Fix n. Let t be an indeterminate, and consider B = B(t) an algebra structure
on C(t)" (no assumption such as associativity, Lie, etc). So B can be just viewed
as an element of C(¢){"  Let F be the (finite) set of poles: then for each
z € U = C — F one can specialize it as B(z), which defines an algebra structure
on C™.

Let anfk be the space of R-multilinear maps (R")* — R™, or equivalently the
space of R-linear maps (R")®* — R™. It has dimension n*™'. We only consider
it for k = 1,2. For a law b € V1%, define the coboundary map d[B] : V,, — [},
(associated to B) as

(d®[B)f)(2,y) = b(fz,y) + b(x, fy) — fb(z,y).

Say that ¢ € ang is a 2-coboundary (with respect to b, over R) if ¢ belongs to the
image of d®[B].

Proposition 1. FEither the derivative B'(t) is a 2-coboundary (with respect to
B(t), over C(t)), and then the specializations B(z) are pairwise isomorphic for z
ranging over a cofinite subset of C — F, or B'(t) is not a 2-coboundary, in which
case the isomorphism relation between the B(z), when z ranges over C — F', has
finite classes (of bounded cardinal).

Let ¢ be the rank of the C(t)-linear map d°®[B(t)] : Vn?l(t) — Vn%(t). For
z € C—F, let q(z) be the rank of the specialized C-linear map d°[B(z)] : V.S, —
V.S, Write U' = {z € C — F : q(z) = q}. This is a cofinite subset of C.
Define
¥ : GL,(C) x U — VS
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where M*b(z,y) = M~*b(M(z), M(y)).

Lemma 2. For z € U, the rank r(M, z) of dV(M, z) does not depend on M €
GL,(C) so we denote it r(z).

Preuve. Fix My € GL,(C). Write s(M,z) = (MMoy,z), and o(D) = Mjo.
Hence s is a self-diffeomorphism of GL,(C) x U and o is a self-diffeomorphism
of Vn%. Then Vos = ooW. This implies that the rank of the differential of ¥ at
(M, z) and at s(M, z) are the same, for all M, z, and for every My. Whence the
result. ]

(M, ) — M*B(z)

For z € U, let ¥, be the restriction of ¥ to the “hypersurface” GL,(C) x {z}.
Then the rank of d¥, at (M, z) equals ¢(z). In particular, r(z) € {q(2),q(z)+1}.
Hence for z € U', r(z) € {¢,¢q+ 1}. So U, = {z € U : r(z) = ¢+ 1} is
Zariski-open, hence either empty or cofinite:
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(a) either r(z) = ¢ for all z € U’;
(b) or r(z) = q+ 1 for all z € Uy, where U; is cofinite in U’.

Note that the tangent space of GL,(C) at Id can be identified to V5. By
direct computation, for f € V., we get dV.(Id)(f) = B(z)(fz,y)+B(z)(x, fy)—
fB(z)(x,y).

Lemma 3. For z € U, we have r(z) = q(2) iff B'(z) is a 2-coboundary (with
respect to B(z), over C). (In particular in Case (a) it holds for all z € U’)

Preuve. We have r(z) = q(z) iff at (Id, z) the image of the differential restricted
to {Id} x U’ is included in the image of the differential restricted to GL, (C) x{z},
that is, that of W;. The former image is the line generated by B’(z), while the
latter image is the space of 2-coboundaries (by the above computation). ]

In particulier, if B’(2) is a 2-coboundary for infinitely many z, then conversely
we are in Case (a).

Lemma 4. In Case (a), all (C", B(z)) are isomorphic for z € U'.

