces 2QDm,1 with a refined compactification rule, such that their
boundary reads exactly as the boundary of this newly defined refined polytopal decomposition
of [0, 1]× Jm.

More generally, moduli spaces of n-quilted disks nQDm with marked boundary points could
be expected to produce (n−1)-morphisms between Fukaya categories. A first step in that direction
would be to understand how exactly they are linked to the n-multiplihedra n − Jm that we
introduced in [Maz21b]. We think for instance that moduli spaces of 3-quilted disks with marked
boundary points should give rise to the following diagram of A∞-functors, A∞-homotopies and
2−A∞-functors between Fukaya categories defined by Lagrangian correspondences

ϕL23 ◦ ϕL12 ◦ ϕL01 ϕL12◦L23 ◦ ϕL01

ϕL23 ◦ ϕL01◦L12 ϕL01◦L12◦L23

.

The combinatorics of the moduli spaces of witch curves could then be expected to be governed
at the same time by the combinatorics of higher functors between A∞-categories as defined
in [Maz21b] and by the combinatorics of pre-natural transformations between A∞-categories,
which would respectively arise from the number of seams of the quilted sphere and from the
marked points on these seams.
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4. Towards the homotopy 2-functor Symp→ A∞ − Cat

Fukaya tackles in [Fuk17] the issue of the construction of a homotopy 2-functor Symp →
A∞ − Cat, where Symp and A∞ − Cat are informally defined as the homotopy 2-category whose
objects are closed symplectic manifolds and A∞-categories of morphisms are the Fukaya cate-
gories Fuk(M−

0 ×M1) resp. whose objects are A∞-categories and A∞-categories of morphisms
are the A∞-categories Func(A,B). This informal homotopy 2-functor is defined on objects as
M 7→ Fuk(M) and on morphisms as Fuk(M−

0 ×M1) 7→ Func(Fuk(M0),Fuk(M1)). We point out
that he however does not exhibit an explicit satisfactory definition of a homotopy 2-category to
consider in that context. The notion of an (A∞, 2)-category that Bottman is currently trying to
define could provide a well-suited definition for his construction.

4.1. Results. Let M0, M1 and M2 be three closed symplectic manifolds. Fukaya constructs
to begin with a composition A∞-bifunctor between Fukaya categories

Fuk(M−
0 ×M1)× Fuk(M−

1 ×M2) −→ Fuk(M−
0 ×M2) ,

by counting pseudo-holomorphic quilts. This A∞-bifunctor is then homotopy associative, meaning
that the diagram

Fuk(M−
0 ×M1)× Fuk(M−

1 ×M2)× Fuk(M−
2 ×M3) Fuk(M−

0 ×M2)× Fuk(M−
2 ×M3)

Fuk(M−
0 ×M1)× Fuk(M−

1 ×M3) Fuk(M−
0 ×M3)

commutes up to homotopy equivalence. The notion of a homotopy equivalence has been recalled
in subsection 3.3. of part 2 in [Maz21b]. Given three A∞-categories A0,A1,A2 it is also possible
to define a composition A∞-bifunctor

Func(A0,A1)× Func(A1,A2) −→ Func(A0,A2) ,

following [Lyu03]. Fukaya proves that this composition A∞-bifunctor is again homotopy asso-
ciative, meaning that the diagram

Func(A0,A1)× Func(A1,A2)× Func(A2,A3) Func(A0,A2)× Func(A2,A3)

Func(A0,A1)× Func(A1,A3) Func(A0,A3)

commutes up to homotopy equivalence.

As explained at the end of subsection 3.1, a categorification A∞-functor

Fuk(M−
0 ×M1) −→ Func(Fuk(M0),Fuk(M1)) ,

can then simply be deduced by setting M2 = {pt}. Fukaya finally proves that this categorification
A∞-functor has the property that the following diagram is homotopy commutative

Fuk(M−
0 ×M1)× Fuk(M−

1 ×M2) Fuk(M−
0 ×M2)

Func(Fuk(M0),Fuk(M1))× Func(Fuk(M1),Fuk(M2)) Func(Fuk(M0),Fuk(M2)) .

We point out that Fukaya however does not work out the full set of higher coherent homotopies
that should arise from the homotopy commutativity property of the three previous diagrams.
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4.2. Technical assumptions and relation to the work of Mau, Wehrheim and
Woodward. The symplectic manifolds considered in [Fuk17] are only required to be closed,
while they were also required to be monotone in [MWW18] and [WW10a]. The Lagrangian
submanifolds are moreover required to be immersed but not necessarily embedded. His results
are thereby stated in a greater generality than those of [MWW18]. This however implies several
adjustments in the definition of the Fukaya category Fuk(M).

