
STRONGLY BOUNDED GROUPS AND INFINITE POWERS OF

FINITE GROUPS

YVES DE CORNULIER

Abstract. We define a group as strongly bounded if every isometric action

on a metric space has bounded orbits. This latter property is equivalent to
the so-called uncountable strong cofinality, recently introduced by Bergman.

Our main result is that GI is strongly bounded when G is a finite, perfect

group and I is any set. This strengthens a result of Koppelberg and Tits. We
also prove that ω1-existentially closed groups are strongly bounded.

1. Introduction

Let us say that a group is strongly bounded if every isometric action on a metric
space has bounded orbits.

We observe that the class of discrete, strongly bounded groups coincides with
a class of groups which has recently emerged since a preprint of Bergman [Ber04],
sometimes referred to as “groups with uncountable strong cofinality”, or “groups
with Bergman’s Property”. This class contains no countably infinite group, but
contains symmetric groups over infinite sets [Ber04], various automorphism groups
of infinite structures such as 2-transitive chains [DH05], full groups of certain
equivalence relations [Mil04], oligomorphic permutation groups with ample generics
[KR05]; see [Ber04] for more references.

In Section 3, we prove that ω1-existentially closed groups are strongly bounded.
This strengthens a result of Sabbagh [Sab75], who proved that they have cofinality
6= ω.

In Section 4, we prove that if G is any finite perfect group, and I is any set, then
GI , endowed with the discrete topology, is strongly bounded. This strengthens
a result of Koppelberg and Tits [KT74], who proved that this group has Serre’s
Property (FA). This group has finite exponent and is locally finite, hence amenable.
In contrast, all previously known infinite strongly bounded groups contain a non-
abelian free subgroup.

2. Strongly bounded groups

Definition 2.1. We say that a group G is strongly bounded if every isometric action
of G on a metric space has bounded orbits.

Remark 2.2. Let G be a strongly bounded group. Then every isometric action of
G on a nonempty complete CAT(0) space has a fixed point; in particular, G has
Property (FH) and Property (FA), which mean, respectively, that every isometric
action of G on a Hilbert space (resp. simplicial tree) has a fixed point. This follows
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from the Bruhat-Tits fixed point lemma, which states that every action of a group
on a complete CAT(0) space which has a bounded orbit has a fixed point [BH,
Chap. II, Corollary 2.8(1)].

It was asked in [W01] whether the equivalence between Kazhdan’s Property
(T) and Property (FH), due to Delorme and Guichardet (see [BHV, Chap. 2])
holds for more general classes of groups than locally compact σ-compact groups; in
particular, whether it holds for general locally compact groups.

The answer is negative, even if we restrict to discrete groups: this follows from
the existence of uncountable strongly bounded groups, combined with the fact that
Kazhdan’s Property (T) implies finite generation [BHV, Chap. 1].

Definition 2.3. We say that a group G is Cayley bounded if, for every generating
subset U ⊆ G, there exists some n (depending on U) such that every element of G
is a product of n elements of U ∪ U−1 ∪ {1}. This means every Cayley graph of G
is bounded.

A group G is said to have cofinality ω if it can be expressed as the union of an
increasing sequence of proper subgroups; otherwise it is said to have cofinality 6= ω.

The combination of these two properties, sometimes referred as “uncountable
strong cofinality”1, has been introduced and is extensively studied in Bergman’s
preprint [Ber04]; see also [DG05]. Note that an uncountable group with cofinality
6= ω is not necessarily Cayley bounded: the free product of two uncountable groups
of cofinality 6= ω, or the direct product of an uncountable group of cofinality 6= ω
with Z, are obvious counterexamples. On the other hand, a Cayley bounded group
with cofinality ω is announced in [Khe05].

The following result can be compared to [Ber04, Lemma 10]:

Proposition 2.4. A group G is strongly bounded if and only if it is Cayley bounded
and has cofinality 6= ω.

Proof : Suppose that G is not Cayley bounded. Let U be a generating subset such
that G the corresponding Cayley graph is not bounded. Since G acts transitively
on it, it has an unbounded orbit.

