INTRODUCTION TO ALGEBRAIC OPERADS

EXERCISE SHEET 2: Standard algebraic structures

EXERCISE 1 (An equivalence of categories). Prove that the category of nonunital associa-
tive algebras is equivalent to the category of augmented associative algebras.

EXERCISE 2 (Tensor coalgebra). Let V be a vector space and T°(V) the free reduced tensor
coalgebra of V. We define a coderivation of a coalgebra C to be a map D : C — C such that
(D®id+id ® D)Ac = AcD.

1. Prove that there is a correspondence

{ collections of linear maps

m, VO SV, n>1 }<—>{ coderivations D of TC(V) } .

2. Let W be a vector space. Prove that there is a correspondence

{ collections of linear maps

F VO W onx1 }<—>{ morphisms of coalgebras TC(V) — TC(W) } .
n - B =
EXERCISE 3 (Minimal models).

1. Prove that the cdg algebra (A(vi,vg,v3),0) defined by deg(v;) =1, d(v1) = vavs, d(va) =
v3v1 and 0(v3) = vivg is not a Sullivan algebra, and compute a minimal Sullivan model for
this cdg algebra.

Recall that the cohomology algebra of spheres is given by H*(S", Q) = Q[v]/(v? = 0) where |v| = n.
We will moreover accept that the spheres are formal in the next question.

2. Compute the minimal Sullivan models of the spheres (by separating the even-dimensional
and odd-dimensional cases).

ExXERCISE 4 (Hopf algebras). A bialgebra is said to be conilpotent if it is conilpotent as a coas-
sociative coalgebra.

1. Prove that any conilpotent bialgebra is a Hopf algebra.
2. Prove that the universal enveloping algebra U(g) of a Lie algebra g is a conilpotent bialgebra.

Given a group G, we define the group algebra K[G] to be the vector space ¥, Kg endowed with
maultiplication defined on basis elements as g k(G 8 =8 G &'-

3. Prove that a group algebra K[G] is a Hopf algebra that is not conilpotent in general.
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EXERCISE 5 (Hochschild homology and cohomology). Let A be an associative algebra and
M an A-bimodule. The Hochschild chain complex C.(A, M) is defined to be the chain complex
whose degree n part is M @ A®". Writing an element of C,,(A, M) as

mla|...|ay ,
its differential is defined as
n—-1
bp(mlai|...|an) = mailas|...|an +Z(—1)’m| aiaial .. lan + (=1 apmlai) . . . |an-1 -
i=1

Its homology is called Hochschild homology and denoted H.(A, M). When M = A is endowed with
its obvious A-bimodule structure, the Hochschild homology H.(A, A) is denoted HH.(A), and called
the Hochschild homology of the algebra A.

1. Prove that the maps b, indeed define a differential on C.(A, M).

We define the Hochschild cochain complex C*(A, M) to be the cochain complex whose degree n part
is Hom(A®", M) and whose differential is defined as

n
Bx)(ai,...,ans1) = a1x(ag,...,an41) + Z(—l)ix(. e i, ... )+ (—1)”+1x(a1, e Qp)dnsl
i=1

for a linear map x : A®" — M.
2. Check that this formula defines indeed a differential 8 on C*(A, M).

We suppose in the rest of the exercise that A is commutative and unital. We moreover define the A-

module of Kihler differentials Qle to be the A-module generated by the symbols da for a € A and

satisfying the relations

d(Aa + ub) = Ada + udb d(ab) = a(db) + b(da)
3. Prove that HHy(A) = A and that HH1(A) = Q}MK.
Define a derivation of A with value in M to be a linear map D : A — M satisfying the equality
D(ab) =aD(b) + D(a)b .

4. Prove that the set of derivations Der(A, M) is an A-module and that there is a correspon-
dence

HomA_mod(Q}MK, M) =Der(A, M) .

5. Prove that for an element m € M, the map ad,, : A — M defined as ad,,(a) := ma — am is
a derivation. It will be called an inner derivation. Prove then that the set of inner derivations
Inn(A, M) is a submodule of Der(A, M).

6. Prove that H'(A, M) = Der(A, M)/Inn(A, M).
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EXERCISE 6 (Frobenius algebra). Let V and W be two vector spaces. A pairing of V and W is
defined to be a linear map (-,-) : V® W — K. It is non-degenerate in the variable V if there
exists an element 3, w; @ v; € W ® V such that the mapv € V. — 3 (v, w;)v; is the identity map.
Non-degeneracy in the variable W is defined similarly. It is non-degenerate if it is non-degenerate
in both variables.

1. Prove that the following are equivalent:

(i) The pairing (-, -) is non-degenerate.
(if) W is finite-dimensional and the induced linear map W — V* is an isomorphism.
(iii) V is finite-dimensional and the induced linear map V — W* is an isomorphism.

Let A be a unital associative algebra. IfV is a right A-module and W a left A-module, we say that the
pairing is associative if (va,w) = (v, aw).
2. We suppose that A is finite-dimensional as a vector space. Prove that the following are

equivalent:

(i) The right A-module A is right A-isomorphic to A".
(ii) The left A-module A is left A-isomorphic to A.
(iii) There exists a linear map € : A — K whose nullspace does not contain any non-trivial
left-ideal.

