INTRODUCTION TO ALGEBRAIC OPERADS

EXERCISE SHEET 1: Homological algebra

1. CATEGORIES

EXERCISE 1 (Yoneda lemma). Given a small category \mathcal{C} , a functor $\mathcal{F} : \mathcal{C} \to \text{Set}$ and an object C of \mathcal{C} , prove that the map

$$\operatorname{Nat}(\mathscr{C}(C,\cdot),\mathscr{F}) \longrightarrow \mathscr{F}(C)$$
$$\tau \longmapsto \tau_C(\operatorname{id}_C)$$

is a bijection. This result is known as the Yoneda lemma.

EXERCISE 2 (The 2-category Cat). We define a 2-category C to be the following data:

- (i) A class of objects $Ob(\mathscr{C})$.
- (ii) For every object $X, Y \in \mathcal{C}$ a category $\mathcal{C}(X, Y)$ and for every $X \in \mathcal{C}$ an identity object id_X in $\mathcal{C}(X, X)$.
- (iii) For every objects $X, Y, Z \in \mathcal{C}$ a composition bifunctor $\mathcal{C}(Y, Z) \times \mathcal{C}(X, Y) \to \mathcal{C}(X, Z)$.

These data have to satisfy the same associativity and identity axioms as a standard category. The elements $f \in \mathcal{C}(X, Y)$ are called 1-morphisms and denoted $f : X \to Y$ and the elements $\tau \in \mathcal{C}(X, Y)(f, g)$ are called 2-morphisms and denoted $\tau : f \Rightarrow g$.

Prove that Cat is a 2-category whose 1-morphisms are functors and 2-morphisms are natural transformations.

EXERCISE 3 (Adjunction).

1. Given two functors $\mathcal{F}, \mathcal{G}: \mathcal{C} \to \mathfrak{D}$, prove that a collection of bijections

$$\phi_{X,Y}: \mathscr{C}(\mathscr{F}(X),Y) \tilde{\longrightarrow} \mathfrak{D}(X,\mathfrak{G}(Y))$$

defines a natural equivalence if and only if for all objects $X, X' \in \mathcal{C}$ and $Y, Y' \in \mathcal{D}$, and all morphisms $f: X \to X', h: \mathcal{F}(X') \to Y$ and $g: Y \to Y'$ we have that

$$\phi_{X,Y'}(g \circ h \circ \mathcal{F}(f)) = G(g) \circ \phi_{X',Y}(h) \circ f .$$

2. Given two adjoint functors $\mathcal{F} \dashv \mathcal{G}$ as in the previous question, prove that the diagram

$$\begin{array}{ccc} \mathcal{F}(X) & \stackrel{h}{\longrightarrow} Y \\ & \downarrow^{\mathcal{F}(f)} & \downarrow^{g} \\ \mathcal{F}(X') & \stackrel{h'}{\longrightarrow} Y' \end{array}$$

is commutative if and only if the diagram

$$\begin{array}{c} X \xrightarrow{\phi_{X,Y}(h)} \mathfrak{G}(Y) \\ \downarrow^{f} \qquad \qquad \downarrow^{\mathfrak{G}(g)} \\ X' \xrightarrow{\phi_{X',Y'}(h')} \mathfrak{G}(Y') \end{array}$$

is commutative.

3. Prove that two functors $\mathcal{F} : \mathcal{C} \rightleftharpoons \mathfrak{D} : \mathcal{G}$ form an adjunction $\mathcal{F} \dashv \mathcal{G}$ if and only if there exists two natural transformations $\eta : \mathrm{id}_{\mathscr{C}} \Rightarrow \mathcal{G} \circ \mathcal{F}$ and $\varepsilon : \mathcal{F} \circ \mathcal{G} \Rightarrow \mathrm{id}_{\mathfrak{D}}$ such that $\varepsilon \mathcal{F} \circ \mathcal{F} \eta = \mathrm{id}_{\mathscr{F}}$ and $\mathcal{G}_{\varepsilon} \circ \eta \mathcal{G} = \mathrm{id}_{\mathscr{G}}$. The natural transformations η and ε are then respectively called the *unit* and the *counit* of the adjunction.

EXERCISE 4 (Monad). We define an endofunctor of a category \mathcal{C} to be a functor $\mathcal{C} \to \mathcal{C}$ and denote EndoFun_{\mathcal{C}} the category of endofunctors of \mathcal{C} (see Exercise 2).