Suppose that G has cofinality ω. Then G acts on a tree with unbounded orbits
[Ser, Chap I, §6.1].

Conversely, suppose that G has has cofinality 6= ω and is Cayley bounded. Let
G act isometrically on a metric space. Let x ∈ X, let Kn = {g ∈ G | d(x, gx) < n},
and let Hn be the subgroup generated by Kn. Then G =

⋃
Kn =

⋃
Hn. Since G

has cofinality 6= ω, Hn = G for some n, so that Kn generates G. Since G is Cayley
bounded, and since Kn is symmetric, G ⊆ (Kn)m for some m. This easily implies
that G ⊆ Knm, so that the orbit of x is bounded. ¥

Remark 2.5. It follows that a countably infinite group Γ is not strongly bounded:
indeed, either Γ has a finite generating subset, so that the corresponding Cayley
graph is unbounded, or else Γ is not finitely generated, so is an increasing union of
a sequence of finitely generated subgroups, so has cofinality ω.

1In the literature, it is sometimes referred as “Bergman’s Property”; Bergman’s Property also

sometimes refers to Cayley boundedness without cofinality assumption.
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Definition 2.6. If G is a group, and X ⊆ G, define

G(X) = X ∪ {1} ∪ {x−1, x ∈ X} ∪ {xy | x, y ∈ X}.

The following proposition is immediate and is essentially contained in Lemma
10 of [Ber04].

Proposition 2.7. The group G is strongly bounded if and only if, for every in-
creasing sequence (Xn) of subsets such that

⋃
n Xn = G and G(Xn) ⊆ Xn+1 for all

n, one has Xn = G for some n. ¥

Remark 2.8. The first Cayley bounded groups with uncountable cofinality were
constructed by Shelah [She80, Theorem 2.1]. They seem to be the only known to
have a uniform bound on the diameter of Cayley graphs. They are torsion-free.
These groups are highly non-explicit and their construction, which involves small
cancellation theory, rests on the Axiom of Choice.

The first explicit examples, namely, symmetric groups over infinite sets, are due
to Bergman [Ber04]. The first explicit torsion-free examples, namely, automorphism
groups of double transitive chains, are due to Droste and Holland [DH05].

Remark 2.9. It is easy to observe that groups with cofinality 6= ω also have a
geometric characterization; namely, a group G has cofinality 6= ω if and only if
every isometric action of G on an ultrametric metric space has bounded orbits.

Remark 2.10. In [BHV, §2.6], it is proved that a infinite solvable group never has
Property (FH) (defined in Remark 2.2). In particular, an infinite solvable group
is never strongly bounded. This latter result is improved by Khelif [Khe05] who
proves that an infinite solvable group is never Cayley bounded. On the other hand,
it is not known whether there exist uncountable solvable groups with cofinality 6= ω.

3. ω1-existentially closed groups

Recall that a group G is ω1-existentially closed if every countable set of equations
and inequations with coefficients in G which has a solution in a group containing
G, has a solution in G. Sabbagh [Sab75] proved that every ω1-existentially closed
group has cofinality 6= ω. We give a stronger result, which has been independently
noticed by Khelif [Khe05]:

Theorem 3.1. Every ω1-existentially closed group G is strongly bounded.

Proof : Let G act isometrically on a nonempty metric space X. Fix x ∈ X, and
define ℓ(g) = d(gx, x) for all g ∈ G. Then ℓ is a length function, i.e. satisfies
ℓ(1) = 0 and ℓ(gh) ≤ ℓ(g) + ℓ(h) for all g, h ∈ G. Suppose by contradiction that ℓ
is not bounded. For every n, fix cn ∈ G such that ℓ(cn) ≥ n2. Let C be the group
generated by all cn. By the proof of the HNN embedding Theorem [LS, Theorem
3.1], C embeds naturally in the group

