
Introduction to algebraic operads

Exercise sheet 1: Homological algebra

1. Categories

Exercise 1 (Yoneda lemma). Given a small category C, a functor F : C → Set and an
object 𝐶 of C, prove that the map

Nat(C(𝐶, ·),F) −→ F(𝐶)
𝜏 ↦−→ 𝜏𝐶 (id𝐶)

is a bijection. This result is known as the Yoneda lemma.

Exercise 2 (The 2-category Cat). We define a 2-category C to be the following data:

(i) A class of objects Ob(C).
(ii) For every object 𝑋,𝑌 ∈ C a category C(𝑋,𝑌 ) and for every 𝑋 ∈ C an identity object id𝑋 in

C(𝑋, 𝑋).
(iii) For every objects 𝑋,𝑌, 𝑍 ∈ C a composition bifunctor C(𝑌, 𝑍) × C(𝑋,𝑌 ) → C(𝑋, 𝑍).

These data have to satisfy the same associativity and identity axioms as a standard category. The
elements 𝑓 ∈ C(𝑋,𝑌 ) are called 1-morphisms and denoted 𝑓 : 𝑋 → 𝑌 and the elements 𝜏 ∈
C(𝑋,𝑌 ) ( 𝑓 , 𝑔) are called 2-morphisms and denoted 𝜏 : 𝑓 ⇒ 𝑔.

Prove that Cat is a 2-category whose 1-morphisms are functors and 2-morphisms are natural
transformations.

Exercise 3 (Adjunction).

1. Given two functors F, G : C→ D, prove that a collection of bijections

𝜙𝑋,𝑌 : C(F(𝑋), 𝑌 ) ˜−→D(𝑋, G(𝑌 ))

defines a natural equivalence if and only if for all objects 𝑋, 𝑋 ′ ∈ C and 𝑌,𝑌 ′ ∈ D, and all
morphisms 𝑓 : 𝑋 → 𝑋 ′, ℎ : F(𝑋 ′) → 𝑌 and 𝑔 : 𝑌 → 𝑌 ′ we have that

𝜙𝑋,𝑌 ′ (𝑔 ◦ ℎ ◦ F( 𝑓 )) = 𝐺 (𝑔) ◦ 𝜙𝑋′ ,𝑌 (ℎ) ◦ 𝑓 .

2. Given two adjoint functors F⊣ G as in the previous question, prove that the diagram

F(𝑋) 𝑌

F(𝑋 ′) 𝑌 ′

ℎ

F( 𝑓 ) 𝑔

ℎ′
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is commutative if and only if the diagram

𝑋 G(𝑌 )

𝑋 ′ G(𝑌 ′)

𝜙𝑋,𝑌 (ℎ)

𝑓 G(𝑔)
𝜙𝑋′ ,𝑌 ′ (ℎ′ )

is commutative.

3. Prove that two functors F : C⇄ D : G form an adjunction F⊣ G if and only if there exists
two natural transformations 𝜂 : idC ⇒ G◦ F and 𝜀 : F◦ G⇒ idD such that 𝜀F◦ F𝜂 = idF

and G𝜀 ◦ 𝜂G= idG. The natural transformations 𝜂 and 𝜀 are then respectively called the unit
and the counit of the adjunction.

Exercise 4 (Monad). We define an endofunctor of a category C to be a functor C → C and
denote EndoFunC the category of endofunctors of C (see Exercise 2).

1. Prove that the composition ◦ and the identity functor idC endow the category EndoFunC

with a structure of strict monoidal category.

We define a monad to be a monoid in the monoidal category EndoFunC.

2. Prove that an adjunction F : C⇄ D : Gwith unit 𝜂 and counit 𝜀 gives rise to a monad
structure on the endofunctor GF : C→ Cwith multiplication G𝜀F and unit 𝜂.

An algebra over a monad (M , 𝜇, 𝜂) is defined to be an object 𝐶 of C together with a morphism
𝛾𝐴 : M(𝐴) → 𝐴 making the following diagrams commute

M(M(𝐴)) M(𝐴)

M(𝐴) 𝐴

M(𝛾𝐴)

𝜇𝐴 𝛾𝐴

𝛾𝐴

idC(𝐴) M(𝐴)

𝐴

𝜂𝐴

𝛾𝐴
.

