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CHAPTER 1

Homological algebra

We fix a field K for the rest of these notes.

1. Categories

1.1. Categories and functors.

DEFINITION 1.1. A4 category C corresponds to the following data:

(1) A class of objects Ob(C).

(2) For each pair of objects X,Y € Ob(C) a set C(X,Y), called the set of morphisms from X toY. It
is also denoted Home(X,Y).

(3) For each object X of C, an element idx € C(X, X) called the identity of X.

(4) For each triple of objects X, Y and Z of C of a map o : C(Y,Z) X C(X,Y) — C(X,Z) called the
composition.

These data are such that for every f € C(X,Y),g € C(Y,Z) and h € C(Z,T) we have that (hog)o f =
ho (go f) and for very f € C(X,Y) we have thatidy o f = f = f o idx.

A category is said to be small if Ob(C) is a set. A morphism f € C(X,Y) is said to be an
isomorphism if there exists a morphism g € C(Y, X) such that go f =idxy and fog =idy. It
will be denoted as f : X-5Y.
ExampLE 1.2. (i) The category Set whose objects are sets and morphisms the maps be-
tween them.
(ii) The category Vect whose objects are [K-vector spaces and morphisms the linear maps
between them.

Both of these categories are not small.

DEFINITION 1.3. (i) Given a category C, the opposite category C°P is the category whose objects
are the objects of C, whose morphisms sets are C°P(X,Y) := C(Y, X) and whose composition is

defined as g ocor f == f oc g.

(ii) Given C and D two categories, the product category C X D is defined to be the category whose
objects are pairs of objects X XY = (X,Y) for X € Ob(C) and Y € Ob(D), whose sets of
morphisms are defined to be

Homgxp (X1 X Y1, Xo X ¥3) := Homg (X7, X3) X Homp (Y1, Y2)

and whose composition is defined as (fox go) o (f1Xg1) = (faoc f1) X (g2 0p g1) with identities
idXxY = idX X idy.
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DEFINITION 1.4. Given C and D two categories, a functor F : C — D associates to every object X € C
an object F(X) € D and to every morphism f € C(X,Y) a morphism F(f) € D(F(X),F(Y)) such
that F(idx) = idg(x) and such that F(g o f) = F(g) o F(f).

The class of functors between two categories C and D will be denoted Fun(C, D). If the categories
C and D are small then Fun(C, D) is a set.

ExampLE 1.5. (i) The forgetful functor Vect — Set mapping a vector space to its underlying
set by forgetting its vector space structure.
(ii) For a category C and an object C € C, the functor C(C,-) : C — Set associating to each
object D € C the set C(C, D).
(iii) The tensor product functor — ® — : Vect X Vect — Vect.

A functor from a product category C; X Co — D will be called a bifunctor.

DEFINITION 1.6. The category Cat is defined to be the category whose objects are small categories and
morphisms the functors between them, where two functors F : C; — Cy and G : Co — C3 are composed
as G o F(X) :=6(F(X)) and G o F(f) := G(F(f)).

DEFINITION 1.7. Given C and D two categories and F,G : C — D two functors, a natural transfor-
mation n : F = € is defined to be the datum of a morphism nx € D(F(X), (X)) for every X € C
such that for every f € C(X,Y), the following diagram commutes

F(X) s F(Y)

[ I

6(X) —L g(y)

We will denote Nat(%F, €) the class of natural transformations between two functors %, € :
C — D. It is a set if the categories C and D are small.

ExampLE 1.8. The abelianization G := G/[G, G] of a group G defines a functor —** : Gr —
Gr where Gr denotes the category whose objects are groups and morphisms group morphisms.
The collection of maps 7 : G — G then defines a natural transformation 7 : idg; = —%°.

The identity natural transformation idg : F = F of a functor F is defined for every X € C as
(idg)x = idg(x). Two natural transformations n : %1 = % and y : % = F3 can moreover be
composed as y o : F = F3 by setting (y on)x := yx o nx.

1.2. Equivalences and adjoints.

DEFINITION 1.9. A4 natural transformation 1 : F = G is said to be a natural equivalence if each
morphism nx is an isomorphism. In that case, we say that F and G are naturally equivalent and
denote F ~ G.

For a category C, a functor F : C — Set is said to be representable if there exists an object
C € C such that F ~ C(C, -).
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Exercise 1.10. Prove that the morphisms 7yx := n}! define a natural equivalence 7 : ¢ = F
such that 7 o 7 = idg and that 5 o 7 = id.

DEFINITION 1.11. An equivalence of categories is a pair of functors F : C 2 D : € such that
GoF ~ide and F o € ~ idp.

Exercise 1.12. Prove that a functor F defines an equivalence of categories if and only if for
every objects X,Y € C, the map F : C(X,Y) — D(F(X),F(Y)) is bijective (the functor F is
fully faithful) and for every object D € D there exists an object C € C and an isomorphism
F(C) — D (the functor F is essentially surjective).

DEFINITION 1.13. Two functors F : C < D : G are said to be adjoints if there exists natural bijections
$x,y : D(F(X),Y)>C(X,6(Y))

where X € C andY € D. The functors F and G are respectively the left and right adjoints and are
denoted F 4 S.

In other words, two functors % : C & D : € are adjoints if the two functors
D(F(-),-),C(-,6(:)) : C°? XD — Set
are naturally equivalent.

ExamPLE 1.14. Let W be a vector space. The functors —-®@W : Vect — Vect and Homyect (W, ) :
Vect — Vect are adjoints: for every vector spaces V1 and Vo we have that

Homye+ (Vl W, VQ) = HomVect(Vl, HomVect(W’ VQ)) .

1.3. Monoidal categories.
1.3.1. Symmetric monoidal categories.
DEFINITION 1.15. 4 monoidal category is a category C endowed with the following data:

(1) A bifunctor® : C X C — C and an object I of C.
(2) A natural equivalence @ : R o (R X id¢) =~ Ro (id¢ X ®) called the associator, such that for every
A,B,C,D € C the following diagram commutes:

(ARB)RC) D 2 (45 (BrC)rD AR A9 ((BrC)g D)

\LQAIZB,C,D \LidAEQB,C,D .

(ARB)® (C® D) “A.B.Cab s AR (B® (C® D))

(3) A natural equivalence A : I ®id¢ ~ id¢ and a natural equivalence p : id¢ ® [ ~ id¢ such that
pr=A;:IrRI>I
and such that the following diagram commutes for every A, B € C

@A,IB

(AR)®RB ————— AR (I®B)

\LidA RAp °
pARidp

AR B
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A monoidal category is said to be strict if the natural transformations a, 4 and p are identities.

MacLane’s coherence theorem states that the commutativity of the diagram for the associator
implies that given two bracketings of A; ® --- ® A,, two sequences of morphisms made of
iterations of the associator from one bracketing to the other have equal composition. In other
words, two bracketings are naturally equivalent through a unique natural equivalence made
of iterations of the associator.

DEFINITION 1.16. A monoidal category C is said to be symmetric if there exists a natural equivalence
oap:ARBSBRA
called the braiding, such that op a0 s p = idagp and such that the following diagram commutes

@A,B,C OA,BrC

(ARB)RC ———> AR(BRC) ——— (BRC)R A

\LO-A’B Ridc \L‘YB,C,A .

id
(BRA)RC —22% B (ArC) 22725 Br (CmA)

A counterpart of MacLane’s coherence theorem taking the natural transformation o into
account also holds in the case of symmetric monoidal categories.

ExaMPLE 1.17. The category Set endowed with the cartesian product and the category Vect
endowed with the tensor product — ® — are symmetric monoidal categories.

1.3.2. Closed symmetric monoidal categories.

DEFINITION 1.18. A symmetric monoidal category C is said to be closed if for every Y € C the functor
—®Y : C — C admits a right adjoint denoted Hom,(Y, ) : C — C such that the bijections

C(X ®Y,Z) =~ C(X, Hom,(Y, Z))

are natural in X, Y and Z.

In a closed symmetric monoidal category, the set (X,Y) is called the external hom while the
object Hom (X, Y) is called the internal hom.

ExampLE 1.19. (i) The symmetric monoidal categories Set and Vect are closed with inter-
nal homs their external homs.

(if) The symmetric monoidal category gr Vect and Vect are closed, as proven in Exercise
sheet 3.

1.3.3. Monoids.

DEFINITION 1.20. A monoid M in a monoidal category C is an object M € C together with:

(1) A morphism u : M ® M — M called the multiplication, which is associative i.e. makes the
Jollowing diagram commaute

(MaM)g M MMM avre (M r M) -2 vw M

\LuIZIidM \L.u

MrM > M
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(2) A morphismn : I — M called the unit, which makes the following diagram commute

U&id/\/[ idMgﬂ

IRM —— MM <—— MR/
\\Lﬂ/
Apm PM
M

If C is symmetric, a monoid is moreover said to be commutative if t = o s a.

ExaMPLE 1.21. A monoid in Set is a standard monoid while a monoid in Vect is a standard

unital associative algebra (see Section of Chapter [2).

Exercise 1.22. Prove that the unit of a monoid is unique.

1.3.4. Lax monoidal functors.

DEFINITION 1.23. 4 lax monoidal functor & between two monoidal categories C and D is a functor
F : C — D together with

(1) a natural transformation ¢4 p : F(A) Rp F(B) — F(A R¢ B),
(2) and a morphism  : In — F(I¢)

which are such that for every A, B, C € C the following three diagrams commute

éa,BRpidg () PARB.C

(F(A) & F(B)) By F(C) ——— F(ARc B) ®p F(C) —— F((ARc B) 8 C)

D
la?(A)ﬂ(B)fF(C) l‘?(wi,g,g) ’

F(A) &y (F(B) ®p F(C)) ———— F(A) Bp F(BR C) W F(ARe (Bre ()

idga)®p PB,C

idg
Iy & F(A) 22N (1) mp F(A)

\LAD‘?(A) \L‘Z’IC,A ’

F(A) S F(Ime A)

F (25

idg(a)Rp Y

F(A)®p Ip ——— F(A) ®p F(I¢)

\Lp?;(A) \L¢A,IC

F(A) (W F(ARe )

A lax monoidal functor is said to be strong if ¢ and  are isomorphisms and is strict if they
are identities.

ExamMpLE 1.24. The forgetful functor Vect — Set is lax monoidal but not strong monoidal.

Exercise 1.25. Prove that the image of a monoid under a lax monoidal functor is again a
monoid.
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DEFINITION 1.26. Let C and D be two symmetric monoidal categories. A functor F : C — D is said

to be lax symmetric monoidal if it is lax monoidal and the following diagram commutes for every
A,BecC

F(A) & F(B) Bz F(B) =y F(A)

\Ld’A,B \L‘pB,A
F(sC )

A.B

F(Are B) — 22 3 F(Bre A)

ExampLE 1.27. (i) The singular chains functor C.(-) : Top — dg Vect is lax symmetric
monoidal.
(if) The homology functor H,(-) : dg Vect — gr Vect is strong symmetric monoidal.
(iii) The free vector space functor K[—-] : Set — Vect is strong symmetric monoidal.

2. Homological algebra

2.1. Chain and cochain complexes.
2.1.1. (Co)chain complexes and (co)homology.

DEFINITION 2.1. A chain complex corresponds to the data of a vector space C,, for everyn € Z
together with linear maps

Oni1 17)
"—>Cn+1_—n:_>cn_n)cn—1_>"' P

which are such that 8, o 0p41 = 0. The collection of these maps is called a differential.

DEFINITION 2.2. A cochain complex corresponds to the data of a vector space C" for everyn € Z
together with linear maps

anfl on
”'_>Cn—1_>cn_)cn+1_>”'

which are such that 0" o "1 = 0.

B

Chain complexes are usually denoted as C, while cochain complexes are denoted as C*. Du-

alizing a chain complex (C,, d,) moreover gives in particular a cochain complex (C,/, d,)).

DEFINITION 2.3. (i) The homology of a chain complex C. is defined to be the collection of vector
spaces H, (C) := Ker(0,)/Im(0p+1).
(ii) The cohomology of a cochain complex C* is defined to be the collection of vector spaces H" (C) =
Ker(0™)/Im(0"1).

A (co)chain complex is said to be acyclic if its (co)homology is null.

2.1.2. Chain maps and homotopies.

DEFINITION 2.4. A chain map between two chain complexes f. : C. — D, is defined to be a collection
of maps f, : C,, — D, such that for alln € Z, f,05 = 0P f,. A chain map between cochain complexes
is defined similarly.
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A chain map f, : C. — D, is usually represented as

>Dn+1 > Dn > Dn—1—>"'
DEFINITION 2.5. The composition of two chain maps f. : A, — B, and g, : B, — C. is the chain
map (g o f).: Ax = C. defined as (g o [)n :=gn © fa-
Proposition 2.6. 4 chain map f. : C. — D. induces well-defined maps H,(C) — H, (D).

DEFINITION 2.7. A chain map f. for which all maps induced in homology are isomorphisms is called
a quasi-isomorphism.

DEFINITION 2.8. Two chain maps f., g« : C. — D, are said to be homotopic and denoted f. ~ g.,
if there exists a collection of linear maps hy, : C, = Dy41 such that for alln € Z

anD+1hn + hn—lar? =8 —Jn -
The collection of maps hy, is then called a (chain) homotopy between f. and g..

Proposition 2.9. Two homotopic chain maps induce the same map in homology.

DEFINITION 2.10. A chain map f. : C. — D, is said to be a homotopy equivalence if there exists
a chain map g, : D, — C, such that g. o f. ~idc, and f. o g, ~idp,.

Following Proposition a chain equivalence is in particular a quasi-isomorphism.

2.2. The differential graded viewpoint.

DEFINITION 2.11. (i) A graded vector space is a vector space V together with a direct sum decom-
position V = ©pczVy.
(i) A linear map of degree r between two graded vector spacesV and W is a linear map f : V — W
such that f(V,) C Wyyy foralln € Z.

An element x of a dg module C. is said to have degree n if x € C,. Its degree will then be
written |x| := n.

Lemma 2.12. (i) The datum of a chain complex is equivalent to the data of a graded vector space
C together with a map 0 : C — C of degree —1 such that o 0 = 0.
(ii) The datum of cochain complex is equivalent to the data of a graded vector space C together with
amap d: C — C of degree +1 such that 0 o 0 = 0.

A (co)chain complex seen from the viewpoint of Lemma will be refered to as a differential
graded vector space, or dg vector space. It will be said to be homologically graded if the differential
has degree —1 and cohomologically graded if the differential has degree +1.

Lemma 2.13. The datum of a chain map f. : C. — D, is equivalent to the datum of a linear map
f+C — D of degree O such that Op f = fOc.
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DEFINITION 2.14. Given C,. and D, two dg vector spaces, their tensor product is defined to be the
dg vector space whose degree n part is (C ® D), := ®p4g=nCp ® Dy and whose differential is defined
as

dcon(c®d)=dcc®d+(-1)c® dpd .

Exercise 2.15. Prove that the formula of Definition defines indeed a differential.
DEFINITION 2.16. The suspension sC of a dg vector space C is the dg vector space whose degree n
part is (sC)y := Cy_1 and whose differential is dsc = —0c.

2.3. Exact sequences.
DEFINITION 2.17. A sequence of linear maps f,, : A, — An—1 is said to be exact if for every n,
Jn o fu1 =0 and Im(f, 1) = Ker(f,).
In particular, a (co)chain complex is exact if and only if its (co)homology is null.

DEFINITION 2.18. A short sequence of chain maps between chain complexes
04 LB 50 -0

is said to be exact if for every n € Z the sequence of linear maps

054,58, 2 =0

is exact, i.e. if f,, is injective, g, is surjective and Ker(g,) = Im(f,).

Lemma 2.19. A4 commutative diagram of the form

SA A
A1 > Ag > A >0

I e s

s t
0 > B —— By —— B3

whose rows are exact induces a short exact sequence

Ker(f1) — Ker(fy) — Ker(f3) — B1/Im(f1) — By/Im(fy) — Bs/Im(f3) .

This result is called the snake lemma. The map Ker(f3) — B1/Im(f1) is moreover called the
connecting morphism.

THEOREM 1. 4 short exact sequence of chain complexes
04, LB 5c 50
induces a long exact sequence of linear maps

This long exact sequence is moreover natural in the short exact sequence.
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2.4. Koszul conventions. Consider two maps f : A, — B, and g : C. — D, of respective
degree |f| and |g|. In the rest of this course, we will denote f ® g : A, ® C. — B, ® D, the
map of degree |f| + |g| defined as

(feg)aeb) = (D) o).
This convention is called the Koszul sign convention. The motto is that "moving a in front of g
adds the sign (—1)lsllaln,

ExampLE 2.20. Under the Koszul sign convention, we have in particular that

(fa®go) o (fi®gr) = (-DHEl(f® fi) o (g2® g1)
and that dcegp = dc ® idp +id¢c ® dp.



CHAPTER 2

Standard algebraic structures

We work with homologically graded dg vector spaces in this chapter. We will denote dg Vect
the category of dg vector spaces with chain maps between them, and gr Vect the category of
graded vector spaces with linear maps of degree 0 between them.

1. Associative algebras and coalgebras

1.1. Associative algebras.
1.1.1. Definitions.

DEFINITION 1.1. (i) Let A be a vector space. An associative algebra structure on A corresponds to
the datum of amap 1 : A® A — A such that u(p ® id) = u(id ® u).
(ii) A morphism of algebras is defined to be a linear map f : A — B such that fua = up(f ® f).

This definition is equivalent to the standard axiomatic definition of an algebra, whose multi-
plication is defined to be a - b := u(a, b). The field K is moreover naturally a [K-algebra.

DEFINITION 1.2. (i) An algebra A is said to be unital if there exists a morphism of algebras u :
K — A such that u(u,-) =id = u(-, u).
(ii) A morphism of unital algebras is a morphism f : A — B between unital algebras such that
fI/tA =Uupg.

Setting u(1x) = 14, we recover the usual axiom for a unital algebra. A morphism of unital
algebras is then simply a morphism of algebras f : A — B such that f(14) =15.

Representing the multiplication y and the unit map u respectively as Y and ', the axioms
for a unital algebra read as

R 1o
V=Y Vo=ida=y

This viewpoint will be used systematically in the rest of this course.

We denote As-alg the category of associative algebras with morphisms of algebras between
them, and uAs-alg the category of unital associative algebras with morphisms of unital alge-
bras between them.

DEFINITION 1.3. A unital algebra A is said to be augmented if there exists a morphism of unital
algebras e : A — K. This morphism is then called an augmentation of A.

11
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1.1.2. Free associative algebra. Let V be a vector space. Given vy, ...,v, € V, we will denote
Vi Vp =V ®- - ®v, € V®" in the rest of this section.
DEFINITION 1.4. The free tensor (unital) algebra on V is defined to be the vector space
T(V)=KeVeV¥*e -0V @...
endowed with the concatenation multiplication
V1° o Vpn @ Vnil *Vuam = V1" VaVasl * " Viim

and unit the inclusion in the first summand K — T (V).

The free reduced tensor algebra on V is the vector space
TV)=VeV¥?e...oV"g...
endowed with the concatenation multiplication. It is not unital.

Proposition 1.5. The free tensor algebra construction defines a functor T(—) : Vect — uls-alg
which is a left adjoint to the forgetful functor uhs-alg — Vect. In other words, for every vector space
V and unital algebra A, there is a natural bijection

HomuAsalg(T(V)’ A) = HomVect (V, A) .
Similarly, we have that HomAs_alg(T(V), A) = Homyect (V, A).

1.2. Coassociative coalgebras.
1.2.1. Definitions.

DEFINITION 1.6. (i) Let C be a vector space. A coassociative coalgebra structure on A corresponds
to the datum of a map A : C — C ® C such that (A ® id)A = (id ® A)A.
(ii) A morphism of coalgebras is defined to be a linear map f : C1 — Cq such that (f @ f)Ac, =
Ac,f.

We will denote As-cog the category of coassociative coalgebras with morphisms of coalgebras.
The field K is in particular a coassociative coalgebra.
Proposition 1.7. (i) The dual of a coassociative coalgebra is an associative algebra.

(ii) The dual of a finite-dimensional associative algebra is a coassociative coalgebra.