Γ = 〈C, a, b, t ; cn = t−1b−nabnta−nb−1an (n ∈ N)〉,

which is generated by a, b, t. Since G is ω1-existentially closed, there exist ā, b̄, t̄
in G such that the group generated by C, ā, b̄, and t̄ is naturally isomorphic to
Γ. Set M = max(ℓ(ā), ℓ(b̄), ℓ(t̄)). Then, since ℓ is a length function and cn can be
expressed by a word of length 4n + 4 in a, b, c, we get ℓ(cn) ≤ M(4n + 4) for all n,
contradicting ℓ(cn) ≥ n2. ¥
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It is known [Sco51] that every group embeds in a ω1-existentially closed group.
Thus, we obtain:

Corollary 3.2. Every group embeds in a strongly bounded group. ¥

Note that this was already a consequence of the strong boundedness of symmetric
groups [Ber04], but provides a better cardinality: if |G| = κ, we obtain a group of
cardinality κℵ0 rather that 2κ.

4. Powers of finite groups

Theorem 4.1. Let G be a finite perfect group, and I a set. Then the (unrestricted)
product GI is strongly bounded.

Remark 4.2. Conversely, if I is infinite and G is not perfect, then GI maps onto
the direct sum Z/pZ(N) for some prime p, so has cofinality ω and is not Cayley
bounded, as we see by taking as generating subset the canonical basis of Z/pZ(N).

Remark 4.3. By Theorem 4.1, every Cayley graph of GI is bounded. If I is
infinite and G 6= 1, one can ask whether we can choose a bound which does not
depend on the choice of the Cayley graph. The answer is negative: indeed, for all
n ∈ N, observe that the Cayley graph of Gn has diameter exactly n if we choose
the union of all factors as generating set. By taking a morphism of GI onto Gn and
taking the preimage of this generating set, we obtain a Cayley graph for GI whose
diameter is exactly n.

Our remaining task is to prove Theorem 4.1. The proof is an adequate modifi-
cation of the original proof of the (weaker) result of Koppelberg and Tits [KT74],
which states that GI has cofinality 6= ω.

If A is a ring with unity, and X ⊆ A, define

R(X) = X ∪ {−1, 0, 1} ∪ {x + y | x, y ∈ X} ∪ {xy | x, y ∈ X}.

It is clear that
⋃

n∈N
Rn(X) is the subring generated by X.

Recall that a Boolean algebra is an associative ring with unity which satisfies
x2 = x for all x. Such a ring has characteristic 2 (since 2 = 22 − 2) and is
commutative (since xy − yx = (x + y)2 − (x + y)). The ring Z/2Z is a Boolean
algebra, and so are all its powers Z/2ZE = P(E), for any set E.

Proposition 4.4. Let E be a set, and (Xi)i∈N an increasing sequence of subsets
of P(E). Suppose that R(Xi) ⊆ Xi+1 for all i. Suppose that P(E) =

⋃
i∈N

Xi.
Then P(E) = Xi for some i.

Remark 4.5. 1) We could have defined, in analogy of Definition 2.3, the notion of
strongly bounded ring (although the terminology “uncountable strong cofinality”
seems more appropriate in this context). Then Proposition 4.4 can be stated as: if
E is infinite, the ring P(E) = Z/2ZE is strongly bounded. If E is infinite, note
that, as an additive group, it maps onto Z/2Z(N), so has cofinality ω and is not
Cayley bounded.

Proof of Proposition 4.4. Suppose the contrary. If X ⊆ E, denote by P(X)
the power set of X, and view it as a subset of P(E). Define L = {X ∈
P(E) | ∀i, P(X) * Xi}. The assumption is then: E ∈ L .
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Observation: if X ∈ L and X ′ ⊆ X, then either X ′ or X − X ′ belongs to L .
Indeed, otherwise, some Xi would contain P(X ′) and P(X −X ′), and then Xi+1

would contain P(X).
We define inductively a decreasing sequence of subsets Bi ∈ L , and a non-

decreasing sequence of integers (ni) by:

B0 = E;

ni = inf{t | Bi ∈ Xt};

B′
i+1 ⊂ Bi and B′

i+1 /∈ Xni+1;

Bi+1 =

{
B′

i+1, if B′
i+1 ∈ L ,

Bi − B′
i+1, otherwise.

