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Abstract
In a recent paper, the question of determining the fraction of binary trees that contain
a fixed pattern known as the snowflake was posed. We show that this fraction goes to
1, providing two very different proofs: a purely combinatorial one that is quantitative
and specific to this problem; and a proof using branching process techniques that is
less explicit, but also much more general, as it applies to any fixed patterns and can
be extended to other trees and networks. In particular, it follows immediately from
our second proof that the fraction of d-ary trees (resp. level-k networks) that contain
a fixed d-ary tree (resp. level-k network) tends to 1 as the number of leaves grows.

Keywords Snowflake · Pattern occurrences · Binary trees · Local limit · Kesten tree

1 Introduction

Phylogenetic trees (and networks) are the primary way of representing evolutionary
relationships in biology and related fields (e.g. language evolution, epidemiology).
Typically, the leaves of a tree are labelled by extant species, and the (unlabelled) interior
vertices represent branching events that correspond to ancestral speciation events. A
binary phylogenetic tree is an unrooted treewith labelled leaves and unlabelled interior
vertices of degree 3. This class of trees represents the most ‘informative’ description
of evolution, since vertices of degree greater than 3 typically describe the unknown
order to an ancestral species radiation (a ‘soft polytomy’), whereas the vertices of
degree 2 are essentially redundant. Accordingly, binary phylogenetic trees play a key
role in phylogenetics, and are the focus of this paper. In addition, a rooted binary
phylogenetic tree is a rooted tree with labelled leaves and unlabelled interior vertices
of out-degree 2 (when directed away from the root vertex).
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A phylogenetic tree for a set X of species is typically inferred from a sequence
of discrete characters (functions c1, c2, . . . , ck , where ci is a function from X into
some discrete set Si ). A natural measure of how well ci is described by a phylogenetic
tree T is to let f (ci , T ) denote the minimum number of edges of T that need to be
assigned different states, over all possible ways of assigning states from Si to the
interior vertices of T . In general, f (ci , T ) ≥ |ci (X)|−1 and if we have equality, then
ci is said to be homoplasy-free on T (this is equivalent to saying that ci could have
evolved on T from some ancestral vertex without reversals or convergent evolution;
see Steel 2016).

A natural question is the following: For a phylogenetic tree T , what is the smallest
size N (T ) of some set of characters for which T is the only tree on which each of these
characters is homoplasy-free? It is easily seen that if T is the only tree for which each
character in a given set is homoplasy-free, then T must be binary. Moreover, when the
sets Si all have size 2, then it is easily shown that N (T ) ≥ |X | − 3. However, if no
restriction is placed on the size of the sets Si , then N (T ) turns out to be independent of
|X |; in fact N (T ) ≤ 4 (Huber et al. 2005). A recent paper (Huber et al. 2023) exactly
characterised the set of binary trees T for which N (T ) = 4: they are precisely the
trees that contain a ‘snowflake’ (defined shortly). The authors of Huber et al. (2023)
then posed the problem of determining the asymptotic proportion of binary trees that
contain a snowflake as |X | → ∞.

In this short note, we first provide an explicit combinatorial proof that the proportion
of binary trees that contain a snowflake tends to 1 (we also show that the same limit
applies for birth–death trees).We then provide a second proof using branching process
techniques. Although, when it comes to the specific case of snowflakes in phylogenetic
trees, this proof is less informative than the first one, it is also much more general, as
it covers not only snowflakes but any finite pattern, and not only binary trees, but also
other classes of trees and networks (including phylogenetically relevant ones such as
level-k networks).

2 Snowflakes in Binary Trees: A combinatorial Approach

2.1 Preliminaries

LetB(n) be the set of binary phylogenetic trees on the leaf set [n] = {1, . . . , n}, and let
B(n) = |B(n)| be the number of such trees. DefineR(n) and R(n) similarly for rooted
binary phylogenetic trees. Then B(n) = (2n−4)!

