
Introduction to algebraic operads

Exercise sheet 2: Standard algebraic structures

Exercise 1 (An equivalence of categories). Prove that the category of nonunital associa-
tive algebras is equivalent to the category of augmented associative algebras.

Exercise 2 (Tensor coalgebra). Let 𝑉 be a vector space and 𝑇
𝑐 (𝑉) the free reduced tensor

coalgebra of 𝑉 . We define a coderivation of a coalgebra 𝐶 to be a map 𝐷 : 𝐶 → 𝐶 such that
(𝐷 ⊗ id + id ⊗ 𝐷)Δ𝐶 = Δ𝐶𝐷.

1. Prove that there is a correspondence{
collections of linear maps
𝑚𝑛 : 𝑉⊗𝑛 → 𝑉 , 𝑛 ⩾ 1

}
←→

{
coderivations 𝐷 of 𝑇

𝑐 (𝑉)
}
.

2. Let 𝑊 be a vector space. Prove that there is a correspondence{
collections of linear maps

𝑓𝑛 : 𝑉⊗𝑛 → 𝑊 , 𝑛 ⩾ 1

}
←→

{
morphisms of coalgebras 𝑇

𝑐 (𝑉) → 𝑇
𝑐 (𝑊)

}
.

Exercise 3 (Minimal models).

1. Prove that the cdg algebra (Λ(𝑣1, 𝑣2, 𝑣3), 𝜕) defined by deg(𝑣𝑖) = 1, 𝜕 (𝑣1) = 𝑣2𝑣3, 𝜕 (𝑣2) =
𝑣3𝑣1 and 𝜕 (𝑣3) = 𝑣1𝑣2 is not a Sullivan algebra, and compute a minimal Sullivan model for
this cdg algebra.

Recall that the cohomology algebra of spheres is given by 𝐻∗(𝕊𝑛,ℚ) = ℚ[𝑣]/⟨𝑣2 = 0⟩ where |𝑣 | = 𝑛.
We will moreover accept that the spheres are formal in the next question.

2. Compute the minimal Sullivan models of the spheres (by separating the even-dimensional
and odd-dimensional cases).

Exercise 4 (Hopf algebras). A bialgebra is said to be conilpotent if it is conilpotent as a coas-
sociative coalgebra.

1. Prove that any conilpotent bialgebra is a Hopf algebra.

2. Prove that the universal enveloping algebra𝑈 (𝔤) of a Lie algebra 𝔤 is a conilpotent bialgebra.

Given a group 𝐺, we define the group algebra 𝕂 [𝐺] to be the vector space
∑

𝑔∈𝐺 𝕂𝑔 endowed with
multiplication defined on basis elements as 𝑔 ·𝕂 [𝐺 ] 𝑔′ = 𝑔 ·𝐺 𝑔′.

3. Prove that a group algebra 𝕂 [𝐺] is a Hopf algebra that is not conilpotent in general.
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Exercise 5 (Hochschild homology and cohomology). Let 𝐴 be an associative algebra and
𝑀 an 𝐴-bimodule. The Hochschild chain complex 𝐶∗(𝐴, 𝑀) is defined to be the chain complex
whose degree 𝑛 part is 𝑀 ⊗ 𝐴⊗𝑛. Writing an element of 𝐶𝑛 (𝐴, 𝑀) as

𝑚 |𝑎1 | . . . |𝑎𝑛 ,

its differential is defined as

𝑏𝑛 (𝑚 |𝑎1 | . . . |𝑎𝑛) = 𝑚𝑎1 |𝑎2 | . . . |𝑎𝑛 +
𝑛−1∑︁
𝑖=1

(−1)𝑖𝑚 | . . . |𝑎𝑖𝑎𝑖+1 | . . . |𝑎𝑛 + (−1)𝑛𝑎𝑛𝑚 |𝑎1 | . . . |𝑎𝑛−1 .

Its homology is called Hochschild homology and denoted 𝐻∗(𝐴, 𝑀). When 𝑀 = 𝐴 is endowed with
its obvious 𝐴-bimodule structure, the Hochschild homology 𝐻∗(𝐴, 𝐴) is denoted 𝐻𝐻∗(𝐴), and called
the Hochschild homology of the algebra 𝐴.