3. Prove that the forgetful functor U : Vect → Set has a left-adjoint F and that an algebra
structure on a set 𝑉 over the monad UF is then exactly a vector space structure on 𝑉 .

2. Homological algebra

Exercise 5 (Euler characteristic). A chain complex is said to be bounded if up to reindexing
it is of the form

0 −→ 𝐶𝑛 −→ · · · −→ 𝐶0 −→ 0 .

1. Prove that for a bounded chain complex 𝐶∗,
𝑛∑︁
𝑖=0

(−1)𝑖 dim(𝐶𝑖) =
𝑛∑︁
𝑖=0

(−1)𝑖 dim(𝐻𝑖 (𝐶)) .

This number is then called its Euler characteristic and denoted 𝜒(𝐶).
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2. Prove that every short exact sequence of bounded chain complexes

0 −→ 𝐴∗ −→ 𝐵∗ −→ 𝐶∗ −→ 0,

satisfies the relation 𝜒(𝐵) = 𝜒(𝐴) + 𝜒(𝐶).

Exercise 6 (Diagram chasing lemmas).

1. Prove that in a short exact sequence 0 → 𝐴∗ → 𝐵∗ → 𝐶∗ → 0 of chain complexes, if two of
the three chain complexes are exact then so is the third.

2. Consider a commutative diagram of linear maps

𝐴1 𝐵1 𝐶1 𝐷1 𝐸1

𝐴2 𝐵2 𝐶2 𝐷2 𝐸2

𝑎 𝑏 𝑐 𝑑 𝑒

whose rows are exact, and such that 𝑏 and 𝑑 are isomorphisms, 𝑎 is surjective and 𝑒 is injective.
Prove that the linear map 𝑐 is an isomorphism. This result is known as the five lemma.

3. Prove that in a commutative diagram of chain maps

0 𝐴∗ 𝐵∗ 𝐶∗ 0

0 𝐷∗ 𝐸∗ 𝐹∗ 0

whose rows are exact, if two of the vertical morphisms are quasi-isomorphisms then so is the
third.

Exercise 7 (Cone). Let 𝐶 and 𝐷 be two chain complexes and 𝑓 : 𝐶 → 𝐷 be a chain map. We
define the cone of 𝑓 to be the chain complex Cone( 𝑓 ) whose degree 𝑛 part is 𝐶𝑛−1 ⊕ 𝐷𝑛 and whose
differential is given by

𝜕 (𝑐, 𝑑) := (−𝜕𝐶𝑐, 𝜕𝐷𝑑 − 𝑓 (𝑐)) .
This is often written as

𝜕Cone( 𝑓 ) :=
(
−𝜕𝐶 0
− 𝑓 𝜕𝐷

)
.

1. Check that the above formula indeed defines a differential on Cone( 𝑓 ).

2. Prove that the sequence

0 −→ 𝐷 −→ Cone( 𝑓 ) −→ 𝑠𝐶 −→ 0

is exact and make the connecting homomorphism explicit.

3. Prove that 𝑓 is a quasi-isomorphism if and only Cone( 𝑓 ) is exact.

4. Suppose that 𝑓 and 𝑓 ′ are two homotopic chain maps 𝐶 → 𝐷. Show that there exists a
quasi-isomorphism Cone( 𝑓 ) → Cone( 𝑓 ′).
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We say that a chain complex 𝐶∗ is contractible if the chain map id𝐶 is null-homotopic, i.e. homotopic
to the null chain map.

5. Prove that if 𝑓 is a homotopy equivalence, then Cone( 𝑓 ) is contractible.

A chain complex (𝐶∗, 𝜕) is said to be split if there exists a collection of maps 𝑠𝑛 : 𝐶𝑛 → 𝑠𝑛+1 such that
𝜕𝑛+1 = 𝜕𝑛+1𝑠𝑛𝜕𝑛+1.

6. Prove that a split chain complex is exact if and only if its contractible.

7. Prove that Cone(𝐶) := Cone(id𝐶) is split exact.
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