(n−2)! 2n−2 = (2n−5)!! and R(n) = B(n+1).
The following result is from Carter et al. (1990), and its proof follows by a standard
application of the Lagrange inversion formula.

Lemma 1 The number N (n, k) of forests consisting of k rooted binary phylogenetic
trees on disjoint leaf sets that partition a set of size n is given by:

N (n, k) = (2n − k − 1)!
(n − k)! (k − 1)! 2n−k

,

for n ≥ k ≥ 1, and N (n, k) = 0 otherwise.
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Fig. 1 A snowflake with central
vertex v; each of the 12 circles
represents a rooted tree on one
or more leaves

v

Notice that N (n, 1) = N (n, 2) = R(n), and N (n, n) = 1.
Note that there is a canonical decomposition of any tree T ∈ B(n+2) by considering

the path from leaf n + 1 to n + 2 and the ordered forest of rooted trees that attach to
this path. This leads to a bijection between ordered forests on n leaves, and B(n + 2).
In particular,

B(n + 2) =
n∑

k=1

k! N (n, k). (1)

A snowflake in a tree T ∈ B(n) is a subtree of T with a distinguished interior
vertex v and six interior vertices at distance 2 from v. We refer to v as the central
vertex of the snowflake (see Fig. 1). Observe that an interior vertex v in T is the
central vertex of at least one snowflake if and only if the distance from v to each leaf
of T is at least 3.

Let S(n) denote the set of ordered pairs (T , v), where T ∈ B(n) and v is the central
vertex of a snowflake in T .

Lemma 2 For n ≥ 12,

|S(n)|
B(n)

= 4 · (2n − 13)!
(2n − 4)! · (n − 2)!

(n − 12)! ∼ n2−7.

Proof We have

|S(n)| = N (n, 12) · 12!
29 · 3! ,

where N (n, 12) enumerates the forest of 12 rooted trees (represented by circles in
Fig. 1) and 12!

29·3! counts the number of distinct ways to arrange these 12 rooted trees.
Thus, by Lemma 1,

|S(n)|
B(n)

= N (n, 12)

B(n)
· 12!
29 · 3! ,
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Fig. 2 The decomposition of T
given two vertices (v1, v2) that
are centres of snowflake and at
distance at least 6 apart from
each other. The triangles
represent trees; there has to be at
least one such tree, and the total
number of leaves in such trees is
i ≥ 0

v1 v2# leaves = i

which reduces to the expression in the lemma. �	

Next, for a given tree T ∈ B(n), let XT denote the number of vertices in T that are
the central vertex of at least one snowflake in T . Let Xn denote the random variable
XT , where T is chosen uniformly at random from B(n). By Lemma 2, we have:

Corollary 3 E (Xn) ∼ n2−7.

This corollary implies that limn→∞ P (Xn = 0) ≤ 1−2−7 (since Xn ≤ n ·1{Xn >

0} and therefore P (Xn = 0) ≤ 1 − E (Xn) /n). In particular, P (Xn = 0) does not
converge to 1.

2.2 The Asymptotic Certainty of a Snowflake

We now establish the following result.

Theorem 4 P (Xn = 0) → 0 as n → ∞.

Proof We show that the variance of Xn is o(n2). This implies that P (Xn = 0) → 0
as n → ∞ by Chebychev’s inequality and Corollary 3.

By Corollary 3, it suffices to show that E
(
X2
n

) ∼ n22−14.
Now,E

(
X2
n

)
is equal to the ratio Y (n)/B(n), where Y (n) is the number of ordered

triples (T , v1, v2), where T ∈ B(n) and v1 and v2 are central vertices of snowflakes of
T . Moreover, for any tree T ∈ B(n) there are O(n) ordered triples (T , v1, v2) where
v1 and v2 are central vertices of snowflakes of T and d(v1, v2) ≤ 4 (this includes the
case where v1 = v2), where d(v1, v2) denotes the number of edges of T in the path
between v1 and v2).

