
Introduction to algebraic operads

Exercise sheet 3: Operads

Exercise 1 (Closed symmetric monoidal categories). Let 𝑉 and 𝑊 be two graded vector
spaces. We denote

Hom(𝑉,𝑊)𝑟 :=
∏
𝑛∈ℤ

Hom(𝑉𝑛,𝑊𝑛+𝑟 )

the vector space of linear maps 𝑉 → 𝑊 of degree 𝑟 and define

Hom(𝑉,𝑊) :=
⊕
𝑟∈ℤ

Hom(𝑉,𝑊)𝑟 .

1. Prove that the symmetric monoidal category (grVect, ⊗) is closed with internal hom the
graded vector space Hom(𝑉,𝑊).

Assume now that 𝑉 and 𝑊 are dg vector spaces. For a linear map 𝑓 : 𝑉 → 𝑊 of degree | 𝑓 | we denote

[𝜕, 𝑓 ] := 𝜕𝑊 𝑓 − (−1) | 𝑓 | 𝑓 𝜕𝑉 .

2. Prove that the symmetric monoidal category (dgVect, ⊗) is closed with internal hom the
dg vector space

(
Hom(𝑉,𝑊), [𝜕, ·]

)
.

Exercise 2 (Invariants and coinvariants).

Let 𝑉 be a vector space together with a left 𝔖𝑛-action on 𝑉 . Prove that if char(𝕂) = 0, the
vector spaces of invariants and coinvariants are isomorphic 𝑉𝔖𝑛 ≃ 𝑉𝔖𝑛

.

Exercise 3 (Operads and ns operads).

Prove that there exists an adjunction nsOp⇆ Op.

Exercise 4 (Diagonal of an operad). We define a diagonal of an operad P in Vect to be a
morphism of operads P→ P⊗ P.

Prove that a diagonal on P defines a bifunctor P-alg ×P-alg → P-alg.

Exercise 5 (Enveloping algebra). Let 𝛼 : P → Q be a morphism of operads in Vect. Recall
that it defines a functor 𝛼∗ : Q-alg → P-alg.

1. Prove that the functor 𝛼∗ has a left adjoint 𝛼! .

2. Prove that if 𝛼 is the morphism of operads Lie → Ass, the functor 𝛼! is exactly the
enveloping algebra construction.
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Exercise 6 (Operad as monoids and Schur functors). 1. Check that an operad in Vect

can be equivalently defined as a monoid in (𝔖-mod, ◦) and that a cooperad in Vect can be
equivalently defined as a comonoid in (𝔖-mod, ◦̄).

2. Check that the Schur functor 𝑆− : (𝔖-mod, ◦) → EndoFun(Vect) and the coSchur functor
𝑆− : (𝔖-mod, ◦̄) → EndoFun(Vect) are strong monoidal.

Exercise 7 (The free ns operad as a colimit). For two ℕ-modules Mand N in Vect we define
their direct sum as M⊕ N(𝑛) = M(𝑛) ⊕ N(𝑛). A bifunctor F : ℕ-mod × ℕ-mod → ℕ-mod is then
defined to be linear on the left if

F(M1 ⊕ M2,N) = F(M1,N) ⊕ F(M2,N) .

Linearity on the right is defined in a similar fashion.

1. Prove that the composite bifunctor − ◦ − : ℕ-mod × ℕ-mod → ℕ-mod is linear on the left but
not on the right.

We denote 𝕂 := (0,𝕂, 0, . . . , 0, . . . ). We define a sequence of functors F𝑛 : ℕ-mod → ℕ-mod by
induction as

F0(M) = 𝕂 F1(M) = 𝕂 ⊕ M F𝑛 (M) = 𝕂 ⊕ (M◦ F𝑛−1(M)) .

2. Prove by induction on 𝑛 that there exists natural maps 𝛾𝑛,𝑚 : F𝑛 (M) ◦F𝑚(M) → F𝑛+𝑚(M).

3. Prove that the maps 𝛾𝑛,𝑚 are associative, i.e. that for M ∈ ℕ-mod and 𝑝, 𝑞, 𝑟 ⩾ 0,

𝛾𝑝+𝑞,𝑟 (𝛾𝑝,𝑞 ◦ idF𝑟 (M)) = 𝛾𝑝,𝑞+𝑟 (idF𝑝 (M) ◦ 𝛾𝑞,𝑟 )

where ◦ denotes the composite product on ℕ-mod and not the composition of morphisms.

We define natural transformations 𝜄𝑛 : F𝑛 ⇒ F𝑛+1 by induction as

𝜄M0 : 𝕂 = F0(M) ↩→ F1(M) = 𝕂 ⊕ M 𝜄M𝑛 := id𝕂 ⊕ (idM ◦ 𝜄𝑛−1) : F𝑛 (M) → F𝑛+1(M)

where ◦ denotes again the composite product on ℕ-mod and not the composition of morphisms. Notice
that each 𝜄𝑛 is a monomorphism. We then define

F(M) := colim
𝑛⩾0

F𝑛 (M) .

4. Prove that the natural transformations 𝛾𝑛,𝑚 induce a natural transformation

𝛾 : F(M) ◦ F(M) → F(M) .

5. Prove that the ℕ-module F(M) endowed with the composition 𝛾 and the unit 𝕂 = F0(M) ↩→
F(M) is a ns operad.

6. Prove that the free ns operad T𝑛𝑠 (M) is isomorphic to the ns operad F(M).

The same constructions and results also hold in the symmetric case.
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Exercise 8 (Dual).

1. Given a subgroup 𝐻 ⊂ 𝐺 and a vector space 𝑉 with a left 𝐻-action, prove that there are
natural isomorphisms

Hom(Ind𝐺
𝐻 (𝑉),𝕂) ≃ Coind𝐺

𝐻 (𝑉∨)
(
Coind𝐺

𝐻 (𝑉)
)𝐺

= 𝑉𝐻 .

2. Prove that the arity-wise linear dual of a May cooperad C in Vect is an operad C∨, and
that the arity-wise linear dual of an arity-wise finite-dimensional operad P in Vect is a May
cooperad P∨.

3. Prove that the dual of a Ass∨-coalgebra 𝐶 is a standard conilpotent noncounital coassocia-
tive coalgebra 𝐶∨.

Exercise 9 (The monad ℙ𝕋 ). Given a planar tree 𝑡 and a planar tree 𝑡𝑣 ∈ PT |inc(𝑣) | for every
𝑣 ∈ Vert(𝑡), we can define a new tree sub(𝑡; {𝑡𝑣}𝑣∈Vert(𝑡 ) ) by substituting every vertex 𝑣 in 𝑡 by the
tree 𝑡𝑣 . For instance, for

𝑡 = 𝑡1 = 𝑡2 =

the substitution reads as

sub(𝑡; 𝑡1, 𝑡2) = .

The free ns algebra construction moreover defines a functor

ℙ𝕋 : ℕ-mod → ℕ-mod

with ℙ𝕋 (M) := T𝑛𝑠 (M).

1. Prove that substitution of trees defines a monad structure on the endofunctor ℙ𝕋 .

2. Prove that a ℙ𝕋 -algebra structure on a ℕ-module P is then equivalent to a structure of ns
operad on P.

3. Prove that the free ℙ𝕋 -algebra and the free ns operad structures on T𝑛𝑠 (M) coincide.
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