The image of an element ¢ € C under the comultiplication A has the form
n
A(c) = Z cgl) ® cl@ .
i=1

This is often written for short as A(c) = ¢ ® ¢(?). Beware that it is a mere notation which
does not mean that A(c) is a pure element of C ® C. It is called Sweedler’s notation. Under
this notation, a morphism of coalgebras is then simply a linear map f : C; — Cg such that

f@W @ f(e)® = f(cW)® f(c®).
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If we write

(A®id)A(c) = A(cV) @ c® = DD g DD g 2
and

(id®A)AC) =cV @A(c?P)=cV @ (VP g PP
the coassociativity relation can be rephrased as

(D) g DD g @) = (1) g (D@ g D)
This is often written as (id ® A)A(c¢) = (A ® id)A(¢c) =V @ ¢? © ¢,
More generally, we denote A" : C — C®"*1 the iterated coproduct
A" = (A®id®" Ho---0A,

and write A"*(¢c) = cV @ --- ®@ ¢,

DEFINITION 1.8. (i) A coassociative coalgebra C endowed with a map € : C — K such that
(e®id) o A =id¢ = (id ® &) o A is said to be counital. The map € is then called the counit

of C.

(ii) A morphism of coalgebras f : C1 — Co between counital coalgebras C1 and Cy is a morphism
of counital coalgebras if it preserves the counits, i.e. ec, = €c, f.

(iii) A counital coalgebra C endowed with a morphism of counital coalgebras u : K — C is said to
be coaugmented. The map u is then called its coaugmentation.

(iv) A morphism of counital coalgebras f : C1 — Cy between coaugmented coalgebras C1 and Cy is
a morphism of coaugmented coalgebras if it preserves the coaugmentations, i.e. uc, = fuc,.

Writing the coproduct and counit respectively as A and {, the axioms of a counital coalgebra
can be represented as

A
A=A |=ide =]

Given a coaugmented coalgebra C, write C := Ker(&) and 1¢ := u(1k). Then A(le) =1c®1¢
and the vector space C decomposes as C := C @ K1¢. The vector space C endowed with the
coproduct A: C - C®C,

A(x) =A(x) —x®1c-1c®x,
is then a coassociative coalgebra.
We denote A" : C — C°"*" the iterated coproduct of C.
DEFINITION 1.9. The coradical filtration of C is defined forr > 0 as
F.C:=Klc®{xeC, Kr(x) =0},
where FyC := Klc.

We point out that it is indeed a filtration, as F,.C C F,41C for all r > 0.

DEFINITION 1.10. A coaugmented coalgebra C is said to be conilpotent, if C = U,5oF,.C.
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We denote conil-As-cog the category of conilpotent coalgebras with morphisms of coaug-
mented coalgebras between them. The coalgebra K is in particular a conilpotent coalgebra,
with counit and coaugmentation the identity map.

1.2.2. Cofree coassociative coalgebra.

DEFINITION 1.11. The cofree tensor (conilpotent) coalgebra on a vector space V is defined to be
the vector space

T°(V)=KeVeV?2e...0V"q...

endowed with the deconcatenation comultiplication
n
Aivi-rvp— ZVI"'Vi®Vi+1"'Vn
i=0

where A(1) = 1 ® 1, with counit the natural projection T°(V) —» K and with coaugmentation the
natural inclusion K — T (V).

The cofree tensor coalgebra 7¢ (V) is indeed conilpotent: its coradical filtration is in particular
given by F,T(V) = D, ., V®".

Proposition 1.12. The free tensor coalgebra construction defines a functorT(—) : Vect — conil-As<cog

which is a right adjoint to the functor (=) : conil-As—<og — Vect mapping C to C. In other words,
for every vector space V and conilpotent coalgebra C, there is a natural bijection

Homyect (Ea V)= Homconil—As—cog(C’ T¢(V)) .

PrOOF. Let f : C — T°(V) be a morphism of conilpotent coalgebras. We denote for
every n > 0, f,, := mwyen f. The fact that f preserves the counit and coaugmentation implies
the following:

(1) fo(c) =ec(c) for every c € C,
@ fe) =1k,
(3) fmapsCtoT (V)= P51 V"

We will denote f : C — T* (V) this induced morphism and f,, := myen f for n > 1. Every ¢ € C

moreover decomposes as ¢ = €(c)1¢ + ¢ where ¢ :=c —&(c)1. € C. For every ¢ € C we then
have that

fle)=g(e)+ (o) .

The morphism f is in fact a morphism of coassociative coalgebras (C,Ac) — (TV, Arey).
This implies that for all n > 1, the following diagram commutes

—®n

™" L T wyen
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Projecting to the factor V& of T*(V)®" yields for every ¢ € C the equality
fu@ =) 8@ f1E™),

where the Sweedler’s notation are w.r.t. Ac. Hence the morphism f; : C — V completely
determines f : C — T¢(V).

Given conversely a morphism f : C — V, one can define a morphism of conilpotent coalgebras
F :C — T°(V) by the formula

F(o)=s(c)+ Y fE@M) @@ f@™).

n=1

This morphism is well-defined: C is conilpotent hence the above sum is always finite. o

1.3. Differential graded (co)associative (co)algebras.
1.3.1. Definitions.

DEFINITION 1.13. (i) Let A be a graded vector space. A graded associative algebra structure on
A corresponds to the datum of a map 1 : A ® A — A such that (A, u) is an associative algebra
and the map u has degree 0, i.e. forall p,q € Z, u(A, ® Ay) C Apsg.

(i) Let (A,0) be a dg vector space. A differential graded associative algebra or dg algebra
structure on A corresponds to the datum of a map 1 : A ® A — A such that (A, ) is a graded
associative algebra and u is a chain map, i.e. satisfies

O = p(d®id) + u(id ® 9) .

The equality of Item [(ii)| reads on two elements a1,a9 € A as
du(ar, ag) = u(day, ag) + (-1 u(ay, day) .

The notions of graded coassociative coalgebra and of dg coalgebra can be defined in a similar
fashion. We moreover point out that a standard (co)associative (co)algebra can then simply
be seen as a graded associative coalgebra concentrated in degree 0.

ExamPLE 1.14. Let X be a topological space. The singular cochains C*(X) form a dg algebra
for the cup product U and the singular chains C,(X) form a dg coalgebra for the Alexander-
Whitney coproduct.

DEeFINITION 1.15. (i) Given A1 and Ay two graded associative algebras, a morphism of graded
associative algebras A1 — Ag is defined to be a morphism of algebras of degree 0.
(i) Given Ay and Ay two dg algebras, a morphism of dg algebras A1 — Ay is defined to be a
morphism of algebras which is a chain map.

The notion of morphism of graded coassociative coalgebras and of morphism of dg coalgebras is
defined in a similar fashion. We will respectively denote As-alg and As-cog the category of dg
algebras and the category of dg coalgebras. These notations are in conflict with the notation
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of the category of associative algebras and the category of coassociative coalgebras, but it will
always be clear from the context which categories they refer to.

DEFINITION 1.16. (i) A graded associative algebra (A, 1) is unital if there exists an element e € Ay
which makes (A, u) into an associative algebra.
(ii) A dg algebra is unital if it is unital as a graded associative algebra and its unit satisfies 0(e) = 0.

1.3.2. Free graded associative algebra. Let V be a graded vector space. The grading on V
induces a grading on the free tensor algebra 7' (V) defined as |v1 - - - v,| = 21 |v;|. This algebra
is then a graded associative algebra with respect to this grading.

Proposition 1.17. The free tensor algebra construction defines a functorT(—) : gr Vect — gr uAs-alg
which is a left adjoint to the forgetful functor gr uhs-alg — gr Vect. In other words, for every graded
vector space V and unital graded associative algebra A, there is a natural bijection

Homgr uAs—alg(T(V)a A) = Homgr vect (V, A) .

An analogous result holds for the free tensor coalgebra 7°(V) seen as a conilpotent graded
coassociative coalgebra with respect to the same grading.

We also point out that an alternative grading can be defined on 7'(V), by setting the degree
of an element of V®" to be n. This grading is usually called the weight and the elements
of weight greater that n will be denoted T(V)>". The algebra T(V) is then a weight-graded
associative algebra, meaning that the product preserves both the grading defined in the previous
paragraph and the weight. The same holds for the coalgebra 7¢(V).

1.4. Bialgebras and Hopf algebras. Given two algebras A; and Ajy, the tensor product
A1 ® Ay can naturally be endowed with an algebra structure by setting (x1 ® xg) - (y1 ® y2) =
X1+ Y1 ® xg - y9. Using the switching map 7 : A; ® A9 — Ay ® A; of Section this can be
rewritten as pa,e4, = (1A, ® Ua,)(id ® T ® id). This last equality can be used to define an
algebra structure on A; ® Ay in the dg setting. We also point out that if A; and Ay are unital,
then A1 ® Ag is unital with unit 14, ® 14,.

DEFINITION 1.18. Given a vector space H, a bialgebra structure on H is defined to be the data of a
unital algebra structure (H, u,u) on H and of a counital coalgebra structure (H, A, &) on H such that
A and & are morphisms of unital algebras, or equivalently such that u and u are morphisms of counital
coalgebras.

The fact that A and & are morphisms of unital algebras can be rephrased using the four
following axioms

(1) Ap=(u®u)(id®7eid)(A ® A), the Hopf relation.

(2) Au=uQu.
3) eu=¢e®e.
(4) eu =idk.

The Hopf relation can in particular be represented as

YA
ATY Y
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DEeFINITION 1.19. 4 Hopf algebra is defined to be a bialgebra (H, u,u, A, &) for which there exists
amap S: H— H, called the antipode, satisfying the relation

u(S®id)A =ue = u(id ® S)A .
The antipode relation can be represented as

R A id || S
ue

2. Commutative algebras
2.1. Symmetric groups actions on tensor products. Given a graded vector space V,
the symmetric group &, acts on the left of V®" as
Te(V1®: - ®vy) = (_1)8‘}0"1(1) Q- ®Vy-in)

where o € &, and (—1)* is the sign obtained by rearranging vi ® - - - ® v, into v,-1(1) ® - -+ ®
Vo-1(n) under the Koszul sign convention. The map 7 := 7(19) : V®V — V®V acts for instance
on elements v,w € V as

rveow) =DMy ey .
The symmetric group &, acts also on the right of V®" as

(M® - ®vy) - c=(-DVoe1) ® - ®Vi(n) -

2.2. Commutative algebras.
2.2.1. Definitions.

DEFINITION 2.1. (i) A (graded) associative algebra is said to be (graded) commutative if its
multiplication u satisfies u = ut.
(ii) A dg algebra is said to be graded commutative ifit is graded commutative as a graded associative

algebra. 1t is then called a cdg algebra for short.
In the non-graded case with recover the usual equality x - y = y - y. In the graded case, the
axioms of a graded commutative algebra read as
(2.2.1) x-(y-2)=(x-y) -z x-y=(=1)Ily. x
The second condition is usually represented as
1 2 _ 2 1
Y=Y
REMARK 2.2. A graded commutative algebra is sometimes referred to as a commutative superal-

gebra or supercommutative algebra. This terminology, coming from the theory of supersymmetry
in theoretical physics, will not be used in this course.
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ExAamPLE 2.3. The singular cohomology (H*(X), U) of a topological space X is a graded com-
mutative algebra. The singular cochains (C*(X),U) however do not form a cdg algebra, as
the cup product is not graded commutative on the chain level. It is however graded commu-
tative up to homotopy, i.e. there exists a degree —1 map & : C*(X) ® C*(X) — C*(X) such that
Oh+hd =U-Ur.

2.2.2. Free graded commutative algebra.

DEFINITION 2.4. The free graded commutative algebra AV on a graded vector space V is defined to be
the unital graded commutative algebra whose underlying vector space is

TV)/(xey-(-D)Plyex),

whose grading is defined as in Section and whose multiplication is given by the concatenation
product.

The free graded commutative algebra AV admits the same weight grading as in Section [1.3.2}
which determines a decomposition AV := 7, A'V.

Proposition 2.5. The functor A(—) : gr Vect — gr uCom-alg is left adjoint to the forgetful functor
gr uCom-alg — gr Vect. In other words, for every graded vector space V and graded commutative
algebra C, there is a natural bijection

Homgr uComalg(AV’ C)= Homgr vect (V,C) .

2.3. Sullivan models and rational homotopy theory. In this section, we work with
cohomological conventions and set K = Q. We moreover assume that all cdg algebras are
unital and that all morphisms are morphisms of unital cdg algebras.

2.3.1. Sullivan models.
DEFINITION 2.6. A Sullivan algebra is a cdg algebra of the form (AV,0) such that

(1) V = V> is a graded vector space concentrated in degree > 1,
(2) V = U0V (k) where V(k) is an increasing sequence of graded vector spaces V(0) c V(1) C ---,
(3) d(V(0)) =0 and (V(k)) c AV(k —1) fork > 1.

Item 3| is called the nilpotence condition.

DEFINITION 2.7. (i) A Sullivan model for a cdg algebra C is a quasi-isomorphism (AV,0)=>C.
(ii) A Sullivan model is said to be minimal if d(V) c A>2V.

In Definition quasi-isomorphism means that the map is a morphism of cdg algebras which

induces an isomorphism in cohomology.

Proposition 2.8. Every cdg algebra A satisfying H'(A) = K admits a minimal Sullivan model. It

is moreover unique up to isomorphism.

Proor. The unicity up to isomorphism of a minimal Sullivan model stems from the fact
that if two Sullivan models (AV1,d1) and (AVsy, d9) are quasi-isomorphic, then (Vi,01) and
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(Vg, 09) are quasi-isomorphic. The minimality assumption then ensures that 9; = 0 on V;,
hence that V; and Vy are isomorphic. O

2.3.2. Sullivan models of topological spaces. Recall from Example[2.3|that the singular cochains
C*(X,Q) form a dg algebra which is not graded commutative.

THEOREM 2. For any topological space X, there exists a dg algebra D(X) and a cdg algebra Apr (X)
that fit into the following diagram of quasi-isomorphisms of dg algebras

C*(X, Q)SD(X)&App(X) .

This diagram is moreover natural in X.

The cdg algebra Ap; (X) is called the algebra of polynomial differential forms on X.

DEFINITION 2.9. 4 (minimal) Sullivan model for a path connected topological space X is defined to
be a (minimal) Sullivan model for the cdg algebra Apr (X).

DEFINITION 2.10. (i) Two cdg algebras A and B are said to be weakly equivalent if there exists a
zig-zag of quasi-isomorphisms of cdg algebras
A=Cy—~C,—> - Cy.1—>C,=B.
(ii) A cdg algebra C satisfying H*(C) = K is said to be formal if it is weakly equivalent to the cdg

algebra H* (C) with trivial differential.
(iii) A path connected topological space X is said to be formal if the cdg algebra App (X) is formal.

Proposition 2.11. Two cdg algebras A and B satisfying H'(A) = H*(B) = K are weakly equivalent
if and only if their minimal Sullivan models are isomorphic.

The minimal Sullivan model of a formal topological space X can thereby be directly computed
from its cohomology H* (X, Q).

2.3.3. Rational homotopy theory.

DEFINITION 2.12. (i) A topological space is of finite rational type if for every n > 0, the vector
space H" (X, Q) is finite-dimensional.
(i) Two topological spaces are said to have the same rational homotopy type if their exists a zig-zag
of continuous maps
X=XoXg—> X, 1—-X,=Y
inducing a weak equivalence zig-zag between H* (X, Q) and H*(Y, Q) in rational cohomology.

THEOREM 3. Two simply connected spaces of finite rational type have same rational homotopy type if
and only if their minimal Sullivan models are isomorphic as cdg algebras.

In other words, the rational homotopy type of a simply connected topological spaces of finite
rational type is completely determined by its minimal model.

DEFINITION 2.13. Let X be a topological space. We define the free loop space LX to be the space of
continuous maps S' — X.



20 2. STANDARD ALGEBRAIC STRUCTURES

THEOREM 4. Let X be a simply connected topological space and (AV,0) a minimal model of X. Then
its free loop space LX admits a minimal model of the form (AV ® AsV,5) where sV denotes the
suspension of V.

This last theorem is an important tool for the computation of singular cohomologies of free

loop spaces. See also Section [3.4.2}

3. Lie algebras

3.1. Lie algebras.
3.1.1. Lie algebras.

DEFINITION 3.1. A4 Lie algebra is defined to be a vector space § endowed with a map |-, -] : g®g — g,
called the Lie bracket, such that

(1) [x,y] = —=[y,x] : the bracket is antisymmetric.
) [[x,y],z] + [y, z], x] + [[z, x], y] = O : the bracket satifies the Jacobi identity.

If we denote ¢ := [-, -] these two conditions can be rephrased as

co(id+7a19) =0 c(c®id) o (id + 7(193) + T(321)) =0,

where we point out that 7(212) = idge2, 7(2123) = 7(321) and 753123) = id. We will denote these last
two equalities as
(3.1.1) Cid+(12) =0 C(C ® id)id+(123)+(321) =0 ,

12

Writing the bracket [-,-] as Y , they can also be represented as
TR TR
(3.1.2) 1\(2+2\(1=0 YS+ \(2+ \fzo.
REMARK 3.2. The Jacobi relation is also sometimes replaced by the Leibniz relation

[[x,y]. 2] = [[x, 2], y] + [, [y, 2]

which amounts to say that for all z the map [-,z] : ¢ — g is a derivation for the bracket [, -],
i.e. satisfies the Leibniz relation w.r.t. this bracket.

DEFINITION 3.3. Given two Lie algebras g1 and g2, a morphism of Lie algebras is defined to be a
linear map f : g1 — @2 such that fc1 = co(f ® f), i.e. such that [ f(x), f(y)]g, = f([x,¥]q,)-

We denote Lie-alg the category of Lie algebras with morphisms of Lie algebras.

Any associative algebra A can be endowed with a Lie algebra structure, by setting

[, ] :=xy —yx .
This defines a forgetful functor As-alg — Lie-alg.
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DEFINITION 3.4. Let § be a Lie algebra and denote T(g) the free tensor algebra over the vector space
g. The universal enveloping algebra of g is defined to be the quotient of T(g) by the two-sided ideal
generated by the elements

X®y—-y®x—[x,y],
and is denoted U(g).

Proposition 3.5. The universal enveloping algebra construction defines a functor U(-) : Lie-alg —
uls-alg which is left adjoint to the forgetful functor uhs-alg — Lie-alg. In other words, for every
unital associative algebra A and Lie algebra g, there is a natural bijection

HomuAsalg(U(g)> A) = HomLiealg(ga A) .

3.1.2. Lie algebra of a Lie group. Let M be a smooth manifold. We denote I'(T M) the vector
space of smooth vector fields on M, i.e. the vector space of sections of the tangent bundle
TM — M. Recall that I'(T M) is isomorphic to the vector space Der(€* (M, R)) of derivations
of the algebra € (M,R). For X € I'(TM) and f a smooth function, we will thereby denote
X f the image of f under the derivation X. The Lie bracket of two vector fields X and Y is then
defined to be the vector field [X, Y] acting on smooth functions as

[X.Y]f =X [f)-Y(X[).

Proposition 3.6. The vector space of smooth vector fields I'(TM) endowed with the Lie bracket is a
Lie algebra.

Let now G be a Lie group, whose unit we denote e € G. For g € G we denote Lg : G — G the
left multiplication, i.e. Lg(h) = g - h. A vector field X on G is then said to be left-invariant if
for every g € G it is invariant under Lg, i.e. (Lg).(X) = X or equivalently d(Lg),(Xp) = Xgp,
for all 4 € G. We denote Lie(G) the vector space of left-invariant vector fields on G.

Proposition 3.7. (i) The vector space Lie(G) is a finite-dimensional vector space of dimension
dim(G). More precisely, the linear map Lie(G) — T.G mapping X to X, is an isomorphism.
(ii) The vector space Lie(G) is stable under the Lie bracket, i.e. is a finite-dimensional Lie subalgebra
of T(TG).

The functor Lie from the category of real finite-dimensional Lie algebras to the category of
simply-connected Lie groups is in fact an equivalence of category:

THEOREM 5. (i) Let G and H be Lie groups. If G is simply-connected, then every morphism of Lie
algebras f : Lie(G) — Lie(H) admits a unique lift to a morphism of Lie groups F : G — H
such that Lie(F) = f.
(ii) For every real finite-dimensional Lie algebra § there exists a unique simply-connected Lie group
G such that Lie(G) = g.

Item (i) and Item [(ii)| are respectively called Lie’s second theorem and the Cartan-Lie theorem.
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3.1.3. dg Lie algebras and Maurer-Cartan elements.

DEFINITION 3.8. 4 dg Lie algebra is defined to be a dg vector space § endowed with a linear map
[.-]:6®g — g such that

(1) The map [-, ] is a chain map.
2) [x,y] = (=DM, A,
@) DML y], 2]+ GOy, 21, 6] + ()P [z, 6], v] = 0.

