
Introduction to algebraic operads

Homework 2

Due 11:59PM February 18. You can either give me your copy by February 16 course or send a scanned
version in a unique and well readable PDF file to thibaut.mazuir@hu-berlin.de .

Difficult questions are indicated by a (★) or a (★★).

Problem 1: Inhomogeneous Koszul duality (12 pt)

We define a quadratic linear data (𝑉, 𝑅) to be a vector space 𝑉 together with a linear subspace
𝑅 ⊂ 𝑉 ⊕ 𝑉⊗2. We denote 𝑞𝑅 ⊂ 𝑉⊗2 the image of 𝑅 under the projection 𝑞 : 𝑉 ⊕ 𝑉⊗2 → 𝑉⊗2. The
data (𝑉, 𝑞𝑅) is then in particular quadratic.

1. Prove that under the assumption1 pt

(ql1) 𝑅 ∩𝑉 = {0}

there exists a linear map 𝜙 : 𝑞𝑅 → 𝑉 such that 𝑅 = {𝑥 − 𝜙(𝑥), 𝑥 ∈ 𝑞𝑅}.

For a quadratic linear data (𝑉, 𝑅), we denote

𝐴 = 𝐴(𝑉, 𝑅) := 𝑇 (𝑉)/⟨𝑅⟩ 𝑞𝐴 := 𝐴(𝑉, 𝑞𝑅) = 𝑇 (𝑉)/⟨𝑞𝑅⟩ .

In particular 𝑞𝐴 is the quadratic algebra associated to the quadratic data (𝑉, 𝑞𝑅). Under the assump-
tion (ql1), we define the map 𝜙 : (𝑞𝐴)¡ → 𝑠𝑉 as

𝜙 : (𝑞𝐴)¡ = 𝐶 (𝑠𝑉, 𝑠2𝑞𝑅) ↠ 𝑠2𝑞𝑅
𝑠−2

−−→ 𝑞𝑅
𝜙
−→ 𝑉

𝑠−→ 𝑠𝑉 .

2. Prove that there exists a unique coderivation 𝑑𝜙 : (𝑞𝐴)¡ → 𝑇𝑐 (𝑠𝑉) which extends the2 pt

linear map 𝜙.

3. Under the assumption (ql1), prove that if2 pt

(𝑅 ⊗ 𝑉 +𝑉 ⊗ 𝑅) ∩𝑉⊗2 ⊂ 𝑞𝑅

then Im(𝑑𝜙) ⊂ (𝑞𝐴)¡ ⊂ 𝑇𝑐 (𝑠𝑉).

The linear map 𝑑𝜙 then defines a coderivation on (𝑞𝐴)¡.

4. Under the assumption (ql1), prove that if2 pt

(ql2) (𝑅 ⊗ 𝑉 +𝑉 ⊗ 𝑅) ∩𝑉⊗2 ⊂ 𝑅 ∩𝑉⊗2

then the coderivation 𝑑𝜙 squares to zero, 𝑑2
𝜙
= 0.

5. Prove that the universal enveloping algebra 𝑈 (𝔤) of a Lie algebra 𝔤 admits a quadratic2 pt

linear presentation satisfying conditions (ql1) and (ql2).
1
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Following question 4, if a quadratic linear data (𝑉, 𝑅) satisfies conditions (ql1) and (ql2), we can
define the Koszul dual coalgebra of 𝐴 = 𝐴(𝑉, 𝑅) as the dg coalgebra

𝐴¡ := ((𝑞𝐴)¡, 𝑑𝜙) = (𝐶 (𝑠𝑉, 𝑠2𝑞𝑅), 𝑑𝜙) .

6. Prove that the Koszul dual coalgebra of the universal enveloping algebra 𝑈 (𝔤) is the cofree 3 pt

cocommutative coalgebra Λ𝑐 (𝑠𝔤) ⊂ 𝑇𝑐 (𝑠𝔤) endowed with the Chevalley-Eilenberg differential

𝑑𝜙 (𝑥1 ∧ · · · ∧ 𝑥𝑛) =
∑︁
𝑖< 𝑗

(−1)𝑖+ 𝑗−1 [𝑥𝑖 , 𝑥 𝑗] ∧ 𝑥1 ∧ · · · ∧ 𝑥𝑖 ∧ · · · ∧ 𝑥 𝑗 ∧ · · · ∧ 𝑥𝑛 .

where 𝑥1 ∧ · · · ∧ 𝑥𝑛 :=
∑

𝜎∈𝔖𝑛
sgn(𝜎)𝑠𝑥𝜎 (1) ⊗ · · · ⊗ 𝑠𝑥𝜎 (𝑛) .