The objects of Fuk(M) are this time Lagrangian submanifolds endowed with a bounding
cochain. The datum of a bounding cochain is indeed necessary in order to define Lagrangian
Floer cohomology groups without the monotonicity assumption. See [FOOO09a] and [AJ10]
for instance. We point out that in general, bounding cochains do not exist for all Lagrangian
submanifolds. Lagrangian submanifolds that admit bounding cochains are in particular said to
be unobstructed. However, under the monotonicity assumptions of [MWW18], all Lagrangian
submanifolds were unobstructed. The A∞-category Fuk(M) of [Fuk17] is moreover a curved
filtered unital A∞-category. Filtered refers to the fact that this A∞-category is defined over the
Novikov ring Λ0, curved to the fact that it features nonzero arity 0 operations mL

0 ∈ CF ∗(L,L)
for all Lagrangians and unital was defined in subsection 3.3. of part 2 in [Maz21b].

As Fukaya works with unobstructed Lagrangians, it is necessary to know whether unobstruc-
tedness is preserved under the constructions described in the previous subsection. The answer
to this problem is positive and is in fact one of the main results of [Fuk17]. He proves that the
composition L01 ◦ L12 of two unobstructed immersed Lagrangian correspondences L01 and L12
remains unobstructed, and that if L ⊂ M0 and L01 ⊂ M−

0 ×M1 are unobstructed, then the
immersed Lagrangian ϕL01(L) is also unobstructed. We point out that he choses to work with
immersed but not embedded Lagrangians, as the geometric composition of two generic embedded
Lagrangians is immersed but not embedded in general. We finally mention that while the work
of Mau, Wehrheim, Woodward and Bottman relies on the analysis of strip-shrinking and figure
eight bubbling, the work of Fukaya is based on an argument of Lekili and Lipyanskiy in [LL13]
and on an extensive use of Yoneda functors and homological algebra in the A∞ setting.





Chapitre 2

Tensor products of A∞-algebras and A∞-morphisms

1. Diagonals on the associahedra and the multiplihedra

1.1. Polytopal diagonals on the associahedra and the multiplihedra. We write
A∞ − alg for the category of A∞-algebras with A∞-morphisms between them. Given A and B
two A∞-algebras, we would like to define an A∞-algebra structure on the tensor product A⊗B.
The naive approach to define the A∞-operations on A⊗B would be to setmA⊗B

n := (mA
n⊗mB

n )◦τ ,
where τ denotes the map rearranging an element of (A ⊗ B)⊗n into an element of A⊗n ⊗ B⊗n.
One can however check that these maps do not satisfy the A∞-equations and in fact do not even
have the correct degree.

Define a diagonal on the operad A∞ to be the datum of a morphism of operads A∞ →
A∞⊗A∞, where P ⊗Q(n) := P (n)⊗Q(n) denotes the Hadamard product of two operads P and
Q. Recall moreover that an A∞-algebra structure on A corresponds to a morphism of operads
A∞ → EndA. Using this viewpoint and given a diagonal on the operad A∞, one can define an
A∞-algebra structure on A⊗B as

A∞ −→ A∞ ⊗A∞ −→ EndA ⊗ EndB −→ EndA⊗B ,

where it is straighforward to define the map of operads EndA ⊗ EndB → EndA⊗B.

An explicit formula for a diagonal on the operad A∞ was computed for the first time in
[MS06]. Using the general theory of positively oriented polytopes and fiber polytopes, Masuda,
Thomas, Tonks and Vallette then constructed in [MTTV21] a family of polytopal maps ∆Kn :
Kn → Kn ×Kn which fit into a morphism of operads in polytopes, and whose image under the
cellular chains functor recovers exactly the diagonal A∞ → A∞ ⊗ A∞ of [MS06]. The problem
of the definition of a diagonal on the associahedra was also studied in [SU04] and [Lod11].