Preuve. By connectedness, it is enough to show that for all z and all 2’ close
enough to z, (C", B(2')) is isomorphic to (C", B(z)). The constant rank theorem
applies to V: the image of some small ball Y around (M, t) is a ¢g-dimensional
submanifold through W(M,t). Let Y’ be a ball around (M, t), contained in Y,
on which the differential of ¥; has rank ¢. The map ¥; sends Y’ into the ¢-
dimensional submanifold W(Y'), and its differential has rank ¢. Hence its image is
open therein. This precisely says that for every ¢t € Y', (C", B(t')) is isomorphic
to (C™, ®(t)). O

Now, a simple remark:
Lemma 5. Equivalent statements:

e For all z € U minus a finite subset, B'(z) € V;5, is 2-coboundary

e B'(t) € Vn%(t) is a 2-coboundary

Preuve. Suppose that B'(t) is a 2-coboundary. There exists a linear endomor-
phism () of C(¢)™ such that formally B'(¢)(z,y) = B(t)(0(t)x,y)+B(t)(x,6(t)y)—
d(t)B'(t)(x,y). Hence this remains true for every specification of ¢ in U minus
zeros of denominators of entries of ().

Conversely suppose that B'(t) is not formally a 2-coboundary, i.e., is not in
the image of d = d(t). Let d(t) be the block matrix (d(¢)|B'(t)) (concatenating
the matrix d(¢) and the column matrix B’(t)). Then the rank of the matrice d(t)
and d(t) are ¢ and g+ 1 respectively. Hence some (¢ + 1)-minor of d(t) is nonzero.
If P(t) is its determinant, let U” be the set of those z € U such that P(s) # 0:
this is a cofinite subset of U. Hence for z € U”, d(z) has rank ¢, and d has rank
g+ 1, so that B’(z) is not in the image of d(z). O
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It remains to interpret Case (b): we know that in this case, for all t € Uy, ¢(t)
is not a 2-coboundary.

Lemma 6. In Case (b), the equivalence relationt ~ t' if (C™, B(t)) and (C", B(t'))
are isomorphic has classes of finite bounded cardinal.

Preuve. Assume otherwise. Then by Lemma 7, there is a cofinite subset Uy of
U such that the B(t) for t € U, are pairwise isomorphic.

Fix tg € U,. Define X = {(t,M) € U; x GL,(C) : M*B(t) = B(t), and
7 . (t, M) — t be the first projection. So, by assumption, 7(X) = U;. Let
Y be an irreducible component of X such that 7|y is non-constant. Let Z be
the set of points of the regular locus of Y at which 7 has a nonzero differential.
So Z is Zariski-dense in Y. Write Us = 7(Z), so Us is cofinite in U;. By the
constant rank theorem, there is, for every t; € Us (which we fix for a moment),
a holomorphic map M, defined at a neighborhood V' of t;, valued in Z, such
that m(M(t)) =t for every t € V. That is, B(t) = M(t)*B(to) for every t € V.
In particular B(ty) = (M (t1)"")*B(t1). So, writing N(t) = M(t;) ' M(t), we
deduce B(t) = N(t)*B(t;) for all t € V', with N(¢;) = idgn. We differentiate this
at t = t; (both sides being holomorphic in ¢). The left side yields B’(t;). The
right side precisely yields d€[B(t;)]N'(t1)). So B'(t;) is a 2-coboundary. Since
this holds for every t; € Us, we are done. O

I used the standard fact:

Lemma 7. Let U be a Zariski-open subset of R C U? a constructible equivalence
relation (constrictible with respect to the Zariski topology of U%. Then either R
has a cofinite equivalence class, or has finite classes of bounded cardinal.

Preuve. R C C? being constructible, it is a finite union of locally closed subset
L; = U; N F; (U; Zariski open, F; Zariski closed, with U; N F; non-empty). If for
some i we have F; = C?, L; is Zariski-open. Let (z,y) € L;. Then the set of
y' € C such that xRy’ is non-empty, Zariski-open in C, hence is cofinite, hence
the class of x is cofinite.

Otherwise, each F; if finite, or is a Zariski-closed curve, which we can assume
to be irreducible, and thus L; is the complement of a finite subset in F;. If F; is
a horizontal or vertical line, then there is a cofinite class, which we can discard.
Hence, if d; is the degree of F;, the intersection of F; with each horizontal line
has cardinal < d;. If d = > d; (counting d; = 0 if F; is finite), we deduce that
outside finitely many points (coordinates of finite F;), the equivalence classes
have cardinal < d. O