Thus it suffices to show that W (n)/B(n) ∼ n22−14, where W (n) denotes the
number of triples (T , v1, v2) where T ∈ B(n) and v1, v2 are central vertices of
snowflakes of T and d(v1, v2) ≥ 5.

Now observe that for any such ordered triple (T , v1, v2) with d(v1, v2) ≥ 5 we can
represent T uniquely as shown in Fig. 2 with i ≥ 0.
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This decomposition allows us to write:

W (n) =
n−22∑

i=0

B(i + 2)

(
n

i

)
N (n − i, 22)

22!
216

. (2)

In this expression,

• The term B(i + 2) is from Eq. (1), since this counts the number of ways to select
an ordered collection of trees that contain a total of i leaves (the forest denoted
by triangles on the path in Fig. 2). The condition that i ≥ 0 recognises that
d(v1, v2) ≥ 5, and i ≤ n − 22 because each of the 22 circled trees in Fig. 2 has at
least one leaf in order for v1 and v2 to be the centres of snowflakes.

• The term
(n
i

)
is the number of ways of selecting the i leaf labels from the total leaf

set of size n that will label the leaves of the trees indicated by triangles in Fig. 2.
• The term N (n − i, 22) is the number of choices for the 22 circled trees (which
form a forest of 22 rooted trees on a total of n − i leaves).

• The term 22!
216

counts the number of distinct ways to attach the forest of the 22
circled rooted subtrees to the backbone tree (with v1, v2 as distinguished vertices),
by the orbit-stabilizer theorem.

Equation (2) expresses W (n) as a summation; however, we can use generating
function techniques to obtain a concise exact expression for W (n)/B(n), namely:

W (n)

B(n)
= 16 · (2n − 22)!

(2n − 4)! · (n − 2)!
(n − 22)! . (3)

Theorem 4 then follows directly from Eq. (3), since W (n)/B(n) ∼ n2 2−14.
Thus, it remains to establish Eq. (3). For notational convenience, let k = 22. Since
B(i + 2) = R(i + 1), we can rewrite Eq. (2) as:

W (n) = k! n! 2−16
n−k∑

i=0

R(i + 1)

i ! · N (n − i, 22)

(n − i)! , (4)

We now use generating functions. Let

r(x) = 1 − √
1 − 2x =

∑

n≥1

R(n)
xn

n! ,

which is the exponential generating function for the number of rooted binary phyloge-

netic trees. Note that N (n, k) = n![xn] r(x)kk! , where [xn] f (x) denotes the coefficient
an of xn in f (x) = a1x + a2x2 + · · · . Since d

dx r(x)
k+1 = (k + 1)( d

dx r(x)) · r(x)k ,
we have:
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[xn]
(

d

dx
r(x)k+1

)
= (k + 1)

n−k∑

i=0

(
[xi ] d

dx
r(x)

)
· [xn−i ]r(x)k

= (k + 1)
n−k∑

i=0

R(i + 1)

i !
N (n − i, k)k!

(n − i)!

Thus, by Eq. (4),

W (n) = n!
216(k + 1)

· [xn]
(

d

dx
r(x)k+1

)
. (5)

Now, since r(x)k+1 = ∑
n≥1

N (n,k+1)(k+1)!
n! xn , we have:

[xn]
(

d

dx
r(x)k+1

)
= N (n + 1, k + 1)(k + 1)!

n!
and so, by Eq. (5),

W (n) = n!
216(k + 1)

· N (n + 1, k + 1)(k + 1)!
n! = k!

216
N (n + 1, k + 1).

Consequently, recalling that k = 22, and applying Lemma 1 gives:

W (n)

B(n)
= k! (2(n + 1) − (k + 1) − 1)!

216 (n − k)! k! 2n−k
· (n − 2)! 2n−2

(2n − 4)! = 16 · (2n − 22)!
(2n − 4)! · (n − 2)!