Define also Ci = Bi − Bi+1. The sets Ci are pairwise disjoint.

Fact 4.6. For all i, Bi+1 /∈ Xni
and Ci /∈ Xni

.

Proof : Observe that {Bi+1, Ci} = {B′
i+1, Bi − B′

i+1}. We already know B′
i+1 /∈

Xni+1, so it suffices to check Bi−B′
i+1 /∈ Xni

. Otherwise, B′
i+1 = Bi−(Bi−B′

i+1) ∈
R({Bi, Bi − B′

i+1}) ⊆ R(Xni
) ⊆ Xni+1; this is a contradiction. ¤

This fact implies that the sequence (ni) is strictly increasing. We now use a
diagonal argument. Let (Nj)j∈N be a partition of N into infinite subsets. Set
Dj =

⊔
i∈Nj

Ci and mj = inf{t | Dj ∈ Xt}, and let lj be an element of Nj such

that lj > max(mj , j).
Set X =

⊔
j Clj . For all j, Dj∩X = Clj /∈ Xlj . On the other hand, Dj ∈ Xmj

⊆

Xlj−1 since lj ≥ mj + 1. This implies X /∈ Xlj−1 ⊇ Xj for all j, contradicting
P(E) =

⋃
i∈N

Xi. ¥

The following corollary, of independent interest, was suggested to me by Romain
Tessera.

Corollary 4.7. Let A be a finite ring with unity (but not necessarily associative
or commutative). Let E be a set, and (Xi)i∈N an increasing sequence of subsets
of AE. Suppose that R(Xi) ⊆ Xi+1 for all i. Suppose that AE =

⋃
i∈N

Xi. Then

AE = Xi for some i.

Proof : By reindexing, we can suppose that X0 contains the constants. Write
Yi = {J ⊆ E | 1J ∈ X3i}. If J,K ∈ Yi, 1J∩K = 1J1K ∈ X3i+1 ⊆ X3i+3, so that
J ∩ K ∈ Yi+1, and 1J△K = 1J + 1K − 2.1J1K ∈ X3i+3, so that J △ K ∈ Yi+1. By
Proposition 4.4, Ym = P(E) for some m. It is then clear that AE = Xn for some
n (say, n = 3m + 1 + ⌈log2 |A|⌉). ¥

If A is a Boolean algebra, and X ⊆ A, we define

D(X) = X ∪ {0, 1} ∪ {x + y | x, y ∈ X such that xy = 0} ∪ {xy | x, y ∈ X}.

Ik(X) = {x1x2 . . . xk | x1, . . . , xk ∈ X}.

Vk(X) = {x1 + x2 + . . . xk | x1, . . . , xk ∈ X such that xixj = 0 ∀i 6= j}.

The following lemma contains some immediate facts which will be useful in the
proof of the main result.
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Lemma 4.8. Let A be a Boolean algebra, and X ⊆ A a symmetric subset (i.e.
closed under x 7→ 1 − x) such that 0 ∈ X. Then, for all n ≥ 0,

1) Rn(X) ⊆ D2n(X), and
2) Dn(X) ⊆ V22n (I2n(X)).

Proof : 1) It suffices to prove R(X) ⊆ D2(X). Then the statement of the lemma
follows by induction. Let u ∈ R(X). If u /∈ D(X), then u = x+y for some x, y ∈ X.
Then u = (1 − x)y + (1 − y)x ∈ D2(X).

2) Is an immediate induction. ¥

Definition 4.9 ([KT74]). Take n ∈ N, and let G be a group. Consider the set of
functions Gn → G; this is a group under pointwise multiplication. The elements
m(g1, . . . , gn) in the subgroup generated by the constants and the canonical projec-
tions are called monomials. Such a monomial is homogeneous if m(g1, . . . , gn) = 1
whenever at least one gi is equal to 1.

