INTRODUCTION TO ALGEBRAIC OPERADS

Homework 1

Due 11:59PM December 21. You can either give me your copy by the last course on December 15 or send a scanned version in a unique and well readable PDF file to thibaut.mazuir@hu-berlin.de.

Difficult questions are indicated by $a(\star)$.

Problem 1: Enriched categories (10 pt)

2 pt **1**. Prove that the category Cat endowed with the product of categories × is a closed symmetric monoidal category.

Let $(D, \boxtimes, I, \alpha, \lambda, \rho)$ be a monoidal category. We define a D-enriched category C to be the data of

- (1) A class of objects Ob(C).
- (2) For every $A, B \in C$ an object $C(A, B) \in D$.
- (3) For every $A, B, C \in C$ a morphism $c_{A,B,C} : C(B,C) \boxtimes C(A,B) \to C(A,C)$.
- (4) For every A a morphism $u_A : I \to C(A, A)$.

These data have to satisfy the following axioms

(1) Associativity: for every $A, B, C, D \in C$ the following diagram is commutative

. .

(2) Identity: for every $A, B \in C$ the following diagrams are commutative

$$I \boxtimes \mathbb{C}(A, B) \xrightarrow{u_B \boxtimes \mathrm{id}_{\mathbb{C}(A, B)}} \mathbb{C}(B, B) \boxtimes \mathbb{C}(A, B) \qquad \mathbb{C}(A, B) \boxtimes I \xrightarrow{\mathrm{id}_{\mathbb{C}(A, B)} \boxtimes u_A} \mathbb{C}(A, B) \boxtimes \mathbb{C}(A, A) \xrightarrow{\downarrow_{\mathcal{C}_{A, B, B}}} \mathbb{C}(A, B) \qquad \mathbb{C}(A, B) \boxtimes \mathbb{C}(A, B) \boxtimes \mathbb{C}(A, B) \otimes \mathbb$$

8 pt 2. Let C be a closed symmetric monoidal category. Prove that the internal hom $\underline{\text{Hom}}_{C}$ defines a C-enriched category structure on C.

Problem 2: Cylinder (16 pt)

Let (A, ∂^A) , (B, ∂^B) and (C, ∂^C) be chain complexes and $f : A \to B$, $g : A \to C$ be chain maps. Define the cylinder of f and g to be the chain complex Cyl(f, g) with

$$\operatorname{Cyl}(f,g)_n = B_n \oplus A_{n-1} \oplus C_n$$

and with differential

$$\partial^{\text{Cyl}}(f,g)(b,a,c) = (\partial^B b - f(a), -\partial^A a, \partial^C c + g(a)) .$$

1. Prove that this map defines indeed a differential on Cyl(f, g).

We introduce the maps

$$\begin{split} \iota^B &: b \in B \mapsto (b,0,0) \in \operatorname{Cyl}(f,g) \\ \iota^C &: c \in C \mapsto (0,0,c) \in \operatorname{Cyl}(f,g) \\ \pi^A &: (b,a,c) \in \operatorname{Cyl}(f,g) \mapsto a \in sA . \end{split}$$

2. Prove that the maps ι^B , ι^C and π^A are chain maps that fit into a short exact sequence 1 pt

$$0 \to B \oplus C \xrightarrow{\iota^B \oplus \iota^C} \operatorname{Cyl}(f,g) \xrightarrow{\pi^A} sA \to 0 ,$$

where we recall that $(sA)_n = A_{n-1}$ and $\partial^{sA} = -\partial^A$.

3. Prove that the connecting morphism in the induced long exact sequence 2 pt

$$\cdots \to H_n(A) \xrightarrow{\delta_n} H_n(B) \oplus H_n(C) \to H_n(\operatorname{Cyl}(f,g)) \to H_{n-1}(A) \to \cdots$$

is $\delta_n = (-H_n(f), H_n(g)).$

4. We assume that f is chain homotopic to a chain map $f' : A \to B$ and denote h_n : 3 pt $A_n \to B_{n+1}$ the chain homotopy from f to f'. Prove that h induces an isomorphism of chain complexes $\phi^h : Cyl(f,g) \to Cyl(f',g)$.

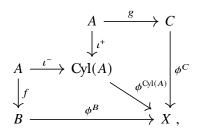
We define the cylinder of A as $Cyl(A) := Cyl(id_A, id_A)$. We then set

$$\iota^{-} : a \in A \mapsto (a, 0, 0) \in \operatorname{Cyl}(A)$$
$$\iota^{+} : a \in A \mapsto (0, 0, a) \in \operatorname{Cyl}(A) .$$

5. Prove that the following map is a chain map:

$$\iota^{\text{Cyl}(A)} : (a_1, a_2, a_3) \in \text{Cyl}(A) \mapsto (f(a_1), a_2, g(a_3)) \in \text{Cyl}(f, g)$$