We point out that Items [2| and [3| can be reformulated using the Koszul sign rules as in Equa-
tion (3.1.2). The notion of a graded Lie algebra can be defined similarly. A morphism of dg Lie
algebras is moreover defined as a chain map f : g1 — g2 which preserves the Lie bracket.

DEFINITION 3.9. A Maurer-Cartan element of a dg Lie algebra g over a field of characteristic # 2
is defined to be an element « € g_1 of degree —1 such that

1
aa+§[a/,a/] =0.

The set of Maurer-Cartan elements of a dg Lie algebra g will be denoted as MC(g). We point
out that a morphism of dg Lie algebras f : g1 — g2 preserves the Maurer-Cartan equation
hence induces a map MC(g1) — MC(g2).

Proposition 3.10. Given a dg Lie algebra g and a € MC(qg), the map
07 =0+ |a,]

is a derivation w.r.t. the bracket |-, -] and satisfies 0 o 0 = 0.

The differential 0 is called the twisted differential. The dg Lie algebra (g,9%, [-,-]) will then
be denoted g“ and called the twisted dg Lie algebra.

Proposition 3.11. For a dg Lie algebra g and a € MC(g), we have that B € MC(g?) if and only
if B+ a € MC(g).

We will see in Section [3that the problem of the deformation of an algebraic structure is usually
encoded by a dg Lie algebra whose Maurer-Cartan elements correspond to the deformations
of the considered structure.

3.2. pre-Lie algebras.

DEFINITION 3.12. A pre-Lie algebra is defined to be a vector space A endowed with a map {-,-} :
A ® A — A satisfying the relation

{{.X, )’}, Z} - {X, {y’ Z}} = {{X, Z}9 y} - {X, {Z’ y}} .

An associative algebra is in particular a pre-Lie algebra with bracket its multiplication.

Proposition 3.13. Let (A,{-,-}) be a pre-Lie algebra. The map [-,-] : A® A — A defined as
[x,y] == {x,y} — {y.x} endows A with a Lie algebra structure.
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A dg pre-Lie algebra (A, 0, {-,-}) is defined similarly. The bracket of the induced dg Lie
algebra then reads as [x,y] = {x,y} — (-1)I*lI¥I{y, x}. The Maurer-Cartan equation for a dg
pre-Lie algebra hence reads as da + {a,a} = 0.

3.3. Poisson algebras.

DEFINITION 3.14. A Poisson algebra structure on a vector space P corresponds to the data of a
multiplication p : P ® P — P and of a bracket [-,-] : P ® P — P such that

(1) (P, u) is an associative algebra,
2) (P, [-,-]) is a Lie algebra,
(3) for all x € P the map [x,-] : P — P is a derivation w.r.t. the multiplication, i.e.

[x,y-z]l=[x,y] - z+y-[x,2] .

The relation of Item |3|is called the Poisson identity.

A morphism of Poisson algebras is defined to be a linear map f : P; — Py that commutes
with both the brackets and the multiplications of P1 and P3. We denote Pois the category of
Poisson algebras.

ExaMPLE 3.15. See Exercise sheet 2.

3.4. Gerstenhaber and Batalin-Vilkovisky algebras.
3.4.1. Definitions.

DEFINITION 3.16. A Gerstenhaber algebra structure on a graded vector space G is defined to be the
data of a multiplication 1 : G ® G — G and of a bracket |-, -] : sG ® sG — sG such that

(1) (G, ) is a graded commutative algebra,
) (sG, [, ]) is a graded Lie algebra,
(3) forallx € G the map [x,-] : G — G is a derivation w.r.t. the multiplication, i.e. satisfies

[x,y-z]=[x,y] -2+ (_1)(|y|+1)(|x|+1)y x,z] .

Let us make explicit the relations that a Gerstenhaber algebra has to satisfy:

(1) the relations of Equation (2.2.1) for the graded commutative algebra (G, u),
(2) the degree O map [-,] : sG ® sG — sG induces a degree 1 map [-,:] : G ® G — G which
satisfies the relations for the graded Lie algebra (sG, [-,]),

[x,y] = (_1)(IXI+1)(|y|+1)+1 [v,x]

(_1)(IXI+1)(IZI+1) [[x,y]. 2] + (_1)(IXI+1)(|y|+1) ([v.z],x] + (_1)(|y|+1)(|2|+1) [[z.x],y] =0,
where we use the fact that |x|;g = |x|g + 1,
(3) the Gerstenhaber relation of Item

Beware that a Gerstenhaber algebra is not the same thing as a graded Poisson algebra !

ExaMPLE 3.17. See Exercise sheet 2.
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DEFINITION 3.18. 4 Batalin-Vilkovisky algebra structure or BV algebra structure on a graded vector
space A is the data of a multiplication n : A® A — A and of a linear map A : A — A, called the
BV operator, such that

(1) (A, ) is a graded commutative algebra,
(2) A has degree 1 and A* =0,
(3) A( _____ ) — (A(— . _) . _)id+(123)+(321) _ (A(—) L. _)id+(123)+(321)

The notations of Item (3| are as in Equation (3.1.1). The BV relation moreover reads on
elements as
A(abe) =A(ab)c + (-1)'laA(be) + (-1)1eDIPIpA (ac)
— A(a)be = (=D aA(b)e - (=-1)!4*1PlapA(c)

Proposition 3.19. 4 BV algebra (A, u, A) is in particular a Gerstenhaber algebra (A, p, [+, -]) whose
bracket is defined as

[a,b] = (~1)!¥ (A(a b) = (=1)!la - A(b) = Ala) - b) .
The bracket can be interpreted as the obstruction to A being a derivation. It can also be

checked that A is then a derivation for [-,-].

3.4.2. Loop homology. Let M be a smooth orientable closed manifold of dimension m. The
free loop space LM defined in Definition comes with an evaluation mapev:y € LM +—
¥(0) € M, where we define S! as the quotient of [0, 1] by the relation 0 = 1.

DEFINITION 3.20. We denote H.(LM) := H,1,,, (LM) and call it the loop homology of M.

Consider two singular chains o; € C;(LM) and o; € C;(LM). We introduce the map
¢ = (evoo,evoo;) CATXA S Mx M,

and denote D := {(x,x),x € M} C M X M. The Chas-Sullivan product o; @ o is then the chain
in Ciyj_m(LM) defined as

pX(D)xSt > M

o1(61,2¢t) if t € [0,1/2]

51,89, 1
(91,02 )H{O'Q((SQ,QZ‘—I) if 7 € [1/2,1]

REMARK 3.21. For a smooth map ¢ : M — N transverse to a smooth submanifold S C N, the
space ¢~ 1(S) C M is a submanifold of M of dimension

dim(¢71(S)) = dim(M) + dim(S) — dim(N) .
Applying this idea to the map ¢ : A' X A/ — M x M and the submanifold D ¢ M X M, we find

dim(¢™ X (D)) =i+ j+m—-2m=i+j—m.
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For a singular chain o € C;(LM) we moreover define the chain A(o) € Ci11(M) as
(S'xA)YxSt - M
(s,0,t) > o(8,s+1) .
The Chas-Sullivan product and the operator A induce operations on loop homology
o H,(LM)®H,(LM) = H.(LM)  A:H.(LM) — H,q(LM) .
We point out that the degree shift H.,,,,(LM) was necessary in order for e to have degree 0.

We refer to [CS99], [LO15| and [CHV06] for more details on these two operations.

THEOREM 6. The loop homology H, (LM ) endowed with the Chas-Sullivan product e and the operator
A is a BV algebra.

We have proven in Exercise sheet 2 that for an associative algebra A, the Hochschild cohomol-
ogy HH*(A, A) is a Gerstenhaber algebra. The same result holds for Hochschild homology
of a dg algebra (see Exercise sheet 4). We also recall from Example that the singular
cochains C*(M) form a dg algebra.

THEOREM 7. We assume that M is simply connected and that char(K) = 0. Then there exists a BV
algebra structure on HH*(C* (M), C*(M)) such that

(1) the BV algebras HH* (C*(M),C*(M)) and H.(LM) are isomorphic as BV algebras,
(2) the induced Gerstenhaber algebra structure on HH* (C* (M), C*(M)) is its standard Gerstenhaber
algebra structure.



CHAPTER 3

Operads

1. Operads and %-algebras

We fix a closed symmetric monoidal category (C, ®, /) in this chapter. Recall from Section[1.3.]]
that given n objects C1, . .., C, in the monoidal category C, two bracketings of C1®---®C,, are
always equivalent through a unique natural equivalence made of associators. We will hence
write C1 ® - - - ® C,, for any representative of this equivalence class of bracketings.

1.1. Group actions. Let C be a category and X € C. Then the composition map (g, f) —
g o f of C and the identity idx naturally endow the set C(X, X) with a structure of monoid.

DEFINITION 1.1. Let G be a group.

(i) Aleft group action of G on X is defined to be a morphism of monoids G — C(X, X).
(ii) A right group action of G on X is defined to be a morphism of monoids G°P — C(X, X), where
G°P denotes the set G endowed with the multiplication (g1,g2) — g281-

This definition recovers the usual notions of left and right group actions when X is a set. We
will write the image of g € G in C(X, X) as 7.

DEFINITION 1.2. (i) A morphism f : X1 — Xo between two objects X1, Xo € C with a left/right
G-action is said to be G-equivariant ifng(1 = ngf for every g € G.
(ii) A morphism f : X — Y between two objects X,Y € C where G acts on the left/right of X is said
to be G-invariant if ft, = f for every g € G.

DEFINITION 1.3. Let V be a vector space together with a left action of a group G on'V.

(i) The vector space of coinvariants Vg is defined as Vg ==V /(v — gv,g € G).
(ii) The vector space of invariants VC is defined as VC = {v € V, gv =v Vg € G}.

REMARK 1.4. A left group action of G on V is in fact equivalent to a left K[G]-module structure
on V. Endowing K with its trivial right K[G]-algebra structure, we then have that

Ve =K ®kj61V VY = HomgGmea(K, V) .

1.2. May’s original definition. We set S := {x*} to be the trivial group with one element.

DEFINITION 1.5. A &- module is defined to be a sequence of objects { M (n)},>0 in C together with a
right action of S, on J(n) forn > 0.

26
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Let {/l(n)},>0 be a S-module, I =1I1,...,[; be a sequence of integers > 0 and o € S;. We
will denote (1) == M (1) & - ®A(L), |I| := 35, 1 and 1o := 1y 1)s -+ o Lo (i)

DEFINITION 1.6. For k > 1,i = i1,...,ix a sequence of integers > 0 and o € Sy, we define the
block permutation 0y € S; 4...4i, as the permutation which permutes the k intervals

M+ -+ig1+1,i0+---+ig]], 1 <s<k
as prescribed by the permutation o .
DEFINITION 1.7. An operad structure on a S-module {P (n)},>0 is defined to be the following data:
(1) A morphism
Yir,osip t P)RP() R---RP(ig) = P(i1+ - +ik)

Jorallk > 1 and iy, ...,ix >0, called a composition morphism.
(2) A morphismn : I — P (1) called the unit.

These data have to satisfy the following properties:

(1) The maps y,,... i, are equivariant under the right action of S;; X --- X S;,, where S;; X - - - X S;,
is seen as a subgroup of S; ...4i, .

(2) Given an integer k > 1, a sequencei = i1, . ..,ix of integers > 1 and k sequences jj, of integers > 0
of length iy, for1 < h < k, the following diagram commutes

Ph)RPERP(G) —— P(H)RP(1)RP(1)R---RP(ix) ®RP(jr)
lidfw(m@m&”'mjk
iy B2 ) P () mP (2 m- -0 P(|ji)

\LVUN ~~~~~ ikl

Vi . .
: > Pl +---+ ik

95(1'1+~--+l'k) &95(])

where j denotes the concatenated sequence j = ji...Jjr and the top arrow is the composition of
braidings rearranging P (i) ® P (j) into P(i1) RP(j1) R --- R P(ix) ®RP(jk).
(3) Fork > 1,i1,...,ix 2 0 and o € Sy, the following diagram commutes

PhR)RP()R---RP(ix) —> PO RP(ip11) B RP(51(1))

\LYi -1

o ®idg (i )a--aP iy ) P+ +ik)

|

Ph)YRP(i1) R - ®P(ig) > Plin+--+ik) ,

where the top arrow is the composition of braidings rearranging & (i1)R- - -RP (ix) into P (i z-1(1))
0 X @(ig—l(k)).
(4) Forn > 0, the composite morphisms

idg:(,w IZI]IZn

P(n) = [*"
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I]IZlidg:(n)

I8P (n) — P(1) & P(n) 2 P(n)

are respectively equal to the iterations of the right unit of C and to the left unit of C.

The object &P (n) is then called the space of operations of arity n of the operad P.

Assuming that the objects of C are sets and representing the elements of % (n) as corollae of
arity n, the composition morphisms ;... ;, : P(k) R P(i1) B -+ R P(ix) = P(i1+ - +ix)
can naturally be represented as

i1+ +ik

—_——
X i i . . \( \(
—_— — 711 ,,,,, Lk

V;Y,,Y _ V .

The elements of %(0) will moreover be represented as ! .

ExampLE 1.8. (i) The operad uAss is the operad in Set whose arity n set of operations
is &, for n > 0. The group &, acts on the right of uAss(n) by multiplication on the
right. The composition maps are given by mapping a permutation o € uAss(k) and
permutations o; € uAss(i;) for 1 < j < k to the composite permutation oy (o X - - X 0%)
of uAss(iy +---+ix), where S;; X --- X &;, is seen as a subgroup of S; ;... .

(ii) The operad Com is the operad in Set whose arity n set of operations is a singleton {*}
for n > 1 and the empty set for n = 0. The action of the symmetric groups as well as
the composition maps and unit are then all trivial.

(iii) A monoid structure on an object C € C is equivalent to a structure of operad on the
S-module (0,M,0,...,0,...), where we assume that the closed symmetric monoidal
category C has an initial object 0 € C.

We will denote  := (0,1,0,...) the G-module concentrated in arity 1. The object I being a
monoid in C, the previous example implies that the ©-module / is an operad.

DEFINITION 1.9. 4 morphism of operads P — Q is defined to be a sequence of S, -equivariant
maps P(n) — Q(n) forn > 0 which commute with the composition maps and preserve the units. It is
an isomorphism of operads if each map P (n) — Q(n) is an isomorphism.

DEFINITION 1.10. An augmented operad is defined to be the data of an operad P together with a
morphism of operads € : P — I called the augmentation.

DEFINITION 1.11. Let P and Q be two operads. We define their Hadamard product P ® Q as the
operad whose underlying S-module is (P ® Q)(n) := P (n) ® Q(n), whose unit is

-1_ -1
A =p; neR1a

Nowa : 1 Irl POHRQI) =(PrQ)(1)
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and whose composition maps y;?”_g_c? i, are defined as

PhyrRQAk)®P>H)RQ>GL) R ®P(ip) Q)

!

PP R---BP()RQKAk)RAQ() ®--- ®Q(ig)

P Q
\Lyil ..... i ®Yip, i

(PRQ)(i1+---+ik)

where the top arrow is the composition of braidings rearranging the factors of the top expression into
those of the bottom expression.

Proposition 1.12. Let C and D be two closed symmetric monoidal categories and F : C — D be a
strong symmetric monoidal functor. Then F maps operads in the category C to operads in the category
D.

1.3. Algebras over an operad.
DEFINITION 1.13. Let C be an object of C.

(i) The endormorphism operad of C is defined to be the S-module Endc (n) := Hom(C*",C)
where the right action of S,, is defined by permuting the inputs using composites of braidings,
whose unit is idc and whose compositions are defined for g : C=X — C and f; : C®i — C as

Yitoit (& f1o- s k) =80 (AR R fi) .

(ii) The coendormorphism operad of C is defined to be the S-module coEndc (n) := Hom(C, C®")
where S, acts on the right by permuting the outputs, whose unit is idc and whose compositions
Yir....i, are defined forg: C — C®* and f; : C - C®i, 1< j < k as

Yitorin (& S1o - J) = (AR R fr)og.

We point out that for the sake of clarity, we have written the definition as if the internal homs
are sets. It is however possible to spell out Definition without this assumption, using
diagrams in C involving internal homs.

DEFINITION 1.14. Let & be an operad.

(i) A structure of P-algebra on A € C is defined to be a morphisms of operads P — Enda.
(ii) A structure of P-coalgebra on C € C is defined to be a morphism of operads P — coEndc.

In other words, a P-algebra structure on A is a way to translate each operation of arity » in
P(n) as an arity n morphism A®" — A, such that a composition of operations in & translates
into a composition of morphisms in C.

Using the adjunction —® A®" 4+ Hom(A®", -), a P-algebra structure on A induces in particular
a morphism % (n) R A®" — A that is S,-invariant for every n > 0. We refer to Section [1.4.2]
for more details on that viewpoint.
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DEFINITION 1.15. Given A1 and Ay two P-algebras, a morphism f € C(A1, Ag) is said to be a
morphism of P-algebras if for every n > 0 the following diagram commutes

95(11) IZIAiEn — A

\Lidg’(n) =fE \Lf .

P(n) @ AZ — Ay

We will denote P-alg the category of P-algebras with morphisms of P-algebras between them.
The category &P-cog of P-coalgebras can be defined in a similar fashion.

ExaMmPLE 1.16. (i) A uAss-algebra structure on a set X is exactly a monoid structure on X.
(ii) Denote wdd3s := K[uAss] and €om := K[Com]. Then a vector space A with a wdss-
algebra/6.om-algebra structure is exactly a unital associative algebra/a commutative
algebra.
(iii) Seeing the operads w34 and 6-om as operads in dg Vect concentrated in degree
0 with null differential, a wdl3s-algebra/6-om-algebra structure is exactly a unital dg
algebra/a cdg algebra.

Proposition 1.17. A morphism of operads @ — P induces a functor P-alg — Q-alg.

1.4. Operads as monoids. In this section, we let C be one the following three categories:
Vect, gr Vect and dg Vect. An operad in one of these categories is usually called an algebraic
operad.

1.4.1. Monoidal category structure on S-mod. Recall that for a group G, a vector space with
a left/right G-action is equivalent to a left/right K[G]-module.

DEFINITION 1.18. Let G be a group.

(1) Given two vector spaces V and W respectively with a right and left G-action, we define
Ves K =Vekeg W .
(2) Given a subgroup H C G and a vector space V with a right H-action, we define
nd%V =V oy K[G] .
(3) Given a subgroup H C G and a vector space V with a left H-action, we define
CoindgV = Homy g (K[G], V) .

DEFINITION 1.19. Given two S-modules M and N, we define their composite as the S-module
M o N given in arityn > 0 by

Mo N(n) = @m(k) ®s, @ Indgylxmxeik (N (i) & - & N(ir))
k>0 i1+ +ig=n

where the summand is equal to AL (0) when k = 0.

The composite defines in fact a bifunctor — o — : S-mod X Gmod — S-mod. We moreover
denote K := (0,K,0,...,0,...).
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Proposition 1.20. The category (Smod, o, K) is a monoidal category.

Proposition 1.21. Given a S-module P, a structure of operad on P corresponds exactly to a structure
of monoid on P in (Smod, o, K).

1.4.2. Schur functor.

DEFINITION 1.22. Let M be a S-module. The Schur functor associated to A is the endofunctor
Sa : C— C defined as

Sa(V) =P m e vers, ,
n>0

where M (n) ® V" is endowed with the diagonal right S, -action.

This construction defines in fact a functor S_ : ©Gmod — EndoFun(C). Recall moreover from
Exercice sheet 1 that the category (EndoFun(C), o,id¢) is a strict monoidal category.

Proposition 1.23. The functor S_ is strong monoidal. In particular, an operad structure on P induces
a monoid structure on its Schur functor Sg.

In other words, an operad &% defines a monad Sg.

1.4.3. Free algebra over an operad.

Proposition 1.24. (i) A P-algebra structure on an object A of C is equivalent to a Sop-algebra
structure on A, i.e. to a morphism p : Sop (A) — A such that the following diagrams commute

(S0 59)(4) =S (S (4)) 20 S5(4) A =ide(4) 2 S(A)
lm \Lﬂ N \Lﬂ :
So(A) > Sg(A) A
(ii) A morphism f : A1 — Ay is then a morphism of P-algebras if and only if the following diagram
commautes

Y.
S (A1) s A

\LSLG/&(f) \Lf .
YAy
Sp(Ag) —— Ay

DEFINITION 1.25. For an operad & and a vector space V of C, the free P-algebra on 'V is defined to
be the object So (V) whose P-algebra structure is given by the morphism

S5(83(V)) = (S 0 S3) (V) 75 S (V) .
Proposition 1.26. The free P-algebra construction defines a functor Sp : C — P-alg which is left
adjoint to the forgetful functor P-alg — C. In other words, for everyV € C and P-algebra A, there is

a natural bijection
Homg a14(S%(V), A) = Hom¢(V, A) .