1. Prove that the maps 𝑏𝑛 indeed define a differential on 𝐶∗(𝐴, 𝑀).

We define the Hochschild cochain complex 𝐶∗(𝐴, 𝑀) to be the cochain complex whose degree 𝑛 part
is Hom(𝐴⊗𝑛, 𝑀) and whose differential is defined as

𝛽(𝑥) (𝑎1, . . . , 𝑎𝑛+1) = 𝑎1𝑥(𝑎2, . . . , 𝑎𝑛+1) +
𝑛∑︁
𝑖=1

(−1)𝑖𝑥(. . . , 𝑎𝑖𝑎𝑖+1, . . . ) + (−1)𝑛+1𝑥(𝑎1, . . . , 𝑎𝑛)𝑎𝑛+1

for a linear map 𝑥 : 𝐴⊗𝑛 → 𝑀 .

2. Check that this formula defines indeed a differential 𝛽 on 𝐶∗(𝐴, 𝑀).

We suppose in the rest of the exercise that 𝐴 is commutative and unital. We moreover define the 𝐴-
module of Kähler differentials Ω1

𝐴|𝕂 to be the 𝐴-module generated by the symbols 𝑑𝑎 for 𝑎 ∈ 𝐴 and
satisfying the relations

𝑑 (𝜆𝑎 + 𝜇𝑏) = 𝜆𝑑𝑎 + 𝜇𝑑𝑏 𝑑 (𝑎𝑏) = 𝑎(𝑑𝑏) + 𝑏(𝑑𝑎)

3. Prove that 𝐻𝐻0(𝐴) = 𝐴 and that 𝐻𝐻1(𝐴) = Ω1
𝐴|𝕂 .

Define a derivation of 𝐴 with value in 𝑀 to be a linear map 𝐷 : 𝐴→ 𝑀 satisfying the equality

𝐷 (𝑎𝑏) = 𝑎𝐷 (𝑏) + 𝐷 (𝑎)𝑏 .

4. Prove that the set of derivations Der(𝐴, 𝑀) is an 𝐴-module and that there is a correspon-
dence

Hom𝐴-mod(Ω1
𝐴|𝕂 , 𝑀) = Der(𝐴, 𝑀) .

5. Prove that for an element 𝑚 ∈ 𝑀, the map 𝑎𝑑𝑚 : 𝐴→ 𝑀 defined as 𝑎𝑑𝑚(𝑎) := 𝑚𝑎 − 𝑎𝑚 is
a derivation. It will be called an inner derivation. Prove then that the set of inner derivations
Inn(𝐴, 𝑀) is a submodule of Der(𝐴, 𝑀).

6. Prove that 𝐻1(𝐴, 𝑀) = Der(𝐴, 𝑀)/Inn(𝐴, 𝑀).
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Exercise 6 (Frobenius algebra). Let 𝑉 and 𝑊 be two vector spaces. A pairing of 𝑉 and 𝑊 is
defined to be a linear map ⟨·, ·⟩ : 𝑉 ⊗ 𝑊 → 𝕂. It is non-degenerate in the variable 𝑉 if there
exists an element

∑
𝑤𝑖 ⊗ 𝑣𝑖 ∈ 𝑊 ⊗ 𝑉 such that the map 𝑣 ∈ 𝑉 → ∑

𝑖 ⟨𝑣, 𝑤𝑖⟩𝑣𝑖 is the identity map.
Non-degeneracy in the variable 𝑊 is defined similarly. It is non-degenerate if it is non-degenerate
in both variables.

1. Prove that the following are equivalent:

(i) The pairing ⟨·, ·⟩ is non-degenerate.
(ii) 𝑊 is finite-dimensional and the induced linear map 𝑊 → 𝑉∗ is an isomorphism.
(iii) 𝑉 is finite-dimensional and the induced linear map 𝑉 → 𝑊∗ is an isomorphism.

Let 𝐴 be a unital associative algebra. If 𝑉 is a right 𝐴-module and 𝑊 a left 𝐴-module, we say that the
pairing is associative if ⟨𝑣𝑎, 𝑤⟩ = ⟨𝑣, 𝑎𝑤⟩.

2. We suppose that 𝐴 is finite-dimensional as a vector space. Prove that the following are
equivalent:

(i) The right 𝐴-module 𝐴 is right 𝐴-isomorphic to 𝐴∨.
(ii) The left 𝐴-module 𝐴 is left 𝐴-isomorphic to 𝐴∨.
(iii) There exists a linear map 𝜀 : 𝐴→ 𝕂 whose nullspace does not contain any non-trivial

left-ideal.
(iv) There exists an associative non-degenerate pairing 𝐴 ⊗ 𝐴→ 𝕂.

𝐴 is then said to be a Frobenius algebra.

