Introduction to algebraic operads

EXERCISE SHEET 4: Twisting morphisms

EXERCISE 1 (The augmented bar construction is acyclic). Let A be an augmented dg algebra. Our goal is to prove that the twisted tensor product $BA \otimes_{\pi} A$ is acyclic. We denote an element of $BA \otimes A$ as

$$a_1 | \dots | a_n | a_{n+1} := sa_1 \otimes \dots \otimes sa_n \otimes a_{n+1}$$

where $a_i \in \bar{A}$ for $1 \le i \le n$ and $a_{n+1} \in A$.

- 1. Compute the twisted differential on $BA \otimes_{\pi} A$.
- 2. Prove that $BA \otimes_{\pi} A$ is contractible and conclude the proof.

EXERCISE 2 (Hochschild homology and bar construction). Let C_* be a chain complex. We define a chain subcomplex $D_* \subset C_*$ to be a collection of vector spaces $D_n \subset C_n$ such that $\partial_n^C(D_n) \subset D_{n-1}$ for all $n \in \mathbb{Z}$.

1. Prove that if D_* is acyclic then the projection map $C_* \to C_*/D_*$ is a quasi-isomorphism.

Let A be a unital dg algebra and M be an A-bimodule. We set $\bar{A} := A/\mathbb{K}1_A$. Consider the Hochschild complex $C_n(A, M) := M \otimes A^{\otimes n}$ and define D_n the subspace of $C_n(A, M)$ generated by all elements $m|a_1|\ldots|a_n$ such that at least one of the a_i is equal to 1_A .

2. Prove that $D_* \subset C_*(A, M)$ is a chain subcomplex which is acyclic.

We define the normalized Hochschild chains as

$$\bar{C}_*(A, M) := C_*(A, M)/D_*$$
.

Following question 1. we then have that $\bar{H}_*(M,A) \simeq H_*(M,A)$.

3. Let A be an augmented associative algebra seen as an augmented dg algebra concentrated in degree 0. Prove that the Hochschild homology of A with coefficients in \mathbb{K} is isomorphic to the homology of its bar construction BA.

EXERCISE 3 (The d_2 differential). Let s be an element of degree |s| = 1. We introduce the degree -1 map $\mu_s : \mathbb{K}s \otimes \mathbb{K}s \to \mathbb{K}s$ defined as $\mu_s(s \otimes s) = s$. We also point out that the suspension sV of a dg vector space V then corresponds to the dg tensor product $\mathbb{K}s \otimes V$.

1. Let A be an augmented dg algebra A. Prove that the differential d_2 on BA can be equivalently defined as the unique extension of the degree -1 composite linear map

$$T^c(sA) \twoheadrightarrow s\bar{A} \otimes s\bar{A} = \mathbb{K} s \otimes \bar{A} \otimes \mathbb{K} s \otimes \bar{A} \simeq \mathbb{K} s \otimes \mathbb{K} s \otimes \bar{A} \otimes \bar{A} \xrightarrow{\mu_s \otimes \mu_A} \mathbb{K} s \otimes \bar{A} = s\bar{A} \ .$$

We also introduce the degree -1 linear map $\Delta_s : \mathbb{K}s^{-1} \to \mathbb{K}s^{-1} \otimes \mathbb{K}s^{-1}$.

2. Let C be a coaugmented dg coalgebra. Prove that the differential d_2 on ΩC can be equivalently defined as the unique extension of the degree -1 composite linear map

$$s^{-1}C = \mathbb{K}s^{-1} \otimes C \xrightarrow{\Delta_s \otimes \Delta_C} \mathbb{K}s^{-1} \otimes \mathbb{K}s^{-1} \otimes C \otimes C \simeq \mathbb{K}s^{-1} \otimes C \otimes \mathbb{K}s^{-1} \otimes C = s^{-1}C \otimes s^{-1}C \hookrightarrow \Omega C.$$

- 3. Let \mathcal{P} be an operad. Compute an explicit formula (with signs) for the differential d_2 on the bar construction $B\mathcal{P}$.
- 4. Let $\mathscr C$ be a cooperad. Compute an explicit formula (with signs) for the differential d_2 on the cobar construction $\Omega\mathscr C$.

EXERCISE 4 (Schur lemma). Let \mathbb{K} be a field with $char(\mathbb{K}) = 0$.

Prove that for every natural transformation $\lambda_V: V^{\otimes n} \to V^{\otimes n}$ there exists an element $\lambda \in \mathbb{K}[\mathfrak{S}_n]$ such that $\lambda_V(v_1, \ldots, v_n) = \lambda \cdot (v_1 \otimes \cdots \otimes v_n)$ for $v_1, \ldots, v_n \in V$.

EXERCISE 5 (Derivation). For an operad \mathcal{P} in Vect and a \mathcal{P} -algebra A, we define a derivation $d: A \to A$ to be a linear map such that for every $\mu \in \mathcal{P}(n)$,

$$d(\mu(a_1,...,a_n)) = \sum_{i=1}^n \mu(a_1,...,d(a_i),...,a_n) .$$

Prove that for a vector space V, any derivation on the free \mathcal{P} -algebra $d: S_{\mathcal{P}}(V) \to S_{\mathcal{P}}(V)$ is completely determined by its restriction $V \to S_{\mathcal{P}}(V)$.

EXERCISE 6 (bar-cobar resolution).

Prove that the resolution $\Omega B \mathcal{A}$ 55 $\rightarrow \mathcal{A}$ 55 is not minimal.

EXERCISE 7 (dg pre-Lie algebra).

Let \mathcal{P} be an operad in Vect with $\mathcal{P}(0) = 0$. For $v \in \mathcal{P}(n)$, $\mu \in \mathcal{P}(m)$, we define

$$\{\mu,\nu\}:=\sum_{i=1}^n\nu\circ_i\mu\;.$$

- 1. Prove that this bracket defines a dg pre-Lie algebra structure on the dg vector space $\prod_{n\geqslant 1} \mathcal{P}(n)$.
- 2. Prove that for a dg cooperad $\mathscr C$ and a dg operad $\mathscr P$ such that $\mathscr P(0)=0$ and $\mathscr C(0)=0$, the dg pre-Lie algebra associated to the convolution operad of $\mathscr C$ and $\mathscr P$ is exactly the operadic convolution pre-Lie algebra.

EXERCISE 8 (Coderivation).

Prove that there is a correspondence between coderivations of the cofree cooperad $\mathcal{T}^c(\mathcal{M})$ and morphisms of \mathfrak{S} -modules $\mathcal{T}^c(\mathcal{M}) \to \mathcal{M}$.

EXERCISE 9 (Hurewicz fibration). Let $p: E \to B$ be a Hurewicz fibration and assume that B is connected.

- 1. Prove that for $b_0, b_1 \in B$, the fibers $p^{-1}(b_0)$ and $p^{-1}(b_1)$ are homotopy equivalent.
- 2. Prove that there exists a lifting function for p.