Lemma 4.10 ([KT74]). Let G be a finite group which is not nilpotent. Then there
exist a ∈ G, b ∈ G − {1}, and a homogeneous monomial f : G2 → G, such that
f(a, b) = b.

The proof can be found in [KT74], but, for the convenience of the reader, we
have included the proof from [KT74] in the (provisional) Appendix below.

Remark 4.11. If G is a group, and f(x1, . . . , xn) is a homogeneous monomial
with n ≥ 2, then m(g1, . . . , gn) = 1 whenever at least one gi is central: in-
deed, we can then write, for all x1, . . . , xn with xi central, m(x1, . . . , xi, . . . , xn) =
m′(x1, . . . , x̂i, . . . , xn)xk

i . By homogeneity in xi, m′(x1, . . . , x̂i, . . . , xn) = 1, and we
conclude by homogeneity in xj for any j 6= i.

Accordingly, if (Cα) denotes the (transfinite) ascending central series of G, an
immediate induction on α shows that if f(a, b) = b for some homogeneous monomial
f , a ∈ G and b ∈ Cα, then b = 1. In particular, if G is nilpotent (or even residually
nilpotent), then the conclusion of Lemma 4.10 is always false.

Lemma 4.12. Let G be a finite group, I a set, and H = GI . Suppose that f(a, b) =
b for some a, b ∈ G, and some homogeneous monomial f , and let N be the normal
subgroup of G generated by b. Let (Xm) be an increasing sequence of subsets of H
such that G(Xm) ⊆ Xm+1 (see Definition 2.6), and

⋃
Xm = H. Then N I ⊆ Xm

for m big enough.

Proof : Suppose the contrary. If x ∈ G and J ⊆ I, denote by xJ the element of GI

defined by xJ(i) = x if i ∈ J and xJ(i) = 1 if i /∈ J .
Denote by f̄ = f I the corresponding homogeneous monomial: H2 → H. Upon

extracting, we can suppose that all cI , c ∈ G, are contained in X0. In particular,
the “constants” which appear in f̄ are all contained in X0.

Hence we have, for all m, f̄(Xm,Xm) ⊆ Xm+d, where d depends only on the
length of f . For J,K ⊆ I, we have the following relations:

(4.1) aI .a
−1
J = aI−J ,

(4.2) f̄(aJ , bK) = bJ∩K ,

(4.3) f̄(aJ , bI) = bJ ,
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(4.4) If J ∩ K = ∅, bJ . bK = bJ⊔K .

For all m, write Wm = {J ∈ P(I) | aJ ∈ Xm}, and let Am be the Boolean
algebra generated by Wm. Then

⋃
m Am = P(I). By Proposition 4.4, there exists

some M such that AM = P(I). Set Xn = Rn(WM ). Then, since AM = P(I),⋃
n Xn = P(I). Again by Proposition 4.4, there exists some N such that XN =

P(I). So, by 1) of Lemma 4.8, we get

(4.5) D2N (WM ) = P(I).

Define, for all m, Ym = {J ∈ P(I) | bJ ∈ Xm}. Then from (4.3) we get:
Wm ⊆ Ym+d; from (4.2) we get: if J ∈ Wm and K ∈ Ym, then J ∩ K ∈ Ym+d; and
from (4.4) we get: if J,K ∈ Ym and J ∩ K = ∅, then J ⊔ K ∈ Ym+1.

By induction, we deduce Ik(Wm) ⊆ Ym+kd for all k, and Vk(Ym) ⊆ Ym+k for all
k. Composing, we obtain Vk(Il(Wm)) ⊆ Vk(Ym+ld) ⊆ Ym+ld+k. By 2) of Lemma
4.8, we get Dn(Wm) ⊆ Ym+2nd+22n . Hence, using (4.5), we obtain P(I) = YD,

where D = M + 4Nd + 24N

.
Let B denote the subgroup generated by b, so that N is the normal subgroup

generated by B. Let r be the order of b. Then BI is contained in XD+r. More-
over, there exists R such that every element of N is the product of R conjugates
of elements of B. Then, using that cI ∈ X0 for all c ∈ G, N I is contained in
XD+r+3R. ¥

Theorem 4.13. Let G be a finite group, and let N the last term of its descending
central series (so that [G,N ] = N). Let I be any set, and set H = GI . Let (Xm) be
an increasing sequence of subsets of H such that G(Xm) ⊆ Xm+1 and

⋃
Xm = H.