(iv) There exists an associative non-degenerate pairing A ® A — K.

A is then said to be a Frobenius algebra.

3. Let A be a vector space endowed with a multiplication y: A® A — A withunitp: K — A
p(n,1d) = id = p(id, )
and with a comultiplication A: A — A — A with counite: A — K
(e®id)A=id = (id® &)A,
that satisfy the Frobenius relation
(dou)(A®id) =Au=(u®id)(id® A) .

Prove that the multiplication u is associative and that the unital associative algebra A is a
Frobenius algebra.

4. Prove that the conditions of question 3. are equivalent to the conditions of question 2.

EXERCISE 7 (Gerstenhaber algebra structure on Hochschild cohomology). Consider the
Hochschild cochain complex C*(A, A). We define the cup product

U:C"(A,A)® C"(A, A) —> C™™(A, A)
for two elements x : A®" — A and y : A®™ — A as

xUy(ai,...,Qn, nals - - Anam) = (—l)lxllylx(al, cosan)y(Anats - .o pam) -

1. Prove that the cup product defines a chain map C*(A,A) ® C*(A,A) — C*(A, A).
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We moreover define the Gerstenhaber bracket
[-,-]: C"(A,A) ® C"(A, A) — C"™™1(A, A)
forx: A®" —> Aandy: A®" — A as
[ry] = x o0y — (1) (¥ DUy o
wherex oy = 3 Lxo;yand

x0;y(at, ..., amin-1) = (D x(aq, L ai, y(aists ... Giim)s Gismets - - Gnim-1) -

2. Prove that the Gerstenhaber bracket defines a chain map C*(A, A)®C*(A, A) — C*71(A, A).

3. Prove that the cup product and the Gerstenhaber bracket define a Gerstenhaber algebra
structure on H*(A, A).

EXERCISE 8 (Schouten-Nijenhuis bracket). Let V be a vector space. We define the exterior
algebra AV of V to be the free graded commutative algebra on the graded vector space V seen as being
concentrated in degree 1. We denote its product A.

Prove that the exterior algebra Ag of a Lie algebra (g, [, -]) is a Gerstenhaber algebra for the
Schouten-Nijenhuis bracket

[X1 A AXp, VIA - AYm] = Z X, VIIAXIA - AKX A - AXg AYIA =AY A Ay .

EXERCISE 9 (Chevalley-Eilenberg homology and cohomology). Let g be a Lie algebra. A
vector space V endowed with a linear map [-,-] : V ® ¢ — V satisfying

[V’ [)C, y]] = [[V’x]’ y] - [[V’ y]’x]
is called a right g-module.
1. Prove that g®" and Ag are right g-modules.

LetV be a right g-module. The Chevalley-Eilenberg chain complex is defined to be the chain complex
C.(0,V) whose degree n part is V @ A" and whose differential is defined as

n
d("‘g’gl/\"‘/\gn)ZZ(—l)i[V,gi]®g1/\---/\§i/\---/\gn
i=1
+ Z (D" @ [gngi I AgIA NG A AGiAAgy.
1<i<j<n
2. Check that the above formula indeed defines a differential on C.(g,V).

3. Prove that C, (g, V) is a right g-module, that the action of g is compatible with the differential
and that it is trivial on H.(g, V).
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Recall that one can associate an associative algebra U(g) to the Lie algebra g, called its universal
enveloping algebra. For M a U(g)-bimodule, we then denote M ad the right g-module endowed with
the action [m, g] = mg — gm.

4. Prove that H,(U(g), M) = H.(g, M*?), where H,(U(g), M) is Hochschild homology as defined
in Exercice 6.

We define the Chevalley-Eilenberg cochain complex to be the cochain complex C* (g, V) whose degree
n part is Hom(A"g, V) and whose differential is defined as

n+l

6f(g1’ ce ,gn+1) =Z(_1)i[f(g1’ ce ’gi’ .. 9gn)’gi]

i=1
O DM A8 8181 8 s B 8ne) -

I<i<j<n+l

5. Check that the above formula indeed defines a differential on C*(g, V).

We point out that Ag = C..(g, K) as graded vector spaces.

6. Prove that the product A is not compatible with the differential dcr on Ag.

Hence (Ag, Ockg) is not a cdg algebra.

7. Prove that (Ag, dckg) is a cdg coalgebra for the deconcatenation coproduct.

EXERCISE 10 (Poisson algebras).

1. Prove that the universal enveloping algebra U(g) of a Lie algebra g is a Poisson algebra.

We define a symplectic manifold (M, w) to be the data of a smooth manifold M and of a non-
degenerate 2-form w such that dw = 0.

2. Prove that for every smooth function f € €~ (M,R) there exists a unique vector field
Xy € I'(TM) such that df (-) = w(Xy, ).

For f and g two smooth functions, we then define {f,g} = w(Xr, Xg).

3. Prove that the algebra of smooth functions €~ (M, R) endowed with the bracket {-,-} is a
Poisson algebra.
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