(n − 22)! ,

which establishes Eq. (3) and thereby the theorem. �	
An alternative class of models for generating random binary trees in biology are

birth–deathprocesses.Under a fairlywide rangeof conditions (seeLambert andStadler
(2013); Steel (2016)), thesemodels give rise to the same probability distribution on tree
shapes, namely the Yule–Harding distribution. If we suppress the root, the resulting
random tree T̃n ∈ B(n) has a simple construction (regardless of the underlying birth–
death rates in the model), as follows. Starting with the tree on two leaves, select one of
the existing pendant edges (incident with a leaf) uniformly at random and attach the
next leaf to a subdividing midpoint of this edge1. For Yule–Harding trees, snowflakes
are also asymptotically certain, by the following much shorter argument.

Proposition 5 The probability that T̃n contains a snowflake tends to 1 as n grows.

Proof Let Tn denote the Yule–Harding tree (with its root). If n1(Tn) and n2(Tn) =
n−n1(Tn) denote the number of leaves of the two subtrees of Tn incident with the root,

1 By contrast, the analogous process for the uniform distribution onB(n) selects among all edges uniformly
at random for the next leaf attachment.
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then n1(Tn) is uniformly distributed between 1 and n − 1 (see e.g., Aldous (1996)).
In particular,

P
(
min{n1(Tn), n2(Tn)} ≥ √

n
) −−−−→

n→∞ 1 .

Since the two subtrees of Tn are also described by the Yule–Harding distribution, it
follows that each of these two subtrees consists of two subtrees that each have at least√√

n leaves with probability 1−o(1) as n grows. Continuing this argument two steps
further, the root of Tn is the root of a complete balanced binary tree on 16 vertices
with probability tending to 1 as n grows. Thus, if we now suppress the root vertex, the
resulting tree T̃n contains a snowflake with probability that tends to 1 as n grows. �	

3 A Generic Approach Using Branching Process Techniques

In this section, we prove a 0–1 law for pattern occurrences that applies not only to
snowflakes but also to any finite pattern, and not only to uniform binary trees but also
to other trees and even networks. This 0–1 law follows readily from standard tools of
modern probability theory—namely, local limits of size-conditioned Galton–Watson
trees—so even thoughwe could not find it in the literature, it will not come as a surprise
to people familiar with these tools. Nevertheless, it does not seem to be known in the
mathematical phylogenetics community, despite having relevant applications there.

The idea of the proof is that some random phylogenetic trees or networks can be
‘chopped up’ into smaller parts that are almost independent of each other. If these
parts are large enough, then each of them has a positive probability of containing the
pattern of interest; the 0–1 law then follows from a Borel–Cantelli argument.

The caveat in this argument is that it may not be obvious how to chop up the random
tree or network of interest into constituents that are ‘almost independent’. The notion
of local limit provides a convenient way to tackle this issue, namely, by making it
possible to study some large trees or networks using a limiting object that consists of
truly independent parts.

3.1 Prerequisites

In this section, we give an overview of the minimal prerequisites for the proof of our
0–1 law. In particular, some notions and results will not be presented in full generality.
Complete and self-contained introductions to these tools can be found in van der
Hofstad (2024), for the general notion of local limit; and in Janson (2012), for local
limits of size-conditioned Galton–Watson trees.

3.1.1 Local Limits

The notion of local limit of a sequence of rooted graphs formalizes the idea that the
structure of a rooted graph Gn ‘as seen from its root’ converges as n → ∞. What
makes this interesting is that, after giving a rigorous meaning to limn Gn , quantities
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such as limn f (Gn) can sometimes be computed as f (limn Gn); when limn Gn has a
simple structure, the latter can be much easier to compute.

There are several ways to formalize this idea. In the case of ordered trees,2—which
is all we need for our main result—a standard way to do so is to embed all trees in
the Ulam–Harris tree and to say that a sequence of trees (Tn) converges locally to a
tree T if and only if the out-degrees of Tn converge pointwise to the out-degrees of T .
If the trees are locally finite (i.e. if all vertices have a finite degree), then letting [T ]k
denote the ball of radius k centered on the root of T , this is equivalent to saying that
for all fixed k, there exists N such that [Tn]k = [T ]k for all n ≥ N .