3. Let 𝐴 be a vector space endowed with a multiplication 𝜇 : 𝐴 ⊗ 𝐴→ 𝐴 with unit 𝜂 : 𝕂 → 𝐴

𝜇(𝜂, id) = id = 𝜇(id, 𝜂) ,
and with a comultiplication Δ : 𝐴→ 𝐴→ 𝐴 with counit 𝜀 : 𝐴→ 𝕂

(𝜀 ⊗ id)Δ = id = (id ⊗ 𝜀)Δ ,

that satisfy the Frobenius relation

(id ⊗ 𝜇) (Δ ⊗ id) = Δ𝜇 = (𝜇 ⊗ id) (id ⊗ Δ) .
Prove that the multiplication 𝜇 is associative and that the unital associative algebra 𝐴 is a
Frobenius algebra.

4. Prove that the conditions of question 3. are equivalent to the conditions of question 2..

Exercise 7 (Gerstenhaber algebra structure on Hochschild cohomology). Consider the
Hochschild cochain complex 𝐶∗(𝐴, 𝐴). We define the cup product

∪ : 𝐶𝑛 (𝐴, 𝐴) ⊗ 𝐶𝑚(𝐴, 𝐴) −→ 𝐶𝑛+𝑚(𝐴, 𝐴)
for two elements 𝑥 : 𝐴⊗𝑛 → 𝐴 and 𝑦 : 𝐴⊗𝑚 → 𝐴 as

𝑥 ∪ 𝑦(𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1, . . . , 𝑎𝑛+𝑚) := (−1) |𝑥 | |𝑦 |𝑥(𝑎1, . . . , 𝑎𝑛)𝑦(𝑎𝑛+1, . . . , 𝑎𝑛+𝑚) .

1. Prove that the cup product defines a chain map 𝐶∗(𝐴, 𝐴) ⊗ 𝐶∗(𝐴, 𝐴) → 𝐶∗(𝐴, 𝐴).
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We moreover define the Gerstenhaber bracket

[·, ·] : 𝐶𝑛 (𝐴, 𝐴) ⊗ 𝐶𝑚(𝐴, 𝐴) −→ 𝐶𝑛+𝑚−1(𝐴, 𝐴)

for 𝑥 : 𝐴⊗𝑛 → 𝐴 and 𝑦 : 𝐴⊗𝑚 → 𝐴 as

[𝑥, 𝑦] = 𝑥 ◦ 𝑦 − (−1) ( |𝑥 |+1) ( |𝑦 |+1) 𝑦 ◦ 𝑥 ,

where 𝑥 ◦ 𝑦 =
∑𝑛−1

𝑖=0 𝑥 ◦𝑖 𝑦 and

𝑥 ◦𝑖 𝑦(𝑎1, . . . , 𝑎𝑚+𝑛−1) = (−1)𝑖 ( |𝑦 |+1)𝑥(𝑎1, . . . , 𝑎𝑖 , 𝑦(𝑎𝑖+1, . . . , 𝑎𝑖+𝑚), 𝑎𝑖+𝑚+1, . . . , 𝑎𝑛+𝑚−1) .

2. Prove that the Gerstenhaber bracket defines a chain map 𝐶∗(𝐴, 𝐴)⊗𝐶∗(𝐴, 𝐴) → 𝐶∗−1(𝐴, 𝐴).

3. Prove that the cup product and the Gerstenhaber bracket define a Gerstenhaber algebra
structure on 𝐻∗(𝐴, 𝐴).

Exercise 8 (Schouten-Nijenhuis bracket). Let 𝑉 be a vector space. We define the exterior
algebra Λ𝑉 of 𝑉 to be the free graded commutative algebra on the graded vector space 𝑉 seen as being
concentrated in degree 1. We denote its product ∧.

Prove that the exterior algebra Λ𝔤 of a Lie algebra (𝔤, [·, ·]) is a Gerstenhaber algebra for the
Schouten-Nijenhuis bracket

[𝑥1 ∧ · · · ∧ 𝑥𝑛, 𝑦1 ∧ · · · ∧ 𝑦𝑚] =
∑︁

𝑖=1,...,𝑛
𝑗=1,...,𝑚

[𝑥𝑖 , 𝑦 𝑗] ∧ 𝑥1 ∧ · · · ∧ 𝑥𝑖 ∧ · · · ∧ 𝑥𝑛 ∧ 𝑦1 ∧ · · · ∧ 𝑦 𝑗 ∧ · · · ∧ 𝑦𝑚 .

Exercise 9 (Chevalley-Eilenberg homology and cohomology). Let 𝔤 be a Lie algebra. A
vector space 𝑉 endowed with a linear map [·, ·] : 𝑉 ⊗ 𝔤→ 𝑉 satisfying

[𝑣, [𝑥, 𝑦]] = [[𝑣, 𝑥], 𝑦] − [[𝑣, 𝑦], 𝑥]

is called a right 𝔤-module.