6. Prove that for every commutative diagram of chain maps of the form



there exists a unique chain map $\Phi: {\rm Cyl}(f,g) \to X$ such that

$$\Phi\iota^B = \phi^B \qquad \Phi\iota^C = \phi^C \qquad \Phi\iota^{\operatorname{Cyl}(A)} = \phi^{\operatorname{Cyl}(A)} .$$

2

1 pt

3 pt

1 pt

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B \\ \downarrow^{g} & \downarrow^{\phi^{B}} \\ C & \stackrel{\phi^{C}}{\longrightarrow} Y \end{array}$$

which commutes up to homotopy i.e. such that $\phi^B f$ is chain homotopic to $\phi^C g$, there exists a chain map $\Phi : \text{Cyl}(f, g) \to D$ such that $\Phi \iota^B = \phi^B$ and $\Phi \iota^C = \phi^C$.

2 pt **8**. Prove conversely that every chain map $Cyl(f, g) \rightarrow Y$ gives rise to a homotopy-commutative diagram as in question **7**.

PROBLEM 3: SHUFFLE BIALGEBRAS (12 PT)

We define a (p,q)-shuffle to be a permutation $\sigma \in \mathfrak{S}_{p+q}$ such that

$$\sigma(1) < \cdots < \sigma(p) \qquad \sigma(p+1) < \cdots < \sigma(p+q) .$$

The set of (p,q)-shuffles is then denoted $\operatorname{Sh}(p,q) \subset \mathfrak{S}_{p+q}$.

2 pt **1**. Prove that for every permutation $\sigma \in \mathfrak{S}_{p+q}$ there exist unique permutations $\omega \in \mathrm{Sh}(p,q)$, $\alpha \in \mathfrak{S}_p$ and $\beta \in \mathfrak{S}_q$ such that

$$\sigma = \omega(\alpha \times \beta) \; .$$

Let V be a vector space.

3 pt **2**. Prove that there exists a unique morphism of unital associative algebras $\Delta' : T(V) \rightarrow T(V) \otimes T(V)$ such that $\Delta'(v) = v \otimes 1 + 1 \otimes V$ for $v \in V$. Prove that it is then given by the formula

$$\Delta'(v_1 \dots v_n) = \sum_{\substack{p+q=n\\ \sigma \in \mathrm{Sh}(p,q)}} v_{\sigma(1)} \dots v_{\sigma(p)} \otimes v_{\sigma(p+1)} \dots v_{\sigma(p+q)}$$

- 2 pt 3. Prove that the coproduct Δ' defines a conilpotent bialgebra structure on T(V), and that it is moreover cocommutative.
- 3 pt **4.** Prove that there exists a unique morphism of conilpotent coalgebras $\mu' : T^c(V) \otimes T^c(V) \rightarrow T^c(V)$ whose projection onto V is 0 except on $(V \otimes \mathbb{K}) \oplus (\mathbb{K} \otimes V)$ where $\mu'(1 \otimes v) = v = \mu'(v \otimes 1)$. Prove that it is then given by the formula

$$\mu'(v_1 \dots v_p \otimes v_{p+1} \dots v_{p+q}) = \sum_{\sigma \in \operatorname{Sh}(p,q)} v_{\sigma^{-1}(1)} \dots v_{\sigma^{-1}(p+q)} .$$

2 pt 5. Prove that the product μ' defines a conilpotent bialgebra structure on $T^c(V)$, and that it is moreover commutative.

PROBLEM 4: MORITA EQUIVALENCE (18 PT)

Let A and B be two unital algebras. We say that A and B are Morita equivalent if there exists a (A, B)-bimodule M, a (B, A)-bimodule N and isomorphisms of bimodules

$$u: M \otimes_B N \simeq A \qquad v: N \otimes_A M \simeq B$$

1. Prove that the following functors are equivalences of categories

$$N \otimes_A - : \text{left } A \text{-mod} \to \text{left } B \text{-mod}$$

 $- \otimes_A M : \text{right } A \text{-mod} \to \text{right } B \text{-mod}$
 $N \otimes_A - \otimes_A M : A \text{-bimod} \to B \text{-bimod}$.

The goal of questions 2 to 4 is to prove the following theorem:

Theorem. If A and B are Morita equivalent and P is an A-bimodule, then there is an isomorphism

$$H_*(A, P) \simeq H_*(B, N \otimes_A P \otimes_A M)$$
.

Here $H_*(A, P)$ and $H_*(B, N \otimes_A P \otimes_A M)$ denote Hochschild homologies as defined in Exercise sheet 2.

2. (\star) Prove that one can assume without loss of generality that

$$n \cdot u(m \otimes n') = v(n \otimes m) \cdot m'$$
$$m \cdot v(n \otimes m') = u(m \otimes n) \cdot m'$$

for all $m, m' \in M$ and $n, n' \in N$.