For the sake of readibility, we set from now on M∞ := A∞ −Morph. In [LAM], Laplante-
Anfossi and myself adapt the method of [MTTV21] in order to define a diagonal on the mul-
tiplihedra ∆Jn : Jn → Jn × Jn compatible with both the {Kn}-operadic bimodule structure on
the polytopes Jn and the diagonal ∆Kn constructed in [MTTV21]. The image of this polytopal
diagonal under the cellular chains functors then yields on the dg-level a morphism of operadic bi-
modules M∞ →M∞⊗M∞, which is compatible with the morphism of operads A∞ → A∞⊗A∞
and that we explictly compute. The datum of this diagonal on M∞ finally allows us to define
the tensor product of two A∞-morphisms F1 : A1 → B1 and F2 : A2 → B2, that we denote
F1 ⊗∞ F2 : A1 ⊗∞ B1 → A2 ⊗∞ B2, where A ⊗∞ B stands for the dg-module A ⊗ B endowed
with the tensor A∞-algebra structure defined by the diagonal on A∞.

1.2. The homotopy monoidal category structure on A∞ − alg ? We would now like
to know if the tensor product ⊗∞ defined using the diagonal ∆A∞ introduced in [MS06] and the
diagonal ∆M∞ that we construct in [LAM], endows the category A∞ − alg with a symmetric
monoidal category structure, where Z is taken to be the identity object. More precisely, we have
to prove that there exist functorial isomorphisms αA,B,C : A⊗∞ (B ⊗∞ C)→ (A⊗∞ B)⊗∞ C
and τA,B : A⊗∞B → B⊗∞A that fit into the usual diagrams for a monoidal category, and that
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this tensor product is functorial i.e. that given A∞-morphisms Fi : Ai → Bi and Gi : Bi → Ci
for i = 1, 2, the following identity is satisfied

(G1 ◦ F1)⊗∞ (G2 ◦ F2) = (G1 ⊗∞ G2) ◦ (F1 ⊗∞ F2) .

We refer to [Mac98] for the complete definition of a symmetric monoidal category structure.

Applying the theory of Hopf operads and minimal models to the Hopf operad Ass endowed
with the obvious diagonal and its minimal model A∞ → Ass, it is proven in [MSS02] and
[MS06] that there exists a homotopy of morphisms of operads between (∆A∞ ⊗ id) ◦∆A∞ and
(id⊗∆A∞) ◦∆A∞ . Following for instance [Fuk10], this means that there exists a quasi-isotopy
between the A∞-algebras A ⊗∞ (B ⊗∞ C) and (A ⊗∞ B) ⊗∞ C whose underlying dg-module
is A ⊗ B ⊗ C, thus in particular that there exists an A∞-quasi-isomorphism between them. A
similar method also shows that A⊗∞B ≃ B⊗∞A. It is however unclear why these collections of
quasi-isomorphisms should fit into natural transformations α and τ defining the associator and
the symmetry of a symmetric monoidal category structure on A∞ − alg. It is moreover proven
in [MS06] that a diagonal on A∞ can in fact never be coassociative, i.e. that for any morphism
of operads ∆A∞ : A∞ → A∞ ⊗A∞ we have that

(∆A∞ ⊗ id) ◦∆A∞ ̸= (id⊗∆A∞) ◦∆A∞ .

We also prove in [LAM] that a diagonal on M∞ can never be functorial.

It is thus impossible to endow the category A∞ − alg with a symmetric monoidal category
structure from the perspective of diagonals on the operad A∞ and the operadic bimodule M∞.
Guillaume Laplante-Anfossi and myself therefore plan to inspect in which sense this data would
endow A∞ − alg with a "homotopy" monoidal category structure. It is not yet clear to us which
explicit model for such a category one would have to choose. Understanding which higher coherent
homotopies arise from the lack of associativity of ∆Kn and ∆Jn on the level of polytopes could
for instance be a first step towards solving that problem. Given two diagonals ∆i

A∞ and ∆i
M∞

for i = 1, 2, it would also be interesting to know how the two "homotopy" monoidal category
structures defined on A∞ − alg would then be related. A first result in that direction is again
given in [MS06]. Two diagonals ∆1

A∞ and ∆2
A∞ on the operad A∞ are always homotopic as

morphisms of operads, which implies that the A∞-algebras A ⊗∞1 B and A ⊗∞2 B are always
quasi-isomorphic. We finally point out that such a homotopy monoidal category structure on
A∞ − alg could then be easily adapted to define a homotopy monoidal category structure on the
category of A∞-categories with A∞-functors.