Problem 2: Higher morphisms between A∞-algebras (26 pt)

For 𝑛 ⩾ 0, we define ΔΔΔ𝑛 to be the graded vector space

ΔΔΔ𝑛 =
⊕

0⩽𝑖0<· · ·<𝑖𝑘⩽𝑛
𝕂 [𝑖0 < · · · < 𝑖𝑘]

generated by the increasing sequences of [[0, 𝑛]]. Its grading is defined as

| [𝑖0 < · · · < 𝑖𝑘] | = 𝑘 .

We endow this graded vector space with the following degree -1 and degree 0 linear maps:

𝜕ΔΔΔ𝑛 ( [𝑖0 < · · · < 𝑖𝑘]) :=
𝑘∑︁
𝑗=0

(−1) 𝑗 [𝑖0 < · · · < 𝑖 𝑗 < · · · < 𝑖𝑘] ,

ΔΔΔΔ𝑛 ( [𝑖0 < · · · < 𝑖𝑘]) :=
𝑘∑︁
𝑗=0

[𝑖0 < · · · < 𝑖 𝑗] ⊗ [𝑖 𝑗 < · · · < 𝑖𝑘] .

1. Prove that (ΔΔΔ𝑛, 𝜕ΔΔΔ𝑛 ,ΔΔΔΔ𝑛) is a dg coalgebra. 2 pt

We point out that the combinatorics of the dg coalgebra ΔΔΔ𝑛 can be easily understood on the standard
𝑛-simplex defined as the convex hull

Δ𝑛 = Conv((1, . . . , 1︸   ︷︷   ︸
𝑘

, 0, . . . , 0), 0 ⩽ 𝑘 ⩽ 𝑛) ⊂ ℝ𝑛

by labeling the vertex whose first 𝑘 coordinates are equal to 1 by [𝑘] and by labeling the face whose
vertices are [𝑖0], . . . , [𝑖𝑘] with 𝑖0 < · · · < 𝑖𝑘 by [𝑖0 < · · · < 𝑖𝑘]. We illustrate this in Figure 1. We
will thereby sometimes denote an increasing sequence of [[0, 𝑛]] as a face 𝐼 ⊂ Δ𝑛 in the rest of this
problem. We then have in particular that |𝐼 | = dim(𝐼).

2. Prove that for every 𝑛 ⩾ 0 there exist morphisms of dg coalgebras 3 pt

𝛿𝑛𝑖 : ΔΔΔ𝑛−1 → ΔΔΔ𝑛 , 0 ⩽ 𝑖 ⩽ 𝑛 ,

𝜎𝑛
𝑖 : ΔΔΔ𝑛+1 → ΔΔΔ𝑛 , 0 ⩽ 𝑖 ⩽ 𝑛 ,
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that satisfy the following equalities



𝛿 𝑗𝛿𝑖 = 𝛿𝑖𝛿 𝑗−1 for 𝑖 < 𝑗 ,
𝜎𝑗𝛿𝑖 = 𝛿𝑖𝜎𝑗−1 for 𝑖 < 𝑗 ,
𝜎𝑗𝛿𝑖 = 𝛿𝑖−1𝜎𝑗 for 𝑖 > 𝑗 + 1 ,
𝜎𝑗𝜎𝑖 = 𝜎𝑖𝜎𝑗+1 for 𝑖 ⩽ 𝑗 ,
𝜎𝑗𝛿 𝑗 = 𝜎𝑗𝛿 𝑗+1 = id .

where we omit the upper script 𝑛 in 𝜎𝑖 and 𝛿𝑖.

We then say that the collection of dg coalgebras {ΔΔΔ𝑛}𝑛⩾0 forms a cosimplicial dg coalgebra.

3. Let 𝐶 and 𝐶′ be two dg coalgebras. Prove that their tensor product 𝐶 ⊗ 𝐶′ can naturally1 pt

be endowed with a dg coalgebra structure.