This framework makes it possible to talk about convergence in distribution of a
sequence of random trees (Tn) to a (possibly infinite) random tree T :

Tn
d, loc.−−−−→
n→∞ T ⇐⇒ ∀k,∀ fixed τ, P ([Tn]k = τ) −−−−→

n→∞ P ([T ]k = τ) .

Moreover, all of the usual results from probability theory regarding the convergence
of functionals of Tn apply. For instance, Tn converges in distribution to T if and only
if E ( f (Tn)) → E ( f (T )) for all bounded continuous functions f . However, many
functions of interests are not continuous for the local topology. Thus, in order to use
limn Tn to compute limn f (Tn), one must take care to justify either the continuity of
f for the local topology, or the interchange of limit for the particular sequence (Tn)
of interest.

3.1.2 Size-Conditioned Galton–Watson Trees

Galton–Watson trees have a natural ordering that makes it convenient to treat them
as ordered trees: by doing so, for any fixed ordered tree τ , the probability that a
Galton–Watson tree T with offspring distribution X is equal to τ is

P (T = τ) =
∏

v∈τ

P
(
X = d+(v)

)
.

where d+(v) denotes the out-degree of v in τ . In this paper, we use the notation
T ∼ GW(X) to indicate that T is a Galton–Watson tree with offspring distribution X .
By a slight abuse of notation, we also use the notation GW(X) to denote a generic
Galton–Watson tree.

A size-conditioned Galton–Watson tree is a Galton–Watson tree conditioned to
have exactly n vertices. Of course, there are conditions on the offspring distributions
X and on n for this conditioning to make sense: for instance, a Galton–Watson tree
whose offspring distribution is almost surely positive cannot be conditioned to be
finite; similarly, since rooted binary trees always have an odd number of vertices (we
are not counting the root edge here), aGalton–Watson treewhose offspring distribution
takes values in {0, 2} cannot be conditioned to have an even number of vertices.

2 Recall that an ordered tree also known as a plane tree, is a rooted tree where the children of each vertex
are ordered.
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The central role of size-conditioned Galton–Watson trees in combinatorial proba-
bility theory and their relevance here comes from the two following points:

• For various classes of random trees, it is possible to sample uniformly at ran-
dom using size-conditioned Galton–Watson tree. This is the case, for example, of
uniform leaf-labelled d-ary trees, as detailed in the next section.

• Under some fairly general assumptions on the offspring distribution, the local limit
of size-conditioned Galton–Watson trees has a very specific structure known as
Kesten’s size-biased tree. This is detailed in Sect. 3.1.4.

3.1.3 Uniform d-Ary Trees as Size-Conditioned Galton–Watson Trees

In this section, we recall how to obtain uniform leaf-labelled d-ary trees from size-
conditioned critical Galton–Watson trees. But first, let us clarify a few points of
vocabulary when talking about d-ary trees and ordered d-ary trees:

• By a d-ary tree, we mean a tree such that the degree of every vertex is either equal
to 1 (the leaves) or to d + 1 (the internal vertices). Except for the tree consisting
of a single edge, every d-ary tree has (k + 1)d + 2 vertices, for some k ≥ 0: k + 1
internal vertices and (k + 1)d − k + 1 leaves. As seen above, in the case d = 2,
there are B(n) = (2n − 5)!! such trees with n labelled leaves—each of which has
2n − 3 edges.

• By an ordered d-ary tree, we mean an ordered tree in which every vertex has
in-degree 1, except for the root, which has in-degree 0; and where the out-degree
of every vertex is either 0 or d. Each such tree has kd+1 vertices, for some k ≥ 0:
k internal vertices and (d − 1)k + 1 leaves.
For d = 2, there are Cn−1 such trees with n leaves, where Ck denotes the k-th
Catalan number.