2. Tensor products in symplectic topology

2.1. A Künneth theorem in Lagrangian Floer theory. Let M be a closed symplectic
manifold and L ⊂M a closed spin Lagrangian submanifold. Using Lagrangian Floer theory and
pseudo-holomorphic disks curves with Lagrangian boundary conditions, Fukaya constructs in
[Fuk10] a unital A∞-algebra F(L) associated to the Lagrangian L, called the Fukaya algebra of
L. In [Amo17], Amorim shows that given two symplectic manifolds M1 and M2 together with
Lagrangians Li ⊂Mi, the Fukaya algebra of the product Lagrangian L1×L2 is quasi-isomorphic
to the tensor product of their Fukaya algebras, i.e. F(L1×L2) ≃ F(L1)⊗∞F(L2). His proof relies
on a theorem that he proves in [Amo16], giving a criterion for an A∞-algebra C to be quasi-
isomorphic to the tensor product A⊗∞B of two commuting A∞-subalgebras A ⊂ C and B ⊂ C,
which he then applies to the two A∞-subalgebras F(L1) ⊂ F(L1×L2) and F(L2) ⊂ F(L1×L2).

Fukaya generalizes this result in [Fuk17], working this time on the level of Fukaya categories.
He proves that for two closed symplectic manifolds M0 and M1 there exists a unital A∞-functor

Fuk(M0)⊗ Fuk(M1) −→ Fuk(M−
0 ×M1)
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which is a homotopy equivalence to its image. This A∞-functor and the categorification A∞-
functor then fit into a diagram

(⋆) Fuk(M0)⊗ Fuk(M1) −→ Fuk(M−
0 ×M1) −→ Func(Fuk(M0),Fuk(M1)) .

It would in fact be interesting to know when the A∞-functors in (⋆) become homotopy
equivalences. Given A and B two A∞-categories, one could also ask whether there exists a purely
algebraic A∞-functor

A⊗ B −→ Func(A,B) ,
such that the previous composition is homotopy equivalent to this A∞-functor when A :=
Fuk(M0) and B := Fuk(M1). A third question of interest could finally be to understand how
the tensor product of A∞-functors could be realized in symplectic topology, using Lagrangian
correspondences.

2.2. The work of Lipshitz, Oszváth and Thurston. In [LOT21], Lipshitz, Oszváth
and Thurston also study diagonals on the operad A∞ and on the operadic bimodule M∞. They
however work exclusively on the dg-level, constructing abstract diagonals by using the fact that
A∞ and M∞ are contractible. They show in particular that one can construct a trigonal M∞ →
M⊗3

∞ in order to produce a natural quasi-isomorphism

A0 ⊗∞ (A2 ⊗∞ A3) ≃ (A1 ⊗∞ A2)⊗∞ A3 .

This provides an alternative construction for a quasi-isomorphism of this form, which has already
been constructed in subsection 1.2 using the theory of Hopf operads and minimal models.

The goal of their work is to study bordered Heegaard Floer homology of 3-manifolds. Given
a 3-manifold Y with two boundary components, they are working to construct a bimodule twisted
complex CFDD−(Y ), also called a type DD-bimodule. The definition of such an object uses a
diagonal on A∞. A diagonal on M∞ is then needed in order to relate the categories of bimodules
defined with different diagonals on A∞, which in turn is needed for properties like associativity
of tensor products. The authors also expect that diagonals on M∞ could be needed in a distant
future to define A∞-morphisms between bimodule twisted complexes arising from a cobordism
between two 3-manifolds Y1 and Y2.

The previous paragraph is drawn from a private communication with Robert Lipshitz and
remains very vague as their work on Heegaard Floer homology relying on [LOT21] is still in
progress. We however insist that their construction differs greatly from the one explained in sub-
section 2.1. Amorim and Fukaya use a diagonal on A∞ in order to respectively prove a Künneth
theorem for Fukaya algebras and Fukaya categories, while Lipshitz, Oszváth and Thurston resort
to diagonals on A∞ and M∞ in order to define and study the properties of the bimodule twisted
complex CFDD−(Y ).





Chapitre 3

New algebraic structures on the symplectic and Rabinowitz-Floer
chains

Let W be a Liouville domain, i.e. an exact symplectic manifold with convex boundary ∂W .
There are several Floer-type (co)homologies associated to W . Among them are the Rabinowitz-
Floer homology SH∗(∂W ) and the symplectic homology SH∗(W ) and cohomology SH∗(W ).
We refer to [CO18] for their definition. Rabinowitz-Floer homology can in fact be computed
as the homology of a cone, defined by a canonical up to homotopy chain map SC−∗(W ) →
SC∗(W ) relating the chain complexes that respectively define symplectic cohomology SH−∗(W )
and symplectic homology SH∗(W ), as proven in [Ven18] and [CO18].

