INTRODUCTION TO ALGEBRAIC OPERADS

EXERCISE SHEET 3: Operads

EXERCISE 1 (Closed symmetric monoidal categories). Let V and W be two graded vector
spaces. We denote

Hom(V,W), .= 1_[ Hom(V,,, W,,)

nezZ

the vector space of linear maps V — W of degree r and define

Hom(V,W) := @ Hom(V, W), .
reZ

1. Prove that the symmetric monoidal category (grVect, ®) is closed with internal hom the
graded vector space Hom(V, W).

Assume now that V and W are dg vector spaces. For a linear map f : V — W of degree | f| we denote
[0, f1 = 0w f = (D) foy .

2. Prove that the symmetric monoidal category (dgVect, ®) is closed with internal hom the
dg vector space (Hom(V, W), [d,]).
EXERCISE 2 (Invariants and coinvariants).

Let V be a vector space together with a left S,-action on V. Prove that if char(K) = 0, the
vector spaces of invariants and coinvariants are isomorphic Ven ~ Vs,

EXERCISE 3 (Operads and ns operads).

Prove that there exists an adjunction ns0p & Op.

EXERCISE 4 (Diagonal of an operad). We define a diagonal of an operad & in Vect to be a
morphism of operads P — P @ P.

Prove that a diagonal on & defines a bifunctor P-alg x P-alg — P-alg.

EXERCISE 5 (Enveloping algebra). Let o : P — Q be a morphism of operads in Vect. Recall
that it defines a functor * : Q-alg — P-alg.

1. Prove that the functor o has a left adjoint ay .

2. Prove that if @ is the morphism of operads £ie — ¢33, the functor o is exactly the
enveloping algebra construction.
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EXERCISE 6 (Operad as monoids and Schur functors). 7. Check that an operad in Vect
can be equivalently defined as a monoid in (&-mod, o) and that a cooperad in Vect can be
equivalently defined as a comonoid in (S-mod, 5).

2. Check that the Schur functor S_ : (&-mod, o) — EndoFun(Vect) and the coSchur functor
S : (Smod, 5) — EndoFun(Vect) are strong monoidal.

EXERCISE 7 (The free ns operad as a colimit). For two N-modules M and N inVect we define
their direct sum as M ® N (n) = M(n) & N(n). A bifunctor F : N-mod X N-mod — N-mod is then
defined to be linear on the left if

F (M & Mo, N) = Cf(ﬂl,./\f) D F (Mo, N) .
Linearity on the right is defined in a similar fashion.

1. Prove that the composite bifunctor — o — : N-mod X N-mod — N-mod is linear on the left but
not on the right.

We denote K := (0,KK,0,...,0,...). We define a sequence of functors F, : N-mod — N-mod by
induction as

Fo() =K  F (M) =Ko  Fu(l)=Ke loF, (L)) .

2. Prove by induction on n that there exists natural maps y;,_,, : Fy (M) 0 Fyy, (M) — Fppyn (M).
3. Prove that the maps vy, ,, are associative, i.e. that for //l € N-mod and p,q,r > 0,
Yp+a.r (Yp.q ©1dg, (1)) = Vp.qer (idg, () © Vq.r)
where o denotes the composite product on N-mod and not the composition of morphisms.
We define natural transformations v, : F, = Fni1 by induction as
K = Fo(l) = F(l) =Kol ¢ = idi @ (idy 0 te1) 2 Fn(Ml) — Fopaq (ML)

where o denotes again the composite product on N-mod and not the composition of morphisms. Notice
that each v, is a monomorphism. We then define

F (M) := coli(r)nofn(ﬂ/t) .
nz

4. Prove that the natural transformations y,, ,, induce a natural transformation
v F (M) o F (M) > F (M) .
5. Prove that the N-module & (/l) endowed with the composition y and the unit K = Fy (M) —
F(JL) is a ns operad.
6. Prove that the free ns operad J;,5(J/l) is isomorphic to the ns operad F (/).

The same constructions and results also hold in the symmetric case.



EXERCISE 8 (Dual).

1. Given a subgroup H C G and a vector space V with a left H-action, prove that there are
natural isomorphisms

G
Hom(IndS (V), K) = CoindS (V¥) (coindg(V)) —yH

2. Prove that the arity-wise linear dual of a May cooperad € in Vect is an operad 6", and
that the arity-wise linear dual of an arity-wise finite-dimensional operad & in Vect is a May
cooperad PV.

3. Prove that the dual of a 9§53"-coalgebra C is a standard conilpotent noncounital coassocia-
tive coalgebra CV.

EXERCISE 9 (The monad PT). Given a planar treet and a planar treet, € PT|inc(,)| for every
v € Vert(t), we can define a new tree sub(t; {t, },ever(r)) by substituting every vertex v in t by the

treet,. For instance, for
Y

sub(t;t1,19) = W .

The free ns algebra construction moreover defines a functor

PT : Nmod — N-mod

the substitution reads as

with PT (M) := Ty, (M).
1. Prove that substitution of trees defines a monad structure on the endofunctor PT.

2. Prove that a PT-algebra structure on a N-module & is then equivalent to a structure of ns
operad on P.

3. Prove that the free PT-algebra and the free ns operad structures on (/) coincide.
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