INTRODUCTION TO ALGEBRAIC OPERADS

EXERCISE SHEET 3: Operads

EXERCISE 1 (Closed symmetric monoidal categories). Let V and W be two graded vector spaces. We denote

$$\operatorname{Hom}(V,W)_r := \prod_{n \in \mathbb{Z}} \operatorname{Hom}(V_n, W_{n+r})$$

the vector space of linear maps $V \rightarrow W$ of degree r and define

$$\underline{\operatorname{Hom}}(V,W) := \bigoplus_{r \in \mathbb{Z}} \operatorname{Hom}(V,W)_r$$

1. Prove that the symmetric monoidal category $(grVect, \otimes)$ is closed with internal hom the graded vector space $\underline{Hom}(V, W)$.

Assume now that V and W are dg vector spaces. For a linear map $f: V \to W$ of degree |f| we denote

$$[\partial, f] := \partial_W f - (-1)^{|f|} f \partial_V$$

2. Prove that the symmetric monoidal category $(dgVect, \otimes)$ is closed with internal hom the dg vector space $(\underline{Hom}(V, W), [\partial, \cdot])$.

EXERCISE 2 (Invariants and coinvariants).

Let V be a vector space together with a left \mathfrak{S}_n -action on V. Prove that if $\operatorname{char}(\mathbb{K}) = 0$, the vector spaces of invariants and coinvariants are isomorphic $V^{\mathfrak{S}_n} \simeq V_{\mathfrak{S}_n}$.

EXERCISE 3 (Operads and ns operads).

Prove that there exists an adjunction $nsOp \subseteq Op$.

EXERCISE 4 (Diagonal of an operad). We define a diagonal of an operad \mathcal{P} in Vect to be a morphism of operads $\mathcal{P} \to \mathcal{P} \otimes \mathcal{P}$.

Prove that a diagonal on \mathcal{P} defines a bifunctor \mathcal{P} -alg $\times \mathcal{P}$ -alg $\rightarrow \mathcal{P}$ -alg.

EXERCISE 5 (Enveloping algebra). Let $\alpha : \mathcal{P} \to \mathbb{Q}$ be a morphism of operads in Vect. Recall that it defines a functor $\alpha^* : \mathbb{Q}$ -alg $\to \mathcal{P}$ -alg.

1. Prove that the functor α^* has a left adjoint $\alpha_!$.

2. Prove that if α is the morphism of operads $\mathcal{Lie} \to \mathcal{Ass}$, the functor $\alpha_!$ is exactly the enveloping algebra construction.

EXERCISE 6 (Operad as monoids and Schur functors). *1*. Check that an operad in Vect can be equivalently defined as a monoid in $(\mathfrak{S}-mod, \circ)$ and that a cooperad in Vect can be equivalently defined as a comonoid in $(\mathfrak{S}-mod, \overline{\circ})$.

2. Check that the Schur functor S_- : (\mathfrak{S} -mod, \circ) \rightarrow EndoFun(Vect) and the coSchur functor S^- : (\mathfrak{S} -mod, $\overline{\circ}$) \rightarrow EndoFun(Vect) are strong monoidal.

EXERCISE 7 (The free ns operad as a colimit). For two \mathbb{N} -modules \mathcal{M} and \mathcal{N} in Vect we define their direct sum as $\mathcal{M} \oplus \mathcal{N}(n) = \mathcal{M}(n) \oplus \mathcal{N}(n)$. A bifunctor $\mathcal{F} : \mathbb{N}$ -mod $\times \mathbb{N}$ -mod $\rightarrow \mathbb{N}$ -mod is then defined to be linear on the left if

 $\mathcal{F}(\mathcal{M}_1 \oplus \mathcal{M}_2, \mathcal{N}) = \mathcal{F}(\mathcal{M}_1, \mathcal{N}) \oplus \mathcal{F}(\mathcal{M}_2, \mathcal{N})$.

Linearity on the right is defined in a similar fashion.

1. Prove that the composite bifunctor $-\circ - : \mathbb{N}\text{-mod} \times \mathbb{N}\text{-mod}$ is linear on the left but not on the right.

We denote $\mathbb{K} := (0, \mathbb{K}, 0, \dots, 0, \dots)$. We define a sequence of functors $\mathcal{F}_n : \mathbb{N}$ -mod $\to \mathbb{N}$ -mod by induction as

$$\mathcal{F}_0(\mathcal{M}) = \mathbb{K} \qquad \mathcal{F}_1(\mathcal{M}) = \mathbb{K} \oplus \mathcal{M} \qquad \mathcal{F}_n(\mathcal{M}) = \mathbb{K} \oplus (\mathcal{M} \circ \mathcal{F}_{n-1}(\mathcal{M})) .$$

2. Prove by induction on *n* that there exists natural maps $\gamma_{n,m} : \mathcal{F}_n(\mathcal{M}) \circ \mathcal{F}_m(\mathcal{M}) \to \mathcal{F}_{n+m}(\mathcal{M})$.