In [CHO20], [CO20] and [CHOb], it is proven that Rabinowitz-Floer homology SH∗(∂W )
can be endowed with a biunital involutive coFrobenius bialgebra structure in the sense of
[CHOa]. In this regard, Cieliebak and Oancea are brought to study the following algebraic
question. Given two dg-modules A and M and a chain map c : M → A, what is the structure
on the pair (M,A) that defines an A∞-algebra structure on Cone(c) ? More specifically, which
structure to define on A in order to get an A∞-algebra structure on the cone associated to a pair
of the form (A∨, A). The arity 2 case is studied in [CO20] but the higher arity cases are left
unsolved. This problem is the starting point to a series of projects that we are currently working
on and that we will describe in this section.

1. The V∞-algebra structure on the symplectic chains

1.1. V∞-algebras. Some preliminary (unsigned) computations that we performed suggest
that the correct structure to consider on A in the previous problem would be that of a V∞-algebra
as defined in [TZ07a].

+

++

+

−

+

+
−

+

−

+ − −

Figure 1 – Two operations represented as disks with marked boundary points.
From left to right, one operation with n inputs and 1 output and one operation
in A⊗2 ⊗ (A∨)⊗2 ⊗A⊗A∨ ⊗A⊗A∨.

Throughout this section we will consider operations with multiple inputs and outputs A⊗m →
A⊗k. For the sake of readibility, we will write these operations as elements of

A⊗ (A∨)⊗i1 ⊗ · · · ⊗A⊗ (A∨)⊗ik ,
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where
∑k

j=1 ij = m, even when the dg-module A is not finite-dimensional. These operations will
be represented as disks with marked points on their boundary : the inputs will be labeled with
+ while the outputs will be labeled with −. See figure 1 for two illustrations of these notations.
In this formalism, the unsigned A∞-equation of arity 3 for A∞-algebras then reads for instance
as

[∂, +

+

+

−
] = +

+

−++

−
+ −

+

+ ++

−
⇔ [∂, ] = + ,

where we have represented the equivalent equation in terms of trees on the right-hand side.

Following [TZ07a], we define a V∞-algebra structure on a dg-module A as follows. It is the
datum for each k ⩾ 1 and i1, . . . , ik ⩾ 0 of operations

mi1,...,ik ∈ A⊗ (A∨)⊗i1 ⊗ · · · ⊗A⊗ (A∨)⊗ik

where we require that m1 = ∂ and k+
∑k

j=1 ij ⩾ 2. An operation mi1,...,ik is then defined to have
degree 4 −∑k

j=1 ij − 2k. These operations have to satisfy the following symmetry condition :
writing τ for the map rearranging an element of A⊗ (A∨)⊗i1 ⊗· · ·⊗A⊗ (A∨)⊗ik into an element
of A⊗ (A∨)⊗i2 ⊗ · · · ⊗A⊗ (A∨)⊗ik ⊗A⊗ (A∨)⊗i1 and ε for the sign of τ , we require that

mi2,...,ik,i1 = (−1)ετmi1,i2,...,ik .

As explained in the previous paragraph, we can now denote an operation mi1,...,ik as a disk
with k +

∑k
j=1 ij marked boundary points, whose boundary points are labeled by going around

the boundary circle following the factors A ⊗ (A∨)⊗i1 ⊗ · · · ⊗ A ⊗ (A∨)⊗ik and replacing A by
− and A∨ by +. Notice that the conditions on k and the ij mean that we consider operations
associated to all possible labelings of disks with at least two marked boundary points and at
least one output. The symmetry condition implies moreover that writing these operations as
disks with marked boundary points is indeed consistent, as the symmetry of the notation carries
the same symmetry as these operations.

The V∞-equation for the operation mi1,...,ik seen as a disk with marked boundary points is
then defined to be the signed sum of all nodal disks with exactly one node such that :

(i) The disk with marked boundary points obtained by gluing the nodal disk along the
node is exactly mi1,...,ik .

(ii) Each of the two disks composing the nodal disk has at least two marked boundary points
and at least one output.

(iii) The common marked point of the two disks composing the nodal disk cannot be simul-
taneously labeled with + or simultaneously labeled with −.
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The V∞-equations for the operations A→ A⊗2 and A→ A⊗3 write for instance respectively as

[∂, −
+

− ] = −
+

+−− + +

+

− −− ,

[∂, −
+

−
−

] = −
+

+

−
−− +

−
+

− +

−

−
+ +

+

−
−

−−

+ −
+

− −+

−
+ +

+

− −−
−

+ −
+

−+−
−

+ −
+

+−−
−

.