1. Prove that 𝔤⊗𝑛 and Λ𝔤 are right 𝔤-modules.

Let𝑉 be a right 𝔤-module. The Chevalley-Eilenberg chain complex is defined to be the chain complex
𝐶∗(𝔤, 𝑉) whose degree 𝑛 part is 𝑉 ⊗ Λ𝑛𝔤 and whose differential is defined as

𝑑 (𝑣 ⊗ 𝑔1 ∧ · · · ∧ 𝑔𝑛) =
𝑛∑︁
𝑖=1

(−1)𝑖 [𝑣, 𝑔𝑖] ⊗ 𝑔1 ∧ · · · ∧ 𝑔̂𝑖 ∧ · · · ∧ 𝑔𝑛

+
∑︁

1⩽𝑖< 𝑗⩽𝑛

(−1)𝑖+ 𝑗−1𝑣 ⊗ [𝑔𝑖 , 𝑔 𝑗] ∧ 𝑔1 ∧ · · · ∧ 𝑔̂𝑖 ∧ · · · ∧ 𝑔̂ 𝑗 ∧ · · · ∧ 𝑔𝑛 .

2. Check that the above formula indeed defines a differential on 𝐶∗(𝔤, 𝑉).

3. Prove that 𝐶∗(𝔤, 𝑉) is a right 𝔤-module, that the action of 𝔤 is compatible with the differential
and that it is trivial on 𝐻∗(𝔤, 𝑉).
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Recall that one can associate an associative algebra 𝑈 (𝔤) to the Lie algebra 𝔤, called its universal
enveloping algebra. For 𝑀 a 𝑈 (𝔤)-bimodule, we then denote 𝑀𝑎𝑑 the right 𝔤-module endowed with
the action [𝑚, 𝑔] = 𝑚𝑔 − 𝑔𝑚.

4. Prove that 𝐻∗(𝑈 (𝔤), 𝑀) = 𝐻∗(𝔤, 𝑀𝑎𝑑), where 𝐻∗(𝑈 (𝔤), 𝑀) is Hochschild homology as defined
in Exercice 6.

We define the Chevalley-Eilenberg cochain complex to be the cochain complex 𝐶∗(𝔤, 𝑉) whose degree
𝑛 part is Hom(Λ𝑛𝔤, 𝑉) and whose differential is defined as

𝛿 𝑓 (𝑔1, . . . , 𝑔𝑛+1) =
𝑛+1∑︁
𝑖=1

(−1)𝑖 [ 𝑓 (𝑔1, . . . , 𝑔̂𝑖 , . . . , 𝑔𝑛), 𝑔𝑖]

+
∑︁

1⩽𝑖< 𝑗⩽𝑛+1
(−1)𝑖+ 𝑗 𝑓 ( [𝑔𝑖 , 𝑔 𝑗], 𝑔1, . . . , 𝑔̂𝑖 , . . . , 𝑔̂ 𝑗 , . . . , 𝑔𝑛+1) .

5. Check that the above formula indeed defines a differential on 𝐶∗(𝔤, 𝑉).

We point out that Λ𝔤 = 𝐶∗(𝔤,𝕂) as graded vector spaces.

6. Prove that the product ∧ is not compatible with the differential 𝜕𝐶𝐸 on Λ𝔤.

Hence (Λ𝔤, 𝜕𝐶𝐸) is not a cdg algebra.

7. Prove that (Λ𝔤, 𝜕𝐶𝐸) is a cdg coalgebra for the deconcatenation coproduct.

Exercise 10 (Poisson algebras).

1. Prove that the universal enveloping algebra 𝑈 (𝔤) of a Lie algebra 𝔤 is a Poisson algebra.

We define a symplectic manifold (𝑀,𝜔) to be the data of a smooth manifold 𝑀 and of a non-
degenerate 2-form 𝜔 such that 𝑑𝜔 = 0.

2. Prove that for every smooth function 𝑓 ∈ C∞(𝑀,ℝ) there exists a unique vector field
𝑋 𝑓 ∈ Γ(𝑇𝑀) such that 𝑑𝑓 (·) = 𝜔(𝑋 𝑓 , ·).

For 𝑓 and 𝑔 two smooth functions, we then define { 𝑓 , 𝑔} := 𝜔(𝑋 𝑓 , 𝑋𝑔).

3. Prove that the algebra of smooth functions C∞(𝑀,ℝ) endowed with the bracket {·, ·} is a
Poisson algebra.
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