Then N I ⊆ Xm for m big enough.

Proof : Let G be a counterexample with |G| minimal. Let W be a normal subgroup
of G such that W I is contained in Xm for large m, and which is maximal for this
property. Since G is a counterexample, N * W . Hence G/W is not nilpotent,
and is another counterexample, so that, by minimality, W = {1}. Since G is not
nilpotent, there exists, by Lemma 4.10, a ∈ G, b ∈ G − {1}, and a homogeneous
monomial f : G2 → G, such that f(a, b) = b. So, if M is the normal subgroup
generated by b, M I is contained, by Lemma 4.12, in Xi for large i. This contradicts
the maximality of W (= {1}). ¥

In view of Proposition 2.7, Theorem 4.1 immediately follows from Theorem 4.13.
Theorem 4.1 has been independently proved by Khelif [Khe05], who also proves
Proposition 4.4, but concludes by another method.

Question 4.14. Let G be a finite group, and N a subgroup of G which satisfies the
conclusion of Theorem 4.13 (I being infinite). Is it true that, conversely, N must
be contained in the last term of the descending central series of G? We conjecture
that the answer is positive, but the only thing we know is that N must be contained
in the derived subgroup of G.

Remark 4.15. We could have introduced a relative definition: if G is a group
and X ⊆ G is a subset, we say that the pair (G,X) is strongly bounded if, for
every isometric action of G on any metric space M and every m ∈ M , then the
“X-orbit” Xm is bounded. Note that G is strongly bounded if only if the pair
(G,G) is strongly bounded. Proposition 2.7 generalizes as: the pair (G,X) is
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strongly bounded if and only if for every sequence (Xn) of subsets of G such that⋃
n Xn = G and G(Xn) ⊆ Xn+1 for all n, one has Xn ⊇ X for some n.
Theorem 4.13 is actually stronger than Theorem 4.1: it states that if G is a finite

group, if N is the last term of its descending central series, and if I is any set, then
the pair (GI , N I) is strongly bounded. This provides non-trivial strongly bounded
pairs of solvable groups (trivial pairs are those pairs (G,X) with X finite); compare
Remark 2.10 and Question 4.14.

Question 4.16. We do not assume the continuum hypothesis. Does there exist a
strongly bounded group with cardinality ℵ1?

It seems likely that a variation of the argument in [She80] might provide exam-
ples.

Question 4.17. Let (Gn) be a sequence of finite perfect groups. When is the
product

∏
n∈N

Gn strongly bounded?

It follows from Theorem 4.1 that if the groups Gn have bounded order, then∏
n∈N

Gn is strongly bounded. If all Gn are simple, Saxl, Shelah and Thomas
prove [SST96, Theorems 1.7 and 1.9] that

∏
n∈N

Gn has cofinality 6= ω if and only
if there does not exist a fixed (possibly twisted) Lie type L, a sequence (ni) and a
sequence (qi) of prime powers tending to infinity, such that Gni

≃ L(qi) for all i.
Does this still characterize infinite strongly bounded products of non-abelian finite
simple groups?

Appendix A. Proof of Lemma 4.10

This Appendix is added for the convenience of the reader. It is dropped in the
published version.

Lemma A.1 ([KT74]). Let G be a group, g ∈ G, and g′ an element of the subgroup
generated by the conjugates of g. Then there exists a homogeneous monomial f :
G → G such that f(g) = g′.

Proof : Write g′ =
∏

cig
αic−1

i . Then x 7→
∏

cix
αic−1

i is a homogeneous monomial
and f(g) = g′. ¥

Lemma A.2. Let G be a finitely generated group. Suppose that G is not nilpotent.
Then there exists a ∈ G such that the normal subgroup of G generated by a is not
nilpotent.