Finally, recall that ordered trees are intrinsically labelled. For instance, the Ulam–
Harris labelling (also known as the Neveu notation) assigns a word to each vertex of
the tree in the following way: the root is labelled with the empty word, and the k-th
child of a vertex with label w get the label wk. The link between ordered trees and
rooted vertex-labelled trees is thus straightforward: there are exactly

∏
v d

+(v)! ways
to order any rooted vertex-labelled tree, where the product runs over the vertices of
the tree.

Proposition 6 Let X ∼ d × Bernoulli(1/d), and let T ∼ GW(X). Then, letting #T
denote the number of vertices of T , for any n such that P (#T = n) > 0, the size-
conditioned tree Tn ∼ (T | #T = n) has the uniform distribution on the set of ordered
d-ary trees with n vertices.

Remark 7 Since for d-ary trees the number of leaves is a deterministic function of the
total number of vertices, Proposition 6 also holds if we condition on the number of
leaves.
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Proof Let τ be any fixed ordered d-ary tree with n vertices. Recalling that all such
trees have the same number i := (n − 1)/d of internal vertices,

P (T = τ) =
∏

v∈τ

P
(
X = d+(v)

) = ( 1
d

)i (
1 − 1

d

)n−i
.

Since this probability is the same for every tree τ with n vertices, this concludes the
proof. �	

Proposition 8 Let Tn−1 have the uniform distribution on the set of ordered d-ary trees
with n − 1 leaves, and let T̃n be the tree obtained by: (1) grafting a leaf to the root
of Tn−1 and labelling the n leaves of the resulting tree uniformly at random; and (2)
discarding the ordering and the rooting of the resulting tree. Then T̃n has the uniform
distribution on the set of d-ary trees with n labelled leaves.

Proof Let us start by introducing some notation. We denote by:

• Tn the set of ordered d-ary trees with n leaves;
• T̃n the set of d-ary trees with n labelled leaves;
• Cn the set of ordered d-ary trees with n − 1 leaves, where the root has out-degree
1 and where the leaves and the root are labelled;

• Sn the set of permutations of {1, . . . , n}.
With this notation, the following hold:

(i) Since the leaves of a tree T ∈ Tn−1 are already intrinsically labelled by the
ordering of T , by adding a root edge to T and labelling the root and the n − 1
leaves of the resulting tree, we get a bijection φ from Tn−1 × Sn to Cn .

(ii) For any T̃ ∈ T̃n , by choosing one of the n leaves as the root, and then an ordering
for the d children of each of the (n − 2)/(d − 1) internal vertices of T̃ , we get a
bijection from T̃n × {1, . . . , n} × (Sd)

(n−2)/(d−1) to Cn .

Point (i) means that the pushforward by φ of the uniform distribution onTn−1×Sn

is the uniform distribution on Cn , whereas Point (ii) implies that if we letψ denote the
canonical projection from Cn to T̃n , the pushforward by ψ of the uniform distribution
on Cn is the uniform distribution on T̃n .

Therefore, the pushforward by φ ◦ ψ of the uniform distribution on Tn−1 is the
uniform distribution T̃n . Since φ ◦ ψ is the construction described in the proposition,
this concludes the proof. �	

Remark 9 This proof implies that, for all d ≥ 2 and all n = d · i + 1, we have

|Tn−1| × n! = |T̃n| × n × (d!)(n−2)/(d−1).

It is straightforward to check that this holds for d = 2, since in that case, |Tn−1| is the
(n − 2)-th Catalan number and |T̃n| = (2n − 5)!!.
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3.1.4 Kesten’s Size-Biased Tree

As already mentioned, the local limit of size-conditioned Galton–Watson trees has a
simple, universal structure. In what follows, we state this result for critical Galton–
Watson trees (that is, the expected value of the offspring distribution X is equal to 1).
However, the criticality is not as restricting as it may seem, because many non-critical
Galton–Watson trees can be turned into equivalent critical Galton–Watson trees via
exponential tilting (that is, there exists an exponential tilting of the offspring distribu-
tion that yields a critical Galton–Watson tree with the same conditional distribution on
the set of trees with n vertices as the original Galton–Watson tree; see (Janson 2012,
Sect. 4)).