Tradler and Zeinalian also define the notion of a Vk-algebra to be a collection of operations
mi1,...,ih for all 1 ⩽ h ⩽ k that satisfy the previous degree, symmetry and boundary conditions.
A V1-algebra structure on A then corresponds exactly to an A∞-algebra structure on A. Notice
however that the collection of operations with exactly 1 input do not fit into an A∞-coalgebra
structure on A. The operation A→ A⊗2 indeed has degree −1 and is not even compatible with
the differential, as illustrated in the previous example. The only operations that are compatible
with the differental are in fact the product m2 : A

⊗2 → A and the element c ∈ A⊗A, hence are
the only ones that induce operations in cohomology. They moreover both have degree 0.

The structure of a V∞-algebra is in fact encoded by a dioperad, as proven in [PT19]. We
refer to it as the dioperad V∞. Roughly speaking, a dioperad is nothing more than an operad
whose operations are allowed to have multiple outputs using the partial compositions viewpoint.
We point out that a dioperad is the simplest operadic object that can be expected to encode V∞-
algebras, as their definition features operations with multiple outputs and partial compositions in
the V∞-equations. Define a symmetric and invariant co-inner product on an associative algebra
A to be the datum of an element c := c1 ⊗ c2 ∈ A⊗A such that

c1 ⊗ c2 = (−1)|c2||c1|c2 ⊗ c1 (a · c1)⊗ c2 = (−1)|a|(|c1|+|c2|)c1 ⊗ (c2 · a) ,
where c := c1 ⊗ c2 are Sweedler’s notations. Define moreover V to be the dioperad encoding the
structure of an associative algebra with symmetric and invariant co-inner product. In [PT19],
Poirier and Tradler use the Koszul duality theory for dioperads of [Gan03] to show that the
dioperad V∞ is Koszul auto-dual and that the dioperad V∞ then corresponds exactly to the
resolution V∞ := ΩV ¡ → V . In particular, a structure of V∞-algebra on A induces a structure of
associative algebra with symmetric and invariant co-inner product on H∗(A), whose product is
[m2] and whose co-inner product is [c].

1.2. The assocoipahedra. The combinatorics of the dioperad V∞ is in fact governed by
families of polytopes called the assocoipahedra, that were introduced by Poirier and Tradler
in [PT18]. They perform their constructions by seeing operations of V∞ as encoded by trees
rather than disks. They work thereby in their article with the viewpoint of directed planar trees,
which are all the trees that can be obtained under partial compositions in the dioperad V∞,
rather than the equivalent viewpoint of nodal disks with marked boundary points that we used
in the previous subsections. We choose to adopt their point of view in order to describe the
assocoipahedra in the following paragraph.
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Poirier and Tradler construct more precisely in [PT18] a cell complex whose cells can be
labeled by all directed planar trees. In particular, the codimension 1 strata of this cell complex
encode exactly the V∞-equations. The choice of denomination assocoipahedra was inspired from
the associahedra : while the former encodes a homotopy version of associ(ative) algebras, the
latter encodes a homotopy version of asso(ciative algebras with) co-i(nner) p(roduct). Beware ho-
wever that they do not construct a dioperad in Poly realizing the dioperad V∞ as in [MTTV21].
They show moreover that the assocoipahedron whose inner cell is labeled by an operation mi1,...,ik

corresponds to the polytope Ki1+···+ik+k−1 ×∆k−1 endowed with a refined polytopal decompo-
sition. The projection to the factor Ki1+···+ik+k−1 is defined by mapping a directed planar tree
to the planar tree obtained after distinguishing one output and forgetting all its edge directions,
while the factor ∆k−1 keeps track of all possible edge expansion directions. We refer for instance
to figure 2 for a representation of the assocoipahedron associated to the operation A→ A⊗3.

Figure 2 – The assocoipahedron associated to the operation A→ A⊗3

Poirier and Tradler construct in fact the assocoipahedra as convex hulls of some particular
sets of points in the Euclidean spaces obtained by using the secondary polytope method of
[GKZ94]. They also mention that an alternative convex hull realization of the assocoipahedra
could be expected by applying the same method as Loday in [Lod04]. We conjecture that the
assocoipahedra can be constructed in a third way, by refining directly the polytopal decomposition
on ∆k−1 for each face of Ki1+···+ik+k−1. The hyperplanes refining the decomposition of the
simplex

∆k−1 := {(z1, . . . , zk−1) ∈ Rk−1, 0 ⩽ z1 ⩽ · · · ⩽ zk−1 ⩽ 1}
would be defined by equations of the form zj = zi + a for 0 ⩽ i < j ⩽ k − 1 and 0 < a < 1,
where we set z0 := 1. We stress that albeit the constructions of the n-multiplihedra and the
assocoipahedra are similar in appearance, the structures they encode do not arise in the same
algebraic context.