ExampLE 1.27. If C = gr Vect, the free wdss-algebra on a graded vector space V is the
free graded tensor algebra 7'(V) and the free ‘6-om-algebra on V is the reduced free graded

commutative algebra AV = P,s1 A"V.
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1.5. Nonsymmetric operads. Let C be a closed symmetric monoidal category.
DEFINITION 1.28. A N- module is defined to be a sequence of objects { M (n)},>o in C.

DEFINITION 1.29. 4 nonsymmetric operad or ns operad structure on a N-module {%(n)},>0 is
defined to be the data of composition morphisms

Yit, g - Phk)RP()R--- K Qa(l'k) — Pi1+---+ix)
and of a unit morphism 1 : I — P (1) which satisfy Item[2 and Item 4 of Definition|7.7

Every symmetric operad yields a ns operad by forgetting about the symmetric groups actions:
this defines a forgetful functor Op — nsOp. The endomorphism and coendormophism operads
Endc and coEndc of an object C € C are thereby in particular ns operads. Given a ns operad
P, a P-algebra structure on A is then defined as a morphism of ns operads & — End,, and
a P-coalgebra structure on C is defined as a morphism of ns operads % — coEndc.

ExampLE 1.30. (i) The ns operad uAs is the ns operad in Set whose arity n set of operations
is a singleton {+} for every n > 0. A uAs-algebra X is then a monoid X in Set.

(ii) The ns operad w3 = K[uAs] is the ns operad in vector spaces which encodes unital
associative/unital graded associative/unital dg algebras. Beware that w3 is not the
image of the operad w943 under the forgetful functor Op — nsOp, but the image of the
operad uGom !

Assume now that the category C is either Vect, gr Vect or dg Vect. The Schur functor associ-
ated to a N-module A is the endofunctor Sy : C — C defined as

Su(V) = @ M(n) @ VE"

n=0

All constructions and propositions of Section then still hold in the ns case. For instance,
the free wds-algebra on a vector space V is again the free tensor algebra S, ¢, (V) =T (V).

2. Free operad

In this section, C either denotes Vect, gr Vect or dg Vect.

2.1. Trees.
2.1.1. Planar and nonplanar trees.
DEFINITION 2.1. A planar tree ¢ is defined to be a tree which satisfies the following conditions:

(1) it has a distinguished outgoing edge called the root,

(2) each vertex v of t is endowed with a linear order on the set of its incoming edges inc(v) (a way to
embed the tree in the plane),

(3) its input edges can be capped by stumps i.e. vertices with no incoming edge,

(4) vertices with only one incoming edge are allowed.



2. FREE OPERAD 33

These conditions imply in particular that the set of non-capped input edges of ¢ is linearly
ordered. We will moreover denote Vert(z) the set of vertices of ¢, and PT,, the set of planar trees
with n non-capped input edges. The ¢rivial tree | is then an element of PT;. The corolla of
arity n > 1 will moreover be denoted ¢, € PT),.

W € PTy e PT, Cp 1= \( e PT,

Unary vertices and capping vertices are represented with bullets in the above planar trees.
DEFINITION 2.2. A nonplanar tree is defined to be a planar treet together with a permutation of its
non-capped input edges.

We will denote T, ~ PT,, X &, the set of nonplanar trees with n non-capped input edges.

4512 3

€Ty

We will use three different representation for an element of T,, depending on the context, as
illustrated below.

(123) 312

Y o.aw=Y =Y eTy

An element of T, will moreover either be denoted as ¢-o where ¢ denotes its underlying planar
tree and o the associated permutation, or simply as ¢ depending on the context.

2.1.2. The ns operad PT .
DEFINITION 2.3. The ns operad PT is the N-module PT := {PT, },>0 with composition maps
Yityosiv - PTie X PTy X oo X PTy — PTy 4y
given by grafting the root of a tree in PT;; to the j-th non-capped input edge of a tree in PTy.

This ns operad structure permits us to define an order on the vertices of a planar tree as
follows. Every planar tree # %, | can be written as a composition ¢ := y(ck;t1,. .., ), where
ck is the corolla of arity k > 1. If 1, ..., #x are all equal to the trivial tree |, = ¢x and there
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is only one vertex. Otherwise, we put the vertex v, of ¢y in first position and then proceed
by induction to concatenate the orders on the vertices of the ;, i.e.

Vert(t) = v, < Vert(t1) < --- < Vert(g) .

We represent an example of an ordering of the vertices of a planar tree below.

2.1.3. The operad T .

DEFINITION 2.4. The sets T,, forn > 0 define a S-module T in Set, where S, acts on the right of
T, by permuting the n non-capped input edges of the nonplanar tree. This S-module is an operad with
composition maps

Yl'l ..... i : Tk X Ti1 X X Tik - Ti1+~~~+ik

given by grafting the root of a treetj - o € Ty, to the j-th non-capped input edge of a treet - o € Ty.
The choice of permutation on the planar tree obtained under this composition is then defined to be
0'5(0'1 X+ X Op).

We have for instance that

4512 3

312

73,1,2(Y;\V’ b, )=

We moreover linearly order the vertices of a nonplanar tree by ordering the vertices of its
underlying planar tree as in the previous section.

2.2. Free operad.
2.2.1. Free ns operad.

DEFINITION 2.5. Let M be a N-module and t a planar tree. We define

M) = Q) M(linc())),

veVert(t)

where the set of vertices is ordered as explained in Section[2.7.2 and we set M (1) := K.
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An element of /l(7) can be represented as a linear combination of labelings of the vertices of
t by operations in Jl. For instance

ca( V)

where uy € M(3), ug € M(2), uz € M(3), py € HM(0) and ps € A(1).
DEFINITION 2.6. The free ns operad Jy,5 (M) on a N-module A is defined to be the N-module

T (M) () := P M @0) ,

tePT,,

endowed with the composition maps
Tns (M) (k) & T (M) (i1) ® - -+ @ T (M) (i) — T (M) (i1 + - - - + i)
defined on each summand as
(1) ® M (1) ® -+ @ M(tx) = M(y(t511, ... 1)) > Tng (M) (i1 + -+ + k)

wheret’” € PTy, t; € PT;, for1 < j < k and the left arrow corresponds to reordering the factors of
()@ M(t) ® --- ® M(tx) into the factors of M(y(t;t1,. .., 1%)).

In other words, the composition of the operad J,(/l) is given by the grafting of trees whose
vertices are labeled by operations of J.

ExAMPLE 2.7. (i) The free ns operad on the N-module V = (0,V,0,...,0,...) is
Tus(V) =(0,T(V),0,...,0)

where T (V) is the free tensor algebra of Definition
(ii) The free ns operad on the N-module (K, K,K,...) is the operad K[PJ].

A free ns operad J,(Jl) is in particular weight graded, where for m > 0 the N-module
ET,LS(J/L)("“) is defined as

Tns ()™ ()= P M) .
tePT,
|Vert(t)|=m

Proposition 2.8. The functor J,5(—) : Nmod — nsOp is left adjoint to the forgetful functor
ns0p — N-mod. In other words, for every N-module M and ns operad P there is a natural bijection

Homns(]p(gns(ﬂ)’ P) =~ Homnmoa (M, P)

In particular, a structure of J,,(./()-algebra on A simply corresponds to a morphism of N-
modules Jl(n) — Hom(A®", A).
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2.2.2. Free operad. For a nonplanar tree ¢-0- and a GS-module J, we define 4l (t-0) := J (1)
as in Definition[2.5] where the set of vertices is ordered as in Section[2.1.3Jand we set 4L (1) := K.
We will now define the underlying ©-module I (/) of the free operad on Jl. For every n > 0,
the vector space (P, ., Jl(7) admits a right S,-action defined on a summand as

o () S (- o) @//L(z) .

teT,

DEFINITION 2.9. We define the S-module T (M) as
T (M) (n) = (EP (1) /~ .

teT,

where the quotient is defined by induction as explained below.

Any nonplanar tree # !, | can be written as a composition ¢ := y(ck - 0311, ..., 1) - 0 where:

(1) ck is the corolla of arity k > 1 and o € Sy is a permutation of its incoming edges,
(2) t; ePTy; forl<j<kandiy+---+ir=n,
(3) o’ is a permutation of the non-capped input edges of y(ck - o711, ..., tk).

Write ¢ ® v an element of J#l(t) = M (k) ® --- where u is the operation labeling the unique
vertex of the corolla c;. The quotient is then defined by induction on the number of vertices
of the tree ¢ by the identification

M2 pu@v=u-0c®v € MMt
where

1) ¢ =y(ck3tg-1(1)s - -sto1(k))0i0” where oy is defined in Definition [1.6]
(2) v’ is obtained by reordering the factors of v following the ordering on the vertices of ¢'.

We moreover check that the action of &, is still well-defined after quotienting.

The operations of I (/) are thereby to be understood as linear combinations of labelings of
the vertices of nonplanar trees by operations of J{, such that permuting the incoming edges
at a vertex is equal to applying this permutation to the label of this vertex.

DEFINITION 2.10. The free operad on the S-module M is defined to be the S-module T (M) endowed
with the composition given by the grafting of nonplanar trees as in Definition|2.6

The operad J (/L) is again weight graded by the number of vertices of a nonplanar tree
Ts (M) = B 50 Tns (A ™.
ExampLE 2.11. (i) The free operad on the S-module V = (0,V,0,...,0,...) is
T (V)=(0,T(V),0,...,0) .
(ii) The free operad on the G-module {K[S,]},>0 is the operad K[J].

Proposition 2.12. The functor T (—) : Smod — Op is left adjoint to the forgetful functor Op —
S-mod. In other words, for every S-module M and operad P there is a natural bijection

Homgy (7 (M), F) ~ Home noa (ML, %) .
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2.3. Presentation of an operad.

DEFINITION 2.13. Let &P be an operad.

(i) Anideal of P is defined to a S-module M such that M (n) C P(n) for everyn > 0 and such that
for any family of operations v; 1, ..., ux of P, if one of them is in J then theire composition
vy(vs i1, ..., pmx) is in J.

(ii) Given a collection of operationsr; € P, the ideal generated by ther is defined to be the smallest
ideal of P which contains ther;.

We will say that an operad & admits a presentation, if there exists a S-module ./l and an ideal
F C T (Al) such that

P=J(M)/TF .
In most cases, we will assume that the ideal .7 is generated by some r; in J (/). Choosing
for every n > 0 a basis u' for the vector space Jl(n), we will call the elements u} € J/l(n) the
generating operations of the operad & and the elements r; € F () its relators.

ExampLE 2.14. (i) The ns operad ¢f3 encoding associative algebras admits a presentation
with generating N-module (0,0, Ky, 0, ...) and with ideal generated by the relator

(ii) The operad Zie encoding Lie algebra admits a presentation with generating ©-module
(0,0,Kc,0,...) where ¢ - (12) = —c and with ideal generated by the relator

1 2 3 3 1 2 2 3 1

3. Cooperads

In this section, we let C be one the following three closed symmetric monoidal categories:
Vect, gr Vect and dg Vect.

3.1. Definitions.

3.1.1. May cooperad.
DEFINITION 3.1. A May cooperad structure on a S-module {6 (n)},=0 is defined to be data of:

(1) A morphism
ok - G(n) - B(k) @ B(i1) ® - - ® Blix)
Jorallk > 1 and iy, ...,ix > 0 such thatiy +--- + iy = n, called a decomposition morphism.
(2) A morphism ¢ : 6(1) — K called the counit.

These data have to satisfy the following properties:
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(1) The maps 6> are equivariant under the right action of S;; X --- X S;,.
(2) The maps

l_[ (5il ..... i C@(n)—> l_[ C@(k)@(‘@(iﬂ@..-@%(ik)
i1+ +ig=n i1+ +ig=n

Sactor through the invariants of Sy on the target.
(3) The decomposition morphisms and the counit satisfy coassociativity and counit axioms dual to the
ones of an operad.

The vector space €(n) is then called the space of cooperations of arity n of the May cooperad €.
The decomposition morphisms can be represented as

seeeslf

/)\e%(n)»éil—& €EBk)®C(I1)® - ®G(ig) .

ExaMPLE 3.2. A May cooperad structure on the S-module (0,C,0,...,0,...) is exactly a
counital coassociative coalgebra structure on C

We will moreover denote A" the arity n total decomposition map

k>1 i1+ +ix=n k>1 i1+ +ig=n

3.1.2. Cooperads and 6-coalgebras.

DEerFINITION 3.3. (i) The cocomposite product on S-mod is defined as
Sk
_ c . .
MeoN(m =Pk e P Wmdd, o W)@ i)

k>0 i1+ +ig=n

(ii) The coSchur functor associated to J is the endofunctor S™ : C — C defined as
SV = P (n) @ Ve S .
n>0
Proposition 3.4. (i) The cocomposite product S defines a monoidal structure on the category S-mod.

(ii) The functor S~ : (S-mod, 5) — (EndoFun(C), o) is strong monoidal i.e. SV = §4 o §V
g

DEFINITION 3.5. A cooperad 6 is defined to be a May cooperad such that the total decomposition
maps A" factor through

A’“%(n)—)@ @ G (k) ® B(i1) ® - - Blix) .

k>1 i1+ -+ixg=n

In other words, a cooperad is a May cooperad such that for each n > 0 and y € €(n) there
exists only a finite numbers of iy, . ..,ix > 0 with i1 + - - - + i = n such that 6% (u) # 0.
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Generalizing Sweedler’s notation to cooperads, we will denote the image of a cooperation
i € 6(n) under A" as the finite sum

A”(u):Z(v;vl,...,vk)e@ @ Gk) ®B(i1) ® - @ B(iy) .

k>1 i1+-+ig=n
i1,.ns i >0

Proposition 3.6. A4 cooperad structure on a S-module 6 is equivalent to a comonoid structure on ‘6
in (Smod, 9).

A cooperad structure on a ©-module ‘€ then induces in particular a comonad structure on its
coSchur functor €.

DEFINITION 3.7. Let € be a cooperad. A B-coalgebra structure on a vector space C is defined to be
a S -coalgebra structure on C, i.e. the datum of a linear map Ac : C — P,s0(B(n) ® C®)®n =
S (C) such that the following diagrams commute

A
c —< 5%(C) c 2 §%(0)

\LAC \LS% (Ac) &‘ \Lsc
C

s€ Sy 5(s(0))

In other words, a ‘G-coalgebra C corresponds to the data of &,-invariant linear maps
A":C— 6(n)eC®

for every n > 0 that are compatible with the decomposition of the cooperad 6 and such that
for every ¢ € C, only a finite number of A" (c) are # 0.

REMARK 3.8. Hence, a ‘G-coalgebra is in some sense always conilpotent. See Exercice 8 in
Exercice sheet 3 for more details.

3.2. Conilpotent cooperads. Recall that the S-module K is defined as the S-module
concentrated in arity 1 (0,K,0,...). It carries an obvious structure of cooperad.

DEFINITION 3.9. A4 coaugmented cooperad is defined to be the data of a cooperad € together with
a morphism of cooperadsn : K — G called the coaugmentation.

Let 6 be a coaugmented cooperad. We define id := n(1k) € 6(1) and call it the identity. We
also define 6 (n) := €(n) for n # 1 and B(1) := Ker(¢), where ¢ is the counit of 6.

We moreover set T, :=T,, forn # 1 and 77 :=T1 — { | }. Given /il a S-module we then denote
J (M) the S-module given in arity n by
TAM) = [ |/~
teT,
where ~ is defined as in Definition For m > 0, we also denote
T ™M= [ @/~

teT,
|Vert(t) |=m



40 3. OPERADS

Proposition 3.10. A coaugmented cooperad ‘6 determines a morphism of S-modules

PrOOF. The projection € — (€)Y = € is equal to the identity. The projection
€ — T"(©)? is defined for u € €(n) as the sum Y, v; ® vy for all decompositions of the
form (vy;id, ..., id, v9,id, ..., id) appearing in A" (u). The sum A" (u) — (u;id, . . .,id) — (id; u)
determines in fact the projection of A to the factors associated to 2-leveled trees in T (6).
More generally, the factors of A(u) are obtained by iterating the total decomposition maps
A" and discarding the summands featuring an intermediate cooperation equal to id or a final
level of cooperations equal to id. i

In other words, the map A is defined by iterating the total decomposition maps A" and ensuring
that the equivalent decompositions of a cooperation contribute exactly once to the associated
factor in 7" (6).

DEFINITION 3.11. Let 6 be a coaugmented cooperad. The coradical filtration on 6 is defined as
F. 6 = Ker (5” t6 — Oj/\(‘%)(>r)) ,

where A" denotes the projection of A to T"(6€)>").

It is indeed a filtration as
0=F6cF,€c---cF6c---.

DEFINITION 3.12. A coaugmented cooperad is said to be conilpotent if its coradical filtration is
complete, i.e. if € = J, 5o Fr6.

In other words, a coaugmented cooperad 6 is conilpotent if a sequence of nontrivial decom-
positions of any cooperation in ‘€ always terminates.

REMARK 3.13. There are two main obstructions for a cooperad to be conilpotent.

(1) The vertical obstruction coming from the coassociative coalgebra structure on € (1) with
coproduct 6. This is in particular one of the reasons why we define conilpotency using
6 and not 6, as the identity can be decomposed ad libitum.

(2) The horizontal obstruction which comes from the existence of arity 0 elements.

Proposition 3.14. (i) A May cooperad 6 with 6(0) = 0 is a cooperad.
(ii) A coaugmented cooperad 6 with €(0) =0 and 6(1) = Kid is conilpotent.

3.3. Cofree cooperad. Let 7 be a nonplanar tree. A degrafting of t is defined to be a
collection of trees t’,11,...,7¢ such that t = y(¢t';t1,...,1;x). Degrafting of trees defines a
cooperad structure on the G-module {T,},50 in Set. We will denote it as T .

DEFINITION 3.15. The cofree cooperad on a S-module J is defined to be the S-module T (M)
endowed with the decomposition given by the degrafting of nonplanar trees. Its is denoted T (J).
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The cofree cooperad J“(Jl) on Jl is moreover conilpotent: a sequence of nontrivial degraft-
ings of a nonplanar tree whose vertices are labeled by operations of Jl always terminates when
all the pieces of the degrafted tree are equal to corollae labeled by an operation of J.

Proposition 3.16. The functor T°(—) : Gmod — conil Coop is right adjoint to the functor
© € conil Coop — 6 € S-mod. In other words, for every S-module M and conilpotent cooperad 6
there is a natural bijection

HomG-mod(%a -/M) ~ Homconi1 Coop(%’ Cjc(m)) .

ExampLE 3.17. (i) The cofree cooperad on the S-module V = (0,V,0,...,0,...) is the
cofree coalgebra

T(V)=(0,T°(V),0,...,0) .
(if) The cofree cooperad on the G-module {K[S,]},>0 is the cooperad K[JT “].

4. Applications in algebraic topology

4.1. Recognition principle for k-fold loop spaces.
4.1.1. k-fold loop spaces.

DEFINITION 4.1. Let X be a topological space and x € X. The (based) loop space QX is defined
to be the topological space of pointed continuous maps (S*,0) — (X, x).

The topology taken on Q,X is the compact-open topology and it is naturally pointed by
the constant loop at x. We will write QX := Q,X in the rest of this section for the sake of
readability. The space QX being pointed, we can define Q*X := Q(QX) and Q*X for any
k > 0 inductively. We then call a space of the form Q*X a k-fold loop space.

4.1.2. Little k-cubes operad.
DEFINITION 4.2. A linear embedding with parallel axes I" — I" is a map of the form

(t1,...,tn) > (c1(t1), ..., cn(tn))
where Ci(l‘i) = (1 - t,~)x,~ +1;y; forﬁxedO <x;<y; <L

DEFINITION 4.3. The little k-cubes operad €y := {€x(n)},>1 is the operad in topological spaces
defined as follows:

(1) The arity n space 6y (n) is the space of ordered collections of n linear embeddings with parallel axes
I* — I with disjoint interiors. A collection of n linear embeddings will be written | |?, I* — I*.

(2) The action of S,, on By (n) is given by permuting the linear embeddings.