The following theorem is not stated in full generality; see (Janson 2012, Theo-
rem 7.1) for a more general statement.

Theorem 10 Let X be an integer-valued random variable such that E (X) = 1,
E

(
X2

)
< ∞ and P (X = 0) > 0. Let T ∼ GW(X) be a Galton–Watson tree

with offspring distribution X, and let Tn ∼ (T | #T = n), for all n such that
P (#T = n) > 0. Then the local limit of Tn is the infinite random tree T ∗obtained by
the following procedure:

1. Start with a semi-infinite path v1, v2, . . ., and let v1 be the root of T ∗. This path
will be referred to as the spine of T ∗.

2. Let X∗ have the size-biased distribution of X, and let X∗
1, X

∗
2, . . . be independent

replicates of X∗. Then graft X∗
k − 1 edges on each vertex vk of the spine.

3. Let each of the leaves added at the previous step be the root of an independent
GW(X) tree.

The tree T ∗ described in Theorem 10 is known as Kesten’s size-biased tree. Despite
being infinite, its structure is simpler than those of the finite trees Tn , because it can
be split into several regions that are independent. In a sense, in the limit, we recover
the independence that was lost by conditioning on the total number of vertices.

3.2 The 0–1 Law for Finite Patterns

We now state and prove our main result. In order to make the statement of the theorem
shorter, let us first introduce some vocabulary.

Definition 11 Let X be an integer-valued random variable with support S. A tree τ

is said to be X -realizable if it can be rooted in such a way that its out-degrees are
elements of S.

The term ‘realizable’ refers to the fact that a tree τ is X -realizable if and only if it
can be the realization of a Galton–Watson tree with offspring distribution X .

Theorem 12 Let (Tn) be a sequence of size-conditioned Galton–Watson trees whose
offspring distribution X satisfies the assumptions of Theorem 10. For any finite tree τ ,
we have the following dichotomy:

123
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(i) If τ is not X-realizable, then P (Tn ⊃ τ) = 0 for all n.
(ii) If τ is X-realizable, then P (Tn ⊃ τ) → 1 as n → ∞.

Before proving Theorem 12, let us point out a subtlety.
Let T be a critical Galton–Watson tree satisfying the assumptions of Theorem 10,

so that the local limit of Tn ∼ (T | #T = n) is the infinite Kesten tree T ∗ described in
the theorem. For any tree τ such that P (T ⊃ τ) > 0, the independence of the copies
of T that are attached to the spine of T ∗ immediately implies that P (T ∗ ⊃ τ) = 1.
However, we cannot conclude that P (Tn ⊃ τ) → P (T ∗ ⊃ τ) = 1 as n tends to
infinity: indeed, the function T �→ 1{T ⊃ τ }—of which T �→ P (T ⊃ τ) is the
expected value—is not continuous for the local topology.

To see why, take any pattern τ that is not a path, and consider the rooted tree tn
obtained by grafting τ at one end of a path of length n, letting the other end of that
path be the root of tn . Then, for all n, for k large enough, [tn]k ⊃ τ . However, for all
fixed k, [tn]k �⊃ τ for n large enough. Thus,

0 = lim
k

lim
n

1{[tn ]k⊃τ } �= lim
n

lim
k

1{[tn ]k⊃τ } = 1.

Therefore, to prove Theorem 12, we need to justify that in the case of the sequence
(Tn), the limits can be interchanged.