Let 𝑓0, 𝑓1 : 𝐶 → 𝐶′ be two morphisms of dg coalgebras. We define a homotopy from 𝑓0 to 𝑓1 to be a
degree +1 linear map ℎ : 𝐶 → 𝐶′ such that

Δ𝐶′ℎ = ( 𝑓0 ⊗ ℎ + ℎ ⊗ 𝑓1)Δ𝐶

[𝜕, ℎ] = 𝑓1 − 𝑓0 ,

where we recall that for a linear map 𝑓 : 𝐶 → 𝐶′ of degree | 𝑓 |, we denote [𝜕, 𝑓 ] := 𝜕𝐶′ 𝑓 −(−1) | 𝑓 | 𝑓 𝜕𝐶 .

4. Prove that the data of two morphisms of dg coalgebras 𝑓0, 𝑓1 : 𝐶 → 𝐶′ and of a homotopy2 pt

between them is equivalent to the datum of a morphism of dg coalgebras ΔΔΔ1 ⊗ 𝐶 → 𝐶′.

5. Prove that the datum of a morphism of dg coalgebras ΔΔΔ𝑛 ⊗ 𝐶 → 𝐶′ is equivalent to the2 pt

data of linear maps 𝑓[𝑖0<· · ·<𝑖𝑘 ] : 𝐶 → 𝐶′ of degree 𝑘 for every [𝑖0 < · · · < 𝑖𝑘] ⊂ Δ𝑛, that satisfy
the following equations:

[𝜕, 𝑓[𝑖0<· · ·<𝑖𝑘 ]] =
𝑘∑︁
𝑗=0

(−1) 𝑗 𝑓[𝑖0<· · ·<𝑖 𝑗<· · ·<𝑖𝑘 ] ,

Δ𝐶′ 𝑓[𝑖0<· · ·<𝑖𝑘 ] =
𝑘∑︁
𝑗=0

( 𝑓[𝑖0<· · ·<𝑖 𝑗 ] ⊗ 𝑓[𝑖 𝑗<· · ·<𝑖𝑘 ])Δ𝐶 .

We recall that an A∞-algebra structure on a dg vector space 𝐴 can be defined as a codifferential 𝐷𝐴

on the reduced tensor coalgebra 𝑇 (𝑠𝐴) such that the restriction of 𝐷 to the summand 𝑠𝐴 is equal to
𝜕𝑠𝐴. An A∞-morphism between two A∞-algebras 𝐴 and 𝐵 can then be defined as a morphism of dg
coalgebras (𝑇 (𝑠𝐴), 𝐷𝐴) → (𝑇 (𝑠𝐵), 𝐷𝐵).

6. Prove that an homotopy 𝐻 between two A∞-morphisms 𝐹, 𝐺 : (𝑇 (𝑠𝐴), 𝐷𝐴) → (𝑇 (𝑠𝐵), 𝐷𝐵)3 pt

can be equivalently defined as a collection of linear maps ℎ𝑛 : 𝐴⊗𝑛 → 𝐵 of degree −𝑛 for 𝑛 ⩾ 1
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such that

[𝜕, ℎ𝑛] =𝑔𝑛 − 𝑓𝑛 +
∑︁

𝑖1+𝑖2+𝑖3=𝑛
𝑖2⩾2

±ℎ𝑖1+1+𝑖3 (id⊗𝑖1 ⊗ 𝑚𝐴
𝑖2
⊗ id⊗𝑖3)

+
∑︁

𝑖1+···+𝑖𝑠+𝑙
+ 𝑗1+···+ 𝑗𝑡=𝑛
𝑠+1+𝑡⩾2

±𝑚𝐵
𝑠+1+𝑡 ( 𝑓𝑖1 ⊗ · · · ⊗ 𝑓𝑖𝑠 ⊗ ℎ𝑙 ⊗ 𝑔 𝑗1 ⊗ · · · ⊗ 𝑔 𝑗𝑡 ) .

where 𝑚𝐴
𝑛 and 𝑚𝐵

𝑛 are the operations of the A∞-algebras 𝐴 and 𝐵, and 𝑓𝑛, 𝑔𝑛 : 𝐴⊗𝑛 → 𝐵 are
the operations of the A∞-morphisms 𝐹 and 𝐺. (The explicit signs need not be computed)

Let 𝐼 be a face of Δ𝑛. An overlapping 𝑠-partition of 𝐼 is defined to be a sequence of faces (𝐼𝑙)1⩽ℓ⩽𝑠 of
𝐼 such that

(i) the union of this sequence of faces (seen as increasing sequences of [[0, 𝑛]]) is 𝐼 , i.e. ∪1⩽ℓ⩽𝑠 𝐼𝑙 = 𝐼 ;
(ii) for all 1 ⩽ ℓ < 𝑠, max(𝐼ℓ) = min(𝐼ℓ+1).