(3) Given | > 1, collections of linear embeddings |_|:l:’1 I* — I¥ in Gr(nj) for1 <1 < k and a
collection of linear embeddings |_|ll.:1 1K — I in Gy (1), their composition in Gy (n1 + - - - +ny) is
given by inserting each collection of linear embeddings of Gx(nj) in the j-th slot of|_|f:1 I* — 1%
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An element of 65(3) can for instance be represented as

4.1.3. Recognition principle for k-fold loop spaces.

Proposition 4.4. Every k-fold loop space Q*X is an algebra over the little k-cubes operad.

PROOF. An element of the k-fold loop space QXX can be equivalently defined as a map
I" — X which maps the boundary of /" to the base point x. The structure maps 6y (n) X
(QkX)*" — QFX endowing QKX with a Gj-algebra structure are then defined as follows.
Consider an element | |1, I¥ — I* in 6 (n) and n elements f; : I¥ — X of QXX. Their
image under the G;-algebra structure map is defined to be the map I* — X whose restriction
to the i-th embedded cube is f; and whose restriction to the complement of the interiors of
embedded cubes is the constant map x. An element of €2(3) acts for instance on fi, f; and

f3 as

fs

O

THEOREM 8. If a connected space X is an algebra over the little k-cubes operad then there exists a
pointed topological space Xy such that X is homotopy equivalent to Q*X.

4.2. Framed little disks operad.
4.2.1. Little k-disks operad.

DEFINITION 4.5. The little k-disks operad Dy = {Dr(n)}n>1 is the operad in topological spaces
defined as follows:

(1) The arity n space Dy (n) is the space of ordered collections of n embeddings D* — DX by translation
and dilation with disjoint interiors.
(2) The action of S,, on Dy (n) and the composition maps are defined as in Definition[4.3
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An element of @y(3) can for instance be represented as

The functor H.(-) : Top — gr Vect mapping a topological space to its singular homology
with coefficients in K is strong monoidal, i.e. H.(X xXY) =~ H,(X) ® H.(Y). Following Proposi-

tion 1.12} the functor H,(-) thereby maps operads in topological spaces to operads in graded
vector spaces.

Proposition 4.6. For every k > 1 the little k-disks operad Dy and the little k-cubes operad 6 are
weakly equivalent, i.e. there exists a zig-zag of morphisms of operads in topological spaces

E)Zk =:950<—951—>”'<—95n_1 —>95n :=C€k
that induces a zig-zag of isomorphisms of operads in graded vector spaces

Ho(Dy) = Ho(Po) EHo (P1) > - - EHA(Pr_1)SH(P,) = Ho(B)

4.2.2. Framed little disks operad.

DEFINITION 4.7. The framed little disks operad fDy := {fDy(n)}n>1 is the operad in topological
spaces defined as follows:

(1) The arityn space fDy(n) is the space of ordered collections of n embeddings D> — D? by translation,
dilation AND rotation with disjoint interiors.

(2) The action of S, on fDy(n) and the composition maps are defined as in Definition[4.3.

An element of f9,(4) can for instance be represented as

@@
NO,

where the marked points on the boundaries of the disks represents the rotations used in the
embeddings.

THEOREM 9. The singular homology of the framed little disks operad is isomorphic to the BV operad
as an operad in graded vector spaces

H.(fDy) ~ BV .
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ProOF. The following element of £,(2) seen as a O-chain

@ @&

is mapped in homology to the multiplication operation of the operad BV, while the following
1-cycle in £2,(1)

te[0,1] —

is mapped in homology to the A operation of the operad BV. m]

In particular if X is a topological space with a f9j-algebra structure, its singular homology
H.(X) inherits a BV algebra structure.
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Twisting morphisms

1. Twisting morphisms

1.1. Convolution algebra and twisting morphisms. Let A be a dg algebra and C be a
dg coalgebra.

DEFINITION 1.1. We define the convolution algebra of A and C to be the dg vector space
Hom(C, A) := Homy, .., (C,A) = () [ | Homyecs (Cp Apsr)

reZ neZ

endowed with the differential 0 := [0, -] and the convolution product
fxg=pualf®8Ac .

The convolution algebra (Hom(C, A), , d) is a dg algebra. If A is unital with unit u4 and C
is counital with counit &c, it is moreover a unital dg algebra with unit usec.

DEFINITION 1.2. A4 twisting morphism « : C — A is defined to be a linear map of degree -1 such
that
ola)+axa=0.

If C is coaugmented with coaugmentation uc and A is augmented with augmentation €, the linear
map « also has to satisfy
caa=0 aug =0 .

We denote Tw(C, A) the set of twisting morphisms C — A. We point out that a twisting mor-
phism is exactly a Maurer-Cartan element in the dg algebra Hom(C, A).

We now define the map 8/, : C® A - C® A as
(9; = (ide ® pa)(ide @ @ ® id4) (Ac ®id4) ,

id
ro_ a
0, = u .

In other words 9/,(c ® a) = ¢V @ ua(c?, a).

which can be represented as

Proposition 1.3. Let a be a twisting morphism. Then the degree -1 map
3(, = 6; + 8C®A
defines a differential on C ® A.

45
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Proor. (9(21 = (82)2 + 8C®A8’ + a(rl(?C@A + (92 =0 +0

a C®A axa

)+O:8’ =0. O

r
I(a da+axa

We will denote C ®, A := (C ® A, d,) and call it the (right) twisted tensor product. The (left)
twisted tensor product A, ® C can be defined in a similar fashion.

1.2. Homology of fiber spaces. Twisted differentials are used in the computation of the
singular homology of fiber spaces. We sketch the results of [Bro59] in this section.
1.2.1. Space of Moore logps.
DEFINITION 1.4. Let (B, bo) be a pointed topological space. We define the space of Moore loops
Q% X as
Q%B ={y:[0,r] = B,y(0) =y(r) =by,r 20} .

We then have a natural inclusion QB ¢ QM B where QB is the standard based loop space (we
drop the subscript -5, for the sake of readability). This inclusion is in fact a strong deformation
retract, which implies in particular that these two spaces are homotopy equivalent.

The space of Moore loops carries a topological monoid structure, given by the concatenation
of loops: for y; : [0,7] — B and yy : [0, s] — B, we define
t)if t € [0,
yi*yo:t€[0,r+s]— n i E [0.71]
yo(t —r)ift e [r,r+s]

Its unit is moreover given by e, the constant path at by of length 0. This implies that the
singular chains C.(QM B) form a dg algebra.

REMARK 1.5. The based loop space QB endowed with the concatenation of based loops is
not a topological monoid, as concatenation of loops is not associative. We will however see
in Section [2 that it is an A,-space, i.e. a monoid whose multiplication is associative up to
homotopy and higher coherent homotopies.

DEFINITION 1.6. (i) The space of Moore paths of a topological space B is defined as
P(B) :={y:[0,r] = B,r >0} .

(ii) The space of based Moore paths of a pointed topological space (B, by) is the subspace E(B) C
P(B) of Moore paths that end at by.

We point out that two paths a, 8 € P(B) such that a(r) = 8(0) can still be concatenated to a
path a = S.

1.2.2. Weakly transitive Hurewicz fibrations.

DEFINITION 1.7. A continuous map p : E — B is said to be a Hurewicz fibration if it admits the
homotopy-lifting property, i.e. if for every topological space X the following diagram can be filled

Xx{0} —3 E

[ ]

% [0,1] ——3 B
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We define the fiber over a point b € B to be the space p~1(b). For a Hurewicz fibration, all
fibers over a path component of B can be proven to be homotopy equivalent: one can thereby
speak of the fiber F := p~1(b) of a Hurewicz fibration when B is path connected. This is
usually denoted as F' < E — B.

ExampLE 1.8. (i) The path space fibration is defined as evy : y € E(B) — y(0) € B. It is an
Hurewicz fibration with fiber eval(bo) =QMB, ie.
QMB <5 E(B) > B.

(if) Covering spaces and vector bundles are Hurewicz fibrations

Let p : E — B be a Hurewicz fibration and assume that we have chosen a point by € B. We
consider the fiber product

Up := P(B)ey Xp E = {(y,€) € P(B) X E,y(r) = p(e)} .

We define a lifting function of a Hurewicz fibration p : E — B to be amap A : U, — E such
that pA = ev(. The homotopy lifting property ensures that a Hurewicz fibration always admits
a lifting function.

DEFINITION 1.9. A lifting function for p is said to be weakly transitive if

(1) Aep,,x) = x for every x € p~L(by),
(2) Aa = B,x) =Aa, A(B,x)) for every a, B € P(B) such that a(r) = $(0) = by.

A Hurewicz fibration is said to be weakly transitive if it admits a weakly transitive lifting
function. A weakly transitive lifting function defines in particular a left action of Q¥ B on the
fiber F = p~1(by) by setting

a-x=Aa,x) .
This action induces a left C.(Q™ B)-module structure on C,(F).

ExampLE 1.10. The path space fibration is weakly transitive. The action of Q™ B on the fiber
QM B < E(B) is then simply given by the concatenation of Moore loops.

REMARK 1.11. The weakly transitive property for a Hurewicz fibration should be compared
to the the fact the the fundamental group of a connected topological space B acts on the fiber
of its universal cover B — B.

1.2.3. Brown’s twisting morphism. Given A a dg algebra, C a dg coalgebra, (M, ups) a dg
A-module and a : C — A a twisting morphism. We can again define a twisted differential on
CQ®M as 0y := 0., + Ocem where 9], = (idc ® up)(ide ® @ ® idpr) (Ac ® idpys).

THEOREM 10. Let B be a path connected topological space and by € B.

(i) There exists a twisting morphism ®p : C.(B) — C.(QM B), where C.(B) is endowed with the
Alexander-Whitney coproduct.
(i) For every weakly transitive Hurewicz fibration F — E — B, there is a quasi-isomorphism

C.(B) ®p, C.(F) — C.(E) .
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This theorem should be understood as a generalization of Kiinneth’s theorem: if the fibration is
trivial i.e. if E = BXF, then the twisted tensor product C.(B)®a, C.(F) is exactly C,(B)®C.(F)
and we recover that H,(B X F) ~ H,(B) ® H.(F).

1.3. The cobar-bar adjunction.

1.3.1. Bar and cobar constructions. Let (A, u,0) be a dg algebra. We define two degree -1
maps di,dy : T(sA) = T¢(sA) as
n .
di(sai,...,sa,) = Z(—l)’+|a1|+"'+|“"*1|sa1 ®---®s0a; @+ say,
i=1
n-1 )
dZ(S(ll, s, San) — Z(_l)l—1+|all+"'+|ai‘Sal R---Q® S/J(ai,aiﬂ) K- QR sdy, .
i=1
We check that d% =0, d% = 0 and didy + dad; = 0. The map dj + dy hence defines a
differential on the graded vector space 7¢(sA). This differential is moreover compatible with
the deconcatenation coproduct.

DEFINITION 1.12. The bar construction of an augmented dg algebra A is defined to be the dg coalgebra
BA = (TC(SA), dy + dQ) .

In a similar fashion, let (C,A,d) be a dg coalgebra. We define this time dy : T(s71C) —
T(s71C) as
n
: 1)
do(s™ter, ... 57 en) = Z](—l)“rlcl|+"'+|C"1 sle1®---® s_lcgl) ® s‘lcl@) ® --®s ¢, .
i=1
Defining d; as previously, we prove that dq + dy defines a differential which is compatible with
the concatenation product of 7(s1C).

DEFINITION 1.13. The cobar construction of a coaugmented dg coalgebra C is defined to be the dg
algebra

QC := (T (s71C), dy + dy) .

1.3.2. Cobar-bar adjunction and universal twisting morphisms. The cobar and bar construc-
tions define functors

Q:conil dg cog S aug dg alg: B .
Proposition 1.14. The cobar and bar constructions define an adjunction Q 4 B such that
Homaug dg alg(QCa A) = TW(C, A) =~ Homconil dg Cog(C, BA) .

PrROOF. A twisting morphism « : C — A satifies eqa = auc = 0, hence is determined
by its restriction @ : C — A which is a linear map of degree —1. Consider a morphism of
augmented dg algebras F : QC — A. Following Proposition it is completely determined
as a morphism of unital algebras by its restriction s~'C — A. This degree 0 map is equivalent
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to a degree —1 map f : C — A such that eq@ = auc = 0. The fact that F preserves the
differentials then implies that

Of)+f*xf=0.
A similar argument using Proposition proves the second bijection. o

1.3.3. Universal twisting morphisms. The unit C — BQC and counit QBA — A of the
adjunction of Proposition respectively induce twisting morphisms ¢ : C — QC and
m: BA — A. They can be explicitly computed: the twisting morphism 7 is equal to the
composition

— — -1 —
(1) BA=T(sA) » sA— A A

while the twisting morphism ¢ is equal to the composition

_ 51 — —
) C—»Cis51CT(C)=QC.

They are called the universal twisting morphisms as every twisting morphism « : C — A factors
through them:

C —— QC
(3) ifN
¥ A
BA —= A
where f, is the morphism of augmented dg algebras and g, is the morphism of conilpotent

dg coalgebras of Proposition [T.14]

Proposition 1.15. The right twisted tensor products BA ®; A and C ®, QC and the left twisted
tensor products Az ® BA and QC, ® C are acyclic.

8a »

PrROOF. We refer to Exercise sheet 4 for the proof of this result, and to Section for a
comment on the notion of acyclicity in this context. |

REMARK 1.16. The twisted tensor products BA ®, A and C ®, QC are usually respectively
called the augmented bar construction of A and the coaugmented cobar construction of C.

1.4. Koszul morphisms. We assume that every dg vector space is concentrated in non-
negative degree in this section.

1.4.1. Koszul criterion.

DEFINITION 1.17. Let C be a coaugmented dg coalgebra and A be an augmented dg algebra. A twisting
morphism « : C — A is said to be Koszul if the twisted complexes C @, A and A, ® C are acyclic.

In Proposition and Definition [1.17} the left twisted Koszul complex C ®, A is said to be
acyclic if H,(C ®, A) =0 and Hy(C ®4 A) = Klc ® 14.

REMARK 1.18. Unless C is cocommutative and A is commutative, the twisted tensor products
C®, A and A, ® C are in general not quasi-isomorphic.

ExAamPLE 1.19. The universal twisting morphisms ¢ : C — QC and 7 : BA — A are Koszul.
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Recall that we have defined weight graded differential (co)algebras in Section We will
use the abbreviation wgd in the rest of these notes. A unital wgd (co)algebra A is then said to
be connected if A is concentrated in nonnegative degree and nonnegative weight A = P, , A"
with A©) = K14.

THEOREM 11. Consider a twisting morphism a : C — A, where C is a connected coaugmented wgd
coalgebra and A is a connected augmented wgd algebra. Then the following conditions are equivalent:

(1) the twisted complex C ®, A is acyclic,
(2) the twisted complex A ® o C is acyclic,
(3) the induced morphism QC — A is a quasi-isomorphism,
(4) the induced morphism C — BA is a quasi-isomorphism.

Proor. Consider Ay, Ay two connected augmented wgd algebras, C1,Cy two connected
coaugmented wdg coalgebras, a morphism of coaugmented wgd coalgebras f : C; — Cy and
a morphism of augmented wgd algebras g : Ay — Agy. Let a1 : C1 — Aj and ag : Cg — Ag be
twisting morphisms such that ga; = agf. The map g ® f is then a chain map

of
C1 ®q; A1 55 Cy ®g, Ag .

The comparison lemma for twisted tensor products states that if two of the three chain maps f, g
and f ® g are quasi-isomorphism, then so is the third one.

Consider now a twisting morphism @ : C — A. We have seen that it factors as @ = gt
where g, : QC — A is the morphism of coaugmented wgd coalgebras given by the cobar-
bar adjunction. This implies that the map idc ® g4 : C ®, QC — C ®, A is a chain map.
The twisted tensor product C ®, A is acyclic if and only if the chain map idc ® g, is a quasi-
isomorphism, hence if and only if the morphism g, is a quasi-isomorphism by the comparison
lemma. Thereby Item [I] & Item

We prove in a similar fashion that Item [2| & Item [4] and that Item [3| & Item m

This theorem is called the Koszul criterion. It is usually represented as

Homaug dg alg(QC, A) = Tw(C, A) = Hom oni1 dg cog(C, BA)
U u U
qlso(QC, A) Kosz(C, A) ~ qlso(C, BA)

R

Proposition 1.20. Given an augmented dg algebra A and a coaugmented dg coalgebra C, the unit
QBA — A and counit C — BQC are quasi-isomorphisms.

ProOF. If C and A satisfy the assumptions of Theorem this proposition is a simple
corollary obtained by applying the theorem to the universal twisting morphisms. The result
still holds when C and A are not necessarily weight graded and connected, but relies on a
different proof. |
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1.4.2. Cobar construction and the based loop space. The following theorem was proven recently
in [Riv22| drawing from [Adab6].

THEOREM 12. For every path connected topological space B with base point by, there exists a quasi-

isomorphism of dg algebras
QC.(B) ~ C.(QMB) .

PrOOF. The twisted complex C.(B) ®¢, C.(Q¥B) ~ C.(E(B)) is acyclic, as E(B) is ho-
motopy equivalent to {bo}. [Adab56| proves a theorem similar to Theorem [11 if B is sim-
ply connected: the acyclicity of the twisted complex implies that the induced morphism
QC.(B) =~ C.(QMB) is a quasiisomorphism. The general proof of [Riv22] uses more ad-
vanced tools. i

2. Graded operads and dg operads

2.1. Graded S-modules and dg S-modules. We respectively define a graded S-module
and a dg S-module to be a S-module in gr Vect and a G-module in dg Vect. Let us spell out
the definitions of Chapter [3|for dg &-modules.

A dg S-module /il corresponds to the data of dg vector spaces /. (n) with a right S,-action
for n > 0. The composite product of two dg ©S-modules then reads as

(oM = B Dllgk)oe, D W, e ()@ oM ) .
g+ri+-+r=p k=0 i1+ +ig=n

with differential given by

k
Oty .o ) = (Ovyun, ..., i) + Z(—1)|V|+|“1|+"'+|’“"'*1|(v;,ul, co Oy )
i=1

Proposition 2.1. Ifchar(K) =0 then H.(M o N) ~ H, (M) o H.(N).

Proor. The assumption that char(K) = 0 implie that every K[&,]-module is projective,
hence that one can apply Kiinneth’s theorem to the formula for (Ml o V). (n). m|

This proposition should be understood as a generalization of Kiinneth’s theorem for dg &-
modules.

2.2. Graded operads and dg operads. We respectively define a graded operad and a dg
operad to be an operad in gr Vect and an operad in dg Vect. The categories whose objects
are graded operads and dg operads are then respectively denoted as gr Op and dg Op.

For a dg operad, the composition maps have in particular to satisfy

ly(vs 1, oo i) = v+ |pal + -+ |

k
Oy (31, 1)) = (v pia, oy i) + ) (DIt aly (g o)
i=1
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Proposition 2.2. (i) A dg operad & induces a graded operad H.(P) in homology.
(ii) A P-algebra A induces a H,(P)-algebra H.(A) in homology.

REMARK 2.3. We point out that a %-algebra A also always induces a 9-algebra structure on
H.(A) in homology.

2.3. Minimal models of operads.

2.3.1. Quasi-free operads. Let Jl be a graded ©-module. The grading on Jl induces a
grading on the free operad I (/) : a nonplanar tree r whose vertices are labeled by operations
1y of degree |u, | for v € Vert(z) is defined to have degree

| ®veverioy ol = ) Il
veVert(t)

This induced grading together with the weight grading T (/)™ define a weight-graded op-
erad structure on J (/).

Proposition 2.4. The functor T (—) : gr Smod — gr Op is left adjoint to the forgetful functor
gr Op — gr Smod. In other words, for every graded S-module M and graded operad &P there is a
natural bijection

Homgr 0p( (M), P) = Homgy gamea(M, P) .

DEFINITION 2.5. A quasifree operad is a dg operad whose underlying graded operad is a free operad.

A derivation on a graded operad & is a morphism of graded ©-modules d : # — &P such that

k
A(y(vipn, .o ) = y(@vipia, i) + Y (=Dt (s dp, )
i=1

A dg operad can then be equivalently defined as a graded operad endowed with a degree -1
derivation @ such that 6% = 0.

Proposition 2.6. For a S-module JL, there is a correspondence between derivations of the operad
T (M) and morphisms of S-modules M — T ().

ProOF. Let d : T (M) — T (M) be a derivation and consider 6 : M — T (M) — T (M)
its restriction to J{. Then the operadic Leibniz relation implies that applying d to a nonplanar
tree ¢ whose vertices are labeled by operations of Ml corresponds exactly to applying ¢ to each
vertices of ¢ separately. In other words, the derivation d is completely determined by the
morphism of S-modules 6. o

A coderivation on a cooperad 6 can be defined in a similar fashion.

