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Fix n. Let t be an indeterminate, and consider B = B(t) an algebra structure
on C(t)n (no assumption such as associativity, Lie, etc). So B can be just viewed
as an element of C(t){1,,̇n}

3
. Let F be the (finite) set of poles: then for each

z ∈ U = C− F one can specialize it as B(z), which defines an algebra structure
on Cn.

Let V R
n,k be the space of R-multilinear maps (Rn)k → Rn, or equivalently the

space of R-linear maps (Rn)⊗k → Rn. It has dimension nk+1. We only consider
it for k = 1, 2. For a law b ∈ V R

n,2, define the coboundary map d[B] : V R
n,1 → V R

n,2

(associated to B) as

(dR[b]f)(x, y) = b(fx, y) + b(x, fy)− fb(x, y).

Say that c ∈ V R
n,2 is a 2-coboundary (with respect to b, over R) if c belongs to the

image of dR[B].

Proposition 1. Either the derivative B′(t) is a 2-coboundary (with respect to
B(t), over C(t)), and then the specializations B(z) are pairwise isomorphic for z
ranging over a cofinite subset of C−F , or B′(t) is not a 2-coboundary, in which
case the isomorphism relation between the B(z), when z ranges over C− F , has
finite classes (of bounded cardinal).

Let q be the rank of the C(t)-linear map dC(t)[B(t)] : V
C(t)
n,1 → V

C(t)
n,2 . For

z ∈ C−F , let q(z) be the rank of the specialized C-linear map dC[B(z)] : V C
n,1 →

V C
n,2. Write U ′ = {z ∈ C− F : q(z) = q}. This is a cofinite subset of C.

Define
Ψ : GLn(C)× U → V C

n,2, (M, z) 7→M∗B(z)

where M∗b(x, y) = M−1b(M(x),M(y)).

Lemma 2. For z ∈ U , the rank r(M, z) of dΨ(M, z) does not depend on M ∈
GLn(C) so we denote it r(z).

Preuve. Fix M0 ∈ GLn(C). Write s(M, z) = (MM0, z), and σ(D) = M∗
0σ.

Hence s is a self-diffeomorphism of GLn(C) × U and σ is a self-diffeomorphism
of V C

n,2. Then Ψ ◦ s = σ ◦Ψ. This implies that the rank of the differential of Ψ at
(M, z) and at s(M, z) are the same, for all M, z, and for every M0. Whence the
result.

For z ∈ U , let Ψz be the restriction of Ψ to the “hypersurface” GLn(C)×{z}.
Then the rank of dΨz at (M, z) equals q(z). In particular, r(z) ∈ {q(z), q(z)+1}.
Hence for z ∈ U ′, r(z) ∈ {q, q + 1}. So U1 = {z ∈ U ′ : r(z) = q + 1} is
Zariski-open, hence either empty or cofinite:
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(a) either r(z) = q for all z ∈ U ′;

(b) or r(z) = q + 1 for all z ∈ U1, where U1 is cofinite in U ′.

Note that the tangent space of GLn(C) at Id can be identified to V C
n,1. By

direct computation, for f ∈ V C
n,1, we get dΨz(Id)(f) = B(z)(fx, y)+B(z)(x, fy)−

fB(z)(x, y).

Lemma 3. For z ∈ U , we have r(z) = q(z) iff B′(z) is a 2-coboundary (with
respect to B(z), over C). (In particular in Case (a) it holds for all z ∈ U ′)

Preuve. We have r(z) = q(z) iff at (Id, z) the image of the differential restricted
to {Id}×U ′ is included in the image of the differential restricted to GLn(C)×{z},
that is, that of Ψt. The former image is the line generated by B′(z), while the
latter image is the space of 2-coboundaries (by the above computation).

In particulier, if B′(z) is a 2-coboundary for infinitely many z, then conversely
we are in Case (a).

Lemma 4. In Case (a), all (Cn, B(z)) are isomorphic for z ∈ U ′.

Preuve. By connectedness, it is enough to show that for all z and all z′ close
enough to z, (Cn, B(z′)) is isomorphic to (Cn, B(z)). The constant rank theorem
applies to Ψ: the image of some small ball Y around (M, t) is a q-dimensional
submanifold through Ψ(M, t). Let Y ′ be a ball around (M, t), contained in Y ,
on which the differential of Ψt has rank q. The map Ψt sends Y ′ into the q-
dimensional submanifold Ψ(Y ), and its differential has rank q. Hence its image is
open therein. This precisely says that for every t ∈ Y ′, (Cn, B(t′)) is isomorphic
to (Cn,Φ(t)).