Proof : Fix a finite generating subset S of G. For every s ∈ S, denote by Ns

the normal subgroup of G generated by s. Since finitely many nilpotent normal
subgroups generate a nilpotent subgroup, it immediately follows that if all Ns are
nilpotent, then G is nilpotent. ¥

Proof of Lemma 4.10. We reproduce the proof from [KT74]. Let G be a finite
group which is not nilpotent. We must show that there exist a ∈ G, b ∈ G − {1},
and a homogeneous monomial f : G2 → G, such that f(a, b) = b.

Take a as in Lemma A.2, and A the normal subgroup generated by a. Let A1

be the upper term of the ascending central series of A. We define inductively the
sequences (ai)i∈N and (bi)i∈N such that

bi ∈ A − A1, ai ∈ A and bi+1 = [ai, bi] ∈ A − A1.
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Since G is finite, there exist integers m,m′ such that m < m′ and bm = bm′ . Set
b = bm, and for all i, choose, using Lemma A.1, a homogeneous monomial fi such
that fi(a) = ai. Then the monomial

f : (x, y) 7→ [fm′−1(x), [fm′−2(x), . . . , [fm(x), y], . . . ]]

satisfies f(a, b) = b. ¥

Appendix B. Groups with cardinality ℵ1 and Property (FH)

This appendix is dropped in the published version.

Proposition B.1. Let G be a countable group. Then G embeds in a group of
cardinality ℵ1 with Property (FH).

The proof rests on two ingredients.

Theorem B.2 (Delzant). If G is any countable group, then G can be embedded in
a group with Property (T).

Sketch of proof: this is a corollary of the following result, first claimed by
Gromov2, and subsequently independently proved by Delzant3 and Olshanskii4: if
H is any non-elementary word hyperbolic group, then H is SQ-universal, that is,
every countable group embeds in a quotient of H. Thus, the result follows from the
stability of Property (T) by quotients, and the existence of non-elementary word
hyperbolic groups with Property (T); for instance, uniform lattices in Sp(n, 1),
n ≥ 2 (see [HV]). ¥

Let C be any class of metric spaces, let G be a group. Say that G has Property
(FC) if for every isometric action of G on a space X ∈ C, all orbits are bounded.
For instance, if C is the class of all Hilbert spaces, then we get Property (FH).

Proposition B.3. Let G be a group in which every countable subset is contained
in a subgroup with Property (FC). Then G has Property (FC).

Proof : Let us take an affine isometric action of G on a metric space X in C, and let
us show that it has bounded orbits. Otherwise, there exists x ∈ X, and a sequence
(gn) in G such that d(gn x, x) → ∞. Let H be a subgroup of G with Property (FC)
containing all gn. Since Hx is not bounded, we have a contradiction. ¥

Proof of Proposition B.1. We make a standard transfinite induction on ω1 (as
in [Sab75]), using Theorem B.2. For every countable group Γ, choose a proper
embedding of Γ into a group F (Γ) with Property (T) (necessarily finitely generated).
Fix G0 = G, Gα+1 = F (Gα) for every α < ω1, and Gλ = lim−→β<λGλ for every limit

ordinal λ ≤ ω1. It follows from Proposition B.3 that Gω1
has Property (FH). Since

all embeddings Gα → Gα+1 are proper, Gω1
is not countable, hence has cardinality

ℵ1. ¥
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2Theorem 5.6.E in Hyperbolic groups. In “Essays in group theory” (S. Gersten, ed.), MSRI
series vol. 8, Springer Verlag, 1987.

3Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J., 83, Vol. 3,

661-682, 1996.
4SQ-universality of hyperbolic groups, Sbornik Math. 186, no. 8, 1199-1211, 1995.
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[DG05] Manfred Droste, Rüdiger Göbel. Uncountable cofinalities of permutations groups. J.

London Math. Soc. 71(2), 335-344, 2005.
[HV] Pierre de la Harpe, Alain Valette. “La propriété (T) de Kazhdan pour les groupes
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