Proof of Theorem 12 Case (i) of the proposition is immediate, so let us turn to case (ii).
Let X∗ have the size-biased distribution of X , and let T ∗ denote the local limit

of Tn , i.e. the Kesten tree associated with X . Let v1 be the root of T ∗, and v1, v2, . . .

the vertices on its spine.
Let Sk = ∑k

i=1(d
+(vi ) − 1) denote the total number of edges coming out of the

spine of T ∗ from vertices vi at distance less than k from the root. Note that (Sk)k≥1
is a random walk whose increments are distributed as X∗ − 1. Since X∗ ≥ 1 almost
surely and since P (X∗ > 1) > 0, we have Sk → ∞ almost surely as k → ∞.

Next, let D denote the diameter of τ (i.e., the maximal distance between two of its
vertices) and let

p := P
([GW(X)]D ⊃ τ

)
> 0

be the probability that a Galton–Watson tree with offspring distribution X contains τ

in the ball of radius D centered on its root. Note that, for all i and all k ≥ i + D,

P
([T ∗]k ⊃ τ |Si

) ≥ 1 − (1 − p)Si ,

because [T ∗]k contains the Si balls of radius D centered on the roots of the Si inde-
pendent Galton–Watson trees that are grafted on the first i vertices of the spine of T ∗
in its construction. Taking expectations and using that p > 0 and that Si → ∞ almost
surely, we get:

∀ε > 0, ∃i ≥ 1, ∀k ≥ i + D, P
([T ∗]k ⊃ τ

) ≥ 1 − ε

2
. (6)
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Now, since Tn → T ∗ in distribution for the local topology as n → ∞,

∀k ≥ 1, P ([Tn]k ⊃ τ) −−−−→
n→∞ P

([T ∗]k ⊃ τ
)
.

As a result, we also have:

∀ε > 0, ∀k ≥ 1, ∃N ≥ 1, ∀n ≥ N , P ([Tn]k ⊃ τ) ≥ P
([T ∗]k ⊃ τ

) − ε

2
.

(7)

Combining Inequalities (6) and (7) finishes the proof. Indeed, for any ε > 0, taking i as
in (6), and then N as in (7) with the same ε and k = i+D ensures thatP ([Tn]k ⊃ τ) ≥
1 − ε for all n ≥ N . Since P (Tn ⊃ τ) ≥ P ([Tn]k ⊃ τ), we have proved

∀ε > 0, ∃N ≥ 1, ∀n ≥ N , P (Tn ⊃ τ) ≥ 1 − ε,

which is what we needed. �	

3.3 Corollaries: Patterns in d-ary Trees and Level-kNetworks

We conclude this paper by providing two examples of applications of Theorem 12.
One is a direct corollary that generalizes Theorem 4 on snowflakes in binary trees;
the other one is an application to level-k networks. Since some relevant classes of
phylogenetic trees and networks can be characterized by the fact that they contain or
exclude certain fixed-size patterns (and since, more generally, such patterns can affect
the outcome or performance of some algorithms), Theorem 12 likely has many other
such relevant applications in mathematical phylogenetics.

Corollary 13 Let Tn be sampled uniformly at random on the set of d-ary trees with n
labelled leaves. Then, for any finite d-ary tree τ ,

P (Tn ⊃ τ) −−−−→
n→∞ 1.

Proof This follows immediately from the fact that, as detailed in Section 3.1.3, uniform
leaf-labelled d-ary trees can be sampled using size-conditioned criticalGalton–Watson
trees. �	
Corollary 14 Let Nn be sampled uniformly at randomamong the set of level-k networks
with n labelled leaves, and let τ be any finite level-k network. Then,

P (Nn ⊃ τ) −−−−→
n→∞ 1 .

Proof This follows readily from the ‘blow-up’ construction of uniform leaf-labelled
level-k networks given in Stufler (2022) and from Theorem 12. �	
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Remark 15 As an example of application of Theorem 12 and its corollaries in com-
binatorial phylogenetics, note that since tree-child networks contain no ‘stacks’
(reticulations whose only child is a reticulation), and since there exist level-2 net-
works that contain a stack, we immediately deduce from Corollary 14 that for k ≥ 2,
almost no level-k network is tree-child.
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