We work in questions 3 and 4 under the assumption of question 2. As u and v are isomorphisms, there exist elements $m_1, \ldots, m_s \in M$ and $n_1, \ldots, n_s \in N$ such that

$$u(\sum_{1\leqslant r\leqslant s}m_r\otimes n_r)=1_A$$

and elements $m'_1, \ldots, m'_t \in M$ and $n'_1, \ldots, n'_t \in N$ such that

$$v(\sum_{1\leqslant r\leqslant t}n'_r\otimes m'_r)=1_B$$

3. Prove that the map $\phi_* : C_*(A, P) \to C_*(B, N \otimes_A P \otimes_A M)$ defined as

$$\phi_n(p|a_1|\ldots|a_n) = \sum_{1 \leq k_i \leq s} n_{k_0} \otimes p \otimes m_{k_1} |v(n_{k_1} \otimes a_1 m_{k_2})| \ldots |v(n_{k_n} \otimes a_n m_{k_0}) ,$$

and that the map $\psi_* : C_*(B, N \otimes_A P \otimes_A M) \to C_*(A, P)$ defined as

$$\psi_n(n \otimes p \otimes m|b_1| \dots |b_n) = \sum_{1 \le k_i \le s} u(m'_{k_0} \otimes n) \cdot p \cdot u(m \otimes n'_{k_1})|u(m'_{k_1} \otimes b_1 n'_{k_2})| \dots |u(m'_{k_n} \otimes b_n n'_{k_0})|$$

are chain maps.

4. Prove that $\phi\psi$ is chain homotopic to the identity of $C_*(B, N \otimes_A P \otimes_A M)$ and that $\psi\phi$ is 4 pt chain homotopic to the identity of $C_*(A, P)$. Conclude the proof of the theorem.

4

2 pt

3 pt

2 pt 5. Let A be a unital algebra. Let $e \in A$ be an idempotent i.e. an element such that $e^2 = e$, which is such that A = AeA. Prove that B := eAe is then a unital algebra which is Morita equivalent to A.

Let A be a be a unital algebra and M an A-bimodule. Then the set $\mathcal{M}_n(M)$ of square matrices of order n with coefficients in M is an $\mathcal{M}_n(A)$ -bimodule.

2 pt 6. Prove that $H_*(A, M) \simeq H_*(\mathcal{M}_n(A), \mathcal{M}_n(M))$.

Problem 5: Sullivan models and homotopy (16 pt)

We work with cohomological conventions in this problem.

3 pt **1**. Consider a Sullivan algebra $(\Lambda V, d)$, two unital dgc algebras A and B, and two morphisms of unital dgc algebras

(

$$\Lambda V, d) \xrightarrow{\phi} A$$

where η is a surjective quasi-isomorphism. Prove that there exists a morphism of unital dgc algebras $\Phi : (\Lambda V, d) \to B$ such that $\eta \Phi = \phi$.

Let $\Lambda(t, dt)$ be the free graded commutative algebra generated by a symbol t of degree 0 and a symbol dt of degree 1. We endow it with the differential d defined on the generating elements as d(t) = dt and d(dt) = 0.

2 pt 2. Prove that there is an isomorphism of unital dgc algebras

 $\Lambda(t, dt) \simeq \Lambda(t_0, t_1, dt_0, dt_1) / \langle t_0 + t_1 - 1, dt_0 + dt_1 \rangle$

where $\Lambda(t_0, t_1, dt_0, dt_1)$ is defined in a similar fashion to $\Lambda(t, dt)$ and $\langle t_0 + t_1 - 1, dt_0 + dt_1 \rangle$ denotes the ideal generated by $t_0 + t_1 - 1$ and $dt_0 + dt_1$.

We define two morphisms of unital dgc coalgebras $\varepsilon_0, \varepsilon_1 : \Lambda(t, dt) \to \mathbb{K}$ by setting $\varepsilon_0(t) = 0$ and $\varepsilon_1(t) = 1$. Two morphisms $\phi_0, \phi_1 : (\Lambda V, d) \to A$ from a Sullivan algebra $(\Lambda V, d)$ to a unital dgc algebra A are then said to be homotopic if there exists a morphism of unital dgc algebras

$$\Phi: (\Lambda V, d) \to A \otimes \Lambda(t, dt)$$

such that $(id_A \otimes \varepsilon_i)\Phi = \phi_i$ for i = 0, 1.

- 5 pt 3. (*) Prove that "being homotopic" is an equivalence relation on the set of morphisms of unital dgc algebras $(\Lambda V, d) \rightarrow A$.
- 3 pt 4. (\star) Prove that two homotopic morphisms ($\Lambda V, d$) $\rightarrow A$ induce the same map in homology.

Let (A, 0) be a unital graded commutative algebra with zero differential and $(\Lambda V, d)$ a minimal Sullivan model. We define the constant morphism $\varepsilon : (\Lambda V, d) \to (A, 0)$ by $\varepsilon(V) = 0$.

3 pt 5. (*) Prove that if a morphism $\phi : (\Lambda V, d) \to (A, 0)$ is homotopic to ε then $\phi = \varepsilon$.