1. Prove that the composition \circ and the identity functor $id_{\mathscr{C}}$ endow the category $EndoFun_{\mathscr{C}}$ with a structure of strict monoidal category.

We define a monad to be a monoid in the monoidal category EndoFun_&.

2. Prove that an adjunction $\mathcal{F} : \mathcal{C} \rightleftharpoons \mathfrak{D} : \mathfrak{C}$ with unit η and counit ε gives rise to a monad structure on the endofunctor $\mathcal{GF} : \mathcal{C} \to \mathcal{C}$ with multiplication $\mathcal{G\varepsilon}\mathcal{F}$ and unit η .

An algebra over a monad (\mathcal{M}, μ, η) is defined to be an object C of C together with a morphism $\gamma_A : \mathcal{M}(A) \to A$ making the following diagrams commute

3. Prove that the forgetful functor $\mathcal{U} : \text{Vect} \to \text{Set}$ has a left-adjoint \mathcal{F} and that an algebra structure on a set V over the monad \mathcal{UF} is then exactly a vector space structure on V.

2. Homological Algebra

EXERCISE 5 (Euler characteristic). A chain complex is said to be bounded if up to reindexing it is of the form

$$0 \longrightarrow C_n \longrightarrow \cdots \longrightarrow C_0 \longrightarrow 0$$

1. Prove that for a bounded chain complex C_* ,

$$\sum_{i=0}^{n} (-1)^{i} \dim(C_{i}) = \sum_{i=0}^{n} (-1)^{i} \dim(H_{i}(C)) .$$

This number is then called its *Euler characteristic* and denoted $\chi(C)$.

2. Prove that every short exact sequence of bounded chain complexes

$$0 \longrightarrow A_* \longrightarrow B_* \longrightarrow C_* \longrightarrow 0,$$

satisfies the relation $\chi(B) = \chi(A) + \chi(C)$.

EXERCISE 6 (Diagram chasing lemmas).

1. Prove that in a short exact sequence $0 \to A_* \to B_* \to C_* \to 0$ of chain complexes, if two of the three chain complexes are exact then so is the third.

2. Consider a commutative diagram of linear maps

$$\begin{array}{cccc} A_1 & \longrightarrow & B_1 & \longrightarrow & C_1 & \longrightarrow & D_1 & \longrightarrow & E_1 \\ \downarrow^a & & \downarrow^b & \downarrow^c & \downarrow^d & \downarrow^e \\ A_2 & \longrightarrow & B_2 & \longrightarrow & C_2 & \longrightarrow & D_2 & \longrightarrow & E_2 \end{array}$$

whose rows are exact, and such that b and d are isomorphisms, a is surjective and e is injective. Prove that the linear map c is an isomorphism. This result is known as the *five lemma*.

3. Prove that in a commutative diagram of chain maps

whose rows are exact, if two of the vertical morphisms are quasi-isomorphisms then so is the third.

EXERCISE 7 (Cone). Let C and D be two chain complexes and $f : C \to D$ be a chain map. We define the cone of f to be the chain complex Cone(f) whose degree n part is $C_{n-1} \oplus D_n$ and whose differential is given by

$$\partial(c,d) := (-\partial_C c, \partial_D d - f(c))$$
.

This is often written as

$$\partial_{\operatorname{Cone}(f)} := \begin{pmatrix} -\partial_C & 0\\ -f & \partial_D \end{pmatrix}$$

- 1. Check that the above formula indeed defines a differential on Cone(f).
- 2. Prove that the sequence

 $0 \longrightarrow D \longrightarrow \operatorname{Cone}(f) \longrightarrow sC \longrightarrow 0$

is exact and make the connecting homomorphism explicit.

3. Prove that f is a quasi-isomorphism if and only Cone(f) is exact.

4. Suppose that f and f' are two homotopic chain maps $C \to D$. Show that there exists a quasi-isomorphism $\text{Cone}(f) \to \text{Cone}(f')$.

We say that a chain complex C_* is contractible if the chain map id_C is null-homotopic, i.e. homotopic to the null chain map.

5. Prove that if f is a homotopy equivalence, then Cone(f) is contractible.

A chain complex (C_*, ∂) is said to be split if there exists a collection of maps $s_n : C_n \to s_{n+1}$ such that $\partial_{n+1} = \partial_{n+1} s_n \partial_{n+1}$.

6. Prove that a split chain complex is exact if and only if its contractible.

7. Prove that $Cone(C) := Cone(id_C)$ is split exact.