Now, a simple remark:

Lemma 5. Equivalent statements:

• For all z ∈ U minus a finite subset, B′(z) ∈ V C
n,2 is 2-coboundary

• B′(t) ∈ V C(t)
n,2 is a 2-coboundary

Preuve. Suppose that B′(t) is a 2-coboundary. There exists a linear endomor-
phism δ(t) of C(t)n such that formallyB′(t)(x, y) = B(t)(δ(t)x, y)+B(t)(x, δ(t)y)−
δ(t)B′(t)(x, y). Hence this remains true for every specification of t in U minus
zeros of denominators of entries of δ(t).

Conversely suppose that B′(t) is not formally a 2-coboundary, i.e., is not in
the image of d = d(t). Let d̂(t) be the block matrix (d(t)|B′(t)) (concatenating
the matrix d(t) and the column matrix B′(t)). Then the rank of the matrice d(t)
and d̂(t) are q and q+1 respectively. Hence some (q+1)-minor of d̂(t) is nonzero.
If P (t) is its determinant, let U ′′ be the set of those z ∈ U such that P (s) 6= 0:
this is a cofinite subset of U . Hence for z ∈ U ′′, d(z) has rank q, and d̂ has rank
q + 1, so that B′(z) is not in the image of d(z).
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It remains to interpret Case (b): we know that in this case, for all t ∈ U1, c(t)
is not a 2-coboundary.

Lemma 6. In Case (b), the equivalence relation t ∼ t′ if (Cn, B(t)) and (Cn, B(t′))
are isomorphic has classes of finite bounded cardinal.

Preuve. Assume otherwise. Then by Lemma 7, there is a cofinite subset U2 of
U1 such that the B(t) for t ∈ U2 are pairwise isomorphic.

Fix t0 ∈ U2. Define X = {(t,M) ∈ U1 × GLn(C) : M∗B(t) = B(t0), and
π : (t,M) 7→ t be the first projection. So, by assumption, π(X) = U1. Let
Y be an irreducible component of X such that π|Y is non-constant. Let Z be
the set of points of the regular locus of Y at which π has a nonzero differential.
So Z is Zariski-dense in Y . Write U3 = π(Z), so U3 is cofinite in U1. By the
constant rank theorem, there is, for every t1 ∈ U3 (which we fix for a moment),
a holomorphic map M , defined at a neighborhood V of t1, valued in Z, such
that π(M(t)) = t for every t ∈ V . That is, B(t) = M(t)∗B(t0) for every t ∈ V .
In particular B(t0) = (M(t1)

−1)∗B(t1). So, writing N(t) = M(t1)
−1M(t), we

deduce B(t) = N(t)∗B(t1) for all t ∈ V , with N(t1) = idCn . We differentiate this
at t = t1 (both sides being holomorphic in t). The left side yields B′(t1). The
right side precisely yields dC[B(t1)]N

′(t1)). So B′(t1) is a 2-coboundary. Since
this holds for every t1 ∈ U3, we are done.

I used the standard fact:

Lemma 7. Let U be a Zariski-open subset of R ⊂ U2 a constructible equivalence
relation (constrictible with respect to the Zariski topology of U2. Then either R
has a cofinite equivalence class, or has finite classes of bounded cardinal.

Preuve. R ⊂ C2 being constructible, it is a finite union of locally closed subset
Li = Ui ∩ Fi (Ui Zariski open, Fi Zariski closed, with Ui ∩ Fi non-empty). If for
some i we have Fi = C2, Li is Zariski-open. Let (x, y) ∈ Li. Then the set of
y′ ∈ C such that xRy′ is non-empty, Zariski-open in C, hence is cofinite, hence
the class of x is cofinite.

Otherwise, each Fi if finite, or is a Zariski-closed curve, which we can assume
to be irreducible, and thus Li is the complement of a finite subset in Fi. If Fi is
a horizontal or vertical line, then there is a cofinite class, which we can discard.
Hence, if di is the degree of Fi, the intersection of Fi with each horizontal line
has cardinal ≤ di. If d =

∑
di (counting di = 0 if Fi is finite), we deduce that

outside finitely many points (coordinates of finite Fi), the equivalence classes
have cardinal ≤ d.
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