Proposition 2.7. For a S-module L, there is a correspondence between coderivations of the cofree
cooperad T © (M) and morphisms of S-modules T (M) — J.

ProOF. See Exercise sheet 4. O
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2.3.2. Minimal models.

DEFINITION 2.8. A minimal operad is a quasi-free operad (I (M), ) such that

(1) d(AM) € T (M) e O is decomposable,
(2) M = Ugs0® where M) is an increasing sequence of graded S-modules M c MYV < -,
3) (M) =0 and d(MP) c T (MFD) fork > 1.

The additional grading (¥ is called the syzygy grading.

DEFINITION 2.9. A minimal model for a dg operad P is the data of a minimal operad (T (M), 9)
together with a quasi-isomorphism of dg operads (T (M), 0)>P.

THEOREM 13. 4 minimal model for an operad is unique up to (non-unique) isomorphism of dg operads.

PROOF. As for Proposition[2.8] the proof comes down to proving that two minimal models
of an operad % are always quasi-isomorphic, which implies that their generating graded &-
modules are quasi-isomorphic hence isomorphic. |

The goal of Chapter 5| will be to construct explicit and computable minimal models P, =>%
for a particular class of operads & (Koszul operads), using the framework introduced in
this chapter. We will then see that P-algebras provide a satisfactory notion of homotopy
P-algebras. This stems partly from the fact that quasifree operads are the fibrant-cofibrant
objects in the model category dg Op.

3. Operadic twisting morphisms

3.1. Operadic convolution pre-Lie algebra and twisting morphisms.
3.1.1. Infinitesimal composite.

DEFINITION 3.1. Let Ml and N be two S-modules. We define the infinitesimal composite Ml o(1) N
to be the S-module given in arity n by

Moqy N(n):=| € IndZ" (M +1+i5) @ N(ig))) /~
i1+i9+iz=n 2
where S;, is seen as the subgroup of S, permuting the elements of [[i1 + 1,11 +is]] C [[1,n]] and the
quotient is defined as in Definition[2.9

The infinitesimal composite defines in fact a functor — o(1) — : G-mod X &mod — S-mod. An
operation v ® u of Jl o1y N can simply be seen as an operation of the form

The infinitesimal composite of a &-module Jl with itself Jl o(;) /l can moreover be seen to
be equal to the weight 2 part of the free operad T (Jt)?).
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DEFINITION 3.2. (i) Let P be an operad. We define the infinitesimal composition of P as

P
7(1):950(1)95—>950957—>93,
(i) Let € be a cooperad. We define the infinitesimal decomposition of 6 as

|
Ay € 2 656 — B o) 6 .

The "projection” 656 — 6 o(1) € is defined as
k

i1 i) b ) v @ () - s (i) pie (i) - (i)
i=1
where ¢ is the counit of €. If € is coaugmented, for u € 6 the element A(1)(u) in 6 o(1) 6
can be identified to the sum }}(v;id,...,id, y;,id,...,id) obtained by discarding all terms in
A(u) = X, (v;u1, ..., ux) which are not of the form (v;id, ...,id, y;,id, ..., id). The "inclusion”
P o) P — P oP is defined in a similar fashion using the unit of &P.

3.1.2. Operadic convolution pre-Lie algebra.

DEFINITION 3.3. Let &P be a dg operad and € be a dg cooperad. We define the convolution operad
of P and € to be the following dg operad:

(1) the arity n space of operations is
Hom(6,%)(n) := Homy, y,., (€(n), P (n))
endowed with the right S, -action defined by the formula (f - o)(x) = f(x-o7Y) -0 ;
(2) the compositiony(f;81,...,8k) of g : (k) — P (k) and f; : 6(ij) — P(i;) wherel < j <k
is defined as the composite linear map

g®fA® ®fk . oyt
R

Gliy+-+in) S G (k) @ Biy) @+ ® Bi) P ®P(i1) B+ ® P(ix) Sy Piy 4+ +ip) ;

(3) the unit is equal to ugpeg where e is the counit of € and ug is the unit of P.

For two morphisms of &-modules f,g : € — P, we define the morphism of G-modules
f*xg:6 — P as the composite

!
Frg: @2 Bon €L Pog, P 1.

We moreover define the dg vector space Homgr Smoq (B> P). as the graded vector space

——gr Gmod(%’ g&)r T 1_[ I_Io_m(ig Vect (C@(n)’ 93(”))!’

n=0

Hom

with differential the standard component-wise differential [, —] and the upper script S,, de-
notes the fact that the graded chain maps are S,,-equivariant.

Proposition 3.4. The operation x endows the dg vector space Hom,, o, (€, P). with a dg pre-Lie
algebra structure. It is called the operadic convolution pre-Lie algebra of ‘6 and % .

REMARK 3.5. We will see in Exercise sheet 4 that there exists a functor dg Op — dg preLie-alg
which maps the convolution operad to the operadic convolution pre-Lie algebra.
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3.1.3. Operadic twisting morphisms and twisted composite products.

DEFINITION 3.6. Let P be a dg operad and € be a dg cooperad. A twisting morphism @ : € — P
is defined to be a morphism of S-modules of degree -1 which is a Maurer-Cartan element of the operadic
convolution pre-Lie algebra Hom, o, (€, P)., i.e. such that

ola)+axa=0.

If B is coaugmented with coaugmentation ug and P is augmented with augmentation g, the mor-
phism « also has to satisfy
egpa =0 aug =0 .

REMARK 3.7. If € and & are concentrated in arity 1 i.e. are respectively a dg coalgebra and
a dg algebra, we recover exactly Definition

Let @ : € — & be a twisting morphism. We define a degree -1 morphism of graded S-modules
as the composite

(id%O(l)a)Oidgn idgoy

A1) oidc
0, :6oP 5 (Bow) B)oP (Boq)P)oP > BoPoP —5BoP .

Proposition 3.8. Let o : 6 — P be a twisting morphism. Then the degree -1 morphism of graded
S-modules 0o = 0., + Ogomp defines a differential on the graded S-module 6 o P.

The dg G-module (6 o &P, d,) is then called the (right) twisted composite product of ‘6 and P
and denoted 6 o, . The morphism of G-modules 9, and the (left) twisted composite product
P, 06 can defined in a similar fashion.

3.2. Operadic cobarbar adjunction. Let s be an element of degree |s| = 1. We intro-
duce the degree -1 map u; : Ks ® Ks — Ks defined as u,(s ® s) = 5. We also point out that
the suspension sV of a dg vector space V then corresponds to the dg tensor product Ks ® V.
We also introduce the degree -1 linear map A, : Ks™1 — Ks™! ® IKs™! where |s™}| = -1. For a
graded G-module J/{ we moreover denote s/l the graded G-module defined as the arity-wise
suspension of (.

Let & be an operad. For v € (n), u € P(m) and 1 < i < m we define
vo; u:=vy(v;id,...,id, u,id,...,id) € P(n+m — 1)
where y is in i-th position. It is called the partial composition of v with u at i-th position.

3.2.1. Operadic bar and cobar constructions. Let & be a dg operad. Using Proposition
we define d; and dy to be the unique degree -1 coderivations of (%) extending the degree
-1 morphisms of graded S-modules

dy: TE(sP) > sP 225 5P |
dy: T(sP) » T (sP)? = 5P o1) sP = (Ks @ P) o1y (Ks ® P)
S(Ks ® Ks) ® (P o1y P) % Ks®P =sP .
We then check that d% =didy + dodqy = d% =0.
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DEFINITION 3.9. The bar construction of an augmented dg operad P is defined to be the conilpotent
dg cooperad

B9 = (gc(sg_)), d1 + dg) .

Let 6 be a dg cooperad. Using Proposition we define d; and dj to be the unique degree
-1 derivations of T ¢(s16) extending the degree -1 morphisms of graded G-modules

o._
dy - s71€ 225 5l s I (s71g)

R P | As®A) -1 -1 - -1 -1 or (-1
dy:s7C=Ks  ®6 —— (Ks T ®Ks™ ) ® (B o) B)>s Bon)s G-I (s 6).

We check again that d% =didy + dodi = d% =0.

DEFINITION 3.10. The cobar construction of a coaugmented dg cooperad B is defined to be the
augmented dg operad

Q6 = (T (s716),d1 +do) .

REMARK 3.11. If € and & are concentrated in arity 1, we recover exactly the cobar and bar
constructions for standard coaugmented dg coalgebras and augmented dg algebras, as proven
in Exercise sheet 4.

Recall that an operation of B% can be represented as a nonplanar tree whose vertices are
labeled by operations of s%. The differential dy of such an operation then corresponds to the
sum of all possible ways to contract exactly one edge of the nonplanar tree using a partial
composition. For instance,

do( )= (_1)|v| + (_1)1+|v|+|.ll1\

Similarly, the differential d9 on Q% corresponds to the sum of all possible ways to expand
exactly one vertex of the nonplanar tree using the infinitesimal decomposition map A(y).

3.2.2. Operadic cobar-bar adjunction.

Proposition 3.12. The operadic cobar and bar constructions define an adjunction Q + B such that

Homaug dg UP(QC@, @) = TW(C@, 9) = Homconil dg COOP(C@, ng) .
PROOF. The proof is a simple adaptation of the proof of Proposition [I.14] O

The unit € — BQ® and counit QBP — P and the induced twisting morphisms ¢ : € — Q€
and 7 : B? — P then satisfy the same properties as in Section [1.3.3}

(1) they can be computed by replacing A by % and C by €6 in Equations (1) and @) ;

(2) the twisting morphisms ¢ and 7 are universal, meaning that every twisting morphism
@ : 8 — &P factors through them as in Equation (3) ;

(3) the twisted composite products BP o, P, € o, Q6, P, o BP and QE, o € are all acyclic.
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3.3. Operadic Koszul morphisms. We assume again in this section that the dg cooperad
6 and the dg operad % are concentrated in nonnegative degree. A twisting morphism « :
6 — P is said to be Koszul if the twisted composite products ‘6o, % and %, 06 are acyclic, in
the sense of Section The universal twisting morphisms ¢ and 7 are in particular Koszul.

THEOREM 14. Leta : 6 — P be a twisting morphism between a connected coaugmented wgd cooperad
and a connected augmented wgd operad P. Then the following conditions are equivalent:

(1) the twisted complex 6 o, P is acyclic,
(2) the twisted complex P o, € is acyclic,
(3) the induced morphism Q€ — P is a quasi-isomorphism,
(4) the induced morphism 6 — BP is a quasi-isomorphism.

This theorem can be represented as

Homaug dg Op(Q%a P) = Tw(€6,P) = Homeonia dg Coop(%a BP)
U U U
qlso(Q6, P) o~ Kosz(€,%P) o~ qlso(6, BP)

Proposition 3.13. Given an augmented dg operad &P, the counit QBP — P is a quasi-isomorphism.

Hence the bar-cobar construction QB gives a quasifree resolution for any augmented dg
operad. We will see in Exercise sheet 4 that it is however not minimal in general.



CHAPTER 5

Koszul duality

1. Koszul duality for associative algebras

1.1. Quadratic data.

1.1.1. Quadratic algebra and coalgebra. A graded subspace W of a graded vector space V =
P, ., Vi is defined to be a subspace W C V such that W =, ., W N V,.

DEeFINITION 1.1. A4 (graded) quadratic data corresponds to the data of a (graded) vector space V
together with a (graded) subspace R CV ®V.

A morphism of quadratic data f : (V,R) — (W,S) is then a degree O linear map f : V — W
such that (f ® f)(R) C S.

DEFINITION 1.2. The quadratic algebra associated to the quadratic data (V, R) is the quotient of
the free tensor algebra T (V) by the two-sided ideal generated by R 'V ®V,

A(V,R) :=T(V)/(R) .

More precisely, the quadratic algebra A(V, R) is the augmented graded associative algebra
n-2
A(V,R) =KoV (VR e---a (V") Ve Ra V" ) a. ..
i=0
whose product is the concatenation product.

Proposition 1.3. The quadratic algebra A(V,R) has the following universal property: for every
augmented graded associative algebra A together with a morphism p : T(V) — A such that the
composition

R—TV)— A
is equal to zero, there exists a unique morphism A(V,R) — A such that the composition T(V) —»
A(V,R) — A is equal to the morphism p.

DEFINITION 1.4. The quadratic coalgebra C(V, R) associated to the quadratic data (V,R) is the
coaugmented graded coassociative coalgebra satisfying the following universal property: for every coaug-
mented graded coassociative coalgebra C together with a morphism « : C — T(V) such that the
composition

C > T¢(V) » V®/R
is equal to zero, there exists a unique morphism C — C(V,R) such that the composition C —
C(V,R) — T(V) is equal to the morphism t.

58
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The quadratic coalgebra C(V, R) is in fact equal to the conilpotent coassociative coalgebra
n-2
C(V,R)=KoVaRe o |V eRa V" a...
i=0
whose coproduct is the deconcatenation coproduct.

We also point out that a morphism of quadratic data f : (V,R) — (W, S) naturally induces
morphisms A(V,R) — A(W,S) and C(V,R) — C(W, ).

ExamMpLE 1.5. Let V be a finite-dimensional vector space concentrated in degree 0. Then
the free commutative algebra on V is a quadratic algebra presented by the quadratic data
(V,(x®y—-y®x, x,y € V)). It is sometimes denoted S(V) and called the symmetric algebra on
the vector space V.

1.1.2. Koszul dual of a quadratic (co)algebra.

DEFINITION 1.6. (i) The Koszul dual coalgebra of the quadratic algebra A := A(V,R) is the
quadratic coalgebra
Al = C(sV,s’R)
where s?R denotes the image of R in (sV)®? under the map v ® w (-1)Vlsy @ sw.
(ii) The Koszul dual algebra of the quadratic coalgebra C := C(V, R) is the quadratic algebra
Ci:= A(s™V,s7?R) .
DEFINITION 1.7. (i) For a graded vector space V = P, ., V, we define its graded dual to be the
graded vector space V° := P, ., VY, withVS =V, .
(ii) For a weight-graded vector space V we define the weight-graded dual V° to be the weight-graded
vector space given by (V°)£") = (Vyrl))v.

We have in particular that V° c V" as vector spaces, as
(@ V_r)\/ = Vl/r :
reZ reZ

The choice of grading on V° moreover ensures that the natural evaluation map V° @V — K
is a linear map of degree 0.

DEFINITION 1.8. The Koszul dual algebra of the quadratic algebra A := A(V, R) is defined to be
the weight-graded dual A' := A” endowed with the weight grading

(A!)(”) = s"(A"O)(”) .

For R ¢ V®V we denote R* c (V®%)V the subspace of linear forms that vanish on R. A
quadratic data (V,R) with V a finite-dimensional graded vector space is said to be finite-
dimensional: the quadratic algebra A(V, R) is then said to be finitely generated.

Proposition 1.9. Let (V, R) be a finite-dimensional quadratic data. Then the Koszul dual algebra
A' is quadratic,
A = A(V°,RY).
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ProOOF. See Exercise sheet 5. ]

It is then easy to check that (Ai)i = A, (Ci)i = C and (A")! = A when V is finite-dimensional.

ExampLE 1.10. (i) Let V be a finite-dimensional vector space and R = 0. Then A = T(V)
and its Koszul dual algebra is the algebra A' = K @ V¥ =: D(V") with trivial multiplica-
tion. It is sometimes called the algebra of dual numbers.

(ii) When char(K) = 0, the Koszul dual coalgebra of the symmetric algebra S(V) is the
cofree graded cocommutative coalgebra A°(sV) c T¢(sV). It is equal in weight n to the
subspace

AS(sV) M = Z o (SV1® -~ ®8Vy), V1,...,Vp €V) C (sV)®"

oec,

and presented by the quadratic data (sV, (sx ® sy — sy ® sx, x,y € V)).

1.2. Koszul algebras.

1.2.1. Koszul complex of a quadratic data. Let (V, R) be a quadratic data and A := A(V, R).
We define the degree -1 morphism « : Ai — A as the composition
-1
K:A‘:C(SV,SQR)—»SVS—>Vf—>A.

Proposition 1.11. The morphism k : A/ — A is a twisting morphism.

ProoOF. The graded vector spaces Ai and A are here seen as dg vector spaces with null
differential. We thereby have to check that

kxk=0.

By definition of the morphism «, this equality holds in weight # 2. We only need to check it
in weight 2: the morphism « * « is then equal to the composition
-1

C C 71 C
CsV, 2R P =R > sVesV 2L 5 veV » V®2/R = A(V,R)?

which is equal to zero. This concludes the proof of the proposition. |

The chain complexes Ai ®, A and A, ® Ai are then respectively called the left and right Koszul
complexes of the quadratic data (V, R).

Proposition 1.12. Under the bijection of Proposition[7.74 we have that

(1) the morphism of algebras f, : QA7 — A is given by the natural projection QA7 - A,
(2) the morphism of coalgebras g, : A/ — BA is given by the natural inclusion A7 — BA.

1.2.2. Koszul algebras. We assume for all the results of this section that the quadratic data
(V,R) is concentrated in nonnegative degree. Then the augmented dg algebra A = A(V,R)
and the conilpotent dg coalgebra Ai = C(sV,s?R) are both connected wgd. As a direct
application of Theorem [11] we get that:
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THEOREM 15 (Koszul criterion). Let (V, R) be a quadratic data. Then the following conditions are
equivalent:

(1) the left Koszul complex Al ®, A is acyclic,

(2) the right Koszul complex A, ® A/ is acyclic,

(3) the projection QA — A is a quasi-isomorphism,
(4) the inclusion A/ — BA is a quasi-isomorphism.

A quadratic algebra satisfying one of the four equivalent conditions of Theorem [15is then
said to be Koszul.

ExampLE 1.13. We will prove in Exercise sheet 5 that the free graded tensor algebra 7(V) of
a graded vector space V and the symmetric algebra S(V) of a vector space V are Koszul by
explicitly computing their left Koszul complexes.

Proposition 1.14. IfA = A(V, R) is a Koszul quadratic algebra then QA7 — A is a minimal model
for A, where the differential on the graded algebra A is defined to be null.

PROOF. A minimal model of a dg algebra A is defined to be the data of a quasifree al-
gebra (T'(V),d) and of a quasi-isomorphism (7'(V),d)>A satisfying the same conditions as
in Definition This proposition then stems from the general fact that for a coaugmented
connected wgd coalgebra C with null differential and a Koszul morphism C — A, the induced
quasi-isomorphism QC — A defines a minimal model for A. |

Since Ai < BA the resolution QAi - A provides a resolution smaller and simpler than the
resolution QBA — A of Proposition [1.20, which has moreover the property to be minimal.

Proposition 1.15. Let (V,R) be a finite-dimensional quadratic data. Then the quadratic algebra
A(V,R) is Koszul if and only if its Koszul dual algebra A(V,R)' = A(V°, R*) is Koszul.

PrOOF. See Exercise sheet 5. |
Proposition 1.16. Let (V,R) be a quadratic data where V is concentrated in degree 0. Then the
Hochschild homology of A with coefficients in K is equal to A/ as a graded vector space.

ProoF. The proof is a direct application of Exercise 2 in Exercise sheet 4. o

1.2.3. Inhomogeneous Koszul duality. The exists a more general version of Koszul duality,
called inhomogeneous Koszul duality, where we consider a data (V, R) which is quadratic linear
i.e. such that R c V @ V®2. The enveloping algebra of a Lie algebra g

U(g) =T(g)/(x®y-y®x—[x,y], x,y €9)

is then a quadratic linear algebra which has the property to be Koszul.
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1.3. The rewriting method. It is generally quite difficult to compute the homology of
the left/right Koszul complex of a quadratic data. The rewriting method that we now expose
offers an alternative algorithmic method to prove Koszulity of a finitely generated quadratic
algebra. We illustrate it on the example of the quadratric algebra

A(V,R) = A(v1,vg,V3; V1Vl — V1Vg, Vav3 + VoV, V1V3 + 2v1vg — v1vy) ,
where |v1| = |vo| = |vg| = 0.
Step 1. We choose an ordered basis vi < --- < v, for V, here v < vy < v3.

Step 2. The basis {v;v;} of V®? is then endowed with a suitable order, here the lexicographic
order

V1v1 < V1v9 < V1v3 < V9vy < V9Vg < V9V3 < V3V1 < V3vy < V3V3g .