An overlapping 6-partition for [0 < 1 < 2] is for instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [0 < 1] ∪ [1] ∪ [1 < 2] ∪ [2] .
An overlapping 3-partition for [0 < 1 < 2 < 3 < 4 < 5] is for instance

[0 < 1 < 2 < 3 < 4 < 5] = [0 < 1] ∪ [1 < 2 < 3] ∪ [3 < 4 < 5] .

7. Let 𝐴 and 𝐵 be two A∞-algebras. Prove that a morphism of dg coalgebras ΔΔΔ𝑛 ⊗ 𝑇 (𝑠𝐴) → 4 pt

𝑇 (𝑠𝐵) is equivalent to a collection of linear maps 𝑓
(𝑚)
𝐼

: 𝐴⊗𝑚 −→ 𝐵 of degree 1 − 𝑚 + |𝐼 | for
𝐼 ⊂ Δ𝑛 and 𝑚 ⩾ 1, that satisfy[

𝜕, 𝑓
(𝑚)
𝐼

]
=

dim(𝐼 )∑︁
𝑗=0

(−1) 𝑗 𝑓 (𝑚)
𝜕𝑗 𝐼

+ (−1) |𝐼 |
∑︁

𝑖1+𝑖2+𝑖3=𝑚
𝑖2⩾2

± 𝑓
(𝑖1+1+𝑖3 )
𝐼

(id⊗𝑖1 ⊗ 𝑚𝐴
𝑖2
⊗ id⊗𝑖3)

+
∑︁

𝑖1+···+𝑖𝑠=𝑚
𝐼1∪···∪𝐼𝑠=𝐼

𝑠⩾2

±𝑚𝐵
𝑠 ( 𝑓

(𝑖1 )
𝐼1

⊗ · · · ⊗ 𝑓
(𝑖𝑠 )
𝐼𝑠

) ,

where the last sum runs over all overlapping 𝑠-partitions 𝐼1 ∪ · · · ∪ 𝐼𝑠 = 𝐼 of 𝐼 for 𝑠 ⩾ 2.

A morphism of dg coalgebras ΔΔΔ𝑛 ⊗ 𝑇 (𝑠𝐴) → 𝑇 (𝑠𝐵) will be called a 𝑛-morphism from 𝐴 to 𝐵.

8. (★) Compute the explicit signs in the equations of question 7. 3 pt

We define the (𝑘, 𝑛)-horn Λ𝑘
𝑛 to be the simplicial subcomplex of the standard 𝑛-simplex Δ𝑛 obtained by

removing the face [0 < · · · < 𝑛] as well as the face [0 < · · · < 𝑘̂ < · · · < 𝑛] in Δ𝑛. This is illustrated
in Figure 2. A (𝑘, 𝑛)-horn of higher morphisms between two A∞-algebras 𝐴 and 𝐵 is then defined
to be a collection of operations 𝑓

(𝑚)
𝐼

: 𝐴⊗𝑚 −→ 𝐵 of degree 1 − 𝑚 + |𝐼 | for 𝐼 ⊂ Λ𝑘
𝑛 and 𝑚 ⩾ 1 that

satisfy the equations of question 7.

9. (★★) Prove that for all 0 < 𝑘 < 𝑛, every (𝑘, 𝑛)-horn of higher morphisms from 𝐴 to 𝐵 can 6 pt
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be filled to a 𝑛-morphism from 𝐴 to 𝐵.

In other words, we have proven that the simplicial set of higher morphisms from 𝐴 to 𝐵

HOM∞-A∞-alg(𝐴, 𝐵)𝑛 := Homdg cog(ΔΔΔ𝑛 ⊗ 𝑇 (𝑠𝐴), 𝑇 (𝑠𝐵))
is an ∞-category.

[0] [0<1] [1]

[0<2]

[2]

[1<2]

[0<1<2]

Figure 1. The standard 2-simplex Δ2

0 1

2

⊂

0 1

2

The (1, 2)-horn Λ1
2 ⊂ Δ2

2

0 1

⊂

0 1

2

The (0, 2)-horn Λ0
2 ⊂ Δ2

Figure 2
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