Exercice 1

Soit f l'endomorphisme de \mathbb{R}^3 de matrice dans la base canonique

$$M = \begin{pmatrix} -5 & -8 & 4 \\ 0 & 3 & 0 \\ -8 & -8 & 7 \end{pmatrix}$$

- 1) Déterminer le polynôme caractéristique, les valeurs propres (on vérifiera ses calculs à l'aide de la trace) et les sous-espaces propres de f.
- 2) Donner une base \mathcal{B}' de vecteurs propres, la matrice D de f dans cette base, et la matrice de changement de base P. Donner la formule liant M, P et D.
- 3) Déterminer la matrice de f^k dans la base \mathscr{B}' puis dans la base canonique.

Exercice 2

Montrer que $M=\begin{pmatrix} 2 & -1 & 3\\ 1 & 0 & 1\\ 1 & -1 & 2 \end{pmatrix}$ est diagonalisable : Calculer le polynôme caractéristique et donner une matrice diagonale semblable à M sans calculer les sous-espaces propres.

Exercice 3

Calculer le polynôme caractéristique et les sous-espaces propres des matrices suivantes et diagonaliser, lorsque c'est possible, ces matrices :

$$A_1 = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -2 & 1 & 1 \\ 8 & 1 & -5 \\ 4 & 3 & -3 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 4 & 2 & -2 \\ 1 & 5 & -1 \\ 1 & 3 & 1 \end{pmatrix}$$

$$A_5 = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad A_6 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}), \quad B_6 = aA_6^2 + bA_6 + cI_3, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix}$$

Exercice 4 (D'après CCP 2018)

On définit l'application Φ de $\mathbb{R}_n[X]$ dans lui-même par :

$$\forall P \in \mathbb{R}_n[X] \qquad \Phi(P) = (X^2 - 1)P'' + XP'$$

- 1) Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Déterminer la matrice de Φ dans la base canonique $(1, X, \dots, X^n)$ de $\mathbb{R}_n[X]$. Calculer la trace de Φ .
- 3) L'endomorphisme est-il diagonalisable?

Exercice 5

Soit $a, b, c \in \mathbb{R}$ et f définie sur $\mathbb{R}_{2n}[X]$ par f(P)(X) = (X - a)(X - b)P'(X) - (2nX - n(a + b) + c)P(X). Montrer que f est un endomorphisme, dont on déterminera les éléments propres (vecteurs propres et valeurs propres).

Exercice 6

Soit E un \mathbb{R} -espace vectoriel fixé. Soit $f \in \mathcal{L}(E)$, $\alpha, \beta \in \mathbb{R}^*$ distincts tels que

$$f^2 - (\alpha + \beta)f + \alpha\beta \operatorname{id}_E = 0$$

- 1) Montrer que f est inversible et exprimer son inverse à l'aide d'un polynôme en f.
- 2) Montrer que f est diagonalisable. Déterminer les spectres possibles de f.
- **3)** Montrer que Ker $(f \alpha \operatorname{id}_E) = \operatorname{Im}(f \beta \operatorname{id}_E)$.

Exercice 7

Soit E un \mathbb{R} -espace vectoriel fixé et $u \in \mathcal{L}(E)$.

- 1) On suppose E de dimension finie. Montrer, sans utiliser le théorème de Cayley Hamilton, qu'il existe un polynôme annulateur de u.
- 2) En considérant $u: P \mapsto P'$ sur $E = \mathbb{R}[X]$, montrer que ce n'est plus forcément le cas en dimension quelconque.

Exercice 8

Soit E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ inversible. Montrer que u^2 diagonalisable entraı̂ne u diagonalisable.

Exercice 9

Soit $f, g \in \mathcal{L}(\mathbb{R}^3)$ dont les matrices dans la base canonique de \mathbb{R}^3 sont respectivement

$$A_f = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \text{et} \qquad A_g = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Montrer que les matrices A_f et A_g sont diagonalisables (pour 5/2 : sans calculs).
- 2) Vérifier que les endomorphismes f et g commutent.
- 3) Déterminer tous les vecteurs propres de f associés à la valeur propre 1. Vérifier que ces vecteurs sont aussi vecteurs propres de g.
- 4) Déterminer le sous-espace propre de f associé à la valeur propre -1. Vérifier que ce sous-espace est stable par g.
- 5) Construire une base $\mathscr{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de diagonalisation commune à f et g.
- 6) Soit E un \mathbb{R} -espace vectoriel de dimension finie n, et $f, g \in \mathcal{L}(E)$ qui commutent. Montrer que, si f et g sont diagonalisables, ils le sont dans une même base.

Exercice 10

La matrice $A = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 9 & 2 \\ 0 & 0 & 2 \end{pmatrix}$ est-elle diagonalisable?

- 1) Diagonaliser A, donner la matrice de passage et son inverse.
- 2) Déterminer toutes les matrices M' telles que $M'^2 = D$, où D est la matrice diagonale obtenue en 1.
- 3) En déduire toutes les matrices M telles que $M^2 = A$.

Exercice 11

Montrer qu'une somme (puis un produit) de matrices diagonalisables n'est pas forcément diagonalisable. On pourra chercher des matrices 2×2 triangulaires.

Exercice 12

Montrer que M et tM ont mêmes valeurs propres.

Exercice 13

Trouver $a \in \mathbb{R}$ tel que $A = \begin{pmatrix} 1 & -1 & 0 \\ a & 1 & 1 \\ 0 & a+1 & 3 \end{pmatrix}$ admette 2 pour valeur propre. Réduire la matrice.