We also choose a basis of R and write any element r of the basis as

r=Aavivj - Z Ak, 1Vivi
(kD)< (i, j)
where A4 # 0. The monomial v;v; is called the leading term of r. The basis of R can moreover
be normalized i.e. replaced by a basis such that the coefficient of the leading term A is equal

to 1, two elements of the basis of R have distinct leading terms and the sum in the right-hand
side of a basis vector of R does not contain any leading term.

In our example, the leading terms are taken to be v1vy, v1vs and vov3 and a normalized basis
for R is

V1ve = v1ve, vavs — (=vave), vivy — (-vivi)
Step 3. These normalized basis relators of R provide rewriting rules for monomials
Vivj Z Ak vV -

(k)< (i.j)

A monomial v;v;vy is then said to be critical if both v;v; and v;v; are leading terms. The
successive applications of rewriting rules to a critical monomial then define a graph, which is
said to be confluent if it has only one terminal vertex.

In our example, the only critical monomial is vivgv3 and the rewriting graph has the following
form

—V1VaVa

—Viviva

hence is confluent.
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THEOREM 16. If every critical monomial of the quadratic data (V, R) is confluent then the quadratic
algebra A(V, R) is Koszul.

Many technical details and assumptions were omitted in this exposure of the rewriting method.

2. Koszul duality for operads

2.1. Operadic quadratic data.

2.1.1. Quadratic operad and cooperad.

DEFINITION 2.1. An operadic quadratic data corresponds to the data of a graded S-module Jl
together with a graded G-submodule R C T (M),

DEFINITION 2.2. The quadratic operad associated to the quadratic data (M, R) is the quotient of
the free operad T (M) by the operadic ideal R generated by R,

P, R) =T (M)/(R) .

The assumption R C T (M) P = u o(1) /il means that the relators are made up of elements
involving only one partial composition. The quadratic operad % (Jl,R) can moreover be

equivalently defined by the universal property of the quotient operad I (Jl)/(R).

DEFINITION 2.3. The quadratic cooperad 6 (M, R) associated to the quadratic data (M, R) is the
graded cooperad which is universal among the conilpotent cooperads € endowed with a morphism of
conilpotent cooperads € — T (M) such that the following composition is equal to O

G — TE(M) » T (M)? /R .

In other words, the cooperad B (., R) is the subcooperad of the cofree cooperad J ¢ (Jl) that
can be described as follows: an operation of (/) seen as a nonplanar tree whose vertices
are labeled by operations of Jl belongs to G (., R) if each each subtree with two vertices of
this nonplanar tree belongs to & C T ().

ExAMPLE 2.4. The operads s34, £1e and 6-0om are quadratic operads. See Example

An operadic quadratic data is said to be finite-dimensional if for each n > 0 the vector space
J(n) is finite-dimensional. The quadratic operad & (., R) is then said to finitely generated.

2.1.2. Koszul dual of a quadratic operad.

DEFINITION 2.5. The Koszul dual cooperad of a quadratic operad P := P (M, R) is defined to be
the quadratic cooperad
Pi =G (s M, s*R) .

The arity-wise suspension s% of a graded operad & is in general not a graded operad, as the
induced composition maps of s do not have the correct degree. We thereby introduce § :=
Endy; the endomorphism operad of the 1-dimensional graded vector space Ks concentrated
in degree 1. In each arity n > 1 the vector space §(n) is generated by one operation of degree
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_1| —

1 - n sending s" to s. We also denote $71 := Endy,1 where |s —1. In each arity n > 1
1

the vector space S~1(n) is generated by one operation of degree n — 1 sending s~ to s~ 1.

DEFINITION 2.6. The operadic suspension and the operadic desuspension of a graded operad &
are respectively defined to be the Hadamard product S ® P and S~ @ P.

We check in particular that (S ® P)(n) = s'™"P(n), (S7' ® P)(n) = s"1P(n) and that
$S1eSeP =P,
DEFINITION 2.7. The Koszul dual operad of the quadratic operad P := P (M, R) is defined to be
the operad

P =81 e (P)°
where —° denotes the arity-wise weight-graded dual.

Beware that when the quadratic data is concentrated in arity 1, this definition does not coincide
with Definition

ExaMpLE 2.8. We will prove the following equalities in Section
bs’ = s Fie =Com Gom' = Zie.

REMARK 2.9. There also exists a notion of nonsymmetric operadic quadratic data. The operad
g3 is then in particular quadratic as proven in Example We will prove in Section
that o3’ = o,

2.2. Binary quadratic operads.
2.2.1. Binary quadratic operads.

DEFINITION 2.10. An operadic quadratic data (M, R) is said to be binary if A is concentrated in
arity 2.

We then denote J := (0,0, M, 0, ...) where M is endowed with a right K[ Sy]-module structure
and I (M) := J(AM). We have in particular that T (M)(0) = 0, T(M)(1) = 0, T(M)(2) =
M and that T(M)(n) = T(M)" D (n) for n > 1. Let us explicitly compute I (M)(3) =
T (M)P(3).

For u and v two arity 2 operations in M we denote

(123) (321)

vor p:=(vo1p)

voru:=voru Vo = (vo1 )

or equivalently

voy =

We then compute that
TM)3)=MeM);®&MeM)e(Me M)
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where the operations of a summand (M ® M), are linear combinations of operations v o, u
for u=1,11,111. The G-module J(M)®@ is concentrated in arity 3, and for R C T (M)? we
will thereby denote R := R(3) ¢ T (M)(3) = T (M) (3) the corresponding right G3-module.

ExamMpLE 2.11. (i) The operad €-om is presented by the binary quadratic data

(Kp, (op pp—por p, o = por i)
where p-(12) = . We point out that the vector space (uoypu—porrp, o pt—poryr p)
is exactly the right ©3-module generated by the element p o1 p — pt o9 p.
(ii) The operad 433 is presented by the following binary quadratic data: the space of gen-

erating operations is M = Ku @ KA where y - (12) = A and the vector space of relators
R is generated as a vector space by the six relators

Horpu—Aoru Adojpd—porAd moprpu—Aoru

Adofd—poprd pHorrp—Aorpu Aoy d—porad.

(iii) The binary quadratic presentation of the operad Zie was already given in Exam-

ple

2.2.2. Koszul dual operad of a binary quadratic operad. In this section, we let M be a right
K[S2]-module which is finite-dimensional as a vector space.

DEFINITION 2.12. The signed graded dual of M is defined to be the graded dual vector space M°
endowed with the right Sq-action

(f-o)(m) =sgn(o) f(m -7
Proposition 2.13. The following pairing on T (M°)(3) ® T (M)(3) is non-degenerate:

a1(p)ag(ug)  ifu=v,

Q1 Oy 9, {1 Oy M) =
< " H1ov H) {0 otherwise,

whereu,v € {I,11,111}.

For R c 9 (M)(3) we will then denote
Rt ={x € T(M°)(3), {(x,R) =0} .

THEOREM 17. Let (M, R) be a finite-dimensional binary operadic quadratic data. Then the Koszul
dual operad of P (M, R) is the quadratic operad

P(M,R) =P(M°,RY) .

We check in particular that under the assumptions of Theorem (P = P.

ExaMPLE 2.14. We can now apply Theorem (17| to the binary quadratic operads of Exam-
ple

(i) The Koszul dual operad of €om is generated by the space (Ku)Y = Ku" where u" -
(12) = —u". The orthogonal R* of its vector space of relators R is moreover generated
as a vector space by the relator u¥ oy u" + u" ory ¥ + p¥ oy 1¥. In other words
Bom' =ZLie.
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(i) The Koszul dual operad of o33 is generated by the space Ku" @ K1" where p¥ - (12) =
—-A". The orthogonal R* of its vector space of relators R is moreover generated as a
vector space by the six relators

/«[V of 'le +/1V o111 #V AV org /1V +MV of /1V /Jv or11 /«[V +/lV orr /JV
A op AV +u” op 2Y p orp’ + 2" op u¥ Ao A+ opp AV

The morphism of operads sf2s' — 9135 mapping u" to u and 1" to —A is then an
isomorphism i.e. st =~ ol

2.3. Koszul operads.

2.3.1. Koszul complex of an operadic quadratic data. For an operadic quadratic data (M, R)
and P := P(JM,R) we define the morphism of S-modules

s—l
K2 Pi=G(sll, s*R) - sl — M — P .

Proposition 2.15. The morphism of S-modules k : P — P is a twisting morphism, where the
graded cooperad ' and the graded operad &P are endowed with the null differential.

PrROOF. The proof proceeds exactly as the proof of Proposition [1.11] m

The twisted composite products Pi o, P and P, o Pi are then respectively called the left
and right Koszul complexes of the operadic quadratic data (/(,%R). Under the bijection of
Proposition the twisting morphism « is moreover in correspondence with the natural
inclusion i < B% and the natural projection Q%Pi - P.

We now assume that (Jl,%R) is an operadic quadratic data concentrated in nonnegative de-
gree. Then the quadratic operad % (/l,R) and the quadratic cooperad % (M, R)i are wgd
connected. Theorem [14|then implies the following criterion:

THEOREM 18 (Koszul criterion). Let (M, R) be an operadic quadratic data. Then the following
conditions are equivalent:

(1) the left Koszul complex Pi o, P is acyclic,

(2) the right Koszul complex P, o &P is acyclic,

(3) the projection QP - P is a quasi-isomorphism of operads,
(4) the inclusion P — BP is a quasi-isomorphism of operads.

A quadratic operad & satisfying one of the four equivalent conditions of Theorem [18is said
to be Koszul. We recover in fact the Koszul duality theory of associative algebras when the
operadic quadratic data is concentrated in arity 1.

THEOREM 19. (i) The quadratic operads 35, Lie and G-om are Koszul.
(ii) The ns quadratic operad A5 is Koszul.

PrOOF. We will prove Item in Section O



2. KOSZUL DUALITY FOR OPERADS 67

We say that a S-module J is reduced if 4L(0) = 0.

Proposition 2.16. Let (M, R) be an operadic quadratic data where A is a reduced and arity-wise
finite-dimensional G-module. Then the operad P is Koszul if and only if the operad P* is Koszul.

Proposition 2.17. If a quadratic operad & is Koszul then the quasi-isomorphism Q%Pi = P provides
a minimal model for the operad P .

We point out that in the previous proposition the quadratic operad & is seen as a dg operad
with null differential.

2.3.2. Homotopy P-algebras. Let P be a Koszul quadratic operad. The minimal operad Qi
is then usually denoted P, := Q%Pi. The goal of Chapter [6| will be to prove that Pu-algebras
yield a satisfactory notion of homotopy P-algebras or P-algebras up to homotopy, and provide
an extensive study of their properties. We point out that every %-algebra is in particular a
P«-algebra by the morphism of operad P, — .

2.3.3. Inhomogeneous operadic Koszul duality. We say that the operadic data (M, R) is qua-
dratic linear ift R C M & T (AM)P. There still exists a notion of operadic Koszul duality under
this assumption, called inhomogeneous Koszul duality. The operad B7 encoding BV-algebras
then admits a presentation as a quadratic linear operad and is moreover Koszul.

2.4. Rewriting method for binary quadratic ns operads. We now describe a rewriting
method to prove that a finitely generated binary quadratic ns operad % = P (M, R) is Kozsul.
It is the operadic generalization of the method introduced in Section We illustrate it on
the ns operad

s =P (s p o1 u—pog p) .
Step 1. We choose an ordered basis y; < -+ < u, of M, here p.

Step 2. The arity 3 component of the free ns operad J,,;(M)(3) is spanned by the operations
of the form v o1 ¢ and v o9 u. We order its basis g o; y; as

HMiy ©1 My < My ©2 HIy
Hiy ©i M1y < Mk Oi Hiy if (k17 ll) < (k2> 12) .

We then choose a normalized basis for R ¢ J,,,(M)(3) as in Section[1.3]

r= [k O M1 — Z Ak ir, 1 M ©ir 11
K1

where g o pp < py o; py for all k,i’,I’, and call uy o; p the leading term of r.
In the case of the ns operad ¢I3 the normalized basis is @ oy u — p o1 .

Step 3. Each element of the basis provides a rewriting rule

Hk O 11— Z A ir 1 e O (v
Kl



68 5. KOSZUL DUALITY

The arity 4 component of the free ns operad J,,(M)(4) has five summands corresponding
to the five binary planar trees of arity 4. A M-labeled binary tree of arity 4 is said to be
critical if the two partial compositions appearing in this tree are leading terms. The successive
applications of rewriting rules to a critical tree then determine a directed graph which is said
to be confluent if it has only one terminal vertex.

In the case of the ns operad d3, there is only one critical tree which gives rise to the following
confluent graph

/

where each vertex is labeled by the operation pu.

THEOREM 20. If every arity 4 critical tree of the operadic binary quadratic data (M, R) is confluent
then the binary quadratic ns operad (M, R) is Koszul.

There also exists a rewriting method in the case of (symmetric) operads. It relies on the notion
of shuffle operads that goes beyond the scope of this course. We will however mention that this
method can be used to prove that the operads 933, £ie and Gom are Koszul.



CHAPTER 6

Homotopy algebras

1. Homotopy algebras

We set a Koszul quadratic operad & throughout this section. We recall that a homotopy %P -
algebra or Pw,-algebra has been defined to be an algebra over the operad P, := QPi.

1.1. The Rosetta stone. The goal of this section is to prove the following theorem:
THEOREM 21 (Rosetta stone). Let A be a dg vector space. Then there are natural bijections

Homgg 0p (Q%, Enda) =~ Tw(9, Enda) = Homeoni1 dg coop (9, BEnds) = Codiff (S7'(A)) .

We point out that:

(i) the cooperad BEnd, denotes the cooperad 7¢(s~1Endy,), as the endomorphism operad
End, is not necessarily augmented.
(if) a twisting morphism « : P — End, satisfies the Maurer-Cartan equation and is such
that x(idg) = 0.
(iii) Codiff(S?'(A)) denotes the set of coderivations on the cofree Pi-coalgebra SP'(A) that
extend the differential on A.

Proor. The first two bijections are given by Proposition The third bijection will be
proven in Section [1.1.2] o

1.1.1. Codifferentials and cofree B-coalgebras. We refer to Definition for the notion of
coalgebras over cooperads.

DEFINITION 1.1. Let € be a graded cooperad and C be a graded € -coalgebra. We define a coderivation
on C to be a linear map D : C — C such that for every structure map A" : C — 6(n) @ C*" of C,

n-1
A"D = Z idg(n ® (1d¥ ® D @ idZ" " 1HA" .
i=0

A codifferential on a G-coalgebra C is then a degree -1 coderivation D on C such that D? = 0.

DEFINITION 1.2. Let € be a graded cooperad. The cofree G-coalgebra S (V) on a graded vector
space V is defined to be the cofree coalgebra over the comonad S generated by V.

69
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Let us compute the decomposition maps of S¢(V) when € is a ns cooperad. Consider an
element of S (V) denoted as

U®ar - an € G(n) ®VE c SE(V) =@%(m)®v®m .
m=0

The decomposition map A¥ : S (V) — €(k) ® (S€(V))®* evaluated on this element is then
equal to

Z £V ® (V1®a1+dy) ® -+ ® (Vk ® Qjysorsip 141 °+~ an) € B(k) ® (S€(V))®,
i1+ +ig=n

where + is the sign obtained by applying the Koszul sign rule and we denote

Z (Vv = AR () = Z S (1) € B(k) ® @ (i) ® - ®Bix) .
i1+--+ig=n i1+--+ig=n i1+-+ig=n
ExAMPLE 1.3. We consider the ns cooperad {3 defined as the arity-wise linear dual to the ns
operad s13. The cofree s13"-coalgebra generated by the graded vector space V is then exactly
the reduced cofree tensor coalgebra on V

S V=T (V) =VeViae. .. aV@. ..

whose coproduct is the deconcatenation coproduct.

Proposition 1.4. Let 6 be a graded cooperad. For a graded vector space 'V, there is a correspondence
between coderivations of the cofree coalgebra S€ (V) and linear maps S (V) — V.

PrOOF. We prove this result for a ns cooperad 6. We denote & the counit of € and recall
that for u € 6(n),

(id ® £%) A% (1) = p (e ®@id)AG(u) = pu .
We moreover denote projy, : S€(V) — V the map defined as

e(way ifn=1,

®ay...a, —
K " {O otherwise .

We will prove that the map D € Coder(S€(V)) proj, D € Homgr G_mod(ScG(V),V) is a
bijection, where Coder denotes the graded vector space of graded coderivations.

We begin by pointing out that forn > land y®a;y ...a, € (n) @ V",
u®ai...ap = (idgm) ® projy/ ) A" (u®ai...a,) ,

where A" is the decomposition map of S€ (V) defined previously. For u € €(0) c S€(V) we
also have that

A(p) = .
In other words, an element x of S¢(V) decomposes as
x=A%(x) + ) (idg ) ® projgf) AL (x) ,
k>1
where the sum of the right-hand side is finite because 6 is a cooperad, see Definition
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Foru®aj...a, € 6(n) ® V®" we can apply this formula to the element D(u®ay ...a,) :

D(u®ai...an)=A(D(u®ay...an)+ Z(idcg(k) ® proie ) AN (D(u®as ... ay)) .
k>1

The codifferential property of D implies that for k > 1

k-1
(idg(x) ® proj?}k)AkD = Z(id%(k) ® proj?}i ® projy, D ® proj?}k_l_i)Ak
i=0
and that A°’D = 0. In other words, the codifferential D is completely determined by its
projection proj,, D. Conversely, for a linear map d : S¢(V) — V and u®a; ... a, € (n)@V*®",
the codifferential D : S (V) — S©(V) associated to the linear map d is given by the formula

D(u®ay...ap) = Zﬂ(l) ®ai...and(u'® ® a1 ... dijriy)digripsl - - - an
where Y W @ u® = Ay ().

In the case of a (symmetric) operad, a similar proof using more advanced elements of operadic
calculus shows that the codifferential D associated to the linear map d is again obtained using
the infinitesimal decomposition A(;) of the cooperad 6. i

ExamMpPLE 1.5. We recover in particular the following result proven in Exercise sheet 2 for

Example

collections of linear maps . o
{ VO SV s 1 }<—>{ coderivations D of T¢(V) } .
1.1.2. Poo-algebras as codifferentials. Proposition[I.4)implies the following bijections of graded
vector spaces

Hom_, g ,.4(%,Endy) ~ Hom S?'(V),V) ~ Coder (57 (V)) ,

———gr Vect (

where V is a graded vector space. In order to prove Theorem 2] it remains to understand how
the Maurer-Cartan equation satisfied by a twisting morphism % — Endy is mapped under
these two bijections. We begin by pointing out that if D; and Dy are graded coderivations of
a ‘G-coalgebra C then [D1,Dg] = D1Dy — (—1)|Dl||D2|D2D1 is still a coderivation of degree
|D1| + |D2| of C.

Lemma 1.6. The graded Lie algebras Homgr Gmoa (P, Endy) and Coder(S7(V)) are isomorphic
as graded Lie algebras, where Hom,, (9, Endy) is endowed with the Lie bracket associated to
its convolution pre-Lie bracket defined in Proposition[3.4

PROOF. From the description of the coderivation D 4 associated to a graded morphism of
S-modules ¢ in Proposition [I.4] it is indeed straightforward to check that

Digy,¢01 = [Dg, Dyl -
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Let now A be a dg vector space and « : & — Ends a morphism of G-modules such that
k(idgi) = 0. The associated coderivation D of S?'(A) is equal to 0 on the summand Kidgi ®
A c $?'(A). We moreover define 091 () to be the unique coderivation of S”'(A) equal to 94

on the summand Kidg; ® A ¢ §7'(A) and equal to 0 everywhere else. We finally set
Lemma 1.7. Let k : P — Endy be a degree -1 morphism of graded S-modules. Then « is a twisting
morphism if and only if D% = 0.

PrOOF. The proof is again a straighforward computation using the map proj, introduced

in the proof of Proposition m

This lemma concludes the proof of Theorem The equation D% = 0 is moreover satisfied

if and only if proj, D% = 0. In the ns case, this equation evaluated on an element y ®a; . .. a,
reads exactly as

Z td,m(ar...and,@ (@i - Qig+i))Qigvige1 - - - an) =0,

where 3 uV @ u® = Aqy(p) and dy(ay...a,) =d(u®ar...a,). We refer to Deﬁnition
for an explicit example.

1.2. Homotopy theory of homotopy %-algebras.
1.2.1. Pe-morphisms.

Proposition 1.8. Let 6 be a graded cooperad. For two graded vector space V and W, there is a
correspondence between morphisms of G-coalgebras S€ (V) — S€(W) and linear maps S€(V) — W.