3. Prove that the maps $\gamma_{n,m}$ are associative, i.e. that for $\mathcal{M} \in \mathbb{N}$ -mod and $p, q, r \ge 0$,

$$\gamma_{p+q,r}(\gamma_{p,q} \circ \mathrm{id}_{\mathcal{F}_r(\mathcal{M})}) = \gamma_{p,q+r}(\mathrm{id}_{\mathcal{F}_p(\mathcal{M})} \circ \gamma_{q,r})$$

where \circ denotes the composite product on N-mod and not the composition of morphisms.

We define natural transformations $\iota_n : \mathcal{F}_n \Rightarrow \mathcal{F}_{n+1}$ by induction as

$$\iota_0^{\mathcal{M}}: \mathbb{K} = \mathcal{F}_0(\mathcal{M}) \hookrightarrow \mathcal{F}_1(\mathcal{M}) = \mathbb{K} \oplus \mathcal{M} \qquad \iota_n^{\mathcal{M}} := \mathrm{id}_{\mathbb{K}} \oplus (\mathrm{id}_{\mathcal{M}} \circ \iota_{n-1}): \mathcal{F}_n(\mathcal{M}) \to \mathcal{F}_{n+1}(\mathcal{M})$$

where \circ denotes again the composite product on \mathbb{N} -mod and not the composition of morphisms. Notice that each ι_n is a monomorphism. We then define

$$\mathcal{F}(\mathcal{M}) := \underset{n \ge 0}{\operatorname{colim}} \mathcal{F}_n(\mathcal{M}) \ .$$

4. Prove that the natural transformations $\gamma_{n,m}$ induce a natural transformation

$$\gamma: \mathcal{F}(\mathcal{M}) \circ \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{M})$$
.

5. Prove that the \mathbb{N} -module $\mathcal{F}(\mathcal{M})$ endowed with the composition γ and the unit $\mathbb{K} = \mathcal{F}_0(\mathcal{M}) \hookrightarrow \mathcal{F}(\mathcal{M})$ is a ns operad.

6. Prove that the free ns operad $\mathcal{T}_{ns}(\mathcal{M})$ is isomorphic to the ns operad $\mathcal{F}(\mathcal{M})$.

The same constructions and results also hold in the symmetric case.

EXERCISE 8 (Dual).

1. Given a subgroup $H \subset G$ and a vector space V with a left H-action, prove that there are natural isomorphisms

$$\operatorname{Hom}(\operatorname{Ind}_{H}^{G}(V),\mathbb{K}) \simeq \operatorname{Coind}_{H}^{G}(V^{\vee}) \qquad \left(\operatorname{Coind}_{H}^{G}(V)\right)^{G} = V^{H}.$$

2. Prove that the arity-wise linear dual of a May cooperad \mathscr{C} in Vect is an operad \mathscr{C}^{\vee} , and that the arity-wise linear dual of an arity-wise finite-dimensional operad \mathscr{P} in Vect is a May cooperad \mathscr{P}^{\vee} .

3. Prove that the dual of a $A33^{\vee}$ -coalgebra *C* is a standard conilpotent noncounital coassociative coalgebra C^{\vee} .

EXERCISE 9 (The monad \mathbb{PT}). Given a planar tree t and a planar tree $t_v \in \mathrm{PT}_{|\mathrm{inc}(v)|}$ for every $v \in \mathrm{Vert}(t)$, we can define a new tree $\mathrm{sub}(t; \{t_v\}_{v \in \mathrm{Vert}(t)})$ by substituting every vertex v in t by the tree t_v . For instance, for

$$t = \bigvee t_1 = \bigvee t_2 = \bigvee t_2 = \bigvee t_2$$

the substitution reads as

$$\operatorname{sub}(t;t_1,t_2) =$$

The free ns algebra construction moreover defines a functor

 $\mathbb{PT}:\mathbb{N}\text{-}\mathrm{mod}\to\mathbb{N}\text{-}\mathrm{mod}$

with $\mathbb{PT}(\mathcal{M}) := \mathcal{T}_{ns}(\mathcal{M})$.

1. Prove that substitution of trees defines a monad structure on the endofunctor \mathbb{PT} .

2. Prove that a \mathbb{PT} -algebra structure on a \mathbb{N} -module \mathcal{P} is then equivalent to a structure of ns operad on \mathcal{P} .

3. Prove that the free \mathbb{PT} -algebra and the free ns operad structures on $\mathcal{T}_{ns}(\mathcal{M})$ coincide.