1.3. Geometric realizations of the assocoipahedra and the V∞-algebra structure
on the symplectic chains. We also conjecture that the assocoipahedra can be realized as
moduli spaces of curves whose points should correspond to the datum of a disk with m + 1
marked boundary points on its boundary and equipped with a family of 1-forms parametrized by
∆n. The compactification rule defined on these moduli spaces would model the combinatorics of
the dioperad V∞ on the family of 1-forms using the new realizations of the assocoipahedra defined
in the previous subsection. This compactification would in particular correspond to a geometric
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refinement of the cell decomposition on Dm,1×∆n, where Dm,1 denotes the compactified moduli
space of disks with m+1 marked points on their boundary. We then plan to realize these moduli
spaces as moduli spaces of pseudo-holomorphic curves in symplectic topology in order to define a
V∞-algebra structure on the Floer chains SC∗(W ) defining symplectic homology SH∗(W ). These
V∞-operations would in particular extend the operations of arity 1, 2 and 3 described in [CO20],
that are defined using moduli spaces of pseudo-holomorphic curves of the previous form.

1.4. The category of V∞-algebras ? We also plan to inspect how to define the category
V∞ − alg of V∞-algebras. While its objects have already been defined, it remains to define the
notion of a morphism which preserves the product and the co-inner product up to homotopy and
a way to compose such morphisms, which we will call V∞-morphisms. This is where we encounter
a serious obstacle. Indeed, A∞-morphisms and their composition were straightforward to define
in the case of the category A∞ − alg by using the bar construction viewpoint. Such a well-suited
formulation is unfortunately currently lacking in the case of V∞-algebras. We would in particular
like to have a notion of V∞-morphism that behaves well with respect to a homotopy transfer
theorem for V∞-algebras.

While V1-morphisms between V1-algebras correspond exactly to A∞-morphisms between A∞-
algebras, we can define the notion of V2-morphisms between V2-algebras as follows. Given an A∞-
algebra A, one can endow its dual A∨ with the structure of an A∞-bimodule over the A∞-algebra
A by setting

(a1 ⊗ · · · ⊗ an)⊗ ϕ⊗ (an+1 ⊗ · · · ⊗ an+m) 7−→ (a 7→ ϕ (mn+m+1(an+1, . . . an+m, a, a1, . . . , an)) ,

where ak ∈ A and ϕ ∈ A∨. The A∞-algebra A carries moreover naturally the structure of an
A∞-bimodule over itself. As proven in [TZ07b], a V2-algebra can then equivalently be defined
as the data of an A∞-algebra A together with a morphism of A∞-bimodules A∨ → A. The
operations of this A∞-bimodule morphism correspond indeed to maps A⊗i1 ⊗ A∨ ⊗ A⊗i2 → A,
thus can be rewritten as elements mi1,i2 ∈ (A∨)⊗i1 ⊗ A ⊗ (A∨)⊗i2 ⊗ A. The A∞-equations for
the A∞-bimodule morphism A∨ → A then yield exactly the V2-equations for the maps mi1,i2 . A
V2-algebra was in fact referred to as an A∞-algebra with homotopy co-inner product in [TZ07b]
and motivated later on the introduction of the notion of a V∞-algebra in [TZ07a].

Let now A and B be two V2-algebras. To begin with, a V2-morphism A→ B should contain
the datum of an A∞-morphism A → B. Using the datum of such an A∞-morphism one can
endow B and B∨ with A∞-bimodule structures over A. Consider then the following diagram of
morphisms of A∞-bimodules over A

B∨ A∨

B A .

where the horizontal arrows are to be interpreted as the A∞-analogue of pre-composition and
post-composition by the A∞-morphism A → B. We can define two distinct notions of a V2-
morphism from A to B using this diagram :

(i) Either it corresponds to the datum of an A∞-morphism A→ B such that the previous
diagram commutes. In other words, a V2-morphism is an A∞-morphism which is "com-
patible" with the mi1,i2 operations of A and B. The composition of V2-morphisms is
then simply defined as the composition of A∞-morphisms.