PrOOF. We check as in the proof of Proposition [I.4] that the map
F € Homg, . (S*(V),S®(W)) = proj, F € Hom, ¢ ,,4(S®(V) = W)

is a bijection, where Homg, ., denotes the graded vector space of graded morphisms of G-

coalgebras. In the ns case, the morphism of 6-coalgebras F : S€(V) — S€ (W) associated to
the linear map f : S¢(V) — W is then given by the formula

Flu®ay---ay) = Z +'®f(vi®a1-)® @ f(vik®---ay) .

i+ Hig=n
where A%(,u) =X v, ., Ve O

DEFINITION 1.9. 4 Po-morphism between two Poo-algebras A and B is defined to be a morphism of
dg Pi-coalgebras (S”'(A), D) — (S”(B), Dp).
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The equation F'D 4 = DpF is satisfied if and only if projzFD 4 = projzDgF. In the ns case, it
evaluates on an element y ® a; . ..a, as

Z tfyw(ar...aipd, o (A ... Qigriy)iyvig+ - - - An)

= Z idv’ (fvl (al Tt ail) e ka (ai1+---+ik_1+l Tt an)
i1+-+ig=n
k>1

where f,,(a1...a,) = f(u®a1...a,), A% (W) =>0";v1,...,vi)and X uP @u® .= Ay (p).
ExamMpLE 1.10. We will give explicit examples of %.,-morphisms in the case of the ns operad
A and the operad L, in Sections [2] and

DEFINITION 1.11. We define co-ZPos-alg to be the category whose objects are P -algebras and whose
morphisms are Po,-morphisms.

In other words the category co-%-alg is the full subcategory of the category dg Pi-cog whose
objects are quasi-cofree Pi-coalgebras.

Proposition 1.12. A morphism of Po-algebras A — B in the sense of Definition [1.15 is exactly a
Poo-morphism equal to zero everywhere on S (A) except on the summand Kidg: ® A.

PrOOF. The computation is straightforward from the explicit equations satisfied by Pe.-
morphisms computed previously. |

The morphism of operads %P, - & as well as Proposition imply the following inclusions
of categories

dg P-alg C Pr-alg C 00-P-alg C dg Pi-cog .
The first two inclusions are however not full. We thereby denote %.,-morphisms with a squiggly
arrow A ~» B and morphisms of P-algebras with the usual arrow A — B.

Proposition 1.13. Let F : A ~» B be a Pos-morphism. Then Fiq_, : A — B is a chain map.

dg;

We will say that a P-morphism F : A ~» B extends a chain map f: A — Bif Fig,, = f.

DEFINITION 1.14. (i) A P-isomorphism F : A ~» B is defined to be a Po-morphism such that
the chain map Fiq,,; is an isomorphism.
(ii) A Poo-quasi-isomorphism F : A ~»> B is defined to be a Pos-morphism such that the chain map
Fiq,, is a quasi-isomorphism.

We will now illustrate in Sections and how the category co-P-alg provides indeed
a satisfactory framework to study the homotopy theory of these homotopy 9 -algebras.
1.2.2. Homotopy transfer theorem.

DEFINITION 1.15. 4 deformation retract diagram is defined to be the data of two dg vector spaces
A and H that fit into the following diagram

hdA<—L>H,
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where p and i are chain maps, id —ip = [0, h] and i is a quasi-isomorphism.

The dg vector spaces A and H are then in particular quasi-isomorphic, and the chain map p is
a quasi-isomorphism inverse to i in homology. A deformation retract diagram hence provides
a chain level homotopy equivalence between two dg vector spaces.

ExampLE 1.16. (i) In topology, a deformation retract of a space X into a subspace A C X
is defined to be a map F : X x [0,1] — X such that F(x,0) = x, F(x,1) € A and
F(a,1) = a. It gives rises to a deformation retract diagram

n (7 CX) = C.(A)

where /£ is the homotopy induced by F(-,-), and i and p are the chain maps respectively
induced by the continuous maps inc4 and F(-,1).

(if) The homology H.(A) of a dg vector space A is a deformation retract of A as proven in
Exercise sheet 6.

Assume that the dg vector space A is a P-algebra. A natural question to ask is whether this
P-algebra structure can be transferred under a deformation retract diagram, i.e. whether H
can be made into a %-algebra such that i and p extend to morphisms of %-algebras. The
answer is negative in general, but positive in the context of homotopy 9-algebras:

THEOREM 22 (Homotopy transfer theorem). If A and H fit into a deformation retract diagram
and A is endowed with a Po-algebra structure, then H can be endowed with a P -algebra structure
such that i extends to a Po-quasi-isomorphism H ~> A.

Proor. We give a sketch of the proof of the existence of the P-algebra structure on
H. A complete proof of the theorem in the case of A,-algebras will be given in Exercise
sheet 6. The deformation retract diagram allows us to construct a morphism of dg cooperads
BEndy, — BEndy where we recall that BEnd, := J¢(s 'End,). Under the bijection of
Theorem [21],

Homdg OP(QQM’ EndA) = Homconil dg Coop (935, BEl’ldA)
the 9P.-algebra structure on H is given by the morphism of cooperads

9%i — BEnds, — BEndy .

O

Theorem [22| implies in particular that if A is a dg %-algebra, H can be endowed with a
homotopy P-algebra structure.

ExaMPpLE 1.17. In the case of the deformation retract of a dg vector space A onto its homology
H,(A), the operations of the induced %P-algebra structure on the homology H.(A) are called
the operadic Massey products. Both i and p can moreover be extended to P,-morphisms, while
one can only extend i to a P.,-morphism in the most general version of the homotopy transfer
theorem.
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1.2.3. Inverses of isomorphisms and quasi-isomorphisms.
THEOREM 23. Every Po-isomorphism F : A ~> B admits an inverse, i.e. a Poo-morphism G : B ~»> A
such that FG = idg and GF = id4.

In the theorem, id4 and idp denote the morphisms of %P-algebras A — A and B — B seen
as Po-morphisms, following Proposition We will not give a proof of Theorem [23| but
simply mention that it is possible to write an explicit formula for G using the viewpoint of
Definition

THEOREM 24. Let F : A ~> B be a Pos-quasi-isomorphism. Then there exists a Po-quasi-isomorphism
G : B ~ A which is the inverse of H.(F) : H.(A) — H.(B) on the level of homology.

ProoF. Consider i4 : H.(A) ~ A and p2 : B ~ H.(B) the P.-quasi-isomorphisms of
Example The following composite of P.,-morphisms is then a P -isomorphism

A

il F _p&
H.(A) » A~ B~ H,(B) .
Applying Theorem |23} we get an inverse %P-isomorphism
G :H.(B) ~ H.(A) .

The composite P,-morphism

P8 G i%
B~ H.(B) ~ H,(A) ~ A

finally yields the Pe-quasi-isomorphism G : B ~» A inverting F on the level of homology. O

2. A.-algebras and A..-categories

2.1. A.-algebras and A,-morphisms.

2.1.1. Definitions. We proved using the rewriting method in Section [2.4] that the quadratic
binary ns operad % is Koszul.

DEFINITION 2.1. We define Ao := Qsld/ to be the Koszul minimal model of 5.

A,-algebras are sometimes called (strongly) homotopy associative algebras. We will prove the two
following lemmas in Exercise sheet 6.

Lemma 2.2. The Koszul dual cooperad 5/ is given by the arity n space of operations
dyi(n) == Kus;,
forn > 1 with |u| =n -1 and 1 = id, and with decomposition maps

ALy = Y (G,

i1+ Hig=n

Lemma 2.3. The cofree disi-coalgebras on a graded vector space V is the cofree coalgebra s~1T€(sV)).
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We now compute the explicit equations satisfied by a codifferential D4 on the cofree coalge-
bra T¢(sA) (which is equivalent to the datum of a codifferential on the cofree glsi-coalgebra
s71T¢(sA)). From Example [1.5 we know that there is a correspondence

collections of morphisms of degree n — 2 collections of morphisms of degree —1
my,:A®" - A, nx1 bp:(sA)®" > s5A, n>1

’

{ coderivations D of degree —1 of T¢(sA) }

The equation D% = 0 is then equivalent under this correspondence to the equation
D Emiag (id® @ my, ©id®) =0
i1+i9+ig=n
which can be rewritten as
[m1,my] = Z My 4141, (1A% ® m;, @ id®)

i1+i9+i3=n
2<ig<n—1

We thereby get the following equivalent definition of an A.-algebra:

DEFINITION 2.4. Let A be a dg vector space. An A-algebra structure on A corresponds to the data
of linear maps m,, : A®" — A of degreen — 2 forn > 1 such that my = d5 and such that

[ml, mn] = Z M 41+ (id®i1 mi, ® id®i3) .

i1+i9+iz=n
2<ig<n—-1

The explicit signs will be computed in Exercise sheet 6. Representing m,, as “y a corolla of
arity n, these equations can be written as

—_—
i1 i3
ST Y
i1+i9+i3=n
2<i9<n—1

We moreover check that
[m1,mg] =0,
[m1, m3] = mo(id ® mg — mgy ® id) ,

implying that mg descends to an associative product on H,(A). The operations m, can then
be interpreted as the higher coherent homotopies keeping track of the fact that the product is
associative up to homotopy.

DEFINITION 2.5. An A-morphism A ~» B between two A-algebras A and B is defined to be a
morphism of dg coalgebras (T¢(sA), D) — (T°(sB), Dp).
There is again a one-one correspondence

collections of morphisms of degree n —1 morphisms of graded coalgebras
fu:A®" > B, n>1, F :T¢(sA) — T°(sB)
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The equation FD 4 = DgF under this correspondence then reads as
. | A . - B
> tfan(d® emieid®) = Y mb(fie--ef)
i1+i9+i3=n i1+ -+ig=n
and can be rewritten as
. IR A . 1®i:
i ful = ), tfana(d® @mieid®)+ ) =mi(f0--0f).

i1+io+iz=n i1+:-+is=n
i9>2 §>2

We thereby get the following equivalent definition of an A.-morphism:

DEFINITION 2.6. Let A and B be two A-algebras. An A-morphism A ~» B is defined to be a
collection of linear maps f, : A®™ — B of degreen — 1 forn > 1 such that

. [ A . <
[m1, ful = Z + fir414i5 (1d®0 @ m{; ® id®") + Z +mp (fiy ® - ® fi,) .
i1+i9+i3=n i1+ +ig=n
i9>2 k=2

The explicit signs will again be computed in Exercise sheet 6. Representing the operations f,

as 32 the operations m? in blue and the operations 7 in red, these equations read as

i9 i iK

[m1, =& = Z Py Z € ¥
i1+ig+iz=n i1+ +ig=n
i9>2 k>2
We check again that
[m1, f1] =0,

[m1, fo] = fimsy —mB(fi® f1) .

implying that an A.-morphism between A.-algebras induces a morphism of graded associa-
tive algebras H,(A) — H.(B).

2.1.2. Associahedra, multiplihedra and A -spaces. We denote CW the category whose objects
are CW complexes and whose morphisms are cellular maps. The functor CS? : CW — dg Vect
is then strong monoidal.

THEOREM 25. There exists a collection of polytopes, called the associahedra and denoted K,,, which
encode the operad A.

More precisely, seeing the polytopes K,, as CW-complexes, they form an operad in CW whose
image under the functor C¢°/ is exactly the operad A.. We represent in Figure [1| the poly-
topes K9, K3 and Ky. In a similar fashion, there exists a collection of polytopes called the
multiplihedra and denoted J,,, which encode the notion of A,-morphisms. We represent in
Figure [2] the polytopes Ji, Jo and J3.

THEOREM 26. Let (X, x0) be a pointed topological space. Then the singular chains on the based loop
space C.(QX) form an A-algebra.
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FIGURE 1. The associahedra Ky, K3 and K4, with faces labeled by the opera-
tions they define
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FIGURE 2. The multiplihedra Ji, Jo and J3

PrOOF. Stasheff proves in his seminal paper [Sta63| that the based loop space QX can be
endowed with an A.-space structure: a collection of continuous maps K, X (QX)*" — QX
that satisfy A.-like equations. The theorem is then the chain-level version of this topological
result. o

2.2. A.-categories.
DEFINITION 2.7. An As-category C corresponds to the following data:

(1) A set of objects Ob(C).

(2) For each pair of objects X,Y € Ob(C) a dg vector space C(X,Y).

(3) For each sequence of object Xo, . . ., X, of C, a degree n — 2 linear map
my : C(Xo, X1) ® -+ - ® C(Xj-1, X)) — C(Xo, X))

such that
[0.ma) = >0 #mipae, (d® @ mi, id®)

i1+i9+i3=n
2<ig<n—-1

where we do not write the dependence in Cy, . . ., C,, in the equation.
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REMARK 2.8. An A.-category C with one object * corresponds exactly to an A-algebra C(*, *).

We then check that the homology of an A.-category H.(C) is a semicategory enriched in
gr Vect, or non-unital category, i.e. a category without identities. In other words, an A.-
category is a semicategory whose composition is associative only up to homotopy. We men-
tion that there are several ways to define a notion of identities in an A.,-category, that we will
not cover in this course. The notion of A.-functor between A-categories can moreover be
defined in a similar fashion, and it induces a functor between semicategories in homology.

ExXAMPLE 2.9. A symplectic manifold is defined to be the data of a smooth manifold X together
with a smooth 2-form w which is closed (dw = 0) and non-degenerate. A symplectic manifold
always has even dimension, dim(X) = 2n. One way to understand the geometry of a symplec-
tic manifold is to study its Lagrangian submanifolds, i.e. the n-dimensional submanifolds L ¢ X
such that w|;, = 0. The most famous example of an A-category is then the Fukaya category of a
symplectic manifold (X, w) whose objects are the Lagrangian submanifolds of X, whose dg vec-
tor spaces of morphisms are the Floer chain complexes and the higher compositions are defined
by counting pseudo-holomorphic disks with boundary conditions on Lagrangian submanifolds.
We refer to [Aurl4| for an extensive introduction to the construction of this A.-category. Its
study lies in fact at the crossroads of many areas of mathematics: microlocal analysis, sheaf
theory, mirror symmetry, algebraic geometry, homological algebra and dynamical systems to
cite a few.

3. L-algebras

We assume that char(K) = 0 in this section.

3.1. L.-algebras and L.,-morphisms.

DEFINITION 3.1. Let i1,...,ix > 1. We define a (i1, ...,ix)-shuffle to be a permutation o €
Siy+-tiy Such that

o) <--- <ol(ip), o1+ +ig1+1)<---<o(ip+---+iy) .

The set of (i1, ...,ix)-shuffles is then denoted Sh(iy, ..., ix) C Sjjs.siy-

A (i1, ...,ix)-unshuffle is a permutation o € &, ;...4;, such that o Llisa (i1, ...,ix)-shuffle. The
set of (i1, ... ,ix)-unshuffles is then denoted Sh™1(i1,...,ix). Let V be a graded vector space.
We say that a linear map f : V®" — V is skew-symmetric if {7 = (=1)7 f for every o € S,,.

DEFINITION 3.2. Let A be a dg vector space. A Lo-algebra structure on A corresponds to the data of
skew-symmetric linear maps 1,, : A®" — A of degreen—2 forn > 1 such that I, = d4 and that satisfy

AR YD Y (FOY AL

I;"'g;;‘ oeSh(g,p-1)
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We check that Iy (x,y) = —(=1)1*I¥y(y, x) and that

[.12] =0,

[11.13] = Iy 01 I + (I3 01 1) ™) + (I 01 1) **V)
implying that /3 defines a graded Lie algebra structure on H,(A).

DEFINITION 3.3. Let A and B be two L-algebras. A L-morphism A ~» B corresponds to the data
of linear maps f,, : A®" — B of degreen — 1 forn > 1 such that

[, ful = D) > EHalhTe ) > (o0 fi)

p+q =n ,cqp-l 1 i1+ +ik=n geSh1(4q,..., i1
1 7 (g.p-1) i (i1,-50k)

>

We check again that

[l1, 1] =0
[, fol = Al - 1B(A® A) .

implying that a L,-morphism between L.-algebras induces a morphism of graded Lie algebras
H.(A) — H.(B).

We will prove in Exercise sheet 6 that a L..-algebra structure on a dg vector space A corre-
sponds exactly to a Q¥ iei-algebra structure on A, and can equivalently be defined as a codif-
ferential on the noncounital cofree graded cocommutative coalgebra A¢(sV). A Le,-morphism
between two L-algebras A and B will then correspond to a morphism of Ziei-coalgebras
(A“(sA), Da) = (A°(sB), Dp).

3.2. Deformation quantization of Poisson manifolds.
3.2.1. Moduli space of formal deformations of Maurer-Cartan elements of a dg Lie algebra.

DEFINITION 3.4. Let'V be a vector space. We define V[[t]] to be the vector space of formal power series
in t with coefficients in V.

In other words, an element of V[[#]] can be written as an infinite sum
@+ a1t + agt? +--- € V[[1]]

where @, € V for n > 0. We moreover denote V((¢)) C V|[[t]] the subspace of V[[t]] whose
elements are formal series with null zero-th order coefficient. Let g be a dg Lie algebra. The
vector space g((#)) inherits a natural structure of dg Lie algebra whose differential is given by

I ant™) = > dan)t"
n>1 n>1
and whose Lie bracket is given by

[ ant™, Y But™1= D > o Bilt"

n>1 mz1 n>li+j=n
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DEFINITION 3.5. Let g be a dg Lie algebra. We define Def(g) the moduli space of formal deforma-
tions of Maurer-Cartan elements of g to be the set of Maurer-Cartan elements of the dg Lie algebra
a((t)) quotiented by the gauge group action.

The gauge group of a Lie algebra g is a group acting on the set MC(g) that we will not define
in these lectures.

Proposition 3.6. Let g and by be two dg Lie algebras. Then every Lo -quasi-isomorphism g ~> b
induces a bijection Def(g) =~ Def(h).

REMARK 3.7. In general, a Maurer-Cartan element a of a complete filtered L..-algebra g is defined
to be an element a € g; such that

8(a)+z%ln(a,...,a):0.

n>2

The assumption that g is complete filtered is a technical assumption ensuring that the previous

sum is well-defined. Proposition [3.6| then still holds for g and h two L.-algebras.

3.2.2. Deformation quantization of Poisson manifolds.

DEFINITION 3.8. A Poisson manifold X is defined to be a smooth manifold X endowed with a bracket
{,} 1 B®(X) X 67 (X) — B7(X) defining a commutative Poisson algebra structure on its algebra
of smooth functions € (X).

ExaMpPLE 3.9. We proved in Exercise sheet 2 that every symplectic manifold is a Poisson
manifold.

DEFINITION 3.10. Let A be an associative algebra. An associative deformation of A is defined to be
an associative algebra structure on A[[t]] whose multiplication * is K[[t]|-bilinear and reads on two
elements a,b € A as

axb=a-b+Bi(a,b)t+By(a,b)>+---
where - is the multiplication of A.

Proposition 3.11. We assume that A is a commutative algebra. Then for every associative deforma-
tion of A, the bracket
[a’ b] = Bl(a’ b) - Bl(b$ Cl)

defines a Lie bracket endowing A with a commutative Poisson algebra structure.
PrROOF. See Exercise sheet 6. i

The Poisson algebra P = (A, [-,-]) obtained under an associative deformation is called its
classical limit. The associative algebra (A[[¢]], *) is then called a deformation quantization of the
Poisson algebra P.

Let X be a smooth manifold. We say that a bilinear map 6% (X) X €*(X) — 6% (X) is a
bidifferential operator if it is a differential operator with respect to both arguments, i.e. reads
locally as a linear combination of partial derivatives.
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DEFINITION 3.12. A deformation quantization of a Poisson manifold X is defined to be a deforma-
tion quantization of the Poisson algebra 6 (X) such that all B,, are bidifferential operators.

THEOREM 27. Every Poisson manifold admits a deformation quantization.

Proor. This theorem was proven by Kontsevich in [Kon03]. In his paper, he constructs a
graded Lie algebra g and a dg Lie algebra § such that Def(g) contains the set of equivalence
classes of Poisson structures on the manifold X and such that Def(l)) is the set of equivalence
classes of associative deformations of 6 (X) such that each B, is a bidifferential operator.
He then constructs a Le-quasi-isomorphism g ~ f) and concludes using Proposition o

In classical mechanics, the manifold X is a cotangent bundle 7*M whose symplectic structure
induces its Poisson manifold structure. The space of smooth functions €*(T*M) is to be
understood as the space of observables on the phase space 7M. A deformation quantization
of € (T*M) should then be interpreted as the process of forming a quantum mechanical
system from the classical mechanical system associated to M.
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