Exercice 14

Les matrices $A = \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$ sont-elles semblables?

Exercice 15

Montrer que $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$ sont semblables.

Exercices Réduction

Exercice 16

Soit $\varphi: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ défini par $\varphi(M) = {}^tM$. Valeurs propres, sous-espaces propres (<u>Indication</u>: $calculer \varphi^2$). L'endomorphisme φ est-il diagonalisable? Trace de φ . Quelle est la nature géométrique de φ ?

Exercice 17

On pose
$$A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$$
, u_A l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par $u_A(M) = MA$, et $B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 3 & 0 & 2 \end{pmatrix}$

1) La matrice A est-elle diagonalisable?

- 2) La matrice B est-elle diagonalisable? Si oui, préciser une base de vecteurs propres.
- **3)** On pose :

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- a) Vérifier que la famille $\mathscr{B} = (E_{11}, E_{21}, E_{12}, E_{22})$ est une base de $\mathscr{M}_2(\mathbb{R})$.
- b) Calculer $u_A(E_{ij})$ pour tout $1 \le i, j \le 2$. Donner la matrice de u_A dans la base \mathscr{B} .
- c) L'endomorphisme u_A est-il diagonalisable? Si oui, préciser ses valeurs propres et une base de vecteurs propres de u_A (on rappelle qu'ici un vecteur propre sera une matrice de $\mathcal{M}_2(\mathbb{R})$).
- d) Sans calcul de valeur propre ou de vecteur propre, pour une matrice A quelconque, montrer que A diagonalisable entraîne u_A diagonalisable.

Exercice 18

Soit E le sous-espace vectoriel de $\mathscr{C}^0(\mathbb{R},\mathbb{R})$ des fonctions ayant une limite nulle en $\pm \infty$. Soit u définie sur E par u(f)(x) = f(2x).

Montrer que u est un endomorphisme, puis que u n'a pas de valeurs propres.

<u>Indication</u>: $si\ u(f) = \lambda f$, regarder $u^n(f)(x)$.

Exercice 19

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = 2A^2 - A$. Montrer que Tr $A \in \mathbb{Z}$.

Exercice 20

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que rg (A) est pair.

Indication : On pourra étudier la multiplicité des valeurs propres, puis la dimension des sous-espaces propres.

Soit E un espace vectoriel de dimension 3 de base $\mathscr{B}=(e_1,e_2,e_3)$ et $f\in\mathscr{L}(E)$ de matrice A=

- 1) Déterminer les valeurs propres et les sous-espaces propres de f, l'endomorphisme f est-il diagonali-
- 2) On note e_1' un vecteur propre pour la plus grande des deux valeurs propres, et e_2' un vecteur propre pour l'autre valeur propre. Vérifier que $\mathscr{B}'=(e_1',e_2',e_3)$ est une base de E. Donner la matrice T de l'application f dans la base \mathscr{B}' ,
- 3) Calculer T^n pour $n \in \mathbb{N}^*$. Calculer T^{-1} , puis T^n pour $n \in \mathbb{Z}$.
- 4) En déduire A^n pour $n \in \mathbb{Z}$.

Exercice 22

Soit S le système $\begin{cases} x_{n+1} &= 2x_n - y_n + z_n \\ y_{n+1} &= y_n + z_n \\ z_{n+1} &= -x_n + y_n + z_n \end{cases}$ avec $(x_0, y_0, z_0) \in \mathbb{R}^3$ fixés

- 1) Écrire le système sous forme matricielle $X_{n+1} = AX_n$. Exprimer X_n en fonction de A, de X_0 et de n.
- 2) À l'aide des résultats de l'exercice 21, exprimer x_n , y_n et z_n en fonction de x_0 , y_0 , z_0 et de n.

Exercices Réduction

Exercice 23

Réduire les matrices de l'exercice 3 non diagonalisables.

Exercice 24 (suites récurrentes linéaires)

Soit $(a_1, a_0) \in \mathbb{R}^2$ tel que $a_0 \neq 0$. On cherche à décrire l'ensemble \mathscr{S} des suites (u_n) vérifiant

$$\forall n \in \mathbb{N} \qquad u_{n+2} = a_0 u_n + a_1 u_{n+1}$$

- 1) Écrire un système $X_{n+1} = AX_n$, où la matrice $A \in \mathcal{M}_2(\mathbb{R})$ dépend de a_1 et a_0, X_n de u_n et u_{n+1} .
- 2) Étude de A: Déterminer le polynôme caractéristique de A. Est-ce que A peut-être diagonalisable avec une seule valeur propre? Décrire les trois situations possibles, en donnant un critère.
- 3) Cas $\Delta > 0$: en posant $P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$ la matrice de passage et λ_i les valeurs propres, montrer que

$$u_n = C_1 \lambda_1^n + C_2 \lambda_2^n$$

où C_1 et $C_2 \in \mathbb{R}$ dépendent des conditions initiales (u_0, u_1) .

4) Cas $\Delta < 0$: En se plaçant dans $\mathcal{M}_2(\mathbb{C})$, montrer que

$$u_n = C_1 \lambda^n + C_2 \overline{\lambda}^n$$

où C_1 et $C_2 \in \mathbb{C}$ dépendent des conditions initiales (u_0, u_1) , et $\lambda = re^{i\theta} \in \mathbb{C}$.

Puis, en utilisant le fait que $u_n \in \mathbb{R}$, donc $\Re(u_n) = u_n$, trouvez une formule sans complexes.

5) Traiter le cas $\Delta = 0$.