(ii) Or we can also require that this diagram commutes up to homotopy of morphisms of
A∞-bimodules over A. Homotopies of morphisms of A∞-bimodules can be defined in a
similar fashion to A∞-homotopies for A∞-morphisms. In that case, it would amount to a
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collection of operations fi1,i2 ∈ (A∨)⊗i1⊗B⊗(A∨)⊗i2⊗B satisfying an equation encoding
the lack of compatibility of the A∞-morphism A → B with the mi1,i2 operations of A
and B. The composition of V2-morphisms can then be defined as the composition of
A∞-morphisms together with the homotopy obtained by composing the two homotopies
in the following diagram

C∨ B∨ A∨

C B A .

We expect that the correct homotopy notion a V2-morphism is given by definition (ii), and will
refer to a V2-morphism using this definition in the following paragraph.

In general, such a nice algebraic description of the structure of a Vk-algebra in terms of
morphisms of A∞-bimodules is unfortunately not possible for k ⩾ 3. Heuristically this stems
from the fact that extending a V2-algebra structure to a Vk-algebra structure for k ⩾ 3 does not
add cohomologically meaningful operations to the V2-operations : the only operations compatible
with the differential are c ∈ A⊗ A and m2 : A⊗ A→ A and all the other operations should be
interpreted as the higher coherent homotopies encoding the structure of a homotopy associative
algebra with symmetric and invariant co-inner product. While we manage to understand how to
generalize the notion of a V2-morphism to that of Vk-morphism by writing down the explicit V2-
equations for V2-morphisms in terms of operations, we do not understand yet the combinatorics
involved in the definition of the composition of Vk-morphisms for k ⩾ 3.

We plan thereby on inspecting how Koszul duality for dioperads as defined in [Gan03]
might be applied to the dioperads V and V∞ in order to define a well-suited framework for the
notion of V∞-algebras and V∞-morphisms together with a way to compose them. Understanding
the homotopy theory of dioperadic bimodules (and in fact defining the notion of a dioperadic
bimodule first) and their cofibrant replacements might also be of interest for that question.

2. Further directions

2.1. Algebraic structures on the symplectic and Rabinowitz-Floer cochains. Once
these questions have been solved, we first plan to clarify which exact structure is induced on
the cone associated to the pair (A∨, A) by a V∞-algebra structure on A. Venkatesh as well as
Cieliebak and Oancea prove indeed respectively in [Ven18] and [CO18] that Rabinowitz-Floer
homology SH∗(∂W ) can be computed as the homology of a cone defined by a canonical up to
homotopy chain map SC−∗(W )→ SC∗(W ). It is moreover shown in [CHOb] that Rabinowitz-
Floer homology SH∗(∂W ) carries the structure of a biunital involutive coFrobenius bialgebra,
not only that of an associative algebra induced by the V∞-algebra structure on SC∗(W ). A
comprehensive study of the V∞-operations on SC∗(W ) may show that some of them are in fact
null, exhibiting stronger relations satisfied in the particular case of SH∗(∂W ).

In [Abo15], Abouzaid defines a BV-algebra structure on the symplectic homology of a co-
tangent bundle T ∗M using moduli spaces of curves with asymptotic markers. Bottman defines
in [Bot21] a simplicial version of the Fulton-MacPherson operad and states that he expects that
this operad in topological spaces could be used to lift the BV-algebra structure to a homotopy
BV-algebra structure on the symplectic chains of T ∗M . It would therefore be interesting to cla-
rify if the V∞-algebra structure and the expected homotopy BV-algebra structure on SC∗(T ∗M)
could fit into a satisfactory common operadic framework. This problem may feature operations
similar to the algebraic string operations introduced in [TZ07a].
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2.2. Towards string topology. It is finally a general motto that given a smooth manifold
M , algebraic structures on Floer-type (co)chain complexes of the Liouville domain T ∗M always
have a counterpart in string topology, as algebraic structures on the singular (co)chains of the free
loop space LM . The seminal result on that matter is Viterbo’s isomorphism relating symplectic
cohomology SH∗(T ∗M) of the Liouville domain T ∗M and the ordinary homology of the free
loop space H∗(LM), which is thoroughly explained in [Abo15]. Further work in that direction is
also carried out in [CHO20] in relation with the Sullivan-Goresky-Hingston coproduct defined
in [Sul04] and [GH09]. We thus plan to investigate how the algebraic structures defined on
symplectic and Rabinowitz-Floer chain complexes in the previous problems incarnate in the world
of string topology. As proven in [Nae21], the Goresky-Hingston coproduct in string topology
is not homotopy invariant. Our hope is that these full chain level structures in string topology
would in fact allow to detect properties of the underlying manifold M beyond its homotopy type.
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